


ComSIS is an international journal published by the ComSIS Consortium

ComSIS Consortium:

University of Belgrade:

Faculty of Organizational Science, Belgrade, Serbia
Faculty of Mathematics, Belgrade, Serbia

School of Electrical Engineering, Belgrade, Serbia
Serbian Academy of Science and Art:
Mathematical Institute, Belgrade, Serbia

EDITORIAL BOARD:
Editor-in-Chief: Mirjana Ivanovi¢, University of Novi Sad
Vice Editor-in-Chief: lvan Lukovi¢, University of Novi Sad
Managing Editors:

Gordana Raki¢, University of Novi Sad

Milo§ Radovanovi¢, University of Novi Sad

Zoran Putnik, University of Novi Sad

Editorial Board:

S. Ambroszkiewicz, Polish Academy of Science, Poland
P. Andreae, Victoria University, New Zealand

Z. Arsovski, University of Kragujevac, Serbia

D. Bankovi¢, University of Kragujevac, Serbia

T. Bell, University of Canterbury, New Zealand

D. Boji¢, University of Belgrade, Serbia

Z. Bosni¢, University of Ljubljana, Slovenia

B. Delibasi¢, University of Belgrade, Serbia

I. Berkovi¢, University of Novi Sad, Serbia

L. Boszérmenyi, University of Clagenfurt, Austria

K. Bothe, Humboldt University of Berlin, Germany

S. Bo$njak, University of Novi Sad, Serbia

D. Leti¢, University of Novi Sad, Serbia

Z. Budimac, University of Novi Sad, Serbia

H.D. Burkhard, Humboldt University of Berlin, Germany
B. Chandrasekaran, Ohio State University, USA

G. Devedzi¢, University of Kragujevac, Serbia

V. Devedzi¢, University of Belgrade, Serbia

V. Cirié, University of Belgrade, Serbia

D. Domazet, FIT, Belgrade, Serbia

J. Burkovié, University of Novi Sad, Serbia

G. Eleftherakis, CITY College, Intemational Faculty of the
University of Sheffield, Greece

M. Gusev, FINKI, Skopje, FYR Macedonia

S. Guttormsen Schar, ETH Zentrum, Switzerland

P. Hansen, University of Montreal, Canada

M. Ivkovi¢, University of Novi Sad, Serbia

L.C. Jain, University of South Australia, Australia

D. Jankovi¢, University of Ni, Serbia

V. Jovanovi¢, Georgia Southern University, USA

Z. Jovanovi¢, University of Belgrade, Serbia

L. Kalinichenko, Russian Academy of Scence, Russia

Union University:

School of Computing, Belgrade, Serbia
University of Novi Sad:

Faculty of Sciences, Novi Sad, Serbia

Faculty of Technical Sciences, Novi Sad, Serbia
Faculty of Economics, Subotica, Serbia
University of Montenegro:

Faculty of Economics, Podgorica, Montenegro

Editorial Assistants:
Vladimir Kurbalija, University of Novi Sad
Jovana Vidakovi¢, University of Novi Sad
Ivan Pribela, University of Novi Sad
Slavica Aleksi¢, University of Novi Sad
Srdan Skrbi¢, University of Novi Sad

Lj. Kacelan, University of Montenegro, Montenegro
Z. Konjovi¢, University of Novi Sad, Serbia

|. Koskosas, University of Western Macedonia, Greece
W. Lamersdorf, University of Hamburg, Germany
T.C. Lethbridge, University of Ottawa, Canada

A. Lojpur, University of Montenegro, Montenegro

M. Malekovi¢, University of Zagreb, Croatia

Y. Manolopoulos, Aristotle University, Greece

A. Mishra, Atilim University, Turkey

S. Misra, Atilim University, Turkey

N. Miti¢, University of Belgrade, Serbia

A. Mitrovi¢, University of Canterbury, New Zealand
N. Mladenovi¢, Serbian Academy of Science, Serbia
S. Mrdalj, Eastern Michigan University, USA

G. Nenadi¢, University of Manchester, UK

Z. Ognjanovi¢, Serbian Academy of Science, Serbia
A. Pakstas, London Metropolitan University, UK

P. Pardalos, University of Florida, USA

J. Proti¢, University of Belgrade, Serbia

M. Rackovi¢, University of Novi Sad, Serbia

B. Radulovi¢, University of Novi Sad, Serbia

D. Simpson, University of Brighton, UK

M. Stankovi¢, University of Nis, Serbia

D. Starcevi¢, University of Belgrade, Serbia

D. Surla, University of Novi Sad, Serbia

D. Tosi¢, University of Belgrade, Serbia

J. Trnini¢, University of Novi Sad, Serbia

M. Tuba, University of Belgrade, Serbia

P. Tumbas, University of Novi Sad, Serbia

J. Woodcock, University of York, UK

P. Zarate, IRIT-INPT, Toulouse, France

K. Zdravkova, FINKI, Skopje, FYR Macedonia

ComSIS Editorial Office:

University of Novi Sad, Faculty of Sciences,
Department of Mathematics and Informatics
Trg Dositeja Obradovi¢a 4, 21000 Novi Sad, Serbia
Phone: +381 21 458 888; Fax: +381 21 6350 458
www.comsis.org; Email: comsis@uns.ac.rs



Volume 10, Number 1, 2013
Novi Sad

Computer Science and Information Systems

ISSN: 1820-0214

ComSIS Journal is sponsored by:

Ministry of Education, Science and Technological Development of Republic of Serbia -
http://www.mpn.gov.rs/


http://www.mpn.gov.rs/

Com computer Science and
SIS Information Systems

AIMS AND SCOPE

Computer Science and Information Systems (ComSIS) is an international refereed journal, pub-
lished in Serbia. The objective of ComSIS is to communicate important research and development
results in the areas of computer science, software engineering, and information systems.

We publish original papers of lasting value covering both theoretical foundations of computer
science and commercial, industrial, or educational aspects that provide new insights into design
and implementation of software and information systems. ComSIS also welcomes survey papers
that contribute to the understanding of emerging and important fields of computer science. In
addition to wide-scope regular issues, ComSIS also includes special issues covering specific topics
in all areas of computer science and information systems.

ComSIS publishes invited and regular papers in English. Papers that pass a strict reviewing
procedure are accepted for publishing. ComSIS is published semiannually.

Indexing Information

ComSiIS is covered or selected for coverage in the following:
» Science Citation Index (also known as SciSearch) and Journal Citation Reports / Science
Edition by Thomson Reuters, with 2011 two-year impact factor 0.625,

+ Computer Science Bibliography, University of Trier (DBLP),

+ EMBASE (Elsevier),

* Scopus (Elsevier),

* Summon (Serials Solutions),

+ EBSCO bibliographic databases,

IET bibliographic database Inspec,

FIZ Karlsruhe bibliographic database io-port,

Index of Information Systems Journals (Deakin University, Australia),

Directory of Open Access Journals (DOAJ),

Google Scholar,

Journal Bibliometric Report of the Center for Evaluation in Education and Science (CEON/CEES)
in cooperation with the National Library of Serbia, for the Serbian Ministry of Education and
Science,

+ Serbian Citation Index (SCIndeks),

+ doiSerbia.

-

-

-

-

-

-

Information for Contributors

The Editors will be pleased to receive contributions from all parts of the world. An electronic
version (MS Word or LaTeX), or three hard-copies of the manuscript written in English, intended
for publication and prepared as described in "Manuscript Requirements" (which may be
downloaded from http://www.comsis.org), along with a cover letter containing the corresponding
author's details should be sent to official Journal e-mail.



Criteria for Acceptance

Criteria for acceptance will be appropriateness to the field of Journal, as described in the Aims
and Scope, taking into account the merit of the content and presentation. The number of pages
of submitted articles is limited to 25 (using the appropriate Word or LaTeX template).

Manuscripts will be refereed in the manner customary with scientific journals before being
accepted for publication.

Copyright and Use Agreement

All authors are requested to sign the "Transfer of Copyright" agreement before the paper may be
published. The copyright transfer covers the exclusive rights to reproduce and distribute the
paper, including reprints, photographic reproductions, microform, electronic form, or any other
reproductions of similar nature and translations. Authors are responsible for obtaining from the
copyright holder permission to reproduce the paper or any part of it, for which copyright exists.






Computer Science and Information Systems

Volume 10, Number 1, January 2013

CONTENTS

Editorial
Guest editorial: Engineering of Computer Based Systems
Guest editorial: Information Technologies in Medicine and Rehabilitation

Papers

1 WebMonitoring Software System: Finite State Machines for
Monitoring the Web
Vesna Paji¢, Dusko Vitas, Gordana Pavlovi¢ Lazeti¢, Milo$ Pajic

25 SLA-Driven Adaptive Monitoring of Distributed Applications
for Performance Problem Localization
Dusan Okanovi¢, André van Hoorn, Zora Konjovi¢, Milan Vidakovi¢

51 A Scalable Multiagent Platform for Large Systems
Juan M. Alberola, Jose M. Such, Vicent Botti, Agustin Espinosa, Ana
Garcia-Fornes

79 Validation of Schema Mappings with Nested Queries
Guillem Rull, Carles Farré, Ernest Teniente, Toni Urpi

105 Accessibility Algorithm Based on Site Availability to Enhance
Replica Selection in a Data Grid Environment
Ayman Jaradat, Ahmed Patel, M.N. Zakaria, A.H. Muhamad Amina

133 Ant Colony Optimization Algorithm with Pheromone
Correction Strategy for the Minimum Connected Dominating
Set Problem
Raka Jovanovic, Milan Tuba

151 Ontological Model of Legal Norms for Creating and Using
Legislation
Stevan Gostoji¢, Branko Milosavljevi¢, Zora Konjovi¢

173 Indexing moving objects: A real time approach
George Lagogiannis, Nikos Lorentzos, Alexander B. Sideridis

197 Multi-sensor Data Fusion Based on Consistency Test and
Sliding Window Variance Weighted Algorithm in Sensor
Networks
Jian Shu, Ming Hong, Wei Zheng, Li-Min Sun, Xu Ge

215 A Novel Method for Data Conflict Resolution using Multiple
Rules
Zhang Yong-Xin, Li Qing-Zhong, Peng Zhao-Hui



237 Ontology-Based Architecture with Recommendation Strategy
in Java Tutoring System
Boban Vesin, Mirjana Ivanovi¢, Aleksandra Klasnja-Milicevi¢, Zoran
Budimac

263 A Viewpoint of Tanzania E-Commerce and Implementation
Barriers
George S. Oreku, Fredrick J. Mtenzi, Al-Dahoud Ali

283 A Design Specification and a Server Implementation of the
Inverse Referential Integrity Constraints
Slavica Aleksi¢, Sonja Risti¢, Ivan Lukovi¢, Milan Celikovi¢

Special Section: Engineering of Computer Based Systems

321 Methods for Division of Road Traffic Network for Distributed
Simulation Performed on Heterogeneous Clusters
Tomas Potuzak

349 Modeling and Visualization of Classification-Based Control
Schemes for Upper Limb Prostheses
Andreas Attenberger, Klaus Buchenrieder

369 On Task Tree Executor Architectures Based on Intel Parallel
Building Blocks
Miroslav Popovic, Miodrag Djukic, Vladimir Marinkovic, Nikola Vranic

393 Modeling and Verifying the Ariadne Protocol Using Process
Algebra
Xi Wu, Huibiao Zhu, Yongxin Zhao, Zheng Wang, Si Liu

423 System Design for Passive Human Detection using Principal
Components of the Signal Strength Space
Bojan Mrazovac, Milan Z. Bjelica, Dragan Kukolj, Branislav M.
Todorovi¢, Sasa Vukosavljev

453 Support for End-to-End Response-Time and Delay Analysis in
the Industrial Tool Suite: Issues, Experiences and a Case
Study
Saad Mubeen, Jukka Maki-Turja, Mikael Sjodin

Special Section: Information Technologies in Medicine and
Rehabilitation

483 Design of a Multimodal Hearing System
Bernd Tessendorf, Matjaz Debevc, Peter Derleth, Manuela Feilner,
Franz Gravenhorst, Daniel Roggen, Thomas Stiefmeier, Gerhard
Troster



503

525

547

Optimization and Implementation of the Wavelet Based
Algorithms for Embedded Biomedical Signal Processing
Radovan Stojanovi¢, Sasa Knezevi¢, Dejan Karadagli¢, Goran
Devedzi¢

Biomechanical Modeling of Knee for Specific Patients with
Chronic Anterior Cruciate Ligament Injury

Nenad Filipovi¢, Velibor Isailovic, Dalibor Nikoli¢, Aleksandar Peulic,
Nikola Mijailovi¢, Suzana Petrovi¢, Sasa Cukovi¢, Radun Vulovic,
Aleksandar Mati¢, Nebojsa Zdravkovi¢, Goran Devedzi¢, Branko Risti¢
Modeling of Arterial Stiffness using Variations of Pulse
Transit Time

Aleksandar Peuli¢, Natasa Milojevi¢, Emil Jovanov, Milos Radovi¢, Igor
Savelji¢, NebojSa Zdravkovi¢, Nenad Filipovi¢






EDITORIAL

This issue of Computer Science and Information Systems consists of 13
regular articles and two special sections: “Engineering of Computer Based
Systems,” guest-edited by Bernard Schatz, which contains six articles that
represent expanded versions of papers selected from the 19th Annual IEEE
International Conference and Workshops on the Engineering of Computer
Based Systems (ECBS), and “Information Technologies in Medicine and
Rehabilitation,” guest-edited by Goran DevedZi¢, which brings forth four
papers that describe new developments in the interdisciplinary field of
biomedical engineering. We would like to use this opportunity to thank the
guest editors, as well as article authors and reviewers, for helping to bring this
diverse issue of ComSIS to our readers.

In the first regular article, “WebMonitoring Software System: Finite State
Machines for Monitoring the Web,” Vesna Paiji¢ et al. present a system based
on finite-state machines that successfully solves two problems regarding
information search on the Web: enabling effective complex search queries
that transcend keywords, and accessing Web-page content that would
otherwise be hidden due to crawling limitations and time lags.

DuSan Okanovi¢ et al., in “SLA-Driven Adaptive Monitoring of Distributed
Applications for Performance Problem Localization,” describe DProf — an
adaptive approach to application-level monitoring of software systems which
allows changing the instrumentation of software operations in monitored
distributed applications at runtime. This is achieved by specifying performance
objectives in service level agreements (SLAs) and using call tree information
to detect and localize problems in application performance.

“A Scalable Multiagent Platform for Large Systems” by Juan M. Alberola et al.
introduces a new multi-agent platform developed at the level of the operating
system, facilitating high efficiency and scalability to large populations of
agents that require fast messaging services, agent group management, and
security checks.

The article “Validation of Schema Mappings with Nested Queries” by Guillem
Rull et al. tackles the problem of validating XML schema mappings, focusing
on nested relational schemas. Validation is performed through reasoning on
schemas and mapping definition, by encoding the given mapping scenario
into flat database schema, and reformulating property checks as query
satisfiability problems.

ComsSIS Vol. 10, No. 1, January 2013



In “Accessibility Algorithm Based on Site Availability to Enhance Replica
Selection in a Data Grid Environment,” Ayman Jaradat et al. present a replica
selection algorithm for data grid environments that considers site availability in
addition to data transfer time, providing better estimates of response time
compared to existing approaches which do not take site availability into
account.

Raka Jovanovic and Milan Tuba, in their article “Ant Colony Optimization
Algorithm with Pheromone Correction Strategy for the Minimum Connected
Dominating Set Problem,” give special attention to the initial condition of the
colony optimization (ACO) algorithm for the minimum connected dominating
set problem (MCDSP), also adding a pheromone correction strategy. The two
innovations avoid entrapment in local optima, as well as reduce complexity of
the ACO algorithm.

“Ontological Model of Legal Norms for Creating and Using Legislation,” by
Stevan Gostoji¢, Branko Milosavljevi¢ and Zora Konjovié, presents a formal
model of legal norms modeled in OWL. Unlike existing approaches that model
legal norms by formal logic, rules or ontologies, the approach presented in
this article is intended for semiautomatic drafting and semantic retrieval and
browsing of legislation.

George Lagogiannis, Nikos Lorentzos, and Alexander B. Sideridis, in
“Indexing Moving Objects: A Real Time Approach,” tackle the problem of
reducing the 1/O bottleneck when indexing moving objects by minimizing the
number of I/Os in such a way that queries concerning the present and past
positions of the objects can be answered efficiently. The authors propose two
approaches that achieve an asymptotically optimal number of such 1/Os,
based on the assumption that the primary memory suffices for storing the
current positions of the objects.

In “Multi-sensor Data Fusion Based on Consistency Test and Sliding Window
Variance Weighted Algorithm in Sensor Networks,” Jian Shu et al. tackle the
problem of reduced accuracy of sensor data due to zero offset and decreased
stability of wireless sensor networks by proposing an algorithm for detecting
abnormal data based on consistency tests and sliding window variance. The
article shows that amending or removing abnormal sensor data using the
proposed method results in better precision compared to existing approaches.

Zhang Yong-Xin, Li Qing-Zhong and Peng Zhao-Hui, in “A Novel Method for
Data Conflict Resolution using Multiple Rules,” examine the issue of conflict
resolution during data integration by considering the interplay of data conflict
resolution on different attributes, instead of focusing on resolving conflicts
between single attributes. They propose a two-stage procedure based on
Markov Logic Networks, and show that the proposed approach can
significantly improve the accuracy of data conflict resolution in real-world
scenarios.

i ComsSIS Vol. 10, No. 1, January 2013



The following three articles are significantly extended and improved versions
of papers presented at the 5th International Conference on Information
Technology (ICIT 2011) that underwent the regular submission and reviewing
procedure.

The article “Ontology-Based Architecture with Recommendation Strategy in
Java Tutoring System” by Boban Vesin et al. presents Protus 2.0, the new
version of the tutoring system for learning basic concepts of Java
programming language, focusing on its modular architecture where each
Protus 2.0 component is represented by a specific ontology, and course
personalization achieved through learner style identification and content
recommendation.

“A Viewpoint of Tanzania E-Commerce and Implementation Barriers” by
George S. Oreku, Fredrick J. Mtenzi and Al-Dahoud Ali discusses the
prospects of e-commerce implementation, participation, motivation and
opportunity in developing countries like Tanzania, with large domestic markets
and potentials for the development of the agricultural sector. The paper
concludes that Tanzanians have the ability to participate in e-commerce, but
with the need for improving the national image by introducing trust and
discipline.

Finally, Slavica Aleksi¢ et al., in the article “A Design Specification and a
Server Implementation of the Inverse Referential Integrity Constraints,”
present an approach to the automated implementation of inverse referential
integrity constraints (IRICs) within the SQL Generator tool developed as a part
of the I1IS*Studio development environment. The paper describes the
algorithms for insertion, modification and deletion control, and illustrates them
through an example of generated procedures/triggers.

Editor-in-Chief
Mirjana lvanovié¢

Managing Editor
Milo§ Radovanovi¢

ComsSIS Vol. 10, No. 1, January 2013 ili






EDITORIAL

Special Section: Engineering of Computer Based Systems

The following six articles represent expanded versions of selected high quality
papers presented at the 19th Annual IEEE International Conference and
Workshops on the Engineering of Computer Based Systems (ECBS), April
11-13, 2012, Novi Sad, Serbia.

Tomas Potuzak in his paper entitled “Methods for Division of Road Traffic
Network for Distributed Simulation Performed on Heterogeneous Clusters”
presents two road network division methods for heterogeneous clusters,
MBFSMTL (Modified Breadth-First Search Marking of Traffic Lanes) and
GAMTL (Genetic Algorithm Marking of Traffic Lanes), that are based on their
counterparts originally designed for homogenous clusters. Described methods
consider the different computational powers of nodes in the heterogeneous
cluster and divide the computational load among the road traffic sub-networks
according to a benchmark test that directly utilize the road traffic simulation in
order to obtain the most relevant information about the speeds of nodes in the
cluster.

The article “Modeling and Visualization of Classification-Based Control
Schemes for Upper Limb Prostheses” by Andreas Attenberger and Klaus
Buchenreider proposes a model of the classification process for upper-limb
prostheses including a subsequent simulation, validation and visualization of
the prosthesis control scheme. Their experiments show that classification
schemes based on electromyographic data can be improved significantly by
integrating additional data from NIR (near-infrared) sensors. In addition to the
classification process, the behavior of prosthesis is demonstrated through the
simulation of a 3D hand model that is controlled by the classifier output.

The next paper “On Task Tree Executor Architectures Based on Intel Parallel
Building Blocks”, by Miroslav Popovi¢, Miodrag Buki¢, Vladimir Marinkovi¢
and Nikola Vrani¢, deals with the problem of applying parallel programming
techniques based on Intel Parallel Building Blocks to a class of service
components within SOA based industrial systems. The paper presents two
novel Task Tree Executor (TTE) architectures, the first one that is based on
Intel Threading Building Blocks (TBB) library, and the second one based on
Intel Cilk Plus library. The novel architectures execute TTE tasks as TBB
tasks and Cilk strands, respectively, rather than the local operating system
threads, providing better multicore CPU utilization.

ComsSIS Vol. 10, No. 1, January 2013



Xi Wu, Huibiao Zhu, Yongxin Zhao, Zheng Wang and Si Liu, in the paper
entitled “Modeling and Verifying the Ariadne Protocol Using Process Algebra”,
apply the process algebra method known as Communicating Sequential
Processes to model and analyze route discovery in the Ariadne protocol. The
formal model of the Ariadne protocol is implemented in the model checking
tool PAT in order to verify security properties of the protocol. The verification
results show that there is a defect in the protocol, which may lead to fake
routing attacks.

In the article “System Design for Passive Human Detection using Principal
Components of the Signal Strength Space”, Bojan Mrazovac, Milan Z. Bjelica,
Dragan Kukolj, Branislav M. Todorovi¢ and Sasa Vukosavljev propose a
device free detection method of human presence based on principal
component analysis (PCA) of the radio signal strength variations. The method
exploits the fact that the presence of a human within a wireless network range
results in significant signal strength variations at the receiver. Experimental
results of presented research show that PCA inputs, given in a form of raw
RSSI (Received Signal Strength Indicator) samples, provide more accurate
detection of human presence, than the inputs which describe the dispersion of
the signal.

Finally, “Support for End-to-End Response-Time and Delay Analysis in the
Industrial Tool Suite: Issues, Experiences and a Case Study” by Saad
Mubeen, Jukka Maki-Turja and Mikael Sjodin presents the implementation of
two state-of-art real time analysis techniques in the form of individual plug-ins
for the existing industrial tool suite Rubus-ICE. The paper discusses the
experience gained while transferring theoretical research results to the
industrial tool suite. In a case study, implemented plug-ins are used to
analyze the model of the autonomous cruise control system.

Guest Editor of Special Section
Bernard Schatz
Technical University Munich, Germany

Vi ComsSIS Vol. 10, No. 1, January 2013



EDITORIAL

Special Section: Information Technologies in Medicine and Rehabilitation

Information and emerging medical technologies brought immense progress in
the broad fields of bioengineering, clinical engineering, and medical and
health informatics, particularly during the last two decades. The evident
interdisciplinary nature of these fields is making clear that modern medicine
cannot exist without modern diagnostic and therapeutic equipment that are
the result of synergy of medical and engineering knowledge. Improvements in
human health and clinical practice are direct consequences of coupling
between novel biomedical methods and applications, and advances in
information technologies. For example, 3D modeling and analysis of
musculoskeletal and vascular systems, medical implants, clinical equipment,
therapeutic and rehabilitation devices, tissue modeling, etc. On the other side,
medical informatics comprises of clinical knowledge, information processing
and communication through development of new algorithms, knowledge
representation, and data analysis. In addition, health informatics essentially
contributes to the storage, retrieval, and optimal use of the biomedical
information, data, and knowledge. For example, electronic medical records
organize patients’ health and clinical information and data, enabling the
improvement of health care quality, efficiency and data collection.

Having that ubiquitous information technologies integrate the engineering
sciences with the biomedical sciences and clinical practice is the key
motivation for organizing the Special Section of the ComSIS journal devoted
to the Information Technologies in Medicine and Rehabilitation. New
developments and advances in the interdisciplinary scientific field of
bioengineering presented in this issue of the ComSIS journal span over
different sub disciplines, which include hearing instruments, embedded
biomedical devices, gait analysis and arterial stiffness analysis.

Tessendorf et al. present a newly developed wireless multimodal hearing
system, which is a context-aware device that analyzes the acoustic
environment in order to automatically adapt sound processing to the user’s
current hearing wish. In order to satisfy user’s different hearing wishes in the
same acoustic environment, the authors investigated additional modalities to
sound that can provide the missing information, which determines the user’s
hearing wish, to improve the adaption. Their platform takes into account
additional sensor modalities such as the user’s body movement and location.

Motivated by telemedicine and home care systems Stojanovic et al. present a
methodology and techniques that implement discrete wavelet transform in

ComsSIS Vol. 10, No. 1, January 2013 Vil



low-complexity fixed point embedded architectures of biomedical devices.
These are intended to be a low-cost, miniature and telemetry capable to
overcome the distance barrier between the doctor and patient, e.g. remote
vital sign monitors. They implemented their methodology to a “systems on
chip” device, consisting of a single microprocessor/microcontroller. The
approach resulted in an increased processing speed, minimized memory
requirement and decreased power consumption.

Filipovi€ et al. in their study offer an innovative and robust approach to assess
3D kinetics of a knee and the stress and strain distributions in the knee-based
subject-specific biomechanical models of the human knee joint. For the study
they used the MRI imaging and the measured kinematic data. The paper
presents an algorithm for contour recognition and 3D reconstruction of the
bones, cartilages and meniscuses geometry obtained by the MRI scans.
These 3D models, together with the measurement data are the inputs for the
computational analysis, using the finite element method, that determine the
stress and strain distribution at different body postures during the gait
analysis. Such an approach opens new avenues for an objective assessment
of pre- and post-operation knee functioning.

Peuli¢ et al. use a finite elements method to model effects of the arterial
stiffness using the different signal patterns of the pulse transit time (PTT).
They measured the PTT signal of several different breathing patterns of the
three subjects and applied finite element model of the straight elastic artery to
compute arterial elastic behavior, as well as the simplex optimization method
for fitting procedure to estimate Young’s module of the arterial stiffness. The
result suggests that approximately the same value of Young’'s module can be
fitted for specific subject with different breathing patterns, which validate this
methodology for possible noninvasive determination of the arterial stiffness.
The proposed method allows the implementation of screening diagnostics.
For clinical usage it is sufficient to register equal duration of an ECG signal
and the distal arterial pulse, which are carried out with the non-invasive
methods by means of widely available monitoring devices.

Organizing the Special Section devoted to the Information Technologies in
Medicine and Rehabilitation would not be possible without genuine
encouragement and support of Prof. Mirjana Ivanovic, Editor-in-Chief of
ComSIS, and Prof. Ivan Lukovic, Journal’s Vice Editor-in-Chief, who have
kindly accepted the request to publish the new achievements in applications
of information technologies in the field of biomedical engineering.

Special Section Guest Editor
Goran Devedzi¢

viii ComsSIS Vol. 10, No. 1, January 2013



DOI:10.2298/CSIS110918036P

WebMonitoring Software System: Finite State
Machines for Monitoring the Web

Vesna Paiji¢', Dusko Vitas?, Gordana Pavlovi¢ Lazetié, and Milo$ Paji¢’

! University of Belgrade, Faculty of Agriculture, Nemanjina 6,
11080 Zemun, Belgrade, Republic of Serbia
svesna@agrif.bg.ac.rs, paja@agrif.bg.ac.rs

2 University of Belgrade, Faculty of Mathematics, Studentski trg 17,
11000 Belgrade, Republic of Serbia
vitas@matf.bg.ac.rs, gordana@matf.bg.ac.rs

Abstract. This paper presents a software system called WebMonitoring.
The system is designed for solving certain problems in the process of
information search on the web. The first problem is improving entering of
queries at search engines and enabling more complex searches than
keyword-based ones. The second problem is providing access to web
page content that is inaccessible by common search engines due to
search engine’s crawling limitations or time difference between the
moment a web page is set up on the Internet and the moment the
crawler finds it. The architecture of the WebMonitoring system relies
upon finite state machines and the concept of monitoring the web. We
present the system’s architecture and usage. Some modules were
originally developed for the purpose of the WebMonitoring system, and
some rely on UNITEX, linguistically oriented software system. We
hereby evaluate the WebMonitoring system and give directions for
further development.

Keywords: finite state automata, finite state transducers, software, web
monitoring, electronic dictionaries, web search

1. Introduction

The problem of effective search for some particular piece of information is
quite current, because of the tremendous amount of information available on
the World Wide Web. Natural Language Processing (NLP) and Computational
Linguistics (CL) play a dominant role in attempts to solve this problem.
Depending on the structure of an electronic text, properties of the language it
is written in, and user requirements, NLP and CL have different levels of
success. Although very fast and powerful search engines already exist, there
are still problems that remain unsolved. In our research, we focused on the
two of them.

First, there is a problem of “invisible web” [1], i.e., not having access to
some content on the web through search engines. Almost every modern



Vesna Paji¢, Dusko Vitas, Gordana Pavlovi¢ Lazeti¢, and Milo$ Paji¢

search system (Google1, Yahoo? etc.) consists of several sub-systems, the
most important being the sub-systems for crawling, indexing, and ranking web
pages. Since search systems are faced with a huge number of web pages to
download and process, each subsystem imposes certain limitations. For the
search engine’s crawler to find a web page, it is necessary either that the web
developer has notified the system of its existence on the web by registering
the page URL to the search engine, or that the crawler has visited some other
web page containing the hyperlink that points to it. Otherwise, the page
remains "invisible" to the search system, and therefore to users. In addition,
given that resources of every search system are limited, each crawler has
certain limitations that keep crawling process within the limits of available
resources. Some search engines limit the total number of pages in the index
and drop the old pages when there are new ones, while others limit the
frequency of repeated visits to pages. Whenever the search engine decides to
limit the search process, the part of the information remains unavailable to
users.

There is also a time difference between the moment some content is
uploaded to the web and the moment the crawler finds it. This is a major
problem for pages that frequently change their content, such as daily news or
different forums. Some search engines, including Google, allow the author of
a website to reduce this interval, i.e. to increase the frequency at which the
crawler visits the site in order to better respond to customer requirements.
Another way of overcoming the problem of dynamic content is the concept of
RSS (“Really Simple Syndication"), which implies that the author of a
particular web site edits and maintains a list of changes on the web site. This
listis called “RSS feed”. Customers interested in following the changes on the
web site can access this list automatically by using a special program known
as RSS aggregator. In either case, the visibility of the content depends on the
website author. If the author has not provided an RSS feed, nor reduced the
interval of the crawler’s visits to the page, the users can do no more but
personally and regularly check the contents of a particular website in
searching for specific information.

The second problem is the way search engines queries are composed,
which is often not adequate. Regardless of the facts that Internet users come
from different countries, have different areas of interest and levels of
education, speak different languages, and have different needs for
information, they are all facing the same or similar forms when querying
search engines. Mostly, it is a HTML form for keyword search, sometimes with
advanced options that allow users to further limit their search. There is no way
for a user to formulate some more complex queries.

This problem is even more evident in case of morphologically rich
languages, such as Serbian language. For example, if users want to find web
pages about Serbian national football team, they would be interested in
documents that contain some of the phrases:

1 http://www.google.com

2 http://www.yahoo.com

2 ComSIS Voal. 10, No. 1, January 2013



WebMonitoring Software System: Finite State Machines for Monitoring the Web

reprezentacija Srbije (,national team of Serbia”);

naSa reprezentacija (,our national team’);

reprezentativci Srbije (,football players of national team of Serbia’);
fudbaleri Srbije (,football players of Serbia’);

tim ,orlova“ (,eagles” team);

nas nacionalni tim (“our national team”);

tim Radomira Antic¢a (“Radomir Antic’s team’);

srpski fudbaleri (“Serbian football players’);

srpska ekipa (“Serbian team”);

srpska reprezentacija (“Serbian national team”).

Even more, the documents containing any of the inflectional forms of the
above phrases are also relevant for the user. General-purpose search
engines do not allow making such queries. In recent years, Google has made
significant efforts to improve its search process and to bring it to customers,
so it returns results where keywords appear in inflected forms as well. This is
a good attempt to improve search, but the big problem is that users have no
control over this process.

In our research, we focused on solving the above-mentioned problems:
improving the way of formulating queries, which will allow for describing more
complex context of information, and enabling the access to the content on the
Web in the shortest possible time interval. The proposed solution uses finite
state automata as search queries, which allows users to describe very
complex contexts and phrases they wish to find on web pages. We overcame
the second problem by designing a special system that supports the concept
of monitoring the web, over which the user has full control. As a result, we
have developed the software system called WebMonitoring, which works as a
client application on a user's computer. It has its own crawling sub-system
that allows a user to set a seed URL and a depth level of crawling, and
therefore to monitor one page, one part of a web site or the whole web site.
Users describe information they want to find by graphs representing finite
state automata or transducers. Those graphs are used as a query for the
search. Users can set the way they wish to be alarmed if some information
occurs on the monitored web page, as well as the interval of repeated checks.

2. State of the Art in Monitoring the Web

In attempts to improve the process of searching for information on the WWW,
different tools for searching and monitoring the web have been developed.
Depending on their architecture and functionality, as well as the problems
they focus on, they can be divided into two groups.

The tools in the first group focus on monitoring the web. They are all
designed primarily for notification if a web page has been changed; there is no
possibility to search for some complex queries, except queries based on
keywords using Boolean operators. A user can set the frequency of
downloads, but it is often limited to some minimum interval (in most cases it is

ComSIS Vol. 10, No. 1, January 2013 3



Vesna Paji¢, Dusko Vitas, Gordana Pavlovi¢ Lazeti¢, and Milo$ Paji¢

12 hours interval). Changes occurring on the page in less than 12 hours may
not be noticed by the system. Some of the tools use regular expressions, but
only to restrict the monitored web page content. Examples of such tools are
online systems ChangeDetect® and WebSite Watcher”.

The ChangeDetect system is an online tool for monitoring web pages. For
each page a user wants to monitor it is possible to set several parameters:
frequency of downloads, regular expression filtering, events causing alerting
the user and so on. Still, the minimum monitoring interval is 12 hours.
Changes occurring on the page in less than 12 hours may not be noticed by
the system. Moreover, the system is designed primarily for notification if a
web page has been changed. There is no possibility to search for complex
queries, nor the possibility to monitor the entire site. While a user can assign
multiple pages to be monitored in the control panel, the monitoring system
monitors only the pages with listed URL within each process.

WebSite-Watcher is the software designed to track changes on any
number of web pages. With this tool it is possible to monitor all formats of
electronic text, including even password-protected pages. Moreover, this tool
allows a user to monitor changes of binary files in the sense of changing the
size or the date the file was changed. However, even this tool does not
support setting up complex queries. WebSite-Watcher uses regular
expressions, but only to restrict the monitored web page content. A user is
enabled only to search for the occurrence of a keyword or a phrase.

The second group of available tools contains tools that focus on making
queries for the search. They are often linguistically oriented, and one of the
best known is WebCorp system [2]. WebCorp is a software tool designed by
the Department of Research and Development of English Language at the
University of Birmingham. It is intended primarily for linguistic research, but it
can be used for search as well. A user is allowed to search for a specific
word, a phrase, or a pattern. Patterns can be formed by combining the
operator *, which replaces any sequence of characters in an expression,
square brackets and the OR operator. Although this tool represents a
significant improvement since it allows describing complex phrases or
patterns, it still does not solve the problem since it relies upon results from the
existing search engines. Therefore, there is still much information on the web
that remains inaccessible by this tool.

A free online concordance service, GlossaNet [3], is a software tool that
solves many of the problems related to information search on the web. It is
intended for search into dynamic Web corpora. Users define a corpus by
selecting RSS feeds in a pre-selected pool of sources. The GlossaNet crawler
regularly visits these sources in order to generate a dynamic corpus. A user
can register one or more search queries on his/her dynamic corpus, which are
represented with finite state automata and graphs. Those queries will be
reapplied to the corpus every time it is updated and new concordances will be
recorded for the user. The GlossaNet greatly improves the process of search,

% http://www.changedetect.com
* http://www.aignes.com

4 ComSIS Voal. 10, No. 1, January 2013



WebMonitoring Software System: Finite State Machines for Monitoring the Web

but its main disadvantage is the way it makes corpora. The GlossaNet relies
upon RSS feed, and therefore upon a web site’s owner and his/her decision
about what is to be updated. If the owner of a web site does not provide
information about some change in page content, the user will not be able to
access that information.

3. WebMonitoring Software System

1.1. Theoretical Background

Finite State Machines in NLP. Finite state machines (automata and
transducers) are used in many fields of computational linguistics. Their use is
justified from the standpoint of linguistics, as well as from the standpoint of
computer science. From the linguistics point of view, finite state machines are
adequate for describing relevant local phenomena in language research and
for modeling some parts of natural language, such as its phonology,
morphology, or syntax. Some examples of adequate representation of
different linguistics phenomena by finite state machines are given in [4]. From
computer science point of view, the use of finite state machines is motivated
by time and space efficiency. Time efficiency is achieved by using
deterministic finite state machines. The output of the deterministic machines
depends mostly on the size of the input, so they are considered to be optimal
([5] and [6]). Space efficiency is achieved by minimizing deterministic
machines [7].

Finite state machines can be very complex and difficult to maintain, which
leads to some problems in practice. For example, if someone tries to describe
the language syntax by finite state machine, the corresponding graph would
be very immense, and finding some particular information, such as noun
phrases, would be time consuming and impractical. So, instead of one big
graph, we use a collection of sub graphs. This method has a strong
theoretical background in the theory of Recursive Transition Networks (RTN).
RTN are extension of context free grammars ([8] and [9]). The arcs in RTN
are labeled with corresponding grammars, while the states are labeled
arbitrarily. There are several computer tools for linguistic research based on
FSM and RTN ([10], [11] and [12]). Detailed review of theoretical and practical
use of finite state transducers in natural language processing is given in [13],
[14], [15], [16], [17] and [18].

The Concept of Monitoring the Web. The concept of web monitoring has
emerged from the need for automating certain actions taken by user in order
to be notified of changes that occur on a particular web page or site. In
practice, there are often situations when a user visits a web site expecting that
some event occurred on it, without being interested in the rest of the content
of the web site. Examples of such events are announcement of the results of

ComSIS Vol. 10, No. 1, January 2013 5



Vesna Paji¢, Dusko Vitas, Gordana Pavlovi¢ Lazeti¢, and Milo$ Paji¢

some competition, electronic message with the specific content or from a
specific person, the appearance of news about a particular topic, and so on.
In such cases, the user regularly, with the schedule that he or she believes is
optimal or possible at a time, visits the web site of interest looking for the
event. The software for web monitoring automates this searching process and
simulates the actions that the human would take.

1.2, Architecture of the WebMonitoring System

The WebMonitoring software system is developed in the order to overcome
problems in search process defined in the Section 1. It is written in the Java
programming language and consists of several sub-systems:

- the system for making queries — it is based on the Unitex [11] software
system

- the management system

- the crawler

- the system for text post-processing

- the alarming system

- the graphical user interface

The description of the software architecture is given in Figure 1.

TN
S

query.f The system for post-

Graph editor

The management | .+ - Fr—————— L
svstem | )

Fig 1. Architecture of the WebMonitoring system

The management system, the crawler, the alarming system and the
graphical user interface were developed and written by the authors for the
purpose of the WebMonitoring system, while we used the Unitex software and
some of its components for querying and post-processing the text.

A user creates a graph that describes an event of interest using the Unitex
system. This graph is passed as an input to the management system. Using
the graphical user interface of the WebMonitoring software system, the user

6 ComSIS Voal. 10, No. 1, January 2013



WebMonitoring Software System: Finite State Machines for Monitoring the Web

sets the URL of the page or website which is being monitored, adjusts
parameters, such as dynamics of the visits, the depth of the crawl process
(relative to the page from which the crawl will start), the way of alarming, and
so on. After that, the management system runs one separate programming
thread for each monitoring process set in the management system. The web
pages found in the crawling process are saved locally. The system for post-
processing analyzes and processes these pages, and tries to find patterns
corresponding to the graph. When a pattern is found (and event occurred), the
system notifies the user.

The System for Making Queries. The WebMonitoring system uses graphs
produced by the Unitex software system [11] as search queries. Unitex is a
collection of programs developed for analyzing text written in natural
languages, and for applying different linguistic resources and tools to the text.
It is an open source software with a very good, functional, and user-friendly
graphical interface. Apart from its well-designed graphical user interface for
creating graphs, one of the main advantages of the Unitex software is the
possibility to use linguistic resources, such as electronic dictionaries and
grammars.

Electronic dictionaries contain simple and compound words, together with
their lemmas and the set of grammatical codes. They are constructed by
teams of linguists for different languages (for English language [19] and [20],
for French language [21] and [22], for Serbian language [23] and [24]). Unitex
uses electronic dictionaries in DELA format, where each entry is a line of text
terminated by a new line, which conforms to the following syntax:

appl es, appl e. N+conc: p

The first word (appl es) is an inflected form of the entry and it is
mandatory. In the former example it is followed by the canonical form (lemma)
of the entry. This information may be left out if the canonical form is the same
as the inflected form. The following sequence of codes (N+conc) gives the
grammatical and semantic information about the entry. In the former example,
code N stands for noun, and conc indicates that this noun designates a
concrete object. The label p stands for “plural”.

Although Unitex can process text in different languages, in the first version
of the WebMonitoring software it is assumed that Serbian language will be
used. For that reason electronic dictionaries for Serbian language are used
([23] and [24]) in the WebMonitoring modules for post-processing the text.

After applying dictionaries and grammars to the text, Unitex creates
separate files with simple words, compound words, and unrecognized words.
Those files are used in the search process, so one can refer to the dictionary
entry from the Unitex by using lexical masks. For example, a user can use the
query <be. V> that matches all entries having be as canonical form and the
grammatical code V. Thus all occurrences of the verb fo be (am, is, being etc.)
will be recognized by this query. Beside lexical masks, a user can use

ComSIS Vol. 10, No. 1, January 2013 7



Vesna Paji¢, Dusko Vitas, Gordana Pavlovi¢ Lazeti¢, and Milo$ Paji¢

morphological filters. For example, the filter <<i sn$>> matches all words that
end with “ism” (conservatism, racism, etc.).

By applying lexical resources to the text, as well as combining lexical
masks and morphological filters, users can make graphs that correspond to
very complex queries. Those graphs in Unitex may have two formats, the
format . grf, which is intended for the design phase of graphs, and the
format . f st 2, which is compiled version of graphs, intended for further
processing and applying to a text.

The graph that corresponds to the phrases about the Serbian national team
described in the Section 1 is shown in the Figure 2.

Fig. 2. (a) RTN for describing the phrases corresponding to the Serbian national team;
it contains calls to sub-graphs orloviPost and orloviPre; (b) orloviPost is a sub-graph
for describing the terms in which the affiliation is given after the noun; (c) orloviPre is a
sub-graph for describing the terms in which the affiliation is given before the noun

The content of the corresponding . f st 2 file, which is used as a search
query, is as follows:

8 ComSIS Voal. 10, No. 1, January 2013



WebMonitoring Software System: Finite State Machines for Monitoring the Web

0000000003
-1 orl ovi
-21-3111

-3 orl ovi Post
51413121
11 3 10 2

t

12 2

f

Y<E>

os<<"or| ov>>

%<<"reprezent a>>

%<<~f udbal er >>

<< ti >

Y<<"eki p>>

Y<<"srpsk>>

%<<~naci onal n>>

$<<"Anticev>>

$<<"nas>>

Y<<"Sr bi j >>

%<<"Radomni r >>

F<<KMANtiE>>

f

The . f st 2 format is strictly defined by the Unitex software. The first line
represents the number of graphs that are encoded in the file. Lines containing
the number and the name of the graph identify the beginning of each sub-
graph. In the above file, those are the lines -1 orlovi,-2 orl ovi Pre and
-3 orl ovi Post . The following lines describe the states of the graph. If the
state is final, the line starts with t character, and with : character if not.

For each state, the list of transitions is a sequence of pairs of integers. The
first integer indicates the number of the label or sub-graph that corresponds to
the transition. Labels are numbered starting from 0. Sub-graphs are
represented by negative integers. The second integer represents the number
of the result state after the transition. In each graph the states are numbered
starting with 0. By convention, state 0 is the initial state.

From the standpoint of the WebMonitoring users, the Unitex system and its
interface for creating graphs represent a system for making queries, i.e. for
describing an event a user wants to be notified of. Using the Unitex system, a

ComSIS Vol. 10, No. 1, January 2013 9



Vesna Paji¢, Dusko Vitas, Gordana Pavlovi¢ Lazeti¢, and Milo$ Paji¢

user creates a graph that describes the event of interest, and then compiles it
into the . f st 2 format. This file contains all the necessary information about
the event of interest and, as such, it represents the input data for the
WebMonitoring system.

The Management System. The management system of the WebMonitoring
software consists of several Java classes, and it represents the central point
of the overall system. It is designed so as to enable a user to run more than
one independent monitoring process.

Every monitoring process is defined by the following attributes:

- URL - a web page URL from which the crawl and the search start;

- graph — a location of .fst2 file which describes the searched phrases;

- levels — an integer that defines the depth of crawl; this attribute is explained
in more details later;

- alarm — a string attribute that defines the way a user should be alarmed if
the event occurred. There are two possibilities: sending an e-mail message
and saving the page on the local hard disk. This attribute has the following
form: address; |ocation, where address is an e-mail address for
sending the message, and | ocati on is a directory path for saving the
page. If any of these parts of the alarm attribute equals null, there will be no
alarming of that kind;

- timelnterval — an integer that represents a time interval (in milliseconds)
between two repeated search processes.

There is an instance of the class MonitoringProcess for every monitoring
process in the programming code. The class MonitoringProcess extends the
Thread class in Java, i.e. it is a runnable thread. In that way the independent
and parallel monitoring of different pages and searching for different queries
are allowed.

When the application is started, the main window of the management
system will open (Figure 3). It will show the monitoring processes that were
started during the previous run in the table, if any. A user can select some
process from the table to view or change its characteristics. From this window
the user can also delete, make a new, start or stop a process.

The Crawler. After the user has started a monitoring process, the crawler
starts a crawl from the URL that is set in the process properties. The crawling
process depends on the value of the levels parameter. If the value of the
parameter is 1, the system should take only this page.

Otherwise, when one page is downloaded from the Internet, it is analyzed
to find other hyperlinks on it. The system stores found hyperlinks in the crawl
queue and sends them back to the crawler, with the crawling level decreased
by one. The crawl process is stopped when all the pages with the level
greater than 0 have been processed.

10 ComSIS Voal. 10, No. 1, January 2013



WebMonitoring Software System: Finite State Machines for Monitoring the Web

Fig. 3. The control center of the management system

The crawler of the WebMonitoring system is designed to satisfy the

following basic principles of a good crawler [25]:

efficiency - a number of hyperlinks a crawler needs to process increases
exponentially with the number of visited pages increasing, so the system
must be able to handle the list of addresses in efficient manner from the
point of memory usage;

duplicates — the crawler needs to add to the address list only those
addresses that have not been visited, i.e. to recognize the addresses of
pages that have already been processed and not to add them to the list;
politeness — the crawler must comply with the directives contained in the
robots.txt file on the web server, and to avoid downloading too many pages
from a website, so its functionality should not be threatened;

avoiding the traps - crawler must be able to recognize and avoid sites that
are created with the intent to cause an infinite loop for crawlers visiting
them.

The crawling sub-system consists of several classes, all belonging to the

package crawler.driller:

class _GO_PARAMS keeps all the important parameters for the crawling
process, such as the seed URL, the number of levels for crawling, the array
of the web addresses from the starting page to the current one, etc.;

class DrillingQueue defines a dynamic data structure for keeping the queue
of web URL's which have to be downloaded and processed;

class PathFinder keeps information about the path crawler used to get
some page;

class Diriller starts downloading pages from the seed URL, regarding the
number of levels (the levels parameter).

The starting class of the crawling sub system is the CrawlerShell class,

which performs all the necessary adjustments of parameters and runs the
crawler. There are many parameters within this class intended for configuring
the system for downloading pages. For the purpose of the WebMonitoring

ComSIS Vol. 10, No. 1, January 2013 11



Vesna Paji¢, Dusko Vitas, Gordana Pavlovi¢ Lazeti¢, and Milo$ Paji¢

system, some of these parameters have default values that cannot be
changed by the user. Thus, for example, the value of the parameter timeout is
60 seconds, which means that the crawler sub system will wait for up to one
minute for downloading a page from the Internet. Similarly, the maximum time
to download pages from one site (in a monitoring process) is defined by the
maxTimeout parameter, and it is set to 20 minutes (1200 seconds). The
declaration section of the CrawlerShell class is shown in the following code:

/** dass for downloading pages starting from the
seed URL */
public class Craw er Shel I {

/1 default argument val ues
static String hunt = null;
public static boolean thisSiteOnly = false, silent

= fal se;

public static int nmaxTineout = 1200, tinmeout = 60;
public static int maxlinks = 1000, maxretries = 3;
public static int levels = 0, sleepParanVs = 500;
static bool ean anal yze = true, passedAskMe = fal se;
static bool ean flash = fal se, displayLinks = true;
static magi cPath = fal se;

static long tineStart = SystemcurrentTineMI1lis();
static boolean logHtp = false, hideUrls = true;

After adjusting the parameters, the crawler for the given URL is started.
The text found on every web page in this process is sent to the post-
processing system for further analysis, i.e. for the graph search.

The System for Text Post-processing and Alarming. When a web page is
downloaded from the Internet, first it is necessary to prepare the text it
contains, and then to search for the appropriate event defined by the search
graph. This task is performed by the system for post-processing and its class
MonitoredText. Since the Unitex’s external program Locate has the central
place in the search process, the text from the page is prepared in accordance
with the requirements of this program.

The text found on the web page is saved in a text file and stored in a
temporary directory. This file is the starting file in the text processing.
Although text on web pages is coded differently, most websites in Serbian
language nowadays use UTF-8 encoding. UTF-8 (8 bit Unicode
Transformation Format) encodes each Unicode character as a variable
number of 1 to 4 octets, where the number of octets depends on the integer
value assigned to the Unicode character. Since each character in the range of
U+0000 through U+007F is represented as a single octet, UTF-8 is a very
efficient encoding schema of text documents in which most characters are
US-ASCII. This is also the reason why this encoding became dominant for
electronic mail and web documents, and therefore WebMonitoring system

12 ComSIS Voal. 10, No. 1, January 2013



WebMonitoring Software System: Finite State Machines for Monitoring the Web

assumes that the page is encoded in UTF-8. The text found on the page is
saved in a text file using methods from the class fr.umlv.unitex.io.UnicodelO.
This class is specially designed for the Unitex system purposes, so every file
made during the post-processing can be read and processed adequately.

The first step in the post-processing is normalization of the text.
Normalization is a process in which the normalization of separators of the text
is made, although it is possible to normalize the text on the basis of some
other specific rule. Separators in a text are space characters, tabulators, and
new lines. When the text is taken from a web page, it is possible that it
contains several separators placed side by side in a sequence. These kinds of
sequences of separators are being replaced by one space character in the
process of normalization. The process of normalization is performed by the
Unitex's external program Normalize.

The second step of post-processing is the process of text tokenization, i.e.
breaking the text up into lexical units. In order to tokenize the text, the Unitex's
external program Tokenize is called within the class MonitoredText.

The electronic dictionaries are applied to a text by the Unitex's external
program Dico. This step provides the possibility to use morphological and
lexical filters in search queries.

After the text is processed in the above described manner, the next step is
to search for the patterns described by the user's graph. The search is done
by the Unitex's external program Locate, which applies a particular automaton
or transducer described by a graph to the text and creates an index of found
phrases. The program Locate creates two files: concord. i nd with the
references to occurrences found in the text, and concor d. n, with a number
of occurrences and a percentage of recognized tokens. These two files are
saved in the working directory, and are used by the sub system for alarming.
Method foundConcordances() of the class MonitoredText uses the file
concord. n to read the number of occurrences of the searched phrases. If
this number is greater than 0, i.e. if the phrases that correspond to the search
graph are found in the text, the method alert() of the class MonitoredText is
called, and the user is informed about the event. The way of alarming
depends on the values of attributes enail and | ocati on. The user can
choose to be alerted by an e-mail message, or just to locally save the web
page [26].

4. A Use Case

The WebMonitoring software system can be used for different tasks, such as
press clipping, detecting spam messages by monitoring electronic mailboxes,
management of various documents collections, and so on. We will describe
one possible use of the WebMonitoring system.

A user wishes to find all articles related to the current president of the
Republic of Serbia, Mr. Boris Tadic, which are or will be published in daily
newspapers. The user takes the following steps.

ComSIS Vol. 10, No. 1, January 2013 13



Vesna Paji¢, Dusko Vitas, Gordana Pavlovi¢ Lazeti¢, and Milo$ Paji¢

Step 1. Defining the Event to be Searched for. The event to be searched
for is an occurrence of phrases regarding Mr. Boris Tadic. Some of the
phrases (in Serbian language) are: “predsednik Tadic¢” (“the president Tadic”),
“predsednik Srbije” (“the president of Serbia”), “predsednik B. Tadi¢’ (“the
president B. Tadic”), “predsednik Boris Tadi¢” (“the president Boris Tadic”),
“Boris Tadi¢”, as well as their inflected forms (“predsednika Tadic¢a”, “Borisu
Tadicu” etc.).

Step 2. Describing the Event by a Graph. The user uses Unitex and creates
a graph that describes the defined event. This task can be performed in many
different ways, and it depends on user’s skills and available resources. One
possible way of creating the graph is by using morphological filters. An
example is given in the Figure 4. It is necessary to save and compile graph in
Unitex, so the file with the extension . f st 2 is created.

Fig. 4. The query automaton

Step 3. Choosing the Content to Monitor. The user chooses web pages or
web sites he/she wishes to monitor. Having in mind that the user wishes to
find news articles, he/she chooses official web sites of several daily news
papers in Serbia (http://www.danas.rs, http://www.blic.rs and
http://www.politika.rs/Stranice/33.lt.html) as starting points of the monitoring
process.

Step 4. Creating Monitoring Processes in the WebMonitoring System. In
the WebMonitoring system, the user creates a process for each web site
he/she wishes to monitor. For each process the user sets URL, number of
levels for the crawl, location of the graph describing the event, the way of
alarming, and the interval for repeating the process. The main window of the
application will appear as shown in the Figure 5.

14 ComSIS Voal. 10, No. 1, January 2013



WebMonitoring Software System: Finite State Machines for Monitoring the Web

Fig. 5. Control center with three monitoring processes

Step 5. Starting the Processes. The user selects the process in the table
showing processes and starts it by choosing the appropriate button. The
crawling and monitoring process starts and works in the background. The
user can see the progress by choosing the button “Izvesta)” (“Report”). If the
phrase that matches the graph is found on some page, the user is alerted
either by e-mail or the page is saved locally on the user's computer.

5. Results and Evaluation of the WebMonitoring System

The case described in Section 4 was used to evaluate the WebMonitoring
software system. Since we wanted to evaluate both the possibility to process
complex queries and the possibility to access web content in the short time
after it appears on the web, we conducted the similar searches with two
existing services: GlossaNet, as one of the most powerful, linguistically
oriented search system, and Google. We had to change some of the search
parameters slightly depending on the requirements and the architecture of
these two services, but we tried to keep the search process as uniform as
possible.

We monitored two web sites, the official website of the Serbian newspapers
Blic (http://www.blic.rs) and a popular forum Krstarica (Cruiser) in Serbian
language (http:/forum.krstarica.com). Both web sites have a very dynamic
content that frequently changes. Nevertheless, the Blic web site provides a
RSS feed, while Krstarica forum does not.

The results of the evaluation test significantly differ for the two web sites.
Comparative characteristics of the three systems are presented in Table 1.
The summary of monitoring the Blic web site is given in the Table 2, and the
summary of monitoring the Krstarica forum is given in the Table 3. Since
Google retrieves documents (web pages) instead of occurrences of the
searched phrases, the number of pages on which the searched phrases are

ComSIS Vol. 10, No. 1, January 2013 15



Vesna Paji¢, Dusko Vitas, Gordana Pavlovi¢ LazZeti¢, and Milo$ Paji¢

found is given in the Table 2 and 3. The results are further discussed in the
following text, and the results from WebMonitoring system are given in
Appendix A.

Table 1. Comparison between GlossaNet, Google and WebMonitoring

System GlossaNet Google WebMonitoring

Type of monitoring Automatic Manual Automatic

Ability to set the

A No No Yes
monitoring interval

Type of query Finite state graph Keywords Finite state graph

Table 2. The results of monitoring the Blic web site

System GlossaNet Google WebMonitoring
Number of .
concordances found 14 850 51
by a system

Most recent result

Unknown 6 hours 3 minutes
found

* The number of pages on which the concordances are found; the actual number of
concordances is even greater

Table3. The results of monitoring the Krstarica Forum web site

System GlossaNet Google WebMonitoring
Number of .
concordances found - 43 14
by a system

Most recent result

- 4 hours 15 minutes
found

* The number of pages on which the concordances are found; the actual number of
concordances is even greater

Search queries. The WebMonitoring software system and the GlossaNet
service can process Unitex graphs as search queries, so we used the graph
given in the Figure 4. On the other hand, Google can process only keyword
searches, so we query Google with: tadi¢ OR "predsednik tadié" OR
"predsednik srbije" OR "boris tadic". Inthat way we were able to
control inflectional forms of words with the WebMonitoring and the GlossNet
systems, while we did not have any control, nor the possibility to look for
different forms of the same word with Google unless we explicitly put it in the
search query. In other words, the WebMonitoring and the GlossaNet enable
users to search with complex queries, while Google does not.

16 ComSIS Voal. 10, No. 1, January 2013



WebMonitoring Software System: Finite State Machines for Monitoring the Web

Monitoring a web site. After defining the search queries, it was necessary to
set up web sites to monitor. The content of the chosen web sites was used as
a text corpus to search. The GlossaNet system uses a RSS feed from a web
site as a mechanism for creating and refreshing a text corpus used in a
search process. A user can choose from a predefined list of websites, or
create its own corpus, but only for a web site with a RSS feed. After that, the
GlossaNet system monitors the chosen site and alerts the user after the
monitoring process is over, sending a message with occurrences found. We
chose Blic corpus to be monitored during 24 hours. Since Krstarica forum has
not got a RSS feed, we could not monitor it with the GlossaNet.

The Google system has its own crawling process in which it downloads and
indexes the downloaded pages. Many parameters of the Google’s crawling
process are automated and recalculated during the process, so a user has no
control over the process. Therefore, it is necessary for the user to manually
query the Google search system in intervals he/she thinks to be optimal. In
our evaluation test, we did two hours check during 24 hours, passing the
described search query restricted on the two chosen web sites (adding text
‘site:blic.rs” and “site:forum.krstarica.com” to the search query).
We also added a 24 hours restriction in order to narrow the search and to
achieve a better comparison of results.

The WebMonitoring software system provides the greatest possibilities in
terms of setting and controlling the monitoring process. We choose to monitor
web sites http://www.blic.rs and http://forum.krstarica.com, with the crawling
depth set to 3 during the same 24 hours.

The time interval between two visits to the web site content. The
GlossaNet system uses a RSS feed from a web site as a mechanism for
refreshing a text corpus used in a search process. The links from RSS feed
are visited on a regular basis, but the time period between two visits to links
from a RSS feed is defined by the GlossaNet system for corpora building and
cannot be changed by a user.

Each time the Google crawling system crawls a URL, it detects whether the
resource has changed since the previous crawl. If the resource changed, the
change interval is shortened. If the resource did not change, the change
interval is lengthened. In that way, a user cannot affect the time interval
between two visits. In our evaluation test, we monitored web sites with very
dynamic content, and since the Google crawls them with high frequency, the
recently added pages from these two web sites were available to Google
search. The problem arises when monitoring web pages that do not change
their content in a longer time period, and then suddenly change.

The WebMonitoring software system allows a user to set up the time
interval, depending on his/her expectations. In our evaluation test, we used 30
minutes as a time interval between two crawls.

The content of a web site “visible” to search systems. Given the way the
GlossaNet and the Google download pages from a web site, some contents

ComSIS Vol. 10, No. 1, January 2013 17



Vesna Paji¢, Dusko Vitas, Gordana Pavlovi¢ Lazeti¢, and Milo$ Paji¢

remain invisible to them, and therefore to a user. For example, the GlossaNet
service downloaded (and searched) only links provided in the RSS feed.
Thus, dozens of pages from the Blic web site were not processed. Moreover,
Krstarica web site could not be processed at all since it does not provide RSS
feed. Therefore, the GlossaNet system was useless in monitoring process of
Krstarica forum web site.

In comparison to Google, the WebMonitoring system processed much less
pages, but it was expected regarding the architecture of the systems. The
Google’s crawler and indexing system is far ahead of other crawlers, and we
had no intention to compete with Google in it. The advantage of
WebMonitoring over Google is in accessing web content in a short time after it
appears on the web. In our evaluation test, Google reported one web page as
the most recent result, giving the time “26 minutes ago”, which would mean
that the page was found by Google at 14:50 (Figure 6). On the other hand, the
time of publishing given on the page was 8:08 AM 29.02.2012. with changes
at 8:55 AM (Figure 7). This means that there is a 6 hours time gap from the
time this web page was published on the web to the time Google found it. In
our evaluation test, the WebMonitoring system found this page 3 minutes after
it was published. In the worst case this time gap can be 30 minutes since the
monitoring process is being repeated every 30 minutes. Moreover, a user can
additionaly reduce the interval, if needed.

Blic Dnlmel Tadié: Srbija nece prihvatati nemoguée uslove
Lb L_Tadic-Srbija-nece-prihvatati-nemog... - Translate this page

MP di¢ Srbija nece prihvatati nemoguce uslove Proces pridruZivanja

|e kompleksan proces u njemu svaka zemaljaélanica moZe da postavi svoj uslov ali ..

Fig. 6. The most recent Google result: 26 minutes ago (29.2.2012. 14:50)

Tadié¢: Srbija nece prihvatati nemoguce

uslove

08:55h | Komentara: 81

- Proces pridruzivanja EU je kompleksan proces, u njemu svaka
zemalja-élanica moze da postavi svoj uslov, ali Srbija nece
prihvatati uslove koji su za nju nemoguéi niti ée odustati od svojil

Fig. 7. The headline as it appeared on the Blic web site, published at 08:08 AM
29.02.2012.

Some additional remarks about the WebMonitoring software system are:

18 ComSIS Voal. 10, No. 1, January 2013



WebMonitoring Software System: Finite State Machines for Monitoring the Web

- the WebMonitoring crawling system works with high success; there were no
errors or situations that some web page could not be downloaded;

- the recognition of phrases corresponding to the graph is complete, i.e. all
phrases that existed in the page content and that correspond to the graph
have been recognized (we used a sample of 30 pages from Blic web site for
this testing);

- the speed performance of the system is satisfying having in mind its
purpose, although some improvements can be made. This relates primarily
to the use of RAM memory instead of saving the changes to the hard disk.
Unitex and its external programs record every change of a text on the hard
disk, and this practice was continued in the WebMonitoring system, but it
significantly slows down the system. Also, the system can be speeded up
by using more programming threads. In the current version, one monitoring
process is executed within one programming thread, while the inside
operations of downloading and processing web pages run sequentially;

- during monitoring of the web site http://www.blic.rs, the event occurred in
more than 45% of all web pages. The reason for that is not a significant
number of articles about the president of Serbia, but the design of the site.
On every web page of the web site there is a section with current news,
showing the same news. In the future version of the system this problem
should be solved, i.e. the system must be able to recognize the same
context on the different pages.

6. Conclusions

This paper considers the improvement of information search process in terms
of making more complex queries and access to content of web pages in a
short period after their posting on the web. As a solution for complex querying,
we suggest using finite state machines. We used finite state machines
through the software system Unitex for making queries, but also for the post-
processing of the text. We designed and developed the software system
called WebMonitoring, which has integrated a subsystem for crawling web
pages. With such a system users can do their own crawl and search web
pages they wish, independently from the common search engines.

Furthermore, the system WebMonitoring has features that allow user to
create, maintain and control processes of monitoring web pages or sites. The
system simulates and automates actions a human would take in the process
of looking up for some event (a phrase occurrences) on a page.

Since search queries are passed to the system as Unitex graphs,
representing finite state automata, this system is not intended for use of a
casual user. A basic understanding of finite state automata is required so a
user could successfully describe a complex context of searched phrases.
Nevertheless, the Unitex’ graphical user interface for creating and modifying
graphs is user friendly and very intuitive, so any user could easily be trained

ComSIS Vol. 10, No. 1, January 2013 19



Vesna Paji¢, Dusko Vitas, Gordana Pavlovi¢ Lazeti¢, and Milo$ Paji¢

to use it. Additionaly, the system could be expanded with modules for
automatic transforming regular expressions into Unitex graphs. In that way a
user will be able to choose between regular expressions and graphs,
depending on his/her skills.

The first version of the WebMonitoring software system should be
considered as a demonstration how it is possible to integrate lexical word
processing programs with a concept such as web monitoring. Although the
current version of the WebMonitoring software system is fully functional and
shows positive effects of applying finite state machines to the search process,
it is necessary to make some improvements in future versions of the system.

These enhancements are primarily related to elimination of possible errors
in the code and upgrading performance and speed of the program. In
addition, a user should have more control over the process itself in terms of
selecting the language or deciding whether or not to apply dictionaries to the
text. The WebMonitoring software system is a general-purpose system. In
future versions it is possible to modify the system so as to be specialized for
specific types of text (such as medical, technical, etc.), or for special
purposes, such as monitoring electronic mailboxes, or search for a specific
product in a database accessible from the Internet. We expect that these
specialized versions of the WebMonitoring software system will be more
efficient.

Nevertheless, the WebMonitoring software system is important because it
demonstrates a way of overcoming some problems in the process of
information search. It also gives directions for use of linguistic tools in the
search process and transcends the limitations in accessing information of the
existing search engines.

Acknowledgments. The work presented has been financially supported by the
Ministry of Science and Technological Development, Republic of Serbia, Project No.
178006.

References

1. Sherman, C., Price, G.: The Invisible Web: Uncovering Information Sources
Search Engine Can'’t See, Information Today Inc. (2005)

2. A. Kehoe, A. Renouf: WebCorp: Applying the Web to Linguistics and Linguistics to
the Web, WWW2002 Conference, Honolulu, Hawaii (2002).

3. C. Fairon, GlossaNet: Parsing a web site as a corpus, Lingvisticae Investigationes,
John Benjamins Publishing Company, Volume 22, Number 2, pp. 327-340(14)
(2000)

4. M. Gross, D. Perrin, Electronic Dictionaries and Automata in Computational
Linguistics, in Proceedings of LITP Spring School on Theoretical Computer
Science Saint-Pierre d’Oleron, France, May 25.-29. (1987)

5. D. Vitas, Prevodioci i interpretatori: Uvod u teoriju i metode kompilacije
programskih jezika, Matematicki fakultet, Belgrade, Republic of Serbia (2006)

6. D. Jurafsky, J. H. Martin, Speech and language processing, Prentice-Hall Inc.,
2000.

20 ComSIS Voal. 10, No. 1, January 2013


http://www2002.org/CDROM/poster/67/
http://www2002.org/CDROM/poster/67/
http://www.ingentaconnect.com/content/jbp/li;jsessionid=48hfugup3gb4o.alice
http://www.ingentaconnect.com/content/jbp;jsessionid=48hfugup3gb4o.alice

7.

8.

10.

1.
12.
13.
14.

15.

16.
17.
18.
19.
20.
21.

22.

23.

24.

25.

26.

WebMonitoring Software System: Finite State Machines for Monitoring the Web

A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison Wesley, Reading, MA (1974)

J. M. Sastre, M. Forcada, Efficient parsing using recursive transition networks with
output, In Zygmunt Vetulani, editors, 3rd Language & Technology Conference
(LTC'07). 5-7 October 2007. pp. 280-284 (2007)

J. M. Sastre, Efficient Parsing Using Filtered-Popping Recursive Transition
Networks, Lecture Notes in Computer Science. vol. 5642. pp. 241-244 (2009)

B. Olivier, M. Constant, E. Laporte, Outilex, plate-forme logicielle de traitement de
textes ecrits. In Proceedings of TALN06. Leuven, Belgium, UCL Presses
universitaires de Louvain (2006)

S. Paumier, Unitex 1.2 User Manual, Université de Marne-la-Vallée. http://www-
igm.univ-mlv.fr/"unitex/UnitexManual.pdf (2006)

M. D. Silberztein, Dictionnaires électroniques et analyse automatique de textes : le
systeme INTEX. Paris: Masson. (1993)

F. Casacuberta, E. Vidal, D. Picd, Inference of finite-state transducers from regular
languages, Pattern Recognition, Volume 38, Issue 9, pp.1431-1443 (2005)

N. Friburger, D. Maurel, Finite-state transducer cascades to extract named
entities in texts, Theoretical Computer Science 313, pp 93 — 104 (2004)

J. R. Hobbs, D. Appelt, J. Bear, D. Israel, M. Kameyama, M. Stickel, M. Tyson,
FASTUS: A Cascaded Finite-State Transducer for Extracting Information from
Natural-Language Text, In Roche E. and Y. Schabes, eds., Finite-State Language
Processing, The MIT Press, Cambridge, MA, pages 383-406 (1997)

A. Kornai, Extended finite state models of language, Cambridge University Press
(1999)

E. Roche, Finite state transducers: parsing free and frozen sentences, Extended
finite state models of language, Cambridge University Press, pp. 108.-120 (1999)
E. Roche, Y. Schabes, Finite-state language Processing, The MIT Press, (1997)
A. Chrobot, B. Courtois, M. Hammani-Mc Carthy, M. Gross, K. Zellagui.
Dictionnaire electronique DELAC anglais : noms composeés. Technical Report 59,
LADL, Université Paris 7, (1999)

A. Savary. Recensement et description des mots composés - méthodes et
applications, Thése de doctorat. Université de Marne-la-Vallée, (2000)

B. Courtois and Max Silberztein, editors. Les dictionnaires électroniques du
francais.Larousse, Langue frangaise, vol. 87, (1990)

J. Labelle, Le traitement automatique des variantes linguistiques en francais:
'exemple des concrets, Lingvisticee Investigationes, 19(1), Amsterdam -
Philadelphia: John Benjamins Publishing Company, pp.137—152 (1995)

C. Krstev, D. Vitas, Corpus and Lexicon - Mutual Incompletness, in Proceedings of
the Corpus Linguistics Conference, Birmingham, (2005)

D. Vitas, C. Krstev, I. Obradovi¢, Lj. Popovi¢, G. Pavlovi¢-Lazeti¢, Processing
Serbian Written Texts: An Overview of Resources and Basic Tools, in Workshop
on Balkan Language Resources and Tools, 21 Novembar 2003, Thessaloniki,
Greece, pp. 97-104 (2003)

Baroni, M., Bernardini, S.: BootCaT: Bootstrapping corpora and terms from the
Web. In: Proceedings of the 4th International Conference on Language Resources
and Evaluation (LREC-2004), Lisbon (2004)

V. Pajic, Finite State Transducers in Web Monitoring, Master Thesis, Faculty of
Mathematics, University of Belgrade, Republic of Serbia (2010)

ComSIS Vol. 10, No. 1, January 2013 21



Vesna Paji¢, Dusko Vitas, Gordana Pavlovi¢ Lazeti¢, and Milo$ Paji¢

Appendix A

The results of monitoring the Blic web site from 9:00 PM 28.02.2012. until
9:00 PM 29.02.2012. (the unique concordances found by the WebMonitoring

system):

plomatije Evropske unije Ketrin ESton i
0zo izjavio je danas posle razgovora sa
Beogradu bio impresioniran posvecenos$cu
ki ispit koji polozimo&rdquo;, rekao je

u 241 Nikolic: Ovo nije primena zakona,

e u sudnici i porucio da hoce da pobedi
stervele razgovarace danas u Beogradu s
red optuzbom radikala! PUPS bira izmedu
ic: Srbija zasluzuje status kandidata |
Zahtevi Rumunije neopravdani Predsednik
imo na pozitivnoj odluci - rekao je on.
definiSu kao rumunska manjina u Srbiji.
iterjumima&quot;, dodao je predsednik.
za davanje statusa kandidata Srbiji, a
&rdquo;, ali ostaje suzdrzan optimista.
prava&quot;, istakao je predsednik EK.
voren centar NCR korporacije u Beogradu
biti status kandidata za clanstvo u EU.
Briselu predsednik Srbije Boris Tadic.
Rumunije je ozbiljan problem U kabinetu
uaru. U Briselu ce danas i sutra biti i
Pristinu. Ona se zahvalila predsedniku
012. - 22:28h | Komentara: 5 Predsednik
se &quot;smuca&quot; po sudovima? Zasto
Kandidatura nije i ulazak u EU ESton i
kako je rekla, buducnost svoje zemlje.

i ministri danas doneti odluku o Srbiji
protiv mene vr§i Demokratska stranka i
28.2.) biti odobren kandidatski status.
tatusa jo$ par dana? Ketrin ESton je sa

0 na pozitivnom ishodu&rdquo;, naveo je
kandidatski status. Predsednik Srbije,

eta runda dijaloga Beograda i Pristine.

m Manuelom Barozom. Ocekuje se da ce se
inim zemljama clanicama&quot;, rekao je
primamljiv osmeh, Mira Elizabet Fister
apredenje obrazovanja." kaze se u ukazu
ju na tom putu®, izjavio je Tadic. Nade
Ketrin ESton je sa predsednikom Srbije,

o; Ostale i vazne vesti: Povezane teme:
Povezane teme: EU, Zoze Manuel Barozo,
drzimo Srbiju na tom putu®, izjavio je

je kosovsko pitanje&rdquo;, istakao je
0z0 na zajednickoj pres konferenciji sa
pozitivnoj odluci, izjavio je u Briselu

io je nemacki ministar. Povezane vesti:
status kandidata uz napredak u dijalogu
protestuju protiv Putina Vesti Politika
asavanje Grcke: Politicari trce u krug »
sije RUBRIKE / Politika / Srbija Srbija

oci pocetka Saveta za opste poslove EU.

22

predsednik Srbije Boris Taidc izrazili s
predsednikom Srbije Borisom Tadicem da s
predsednika Srbije Borisa Tadica evropsk

Tadic i dodao da je status kandidata u s
Tadic i DS vrse politicki progon protiv
Tadica iDS. Clan Predsednickog kolegiju

predsednikom Srbije Borisom Tadicem i mi
Tadica i Nikolica!l SPO: Mrkonjic podrzav
predsednik Srbije Boris Tadic i visoka p

Tadic izjavio je oko 13 casova da je oce
Tadic je istakao da su zahtevi Rumunije
Tadic je izjavio i da ocekuje da ce evro
Tadic je porucio da Srbija ostaje privrz
Tadic je precizirao da je Srbija ispunil
Tadic je rekao da smatra da je Srbija ob
Tadic je rekao da Srbija ocekuje dalje n

Predsednik Srbije Boris Tadic je sa mini
Tadic je, izmedu dva sastanka Saveta min
Tadic je, komentariSuci cinjenicu da se
predsednika Srbije Borisa Tadica jutros
predsednik Srbije Boris Tadic koji bi tr
Tadicu na licnom angaZovanju da podrzi,
Tadic na predavanju Pitera Bogdanovica P
Boris Tadic nema probleme sa sudovima? N
Tadic Preporuka takode znaci, istakao je
Predsednik Srbije tom prilikom je podset
Predsednik Srbije u Briselu je jos jedno
Boris Tadic &quot;, rekao je Nikolic. On
Predsednik Srbije , Boris Tadic, izrazio
predsednikom Srbije, Borisom Tadicem, ra
predsednik Srbije , isticuci da ne &ldquo
Boris Tadic , izrazio je juce u Briselu n
Predsednik Srbije Boris Tadic, koji bora

Tadic , nakon $to ministri objave odluku
Tadic , osvrcuci se na zahteve Rumunije.
Tadic , pokuSava da opiSe sebe. U kratkim

predsednika Srbije Borisa Tadica, povodo
predsednika Srbije, pred danasnju odluku
Borisom Tadicem , razgovarala sinoc u Bri
Boris Tadic, Savet ministara EU, Rumunij
Boris Tadic, Srbija, Kandidatura, Odluka
Tadic . Nade predsednika Srbije, pred dan
Tadic . On je ukazao da dobijanje statusa
Tadicem . Samit EU odrzava se 1.i 2. mar
predsednik Srbije Boris Tadic. Tadic je,

Tadic : Nisam optimista kada je u pitanju
Tadic : Postoji mogucnost da ne dobijemo
Tadic : Srbija ispunila uslove i za datum
Tadic : Srbija nece prihvatati nemoguce
Tadic : Srbija zasluzuje status kandidata
Tadic : Zahtevi Rumunije neopravdani Pred

ComSIS Voal. 10, No. 1, January 2013



WebMonitoring Software System: Finite State Machines for Monitoring the Web

Vesna Paji¢ is a teaching assistent at the Department of Agricultural
Engineering, Faculty of Agriculture, University of Belgrade, Serbia, since
2003. She received Magister degree in Computer Science in 2010 and
currently is doing her Ph.D. dissertation at the Computer Science Department
of the Faculty of Mathematics, University of Belgrade. Her research interest
includes natural language processing, computational linguistics, text mining,
web search and bioinformatics.

Dusko Vitas is a professor at the Department of Computing, Faculty of
Mathematics, University of Belgrade, Serbia since 1994. Mr. Vitas received
his Bachelor degree in Informatics in 1973, Magister degree in 1977, and Ph.
D. degree in 1993, all in Mathematics at Faculty of Mathematics, Belgrade.
Since 1991 he is employed at the Faculty of Mathematics, Belgrade. He
published more than 120 scientific and professional papers.

Gordana Pavlovié-Lazeti¢ is a professor at the Computer Science
Department of the Faculty of Mathematics, University of Belgrade, since 2009.
She obtained her Ph.D. degree in 1988, at the Faculty of Mathematics,
University of Belgrade. She spent two years at the University of California,
Berkeley, doing research in database and text processing fields. Her current
research interest includes databases, data mining, text processing and
bioinformatics. She is an author of over 50 scientific papers and participated
at more than 30 conferences. Professor Pavlovic-Lazetic supervised a
number of Ph.D. and M.S. thesis. She participated in many national and
international researches and was a member of organizing and program
committees for several conferences. She is a member of ACM.

Milo§ Paji¢ is a teaching assistent at the Department of Agricultural
Engineering, Faculty of Agriculture, University of Belgrade, Serbia, since
2002. He received Ph.D. degree in Biotechnical Science in 2012 at the
Faculty of Agriculture, University of Belgrade. His research interest includes
technical inovations in biosistems, agricultural mechanization and
bioinformatics.

Received: September 18, 2011; Accepted: July 18, 2012.

ComSIS Vol. 10, No. 1, January 2013 23






DOI:10.2298/CS1S1109260370

SLA-Driven Adaptive Monitoring of Distributed
Applications for Performance Problem Localization

Dusan Okanovié', André van Hoorn?, Zora Konjovié¢,
and Milan Vidakovié!

" Faculty of Technical Sciences, University of Novi Sad,

Trg D. Obradovic¢a 6,

21000 Novi Sad, Serbia

{oki, ftn_zora, minja}@uns.ac.rs
2 Software Engineering Group, University of Kiel,
Christian-Albrechts-Platz 4,
24098 Kiel, Germany
avh@informatik.uni-kiel.de

Abstract. Continuous monitoring of software systems under production
workload provides valuable data about application runtime behavior and
usage. An adaptive monitoring infrastructure allows controlling, for
instance, the overhead as well as the granularity and quality of collected
data at runtime. Focusing on application-level monitoring, this paper
presents the DProf approach which allows changing the instrumentation
of software operations in monitored distributed applications at runtime. It
simulates the process human testers employ—monitoring only such parts
of an application that cause problems. DProf uses performance
objectives specified in service level agreements (SLAs), along with call
tree information, to detect and localize problems in application
performance. As a proof-of-concept, DProf was used for adaptive
monitoring of a sample distributed application.

Keywords: continuous monitoring, adaptive monitoring, aspect-oriented
programming, service level agreements.

1. Introduction

Modern enterprise applications constantly grow in size and complexity which
makes them extremely demanding both from functional and non-functional
aspects. Along with functional requirements, applications have to fulffill its non-
functional requirements. Common non-functional requirements are availability,
responsiveness, robustness, portability, etc. Non-functional requirements are
defined in an agreement between software providers and consumers, called
service level agreement (SLA) [1]. Before software is put into operation
phase, in order to check software for bugs, it must be thoroughly tested.
However, the testing phase of is often shortened, usually because of pressure
to put the application in operation as soon as possible. Furthermore, the



SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

standard testing, e.g., using debuggers and profilers, hardly allows detecting
all errors and unpredicted events that occur in production or during operation.
Also, it is a common phenomenon that software performance and quality of
service (QoS) degrade over time [2]—-which calls for continuous monitoring of
applications in order to determine whether QoS is kept on a satisfactory level.
Continuous monitoring of software is a technique that provides a picture of
dynamic software behavior under real exploitation circumstances. The data
obtained through the monitoring process can, for instance, be used as a basis
for architecture-based software optimization, visualization, and reconstruction
[3].

An important issue of software monitoring is imposed performance
overhead, since the monitoring system shares common resources with the
monitored system. Therefore, the monitoring system has to perform using a
minimal amount of resources. In a testing phase, software developers
commonly use tools such as profilers and debuggers. These tools induce
significant performance overhead, and therefore, they are not suitable for
monitoring during the operation phase. Monitoring code can only be optimized
up to a certain extent. In order to achieve an even higher reduction of
monitoring overhead, it would be beneficial to automatically adapt monitoring
to only monitor selected parts of the system.

The DProf system proposed in this paper has been developed for adaptive
monitoring of distributed enterprise applications with a low overhead. In order
to do that, the Kieker [3] framework, which yields low overhead, is used for
collecting the monitoring data. Additional components support changing of
monitoring parameters at application runtime. These additional components
have been developed using Java Management Extensions (JMX) [4]. The
system analyzes call trees (as described in the following paragraph)
reconstructed from the gathered data and automatically creates a new
monitoring configuration if needed.

A call tree represents calling relationships between software methods [5]. It
contains the control-flow of method executions invoked by a client request.
The first method is called the "root". For example, consider the simplified call
tree in Fig. 1. This call tree represents a situation where a client invokes
methodA() from ClassA. This method in turn, invokes two methods from
ClassB: first methodB1() and then methodB2(). SRVX and SRVY are the
names of servers on which the methods are being executed.

DProf configuration parameters specify which of the application's call trees
are going to be monitored and, furthermore, they can specify nesting levels
within the call tree that are to be monitored. DProf stores data in a central
database, regardless of on how many computers the monitored application is
executed. Using mechanism integrated into the Kieker framework, during data
gathering, each method execution within a trace is uniquely identified and
assigned a number which represents the order of execution (numbers on
branches in Fig. 1). This allows call trees to be spread on different computers.

ComSIS Vol. 10, No. 1, January 2013 26



Dus8an Okanovi¢, André van Hoorn, Zora Konjovi¢, and Milan Vidakovi¢

$
B
SRV::
@2:..ClassA
.methodA()
2. 3.
SRV:: SRV::
@2:..ClassB @2:..ClassB
.methodB1() .methodB2()

Fig. 1. An example call tree

DProf can be configured to work in different modes, e.g., for the following
purposes: 1) locating software components causing deviations between
obtained results and values required by service level agreements (SLAs), 2)
detecting bottlenecks, or 3) collecting performance data for post-mortem
analysis. The first two modes are usually used for problem detection and
localization, while the third mode is used when software performance ought to
be evaluated in general. DProf uses SLAs that are defined in an XML
document, for which we propose an XML schema, called DProfSLA. The
schema is compliant to existing SLA standards in the field.

The idea behind our approach is to reduce monitoring overhead by only
monitoring parts of software suspected of containing problems or deviating
from expected behavior. In the problem localization process, the system starts
by monitoring methods that are at the root of call trees. If the deviation from
expected results in one of the trees is detected, the DProf incrementally turns
on monitoring in lower levels of that particular tree. This is repeated
successively, until the method that is causing the problem is determined.
DProf adapts without human intervention to find the cause of the problem.

This simulates the manual procedure typically employed for localizing the
root cause of performance problems. Other systems perform monitor the
whole software, regardless of the fact that other parts (other call trees) are
working fine. Since DProf’s additional monitoring components are
implemented using JMX technology, reconfiguration of the DProf monitoring
parameters can still be performed manually by system administrators using
any JMX console.

Software administrator intervention is only needed at the beginning of the
monitoring process, when the monitoring goals are configured. It usually takes
some time before clients start reporting a performance problem and even
more until the service provider reacts, locates the problem, and finds a
solution. Automation of localizing performance problems and faults reduces
this time. DProf can detect even the slightest deviations proactively. This can
provide enough time to react before clients start complaining, leaving software
performance at desired levels.

27 ComSIS Vol. 10, No. 1, January 2013



SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

In our earlier work we presented some parts of the monitoring subsystem of
the DProf system [6, 7]. In this paper, we further extend those results with
automatic adaptation of the monitoring process. We presented the DProfSLA
XML schema in [8]. This paper presents an enhanced version of the schema,
which contains support for the latest DProf features. A more detailed
evaluation of the system is also presented.

The remainder of the paper is organized as follows. In Section 2 we
present the DProf monitoring system, including its components, architecture
and functions provided. Section 3 presents an evaluation of the DProf
monitoring system. Section 4 discusses related work. It contains an example
of the continuous and adaptive monitoring of a real application and presents a
discussion of the obtained monitoring results. Finally, Section 5 draws
concluding remarks and outlines directions for future work.

2. DProf System

The DProf system enables adaptive monitoring of distributed enterprise
applications with a low overhead. It performs automatic analysis of obtained
data based on call tree analysis and automatically reconfigures the monitoring
instrumentation in order to reduce performance overhead or to provide more
detailed data. The system configuration specifies which parts of the
application are going to be monitored by selecting an application's call trees
and levels within these call trees.

DProf is based on the Kieker framework and the JMX technology. It can be
used for adaptive and reconfigurable continuous monitoring of Java EE
applications, as presented in this paper. Use of Kieker grants low overhead.
Separation of monitoring code from application code and source code
instrumentation is performed by using aspect-oriented programming (AOP)
[9]. We have developed additional components in order to allow an adaptive
reconfiguration of monitoring parameters at runtime, i.e., while the application
is running. JMX is used for controlling the monitoring process at runtime.
Together with the DProfSLA schema, DProf can be used to monitor SLAs
compliance and to localize the root cause of problems.

Details of our approach are presented in Section 2.1. In Section 2.2 we
describe the DProfSLA XML schema. An overview of the underlying Kieker
framework is given in Section 2.3. Section 2.4 presents architecture and some
implementation details of the DProf system.

2.1. The DProf Approach

The activity diagram in Fig. 2 illustrates the DProf monitoring process. Before
the application is started, an initial monitoring configuration is specified using
include and exclude clauses in the aop.xml file, which configures the AOP-
based instrumentation.

ComSIS Vol. 10, No. 1, January 2013 28



Dus8an Okanovi¢, André van Hoorn, Zora Konjovi¢, and Milan Vidakovi¢

User Analyzer AnalyzerThread Kieker+DProf

Analyzer monitoring records |

configuration L‘Ir -
and start Call tree
Il tree analysis
Call tree
eation
anomaly
umber to large

[no]

art

Analyzer thread
creation and
configuration

Monitoring with old
parameters

results in
accordance with
SLA

Monitoring with
new parameters

A

New parameters o
creation and sending monitoring parameters

Fig. 2. Activity diagram of the DProf monitoring system

On application startup, with the initial monitoring parameters specified in
the aop.xml, the DProf system is started simultaneously. It gathers monitoring
data during application execution. Periodically, obtained performance data is
being sent for analysis. The Analyzer reconstructs call trees based on
monitoring data. These trees are analyzed by the AnalyzerThreads, each
thread analyzing one tree in parallel to speed up analysis. A call tree
represents methods that are invoked after one client call to the application.
Each method invocation in the stack trace is represented with one node of the
tree.

For the analysis we use the R [10] programming language and environment
for statistical computing. We use the extremevalues [11] package to detect
and remove outliers that we consider temporary effects caused by various
external factors: class loading, starting of some resource-consuming process
in the background while the monitored application is running, hardware
glitches, etc. After outlier removal, the remaining values are processed using
the specified statistical function and compared to the required value as
defined in the SLA. Depending on the result of the comparison, new
monitoring parameters are generated. If the number of outliers exceeds the
value defined in DProfSLA, monitoring is repeated with old parameters.

If results deviate from values defined in the SLAs, the AnalyzerThread
creates new monitoring parameters. The creation of new parameters depends
on monitoring configurations defined in the SLA document. The system can
be configured to monitor all or only selected parts of the application for the
following purposes:

29 ComSIS Vol. 10, No. 1, January 2013



SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

1. Recording normal results — this is used to determine nominal
values for SLAs. No changes in monitoring parameters are
assumed in this case.

2. Finding which software component does not conform to the SLAs —
in the SLAs we provide nominal values for nodes in call trees we
want to be monitored.

3. Finding which software component consumes the largest amount
of resources.

Using the DProf system, developers cannot only find which method causes
problems, but also in which context the problems occur. Since the
communication between the Analyzer and the components that are gathering
the data is implemented using web services, this component can be used for
receiving and analyzing monitoring records from applications developed for
platforms other than Java/Java EE. In order to use this system with some
other platform, such as .NET, adapters for the monitoring subsystem and the
management interface are required.

SLA Compliance Monitoring and Problem Localization

In order to provide desired values for SLA, the application is monitored using
the first configuration from the previous section (recording of normal results).
Branches omitted from the SLAs are not monitored.

DProf starts with monitoring the top levels specified. If a problem is
detected in one of the call trees, DProf triggers a reconfiguration to include
monitoring of the next level of that tree. It will proceed down the tree as long
as there is a discord with SLAs. The last node with values higher than those in
SLA is declared the source of the problem.

Localization of Increased Resource Consumption

In the DProfSLA document we specify which call trees are to be monitored.
For each call tree, the Analyzer configures the monitoring system to gather
data only from the top level. In the next iteration, it finds the tree with the
highest observed value (that is a root element of that tree). In the next
iteration, the monitoring system is reconfigured to monitor only that call tree's
first two levels. This process is repeated further down the tree (if those levels
exist). Through the process, DProf selects the branches with the highest
observed values. The process ends as soon as the instrumentation reaches
the bottom of the call-tree, or when observed values for the node on the
higher level are greater than the values for its child nodes.

2.2. DProfSLA Schema

DProfSLA documents are used to define SLA parameters based on our
DProfSLA XML schema. The relevant part of this schema with the root
element and its sub elements of this schema is shown in Fig. 3. (In this paper
we use the XMLSpy [12] notation for the XML schema representation.) The
root element (DProfSLA) has three sub elements: Parties (parties in the

ComSIS Vol. 10, No. 1, January 2013 30



Dus8an Okanovi¢, André van Hoorn, Zora Konjovi¢, and Milan Vidakovi¢

agreement), CallTreeNode (call-traces to be monitored) and Timing (time
constraints of this agreement).

The Parties element represents the parties involved in the agreement. This
element has two sub elements: service provider (Provider) and service
consumer (Consumer). Both of these sub elements contain contact data
regarding the service provider and service consumer respectively. Each sub
element is represented using the OrganizationType complex type (not
detailed here).

Provider

=]
type | OrganizationType

Consumer

4]
type | OrganizationType &

| | CalfreeNode '“.

-- ]
type| Ca 'F_TF_E‘I"_U_d_E:r}fPE_[_EI

Fig. 3. A part of the DProfSLA schema with the root element

Selection of Call Trees to be Monitored

Each CallTreeNode element represents performance information for a single
node in the call tree to be monitored. It is of the CallTreeNodeType complex
type shown in Fig. 4.

CallTreeNodeType elements have two mandatory attributes, a name and a
metric. The name attribute is used to specify a part of the application to be
monitored. The string representation of a call tree is used for this purpose.
The metric attribute specifies the performance metric to be used, i.e., which
aspect of application performance is going to be monitored (e.g., response
time, memory consumption). Sub elements of this element are other sub call
trees, e.g., sub traces that are invoked from the parent CallTreeNode
element.

Furthermore, optional attributes for specifying expected performance
values in terms of the designated metric can be configured. The
aggregateFunction represents the function to be used in data analysis. The
nominalValue represents the expected value (for the given aggregate
function), while the upperThreshold and the lowerTreshold are maximal and
minimal values of the designated metric, respectively. The outlierPct is used
to define the allowed fraction of outliers (Section 2.1) in the set of obtained
results.

31 ComSIS Vol. 10, No. 1, January 2013



SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem

Localization
] sttributes

______________

name ' statFunction |
Y ::e|xs:5tring vIype | xs:string |
metric ! nominalValue
Y ::e|x5:5tring Viype | xs:double |

! repeats | E upperThreshoIdE

1fvpe [ xs:long | viype | xs:double

CallTreeNodeType []

E lowerThreshold |

1 tvpe [ xs:double

'type | xs:double |

_EE E CallTreeNode E;:-I
Vtvpe LCﬁlrrreeNudeType i
_____________________________________ S}

Fig. 4. CallTreeNode Type complex type defined in the DProfSLA schema

(iming &

Fig. 5. Timing sub element in the DProfSLA schema

Specification of Timing Constraints

The Timing element (Fig. 5) is used to specify time constraints for this
agreement. The sub elements StartTime and EndTime define the period this
document applies to. The SamplingPeriod element denotes the time period (in
milliseconds) between two analyses runs, possibly resulting in a
reconfiguration of monitoring parameters.

Example DProfSLA Document

An example DProfSLA document, which describes monitoring of the call tree
from Fig. 1, is shown in Listing 1.

ComSIS Vol. 10, No. 1, January 2013 32



Dus8an Okanovi¢, André van Hoorn, Zora Konjovi¢, and Milan Vidakovi¢

1 <DProfSLA>

2  <Parties><Provider name="Ogl" />

3 <Consumer nane="Org2" /></Parties>

4 <CallTreeNode netri c="avgExecuti onTi ne"

5 nanme="Cl assA net hodA, [{ C assB. nmethodB1,[]} ,
6 {d assB. net hodB2,[]}]" upper Thr eshol d="350">
7 <CallTreeNode netri c="avgExecutionTi me" name="[{
8 C assB. met hodB1, []}]" upper Threshol d="150"/>
9 <CallTreeNode netri c="avgExecuti onTi me" nane="[{
10 C assB. met hodB2, []1}]" upper Threshol d="150"/>
11 </ CallTreeNode>

12 <Timing><SamplingPeriod>600000</ Sampl ingPeriod></ Timing>
13 </ DProfSLA>

Listing 1. DProfSLA document for this example

It represents an agreement between the parties Org1 and Org2. Response
times are monitored to detect values exceeding the specified upperThreshold
attribute. Every 10 minutes (600,000 ms), an analysis of the obtained results
is performed.

In the first iteration the system only monitors monitorA(). If the obtained
results show that the response times of methodA() exceed the upper
threshold, monitoring of methodB1() and methodB2() is turned on. After the
next 10 minutes, if results show that either methodB1() or methodB2() takes
too long, it will have to be analyzed manually. Otherwise, the program code in
methodA() is assumed to be the cause of the problem.

2.3. Kieker Framework

The Kieker framework is structured into the Kieker.Monitoring and the
Kieker.Analysis components [3]. The Kieker.Monitoring component collects
and stores monitoring data. The Kieker.Analysis component performs analysis
and visualization of the monitoring data. The core components of the Kieker
framework are depicted in Fig. 6, and described in the remainder of this
section.

The Kieker.Monitoring component is executed on the same computer the
monitored application executes on. This component collects application-level
measurement data during the execution of the monitored applications.
Monitoring Probes are software sensors that are inserted into the monitored
application in order to gather various measurements. For example, Kieker
includes probes to monitor control-flow and timing information of method
executions. Probes are most commonly implemented using AOP technology;
additional probes can be added to support different measurements, e.g., for
adding support for new metrics. Monitoring Writers pass the collected data (as
Monitoring Records), to a Monitoring Log or Stream. The framework is
distributed with Monitoring Writers that can store Monitoring Records in, for
example, file systems, databases, or Java Message Service (JMS) queues

33 ComSIS Vol. 10, No. 1, January 2013



SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

[13]. Additionally, users can implement and use their own writers, as we did
for DProf. The Monitoring Controller component controls the work of this part
of the framework.

The data in the Monitoring Log/Stream is analyzed by the Kieker.Analysis
component. A Monitoring Reader reads records from the Monitoring
Log/Stream and forwards them to a pipe-and-filter configuration of Analysis
Filters. Filters may, for example, analyze and visualize gathered data. Control
of all components in this part of the Kieker framework is performed by the
Analysis Controller component.

Fig. 6. Component diagram of the Kieker monitoring framework

24. DProf System Architecture

We have implemented our approach using Java technology. The DProf
system uses Kieker's infrastructure for data acquisition, extended by some
additional components. The architecture of DProf system and its integration
with Kieker are shown in Fig. 7.

The DProf components are divided into two groups: i) components that
participate in recording monitoring data; and ii) components that analyze the
obtained data and control the reconfiguration of monitoring parameters.

The DProfWriter is the new Monitoring Writer used. It sends Monitoring
Records to the ResultBuffer component. The ResultBuffer periodically sends
data to the RecordReceiver component, which, in turn, stores data into the
relational database. The combination of ResultBuffer, RecordReceiver, and
database plays the role of the Monitoring Log/Stream (Section 2.3).

Received data is periodically analyzed by the Analyzer component. The
Analyzer is responsible for controlling the monitoring configuration.
Configuration parameters are sent to the DProfManager component, which
passes these parameters to the AspectController and to the ResultBuffer (to
clear, if it contains result created with previous configuration parameters). The
AspectController accesses the application’s aop.xml file and performs
changes, causing the application to restart. Upon the restart the new
monitoring parameters are applied.

ComSIS Vol. 10, No. 1, January 2013 34



Dus8an Okanovi¢, André van Hoorn, Zora Konjovi¢, and Milan Vidakovi¢

Server or cluster of servers

aop.xml E {l

Monitored application

s Monitoring Probe

AspectController $:|| MonitoringControllerS ]
app. server (e.g. in cluster configuration)

DProfWriter {‘ "
ResultBuffer {”

N
| JMX Timer Service{| l—"/

| DProfManager {” |

Database and analysis server

Analyzer {l Record Receiver E—;:|

| ]
D —— Database 2 ] <

Fig. 7. Deployment diagram of the DProf system

Kieker includes the monitoring record type OperationExecutionRecord that
is used to store timing and trace information for method executions. We have
developed the new Monitoring Record type DProfMonitoringRecord, which
extends Kieker's original OperationExecutionRecord and additionally provides
the otherData attribute. This attribute is used to store additional information,
e.g. CPU utilization and memory consumption. When the record is created in
the probe, the attribute is filled with comma-separated key-value pairs,
depending on what the given monitoring aspect measures. Keys in this list
correspond to metrics defined in the SLA document. This allows us to use this
single Monitoring Record class for monitoring different metrics.

The RecordReceiver receives the data from the ResultBuffer. It is
implemented as a web-service, and it stores records into a database table.

By using the DProfManager and these additional components we can
change monitoring parameters at runtime. This allows us to reduce the impact
on the system, including monitoring overhead, by disabling monitoring in
certain parts of the application, and to obtain more accurate results. Setting
the new parameters can be performed either manually, by a person in charge
or automatically by the Analyzer component. The Analyzer component,
provided with a DProfSLA schema document, can check if service levels
observed in gathered data deviate from those defined in the SLA and,
according to the algorithm described in Section 2.1, to determine which part of
the software causes this deviation.

35 ComSIS Vol. 10, No. 1, January 2013



SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

Code instrumentation can be performed by hard-coding instrumentation
routines into program code, but a more elegant way is AOP . AOP provides
developers with separation of concerns: monitoring aspects are developed
separately from application code.

Using AOP, we can choose to weave aspects with code upon compilation
or to let the aspect runtime weave aspects into classes upon class loading.
These processes are known as compile-time-weaving and load-time-weaving.
When using DProf, we usually want to change monitoring parameters at
runtime, so we use load-time-weaving. If we monitor, without having to
change monitoring parameters at runtime, we can use compile-time weaving.
The advantage of using compile-time-weaving is only a faster application
start; afterwards both compile- and load-time-weaved applications behave the
same.

The DProf system uses the AspectJ AOP implementation for Java [14], for
instrumentation. Initially, the Aspectd configuration file (aop.xml) specifies
which parts of the application are to be included/excluded from monitoring,
and which aspect to use as monitoring probes. During monitoring with the
DProf system, additional clauses will be placed in this configuration file for the
purpose of monitoring adaptation.

In the Java environment, time is usually measured using either
System.currentTimeMillis() or System.nanoTime() calls [15]. Measuring of
system-level metrics (such as memory consumption and CPU utilization), can
be performed using platform MXBeans [4] or some third-party tools such
asSIGAR [16].

3. Evaluation of the DProf System

The application of the DProf system will be demonstrated using the software
configuration management (SCM) application described in our previous work
[17]. SCM is a Java EE application responsible for tracking of applications and
application versions in a company.

The goal is to monitor method response times and to localize the root
cause of performance problems. Initially, DProf is configured to monitor only
methods at the root of call trees. If an increase in method response times is
detected, DProf will, potentially successively, reconfigure the instrumentation
to monitor other levels, until it localizes the method that causes the problem.

This evaluation serves to demonstrate that monitoring overhead can be
reduced by monitoring only root level if no performance problem is present.
Also we perform a basic analysis of the overhead generated when using
DProf, comparing it to the overhead generated by writers distributed with the
Kieker framework.

ComSIS Vol. 10, No. 1, January 2013 36



Dus8an Okanovi¢, André van Hoorn, Zora Konjovi¢, and Milan Vidakovi¢

3.1. Setting

The application is implemented using Enterprise JavaBeans (EJB) [18]
technology. Entity EJBs are used for communication with databases, i.e., for
object/relational (O/R) mapping [19]. They are accessed through stateless
session EJBs (SLSB), modeled according to the fagade design pattern [20].
SLSBs are annotated to work as JAX-WS [21] web services as well. We
deployed SCM on a cluster of servers. The application client is a Java Swing
[22] application.
Figure 8. shows a part of the application's architecture.

Fig. 8. A part of the monitored SCM application's architecture

Methods that are to be monitored are annotated with Kieker's
@OperationExecutionMonitoringProbe. As a monitoring probe we used a
Kieker's original OperationExecutionAspectAnnotation probe. It intercepts
executions of annotated methods.

In this case study we will focus on the call tree shown in Fig. 9.

37 ComSIS Vol. 10, No. 1, January 2013



SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

1.

SRV::
@3:..0rganizationFacade
.createOrganization(

)
2. \

SRV:: SRV::
@2:..City @2:..0rganizationFacade
.getld() .checkOrgName()
A
SRV:: SRV
@1:..0Organization @1:..0rganization
.getld() .getAddress()

Fig. 9. The call tree monitored in this example

The testing was performed by repeatedly invoking the
OrganizationFacade.createOrganization() method from 100 concurrent
threads, with equally distributed think times between 0 and 10 seconds.

The analysis of the obtained data is performed every hour. Initially, only the
createOrganization(..) method is monitored. After a deviation from values
specified in the DProfSLA (last row in Table 1.) is detected, the methods
invoked from this one are monitored additionally. If these methods do not
violate the SLAs, the problem is assumed to be in the createOrganization(..)
method. If the results for the checkOrgName(..) show deviations, monitoring is
reconfigured to include the Organization.getld() and
Organization.getAddress() methods, and to exclude the method City.getld().
The most likely cause of the problem is the method whose results do show
deviation from expected response times, while methods invoked from it do
not.

Within the checkOrgName() method, we purposly inserted a delay of 1 ms,
to simulate a problem. In order to determine the impact of DProf on the
monitored application, we measured response times on the client computer.

3.2 Analysis of Results

The obtained results were analyzed by the Analyzer after one hour, showing
increased response of the createOrganization(..) method.To find the source of
the problem, the Analyzer component changed monitoring parameters and
added monitoring instrumentation to the methods in the next level of the call
tree.

ComSIS Vol. 10, No. 1, January 2013 38



Dus8an Okanovi¢, André van Hoorn, Zora Konjovi¢, and Milan Vidakovi¢

The analysis of the gathered data, one hour after the previous analysis,
showed that an response time of the checkOrgName(..) method rose over
designated values. The Analyzer then included the monitoring in the third
level, i.e., the methods Organization.getld() and Organization.getAddress().
The obtained results are shown in Table 1.

Table 1. The average response times of monitored methods in milliseconds

Method| Organization- City. Organization- Organization. Organization.
Facade. getld Facade. getld getAddress

Levels create- checkName

monitored Organization

L 2.888 N.Ot Not monitored Not monitored Not monitored
monitored

1 and 2 3.05 0.307 1.502 Not monitored Not monitored

Not

1,2and 3 3.339 . 2.290 0.429 0.71
monitored

Response

times required 2.250 0.750 1.300 0.750 0.850

by the SLA

Organization.createOrganization(..) has increased response time because
of the OrganizationFacade.checkOrgName(..). In turn, increased results of
OrganizationFacade.checkOrgName(..) are not caused by the executions of
the Organization.getld(...) and Organization.getAddress(...) methods.

Based on these results, it can be concluded that the checkOrgName(...)
method requires further inspection in order to be made compliant in
accordance to the SLA. This means that our system has been able to localize
the method which causes the problem.

Overhead analysis

In order to estimate overhead we measured response times on the client side.
A comparison of these times is shown in Fig. 10. The median response time
of the monitored method, when monitoring is disabled, was 3.078 ms. By
enabling monitoring of the call tree's first level, it increased to 3.535 ms.
Monitoring of the second level generated additional 0.344 ms (it increased to
3.879 ms). Inclusion of monitoring of the third level led to average response
time of 4.133 ms.

As expected, DProf yields an overhead, which rises if we increase the
number of monitored methods. Also, a slight increase of the standard
deviation in results from 0.954 ms to 1.194 ms shows that reponsiveness
becomes more unstable when the number of monitored call tree levels is
increased. Hence, in case no problem is detected, the overhead would be
minimal and responsiveness more stable, since only the first level would be
monitored.

39 ComSIS Vol. 10, No. 1, January 2013



SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

Client side average response times in milliseconds

8
M~ i
]
_ i
I E— I 1
© - i | i
Y ! 1 1
E —L : : :
— 1 1
@ uy - : : : 1
E : ! |
= \ 1
o ! :
o g i
o ]
0
w
ot o — : :
| ! .
T : 1 H
o — : 1 _:_ _
! —
—_
I I I I
monitoring off 1 2 3

levels monitored

Fig. 10. Comparison of response times of the Organisation.createQOrganisation(...)
method in different scenarios

Client side average response times
with different writers in milliseconds

response time (ms)
5
l

moniforing DProf

off  without ResultBuffer DProf SyncFsWriter SyncDBWriter

writer configuration

Fig. 11. Overhead comparison for different writers

ComSIS Vol. 10, No. 1, January 2013 40



Dus8an Okanovi¢, André van Hoorn, Zora Konjovi¢, and Milan Vidakovi¢

The obtained results are also in accordance to Kieker overhead analysis
shown in [3]. Further comparison with Kieker's writers is shown in Fig. 11. We
compared response times of the monitored application in different monitoring
configurations: with no monitoring, when using DProf with and without sending
data to the ResultBuffer, and when Kieker's original SyncFSWriter and
SyncDBWriter are used.

The DProf system has lower overhead than Kieker's original SyncFSWriter
and SyncDBWriter, which write records into file system and database,
respectively. This is because in DProf, communication between the writer
and the buffer is performed within one JVM.

Based on these results, it can be concluded that this system is suitable for
continuous monitoring of all kinds Java applications. It provides valuable data
on application execution with very small impact on application performance.

4, Related Work

For the research presented in this paper two fields are of particular
importance: monitoring tools (which are presented in Section 4.1) and existing
standards for SLA documents definition (Section 4.2).

4.1. Application Monitoring and Profiling Tools

Monitoring and profiling tools have been in use since the early 1970s. The
UNIX operating system includes the prof tool [23] since 1979. It can record
execution times for each program function. ATOM [24] was one of the first to
use source code instrumentation and it appeared in the 1990s. Before
application deployment, ATOM combines the instrumentation and the
application code. The application executes normally, with additional output
containing monitoring data.

A recent study by Snatzke [25] shows that, although service levels and
performance of applications are of critical importance in practice, application
level monitoring tools are rarely used. Java application monitoring tools are
usually developed using either JVMTI/JVMPI [26, 27] or aspect-oriented
programming (AOP) [8] technology. JVMTI and JVMPI APIs require
knowledge of C/C++ in addition to Java, and also impose significant overhead
[3]. Examples of JVMTI/JVMPI-based profilers are JBoss Profiler [28] and
JFluid [29]. JBoss Profiler is the profiler used with the JBoss application
server [30]. JFluid is used within the NetBeans IDE [31]. COMPASS JEEM
[32] can be used to monitor JEE applications, but every application layer
needs a different set of probes. The Kieker framework [3], used in this work, is
a Java-based framework for continuous application performance monitoring
and dynamic software analysis. It includes aspects which implement
monitoring probes.

41 ComSIS Vol. 10, No. 1, January 2013



SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

A number of commercial application monitoring tools exist, but
implementation details of these tools are scarce at best, if available at all.
DynaTrace [33] uses its own PurePath technology which captures timing and
context information for transactions across all application tiers. It has support
for both Java and .NET environments. JXInsight [34] is designed for
monitoring applications in JEE environments. It offers automatic performance
analysis and problem detection. IBM's Tivoli Management Framework [35] is
a system management platform. It is CORBA-based and allows remote
management of software. IBM Tivoli Monitoring, which uses the Tivoli
framework, is a set of tools which can be used for problem detection in
various environments. Tivoli supports monitoring of JavaEE (WebSphere
server), .NET, network (DNS, DHCP) and others. Both agent and agentless
monitoring are supported. AppDynamics provides solutions for monitoring on
different platforms, with low overhead [36]. It supports the automatic
localization of problem root causes. Monitoring tools for other purposes exist
as well, e.g., Nagios [37] for infrastructure monitoring, CA Unicenter [38] for
infrastructure and application performance monitoring and management, or
HP's Insight [39] for monitoring and problem localization on some specific
platforms.

Newman et al. present the MonALISA system [40] which constitutes a
distributed monitoring service. It is implemented using Java and WSDL/SOAP
technologies. MonALISA allows for monitoring of heterogeneous systems
using autonomous agent based sub-systems. A graphical user interface
visualizes complex gathered data. MonALISA includes a library of APIs that
can be used to send data to MonALISA services. Using these APIs, other
systems, such as DProf can be included in the monitoring process.

AOP can be used for instrumentation of code. Separation of concerns
allows for monitoring code to be separated from application code. There are
several monitoring tools based on AOP.

The concept of manageable aspects—a combination of aspects and JMX
MBeans—is proposed by Liu et al. [41]. It can be used as monitoring probes,
for instrumentation and collecting runtime data during software execution.
They can be accessed and controlled using any JMX console. Although this
approach would present an excellent platform for adaptive monitoring, no
implementation of this concept has been provided, yet.

The HotWave framework [42], which is still in development phase, allows
run-time reweaving of aspects and the creation of adaptive monitoring
scenarios. It allows for a development of adaptable monitoring solutions, as
presented by the authors. Users can choose parts of the application to be
monitored, and later reconfigure the system to monitor other parts, without
having to restart the system. Unfortunately, no implementation of this
framework is currently available.

Ehlers et al. present an approach for anomaly diagnosis [43] also based on
call tree analysis and self-adaptive monitoring with Kieker. For each call tree
node, representing the execution of a software method in a certain context,
anomaly scores for response times are computed by comparing observed
values with values predicted based on historic observations. OCL [44] is used

ComSIS Vol. 10, No. 1, January 2013 42



Dus8an Okanovi¢, André van Hoorn, Zora Konjovi¢, and Milan Vidakovi¢

to specify rules for adapting the instrumentation based on the anomaly scores
and the current instrumentation. In our earlier work [45], we presented an
approach for automatic problem localization based on a correlation of
anomaly scores with architectural calling dependencies. Kieker was also used
in this approach. However, the monitoring was not adaptive.

Yu et al. [46] present the RaceTrack tool for race detection in .NET
applications. This tool monitors program activity and looks for suspicious
patterns in program execution. It has great accuracy because it monitors
memory access at both object and field level. It starts by monitoring at object
level, and only if unusual patterns are detected, it switches to field level. This
way, performance overhead is reduced. The RaceTrack is implemented by
modifying .NET’s virtual machine CLR (common language runtime). Such
modification requires great understanding of how CLR works. If some
changes are made in the future, it would probably require modifications on
this tool. Also, the modified CLR has to be distributed with the application that
is to be monitored, instead of, for example, just starting a tool within existing
CLR.

Chen et al. [47] propose the Pinpoint system that locates components most
likely to cause a fault. The approach is based on finding correlations between
low-level faults and high-level problems. Data is gathered by collecting client
traces using a modified Java EE platform. Unlike our approach, this approach
focuses more on problem localization and less on performance problems.

A black box approach to problem localization is applied by some of the
authors. This approach usually finds a component that is causing problems,
but does not locate the problem within component. Aguilera et al. [48] use an
approach that monitors message communication between components and
tries to find causal paths between messages and performance problems. The
PeerPressure tool presented by Wang et al. [49] compares "healthy" and
"suspicious" machines using statistical methods to locate problems.

Very few papers provide actual numbers regarding overhead. Dimitriev [29]
tested JFluid’s performance with SPECjvm98 tool [50]. Results show that
overhead ranges from 1% for time consuming tasks like database access, to
5000% for compress tasks. JFluid allows users to reduce overhead by
selecting the parts of an application to monitor. Govindraj et al. [51] discuss a
possibility of using AOP for monitoring and they show the overhead ranges
from 1-10%. For DynaTrace the monitoring overhead is reported to be less
than 5%. However, these percentages are hardly comparable because they
heavily depend on hardware and software used in the benchmarks, and
especially they depend on the granularity of instrumentation and the usage
profile.

4.2, SLA Standards

In order to automate service level management, SLAs must be defined in
machine-readable format. As shown by Tebbani et al. [52], only few formal
SLA specification languages exist. In practice, SLAs are often written in some

43 ComSIS Vol. 10, No. 1, January 2013



SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

informal language. Tebbani et al. propose the GSLA (Generalized Service
Level Agreement) language. A GSLA document constitutes a contract signed
between two or more parties designed to create a measurable common
understanding of each party’s role. The role is nothing but the set of rules
which defines the minimal service level expectations and obligations the party
has. GXLA is the XML schema which implements the GSLA information
model. GXLA documents are composed of the following sections: schedule
(temporal parameters of the contract), party (models involved parties), service
package (an abstraction used to describe services) and role (as described).
The use of GXLA supports an automation of the service management
process.

WSLA [53] is a language to specify service levels for web services. XML-
based WSLA documents define the involved parties, metrics, measuring
techniques, responsibilities, and courses of action. The authors state that
every SLA language, such as WSLA, should support contain 1) information
regarding the agreeing parties and their roles, 2) SLA parameters and a
measurement specification as well as 3) obligations for each party.

SLANg [54] is a language for specifying SLAs based on the Meta Object
Facility [55]. It can use different languages for describing constraints, e.g.,
utilizing OCL [44] or HUTN [56].

The WS-Agreement specification language [57] has been approved by the
Open Grid Forum. It defines a language for service providers to offer
capabilities and resources, and clients to create an agreement with that
provider.

Paschke et al. [58] propose a categorization scheme for SLA metrics with
the goal to support the design and implementation of SLAs that can be
monitored and enforced automatically. Standard elements of each SLA are
categorized as: technical (service descriptions, service objects, metrics, and
actions), organizational (roles, monitoring parameters, reporting, and change
management), and legal (legal obligations, payment, additional rights, etc.).
Paschke et al. categorized service metrics in accordance with standard IT
objects: hardware, software, network, storage, and help desk. SLAs are
grouped according to their intended purpose, scope of application, or
versatility.

According to this categorization, DProfSLA documents (described in
Section 2.2) are operation-level documents intended to be used in-house. By
versatility categorization, they belong to standard agreements. We chose to
design our own XML schema as an intermediate format, because we do not
need all of the features of the described schemas. It is specifically designed to
be used with the DProf system. Our schema provides a subset of the
elements defined by GXLA or WSLA. A transformation of SLA documents
between DProfSLA and the mentioned schemas could, for example, be
performed using XSLT.

ComSIS Vol. 10, No. 1, January 2013 44



Dus8an Okanovi¢, André van Hoorn, Zora Konjovi¢, and Milan Vidakovi¢

5. Conclusion

This paper presented the DProf approach for continuous and adaptive
monitoring of distributed software systems and automatic evaluation of
software performance against expected values defined in service level
agreements (SLAs). The DProf system gathers data from application
execution, compares these measurements with the SLAs and, based on call
tree analysis, aims it localizes application components causing possible SLA
violations. Expected values are defined in a document based on the described
DProfSLA XML schema. The schema is designed with existing SLA
schemas, such as GXLA and WSLA, and their categorizations of contained
information in mind. DProfSLA’s intended use is for standard intra-
organizational agreements, but it may be used for inter-organizational
agreements, too. The schema supports various metrics and additional metrics
can be added as needed.

The DProf monitoring system is mainly designed for continuous monitoring
of JEE applications, but with minor modifications it can be used to monitor
applications developed for other platforms. We described the architecture of
our DProf prototype, whose implementation is based on the Kieker framework
with additional JMX-based components.

As a proof-of-concept, the DProf system was used for adaptive monitoring
of a sample Java EE application. The analysis of obtained results shows low
monitoring overhead, and reduced overhead by enabling monitoring on-
demand.

Our system is not able to differentiate between call trees with the same root
element, that can have different lower nodes. In this case the system could
report incorrect results. In order to confront this issue, developers should
choose to monitor only one of these trees, and exclude the other using an
appropriate aop.xml configuration file.

Our future work regarding DProf will focus on the implementation of the
DProf Analyzer as a Kieker plugin and an integration of the DProf component
into the Kieker distribution. We also plan to further extend the system by
additional monitoring probes for different and more complex measures.
Furthermore, we will work on more advanced algorithms for the Analyzer
component, enabling it to change monitoring parameters on different
computers in distributed environments.

References

1. Benyon, R.: Service Agreements: A Management Guide. Van Haren Publishing,
Netherlands. (2006)

2. Grottke, M., Matias Jr., R., Trivedi, K. S.: The Fundamentals of Software Aging. In
Proceedings of the 1st International Workshop of Software Aging and
Rejuvenation/19th International Symposium on Software Reliability Engineering
(WoSAR/ISSRE). Seattle, USA, 1-6. (2008).

45 ComSIS Vol. 10, No. 1, January 2013



SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem

10.
1.

12.
13.

14.

15.
16.

17.

18.
. Barry, D., Stanienda, T.: Solving the Java Object Storage Problem. Computer, Vol.

20.

ComSIS Vol. 10, No. 1, January 2013

Localization

Hoorn, A. v., Hasselbring, W., Waller, J.: Kieker: A Framework for Application
Performance Monitoring and Dynamic Software Analysis. Proceedings of the 3rd
ACM/SPEC International Conference on Performance Engineering (ICPE 2012).
ACM, Boston, Massachusetts, USA. To appear. (2012)

Ammons, G., Ball, T., Larus, J. R.: Exploiting Hardware Performance Counters
With Flow and Context Sensitive Profiling. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI '97).
ACM, Las Vegas, Nevada, USA. 85-96. (1997)

Sullins, B. G., Whipple, M. B.: JMX in Action. Manning Publications, USA. (2002)
Okanovi¢, D., van Hoorn, A., Konjovi¢, Z., Vidakovi¢, M..: Towards Adaptive
Monitoring of Java EE Applications. In Proceedings of the 5th International
Conference on Information Technology (ICIT 2011). Al-Zaytoonah University of
Jordan, Amman, Jordan. CD. (2011)

Okanovi¢, D., Vidakovi¢, M. : Performance Profiling of Java Enterprise
Applications. In Proceedings of the International Conference on Internet Society
Technology and Management (ICIST 2011). Information Society of Serbia,
Kopaonik, Serbia. CD. (2011)

Okanovi¢, D., Konjovi¢, Z., Vidakovi¢, M.: Continuous Monitoring System For
Software Quality Assurance. In Proceedings of XV International Conference on
Industrial Systems (1S'11). University of Novi Sad, Novi Sad, Serbia, 193-198.
(2011)

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J-M.,
Irwin, J., Aspect-Oriented Programming. In Proceedings of the European
Conference on Object-Oriented Programming. Springer, Jyvaskyla, Finland. 220—
242. (1997)

R Development Core Team. R: A language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria. (2010)
extremevalues: Univariate Outlier Detection. Mark van der Loo. (2011) [Online]

Available: http://cran.r-project.org/web/packages/extremevalues/ (current
September 2011)

XMLSpy. Altova. [Online] Available: www.altova.com/xmlspy.html (current April
2012)

JSR-000914 JavaTM Message Service (JMS) API. Java Community Process.
[Online] http://jcp.org/aboutdJava/communityprocess/final/jsr914/index.html (current
March 2012)

The Aspectd Project. Eclipse Foundation. [Online] http://www.eclipse.org/aspectj/
(current April 2012)

Lambert, J. M., Power, J. F.: Platform Independent Timing of Java Virtual Machine
Bytecode Instructions. Electronic Notes in Theoretical Computer Science, Vol.
220. Elsevier Science Publishers, Amsterdam, Netherlands, 97-113.(2008)
Hyperic SIGAR API. Hyperic. [Online] http://www.hyperic.com/products/sigar
(current April 2012)

Okanovi¢, D., Vidakovi¢, M.: One Implementation of the System for Application
Version Tracking and Automatic Updating. In Proceedings of the IASTED
International Conference on Software Engineering 2008. ACTA Press, Innsbruck,
Austria. 62—67. (2008)

EJB 3.0. [Online] Available: http://java.sun.com/products/ejb/ (current April 2012)

31, No.11, 33-40. (1998)

Gamma, E., Helm, R., Johnson, R., Vlissides, J. M: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Proffesional, Boston, USA.
(1994)

46


http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Benjamin%20G%20Sullins
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Mark%20B%20Whipple

Dus8an Okanovi¢, André van Hoorn, Zora Konjovi¢, and Milan Vidakovi¢

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

47

Kalin, M.: Java Web Services: Up and Running. O'Reilly Media, Sebastopoal,
California, USA. (2009)

Java Swing. Oracle. [Online] Available: http://java.sun.com/javase/
6/docs/technotes/guides/swing (current April 2012)

Unix Programmer's Manual. Section 1, Bell Laboratories, Murray Hill, NJ. (1979)
Srivastava, A., Eustace, A.: ATOM: A System for Building Customized Program
Analysis Tools. In Proceedings of the ACM SIGPLAN 1994 Conference on
Programming Language Design and Implementation. ACM, Orlando, Florida,USA.
196-205. (1994)

Snatzke, R. G.: Performance survey 2008. (2008). [Online]. Available:
http://www.codecentric.de/export/sites/homepage/__resources/pdf/studien/perform
ance-studie.pdf (current April 2012)

Java Virtual Machine Tool Interface (JVMTI). Oracle. [Online] Available:
http://download.oracle.com/javase/6/docs/technotes/guides/jvmti/  (current  April
2012)

Java Virtual Machine Profiler Interface (JVMPI). Oracle. [Online] Available:
http://download.oracle.com/javase/1.4.2/docs/guide/jvmpi/jvmpi.html (current April
2012)

JBoss Profiler. JBoss Community team. [Online] Available:
www.jboss.org/jbossprofiler (current April 2012)

Dimitriev, M.: Design of JFluid. Technical Report SERIES13103, Sun
Microsystems Inc., USA. (2003)

JBoss Application Server. JBoss Community team. [Online]
http://www.jboss.org/jbossas (current April 2012)

NetBeans. [Online] Available: http://netbeans.org/index.html (current September
2011)

Parsons, T., Mos, A., Murphy, J.: Non-Intrusive End-to-End Runtime Path Tracing
for J2EE Systems. IEEE Proceedings — Software, Vol. 153, No. 4, 149-161.
(2006)

dynaTrace — Continuous application performance management. dynaTrace
software Inc. [Online] Available: http://www.dynatrace.com/ (current April 2012)
JXInsight. JInspired. [Onling] Available: http://www_.jinspired.com/
products/jxinsight/ (current April 2012)

IBM - Monitoring Software - Tivoli Monitoring. IBM. [Online] http://www-
01.ibm.com/software/tivoli/products/monitor/ (current April 2012)

AppDynamics. [Online] Available: http://www.appdynamics.com (current March
2012)

Nagios. [Online] Available: http://www.nagios.org (current March 2012)

Application Performance Management. CA Technologies. [Online] Available:
http://www.ca.com/us/application-performance-management.aspx (current April
2012)

HP  Systems Insight Manager. Hewlett-Packard. [Online] Available:
http://h18013.www1.hp.com/products/servers/management/hpsim/index.htmI?jum
pid=go/hpsim (current April 2012)

Newman, H. B., Legrand, I. C., Galvez, P., Voicu, R., Cirstoiu, C.: MonALISA : A
Distributed Monitoring Service Architecture. In Proceedings of the Conference for
Computing in High-Energy and Nuclear Physics. La Jolla, California, USA. 8pp.
(2003)

Liu, R., Gibbs, C., Coady, Y.: MADAPT: Managed Aspects for Dynamic Adaptation
Based on Profiling Techniques. In Proceedings of the 3rd Workshop on Adaptive
and Reflective Middleware. ACM, Toronto, Ontario, Canada. 214 —219. (2004)

ComSIS Vol. 10, No. 1, January 2013


http://netbeans.org/index.html

SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Localization

Villazén, A., Binder, W., Ansaloni, D., Moret, P.: HotWave: Creating Adaptive
Tools With Dynamic Aspect-Oriented Programming in Java. In Proceedings of the
8th International Conference on Generative Programming and Component
Engineering (GPCE '09). ACM, Denver, Colorado, USA. 95-98. (2009)

Ehlers, J., van Hoorn, A., Waller, J., Hasselbring, W.: Self-Adaptive Software
System Monitoring for Performance Anomaly Localization. In Proceedings of the
8th IEEE/ACM International Conference on Autonomic Computing (ICAC 2011).
ACM, Karlsruhe, Germany. 197-200. (2011)

Object Constraint Language (OCL) 2.0. OMG. [Online] Available:
http://www.omg.org/spec/MOF/2.0 (September 2011)

Marwede, N., Rohr, M., van Hoorn, A., Hasselbring, W.: Automatic Failure
Diagnosis Support in Distributed Large-Scale Software Systems Based on Timing
Behavior Anomaly Correlation. In Proceedings of the 2009 European Conference
on Software Maintenance and Reengineering (CSMR '09). IEEE Computer
Society, Kaiserslautern, Germany. 47-58. (2009)

Yu, Y., Rodeheffer, T., Chen, W.: RaceTrack: Efficient Detection of Data Race
Conditions via Adaptive Tracking. In Proceedings of the ACM Symposium on
Operating Systems Principles. ACM, Brighton, UK. 221-234. (2005)

Chen, M., Kiciman, E., Fratkin, E.., Fox, A., Brewer, E.: Pinpoint: Problem
Determination in Large Dynamic Systems. In Proceedings of 2002. International
Conference on Dependable Systems and Networks. IEEE Computer Society,
Washington DC, USA. 595-604. (2002)

Aguilera, Mogul, J., Wiener, J., Reynolds, P., Muthitacharoen, A.: Performance
Debugging for Distributed Systems of Black Boxes. In Proceedings of the 19th
ACM symposium on Operating systems principles. ACM, Bolton Landing, New
York, USA. 74-89. 2003.

Wang, H., Platt, J., Chen, Y., Zhang, R., Wang, Y.: PeerPressure for Automatic
Troubleshooting. In Proceedings of the Joint International Conference on
Measurement and Modeling of Computer Systems. ACM, New York, New York,
USA. 398-399. (2004)

SPECjvm98. Standard Performance Evaluation Corporation. (1998) [Online]
Available: http://www.spec.org/jvm98/ (current 12 September 2011)

Govindraj, K., Narayanan, S., Thomas, B., Nair, P., Peeru, S.: On using AOP for
Application Performance Management. In Industry Track Proceedings of the 5th
International Conference on Aspect-Oriented Software Development. ACM, Bonn,
Germany. (2006)

Tebbani, B., Aib, I.. GXLA a Language for the Specification of Service Level
Agreements. Lecture Notes in Computer Science, Vol. 4195. Springer-Verlag,
Berlin Heidelberg New York, 201-214. (2006)

Keller, A., Ludwig, H.:The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. Journal of Network and Systems
Management, Vol. 11, No. 1, 57-81. (2003)

Lamanna, D., Skene, J., Emmerich, W.: SLANng: A Language for Defining Service
Level Agreements. In Proceedings of the 9th IEEE Workshop on Future Trends of
Distributed Computer Systems (FTDCS '03). IEEE Computer Society, San Juan,
Puerto Rico. 100-107. (2003)

Meta Object Facility (MOF) 2.0 Core Specification. OMG. [Online] Available:
http://www.omg.org/spec/MOF/2.0 (current September 2011)

Human Usable Textual Notation (HUTN) Specification. OMG. [Online] Available:
http://www.omg.org/spec/HUTN/index.htm (current September 2011)

ComSIS Vol. 10, No. 1, January 2013 48


http://portal.acm.org/citation.cfm?id=635442&CFID=11324330&CFTOKEN=70566684
http://portal.acm.org/citation.cfm?id=635442&CFID=11324330&CFTOKEN=70566684
http://portal.acm.org/citation.cfm?id=635442&CFID=11324330&CFTOKEN=70566684
http://www.omg.org/spec/HUTN/index.htm

Dus8an Okanovi¢, André van Hoorn, Zora Konjovi¢, and Milan Vidakovi¢

57. Oldham, N., Verma, K, Sheth, A., Hakimpour, F.. Semantic WS-agreement
partner selection. In Proceedings of the 15th International Conference on World
Wide Web. ACM, Edinburgh, Scotland, UK. 697-706. (2006)

58. Paschke, A., Schnappinger-Gerull, E.: A Categorization Scheme for SLA Metrics.
In Proceedings of Multi-Conference Information Systems. Passau, Germany.
(2006)

Dusan Okanovié¢ is a teaching assistant and PhD student atthe Faculty of
Technical Sciences, Novi Sad, Serbia. He received his Bachelor degree
(2002) and Masters degree (2006), both in Computer Science from the
University of Novi Sad, Faculty of Technical Sciences. His research interests
include application management, performance management and distributed
applications development. Since 2003 he has been with Faculty of Technical
Sciences where he was teaching where he participated in several science
projects and published 25 scientific papers. His research interests are web
and internet programming, distributed applications, application management,
and performance management. He can be contacted at: oki@uns.ac.rs.

André van Hoorn is a research assistant and PhD student with the Software
Engineering Group at the University of Kiel, Germany. He received his
Diploma (Master equivalent) degree in Computer Science from the University
of Oldenburg, Germany (2007). From 2008 to 2010, André was member of
the Graduate School on Trustworthy Software Systems (TrustSoft) at the
University of Oldenburg, where he was holding a PhD scholarship from the
German Research Foundation (DFG). Since 2011, he works in the
collaborative research project DynaMod on dynamic analysis for model-driven
software modernization. His research interests include architecture-based and
model-driven software performance engineering, self-adaptation, and
reengineering. He published more than 20 scientific papers. André can be
contacted at: avh@informatik.uni-kiel.de.

Zora Konjovi¢ has been holding the full professor position at the Faculty of
Technical Sciences, Novi Sad, Serbia since 2003. Mrs. Konjovi¢ received her
Bachelor degree in Mathematics from the University of Novi Sad, Faculty
Science in 1973, Master degree in Robotics from the University of Novi Sad,
Faculty of Technical Sciences in 1985, and Ph. D. degree in Robotics from
the University of Novi Sad, Faculty of Technical Sciences in 1992. From 1973
till 1980 she was with the Faculty of Science in Novi Sad, and since 1980 she
has been with the Faculty of Technical Sciences, University of Novi Sad. Mrs.
Konjovi¢ participated in 5 scientific and more than 30 professional projects; in
5 she was the project leader. She published more than 150 scientific and
professional papers. She is the corresponding author and can be contacted
at: ftn_zora@uns.ac.rs.

49 ComSIS Vol. 10, No. 1, January 2013



SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

Milan Vidakovic received the BSc, MSc and PhD degrees in electrical
engineering from the Faculty of Technical Sciences, University of Novi Sad, in
1995, 1998 and 2003 respectively. He is a professor at Computing and
Control Department, University of Novi Sad. He participated in several
science projects and published more than 60 scientific and professional
papers. His research interest covers web and internet programming,
distributed computing, software agents, embedded systems, and language
internationalization and localization. He can be contacted
at: minja@uns.ac.rs.

Received: September 26, 2011; Accepted: June 14, 2012

ComSIS Vol. 10, No. 1, January 2013 50



DOI: 10.2298/CSIS111029039A

A Scalable Multiagent Platform for Large Systems

Juan M. Alberola, Jose M. Such, Vicent Botti,
Agustin Espinosa and Ana Garcia-Fornes

Departament de Sistemes Informatics i Computacié
Universitat Politécnica de Valencia Cami de Vera s/n. 46022, Valéncia (Spain)
{jalberola,jsuch,vbotti,aespinos,agarcia}@dsic.upv.es

Abstract. A new generation of open and dynamic systems requires exe-
cution frameworks that are capable of being efficient and scalable when
large populations of agents are launched. These frameworks must pro-
vide efficient support for systems of this kind, by means of an efficient
messaging service, agent group management, security issues, etc. To
cope with these requirements, in this paper, we present a novel Multi-
agent Platform that has been developed at the Operating System level.
This feature provides high efficiency rates and scalability compared to
other high-performance middleware-based Multiagent Platforms.

Keywords: Multiagent Platforms, Multiagent Systems, Evaluation.

1. Introduction

In the last decade, due to the rapid growth of the Internet, the speed of change,
and an ever greater amount of easily accessible information, the next genera-
tion of Multiagent Systems (MAS)s and information technology, will target open
and large systems. In these dynamic and heterogeneous environments, it is
essential that features such as security, high performance, scalability, and inter-
operability are provided by application development frameworks.

Even though current Multiagent Platforms (MAP)s support the development
and execution of MASs, very few real applications have been developed to focus
on open and dynamic systems. These applications change quickly and require
features such as reliability, scalability, and performance, which not many MAPs
are designed to offer. According to [25], agent researchers should design and
implement large software systems consisting of hundreds of agents and not
only systems composed of a few agents. In order to develop these systems,
researchers require efficient and scalable MAPs.

Some current MAPs are not suitable for executing complex systems be-
cause their designs are not oriented to improving efficiency and scalability is-
sues. Previous studies have demonstrated a degradation in the performance
of current MAPs as the system grows [51, 22]; some MAPs even fail [49]. Our
main objective for this paper is to propose a MAP that is focused on being scal-
able and efficient. One of our main design decisions is to use the operating



Juan M. Alberola et al.

system (OS) services to develop this MAP instead of using middlewares be-
tween the OS and the MAP. In [14] we proved that this can noticeably improve
the performance and scalability of the system.

Functionality is another important issue when executing large systems. Works
by other researchers such as [20] are helpful in determining the main require-
ments for designing a MAP. By using theoretical proposals and methodologies
[27], a MAP that supports agent organizations helps to simplify, structure, co-
ordinate, and easily develop large applications, which are composed of thou-
sands of agents. Standard language communication is another key requirement
for allowing the interaction between heterogeneous entities. Support to coordi-
nate communication is another requirement for these systems [42]. Definition
of standard speech acts that agents can use, a common ontology to describe
and access services, policies associated to agent conversations, and standard
communication language are some features that should be provided. Finally,
security concerns become important in large systems must be addressed if
these systems are open in order to ensure the communications and the identi-
ties of each entity. As stated by other authors in [45], these features should be
provided by agent execution frameworks.

Towards these goals, in this paper, we present a MAP that is oriented to ful-
filling the requirements for this new kind of systems. This MAP is mainly focused
on scalability and efficiency for executing large MASs. It provides mechanisms
to support agent organizations, security concerns (authentication, authoriza-
tion, and integrity), a standard language of communication for information rep-
resentation, conversation-oriented interactions, and so on.

The rest of the article is organized as follows. Section 2 presents the moti-
vation and the previous work that allowed us to design and develop an efficient
and scalable MAP. Section 3 gives an in-depth description of the MAP architec-
ture. Section 4 details the services offered by the MAP. Section 5 describes how
agents in this MAP are represented. Section 6 describes a tourism service ap-
plication that is built on this MAP. Section 7 presents a performance evaluation
of the MAP. And finally, in Section 8, we present some concluding remarks.

2. Motivation and previous work

In the last few years, many researchers have focused on testing the perfor-
mance of existing MAPs. One of the main properties tested in these works is
the performance of the MAPs for sending messages. Vrba [51] presents an
evaluation of the messaging service performance of four MAPs. From the tests
presented in that paper, the author concludes that Jade [19] provides the most
efficient messaging service compared to FIPA-OS [1], Jack [3], and ZEUS [12].
However, the design features that produce this performance are not given and
the implementations of the messaging service for each MAP are not detailed.
Therefore, these conclusions can only be valid to choose the MAP that performs
better than the other three MAPs tested. Burbeck et al. [22] tested the messag-
ing service performance of three MAPs. They claim that Jade performs better

52 ComSIS Vol. 10, No. 1, January 2013



A Scalable Multiagent Platform for Large Systems

than Tryllian [11] and SAP [9] because it is built on Java RMI', but they give
no proofs confirm this claim. As these works state, Jade is more scalable than
other MAPs and can be considered to be a stable MAP for large systems [40].
However, these conclusions do not provide any clue to MAP developers about
how to improve MAP designs since these experiments only scale up to 100
pairs of agents and a few hosts. A more thorough study is required to be able
to assess MAP performance and to determine to what extent design decisions
influence MAP performance.

Some other works have tested the performance of other services but only
for a single MAP. Most of these works test Jade, which seems to be the most
widely used MAP. In [25], the authors tested Jade messaging, agent creation,
and migration services. The tests that they performed related to the messaging
service only scale up to eight agent pairs. In [17], an evaluation of a MAS for
adapting application’s behaviour was carried out on Jade MAP. The work pre-
sented in [26] tested the scalability and performance of the Jade messaging
service. Similar to the works cited above, their conclusions do not provide any
design decision. Even though these conclusions can allow MAS developers to
check whether or not Jade fulfills their requirements when designing a MAS,
they do not suggest any design decision for MAP developers.

There are also other works that focus on testing the performance of a spe-
cific MAS that is running on top of a MAP. In [23] the performance of MAPs
is measured when a MAS composed of several web agents is launched. This
MAS provides documents requested by a user agent. The authors measured
the number of documents requested per unit of time. Therefore, their conclu-
sions are only valid for this MAS. Lee et al. [37] present a MAS in which agents
coordinate with each other to carry out tasks. They evaluate how the topological
relations between agents affect the number of CPU cycles needed to accom-
plish these tasks. In [28], the authors compare the response time and the CPU
cycles of SACI [13] and Jade.

Finally, other studies focus on detailing the functional properties of MAP.
In [20], four MAPs are compared according to several criteria: implementa-
tion languages, tools provided, agent deliberation capabilities, etc. Shakshuki
[46] presents a methodology to evaluate MAPs based on several criteria such
as availability, environment, development, etc. Similar work is carried out by
Nguyen [33], and Omicini [43] gives a brief evolution of MAPs. In other works
such as [34, 44], different MAPs that are intended to be scalable are proposed;
however, no empirical evaluation is carried out. These works provide ratings of
properties provided by MAPs in order to help users choose the MAP according
to their needs. Our work goes a step further since it is not only intended to be
useful for MAP users but also for MAP developers.

A general conclusion of works that focus on MAP evaluation is that MAP
performance decreases as the system grows. Furthermore, as we showed in a
previous work [49], when large-scale MAS are taken into account, the perfor-
mance of many MAPs is considerably degraded when the size of the system

! http://java.sun.com/docs/books/tutorial/rmi/index.html

ComSIS Vol. 10, No. 1, January 2013 53



Juan M. Alberola et al.

executed increases, causing some MAPSs to even fail. Therefore, current MAPs
are not suitable for executing large population systems because their designs
are not aimed at improving efficiency and scalability issues.

In order to develop a design in accordance with our goals, we detail other
previous works that we carried out that focus on finding design decisions that
influence MAP performance. In [41], we presented experiments to link perfor-
mance with internal MAP designs, that is, to identify the key design decisions
that lead to better performance. We extracted some conclusions from these ex-
periments, such as the fact that centralizing services in a single host of the MAP
degrades the performance causing this host to become a bottleneck in the case
of very popular services. It is more suitable to design a distributed approach with
efficient information replication mechanisms. In [16], we tested several issues of
the MAPs, such as the performance of the directory service proposed by FIPA
[2], the memory consumed by the agents and the MAP, the network occupancy
rate, the CPU cycles, etc. According to these studies, the most influential point
in the MAP performance that could become a bottleneck is the messaging ser-
vice. This service is crucial in the performance of the MAP since agents need to
exchange messages with other agents and access MAP services. Furthermore,
some MAPs (such as Jade) base other MAP services (such as the Agent Direc-
tory or Service Directory proposed by FIPA) on the messaging service. In [14],
we specifically analyzed technologies for implementing the Message Transport
System (MTS), which is the component of the MAP that manages the message
exchanges among the agents running on the MAP. This work showed that in or-
der to design a messaging service that can handle large agent populations, the
design that performs better should be based on direct communication between
each pair of agents so that the messaging service scales better and performs
more efficiently, especially in these sorts of scenarios.

In the following sections, we present a MAP focused in being scalable and
efficient in more detail. It has been developed using the services offered by the
OS to support MAS efficiently. By bringing MAP design closer to the OS level we
can define a long-term objective, i.e., to incorporate the agent concept into the
OS itself in order to offer a greater abstraction level than current approaches.

3. Magentix Multiagent Platform architecture

Magentix? MAP aims to be scalable and efficient, mainly when it is executing
large-scale MAS. To achieve a response time closer to the achievable time lower
bound, this MAP has been developed using the services provided by the OS.
Thus, one of the design decisions is that this MAP is written in C over the Linux
OS. Current approaches for developing MAPs are based on interpreted lan-
guages like Java or Python. These MAP designs are built over middlewares like
the Java Virtual Machine (JVM) [21]. Although these middlewares offer some
advantages like portability and easy development, MAPs developed over them

2 Magentix can be downloaded from http://gti-ia.dsic.upv.es/sma/tools/Magentix/index.php

54 ComSIS Vol. 10, No. 1, January 2013



A Scalable Multiagent Platform for Large Systems

do not perform as well as one might expect, especially when they are running
large systems. In [14] we presented a performance evaluation related to this
issue. We proved in that using the Operating System (OS) services to develop
a MAP instead of using middlewares between the OS and the MAP noticeably
improves the performance and scalability of the MAP. Thus, we can see the
MAP functionality as an extension of the functionality offered by the OS.

The Magentix communication service has been developed to offer high per-
formance. This service is quite crucial to the performance of the MAP as we
stated in Section 2 and some other services may be implemented using it.
Magentix also provides advanced communication mechanisms such as agent
groups, a manager to execute interaction protocols, and a security mechanism
to provide authentication, integrity, confidentiality, and access control. This de-
sign has been developed in order to provide the functionality required by MAS
and perform efficiently.

Magentix is a distributed MAP composed of a set of computers executing
Linux OS (figure 1). Magentix uses replicated information on each MAP host to
achieve better efficiency. Each one of these computers presents a process tree
structure. The initial design of this structure is presented in [15]. The advantage
of process tree management offered by Linux, and using some services like
signals, shared memory, execution threads, sockets, etc. provides a suitable
scenario for developing a robust, efficient, and scalable MAP.

The structure of each Magentix host is a three-level process tree. On the
higher level we see the main process. This process is the first one launched
on any host when this host is added to the MAP. Below this level we can see
the services level. Magentix provides some services to support agent execu-
tion: Agent Management System (AMS), Directory Facilitator (DF), and Orga-
nizational Unit Manager (OUM). Services are represented by means of service
agents replicated in every MAP host. Agents representing the same service
manage replicated information and communicate with each other in order to
keep this information updated. Finally, in the third level, user agents are placed.
Using this process tree structure, main process manages service agents com-
pletely, i.e., it can kill any service agent to achieve a controlled shutdown of the
MAP, and also detects at once whether any service agent dies. In the same
way, ams agent has a broad control of the user agents of its own host.

Each user agent is represented by a different Linux child process of the
ams agent running on the same host. This design decision was taken after
efficiency tests as we stated in Section 2. Mapping one-to-one agents and Linux
processes provides us with a complete execution control (as we will see in the
next section) and a fast message exchanging mechanism. It could be argued
that using a single virtual machine for executing agents represented as Java
threads could be lighter. Nevertheless, this virtual machine could be overloaded
when running three or four thousand agents, by the limitations of the virtual
machine. In our proposal, mapping agents as Linux processes restricts us to
the limitations of the OS, and allows us to run more than seven thousand agents
in a single host. Developing a MAP by using the OS services directly allow us to

ComSIS Vol. 10, No. 1, January 2013 55



Juan M. Alberola et al.

§HOST A HOST B

MAIN MAIN

PROCESS < ™ : PROCESS

Fig. 1. Platform structure: Agent Management System (AMS), Directory Facilitator (DF),
Organizational Unit Manager (OUM)

improve the efficiency of the system. Current Magentix version offer support to
different Linux distributions (such as Ubuntu, Fedora, CentOs or OpenSuse) as
well as to Mac OS. Interoperability between heterogeneous agents is reached
by means of standard communication language representation and ontologies
for service interactions.

3.1. Communication and Message Transport System

Magentix provides a message-based communication mechanism in order to
allow interactions between agents and services. This communication mecha-
nism aims to obtain both good efficiency level and MAP scalability. As Magentix
MAP is integrated into Linux, we have checked different alternatives available
for communicating processes in an OS context [14]. In this study we have an-
alyzed different communication services among processes provided by POSIX
[10] compliant OS, in particular, the Linux OS, in order to select which of these
services allows robust, efficient and scalable MAPs to be built. As a result of
the evaluation, a lower bound of the time needed to communicate process cou-
ples (located in the same or different hosts) was obtained. In these studies, we
showed to what extent the performance of a Message Transport System (MTS)
degrades when its services are based on middlewares between the OS and
the MAP (like the JVM) rather than directly by the underlying OS. Thus, the
Magentix MTS design was tested to be as close as possible to this time lower
bound.

As we pointed out in section 2, the messaging service design that should
perform better would be one based on direct communication between each
pair of agents. Therefore, the communication mechanism implemented in mes-
sage exchanging interactions is carried out by means of point to point connec-

56 ComSIS Vol. 10, No. 1, January 2013



A Scalable Multiagent Platform for Large Systems

tions based on TCP sockets, between a pair of processes. This mechanism
enables high scalability in agent communication. Each Magentix agent has a
server socket for receiving connections from other agents by means of client
sockets. To carry out a new connection an agent creates a client socket that
communicates with the remote agent server socket. Thus, Magentix agents are
client/server at the same time.

At a lower level, Java-RMI technology (used for development communication
in most of MAPs based on Java) uses TCP sockets. After evaluating different
alternatives, we finally define the communication mechanism implemented in
Magentix as point to point connections based on TCP sockets, between a pair
of processes. The use of C language to develop the MAP, allows us to use this
technology closer to the OS level, and avoid the overhead resulting from the use
of Java-RMI, because the agent abstraction provided by a MAP is independent
of the underlying communication mechanism implementation.

In our previous studies, we have also checked that opening a P2P connec-
tion between a pair of agents the first time they interact and leaving this connec-
tion open for future interactions is much more efficient than opening a new TCP
connection each time they want to interact. Therefore two agents could have an
indefinitely open connection for exchanging messages each time they require
it. Nevertheless, the number of simultaneous open connections is limited by the
OS. Therefore, each agent and service stores its open connections in a con-
nection table. The first time an agent contacts another one, a TCP connection
is established and remains open to exchange messages in the future. These
connections are automatically closed when the conversation is not active, that
is, some time has passed since the last message was sent, according to a LRU
(Last Recently Used) policy (this mechanism is described in more depth in [50]).
This connection table improves communication times since an agent does not
need to create a new TCP connection each time it wants to communicate with
another agent.

4. Services

In this section we describe the services that are implemented in Magentix ori-
ented to agents, services, and group management: AMS service, DF service
and OUM service.

4.1. Agent Management System

Agent Management System (AMS) service is defined by FIPA [29] and offers
the white pages functionality. This service stores the information regarding the
agents that are running on the MAP. AMS service is distributed among every
MAP host. Therefore, information regarding the agents of the MAP is replicated
in each host. This service is represented as ams agents running in each host
of the MAP.

ComSIS Vol. 10, No. 1, January 2013 57



Juan M. Alberola et al.

As we stated in section 3, all of the agents launched in a specific host are
represented by means of child processes of the ams agent. Just as the main
process behaves, the ams agent has a broad control of the agents in its corre-
sponding host. The management of starting and finalizing agents is automati-
cally carried out by means of sending signals

The AMS service stores the information regarding every agent running on
the MAP. This service allows us to obtain the physical address (IP address and
port), providing the agent name to communicate with. Due to the fact that the
AMS service is distributed among every MAP host, each ams agent running on
each host contains the information needed to contact every agent of the MAP.
Hence, the operation of searching agent addresses is not a bottleneck as each
agent looks this information up in its own host, without needing to make any re-
quests to centralizing components. Every time an agent is started or finalized in
a host, this update is replicated on each host of the MAP. Nevertheless, there is
another information regarding agents that does not need to be replicated when
it is updated. For this reason, the ams agents manage two tables of information:
the Global Agent Table (GAT) and the Local Agent Table (LAT).

— GAT: Stored in this table is the name of each agent in the MAP and its
physical address, that is, its IP address and its associated port.

— LAT: In this table additional information is stored such as the agent’s owner,
the process PID which represents each agent and its life cycle state.

The GAT is mapped on shared memory. Every agent has read only access
to the information stored in the GAT of its own host. Each time an agent needs
to obtain the address of another agent in order to communicate, it accesses
the GAT without making any request to the ams agent. Thus, we avoid the
bottleneck of requesting centralizing components each time one agent wants
to communicate with another. The information contained in the GAT needs to
be replicated in each host to achieve better performance. Although replication
mechanisms imply an overhead in the system, this overhead is reduced as only
the updated information is replicated, and these updates occur when agents
are started or dead in the MAP, operations that generally occur in low frequency
rates. Thus, the overhead resulting from replication is worthwhile in order to dis-
tribute the information and make it available in each host of the MAP. Moreover,
the spacial overhead (memory) for having the same information replicated in
each host is also low, due to the fact that only the physical addresses of the
agents are distributed (few bytes of memory).

The information from the LAT is not replicated. Some information stored in
the LAT regarding a specific agent is only needed by the ams agent of the same
host (for instance, the process PID). Therefore, this information does not need
to be replicated. Some other information could be useful for the agents but is not
usually requested (such as the life cycle state). In order to reduce the overhead
resulting from replication, we divide the information regarding agents into two
tables. Each ams stores in their LAT the information regarding the agents under
its management, that is, the agents that are running on the same host. If some
information available to agents is needed (such as the life cycle state), the agent

58 ComSIS Vol. 10, No. 1, January 2013



A Scalable Multiagent Platform for Large Systems

has to make a request to the AMS service using the AMS service ontology. In
a transparent way, these requests addressed to the AMS service are delivered
to the specific ams running on the same host as the agent requested.

4.2. Directory Facilitator

The Directory Facilitator (DF) service offers the yellow pages functionality de-
fined by FIPA. This service stores the information regarding the services offered
by agents. The DF service allows agents to register the services they provide,
deregister these services, and look up a specifically required service. Much
like the AMS service, the DF service is implemented in a distributed scenario
by means of agents running on each MAP host, called df agents. Information
regarding services is also replicated in every host of the MAP.

Information that needs to be replicated is stored in a unique table called GST
(Global Service Table). This table is a list of pairs: services offered by agents
of the MAP and the agent that offers this service. In contrast to the GAT, the
GST is not implemented as shared memory, therefore only the df can acces
this information directly.

Agents are able to register, deregister, and look up services offered by other
agents. To do these tasks, agents need to communicate with the DF service
using the DF service ontology. Current functionality of the DF service is the
one proposed by FIPA. Nevertheless, we consider the possibility of improving
this service in order to provide new functionalities such as the management of
semantic information, service composition, services offered by agent organiza-
tions, etc. and also extending the operations proposed by FIPA for registering,
deregistering, and searching for services.

4.3. Organizational Unit Manager

The Organizational Units Manager (OUM) service provides support oriented
to agent-group communication as a pre-support for agent organizations. Sev-
eral research groups define theoretical proposals and methodologies to design
MASSs, oriented to organizational aspects of the agent society [27]. In order to
develop applications which use these organization oriented methodologies, we
require MAPs that support them. Among there are few MAPs which offer any
kind of support related to agent organizations. Among these MAPs are Jack [3],
MadKit [4], or Zeus.

An agent group in Magentix is called organizational unit (from now on, unit)
and can be seen as a blackbox from the point of view of external agents. Units
can also be composed of nested units. Agents can interact with an agent unit
in a transparent way, i. e. from the point of view of an agent outside the unit,
there is no difference between interacting with a unit or with an individual agent.
Interaction between an agent and a unit is carried out by the MAP through
properties specified by the user. Each unit has some properties associated to
it. As each agent of the MAP has a unique name, each unit is identified in the
MAP by its name. In order to interact with any unit, user must specify one or

ComSIS Vol. 10, No. 1, January 2013 59



Juan M. Alberola et al.

more agents to receive the messages addressed to the unit: these agents are
called contact agents. User can also specify the way in which these messages
have to be delivered to the contact agents. This property is called the routing
type and messages addressed to the unit will be delivered to the contact agents
defined according to one of these routing types:

— Unicast: The messages addressed to the unit are delivered to a single agent
which is responsible for receiving messages. This type is useful when we
want a single message entrance to the group. It could be useful if the group
has for example, a hierarchical structure, where the supervisor receives
every message and distributes them to its subordinates.

— Multicast: Several agents can be appointed to receive messages. When a
message is addressed to the unit, this message is delivered to any contact
agent in the unit. This could be useful if we want to represent an anarchic
scenario, where every message needs to be known by every agent without
any kind of filter.

— Round Robin: There can be several agents appointed to receive messages.
But each message addressed to the unit is delivered to a different contact
agent, defined according to a circular policy. This type of routing messages
is useful when several agents offer the same service but we want to dis-
tribute the incoming requests to avoid the bottlenecks.

— Random: Several agents can be defined as contact agents. But the mes-
sage is delivered to a single one, according to a random policy. As with the
previous type, this is useful for distributing the incoming requests, but no
kind of order for attending these requests is specified.

— Sourcehash: Several agents can be the contact agents. But any given mes-
sage is delivered to one of the agents responsible for receiving messages,
according to the host where the message sender is situated. This is a load-
balancing technique.

Units have a defined set of agents which make up the unit, called members.
These agents can interact and coordinate with each other and each one plays
a certain role. Finally, each unit has a manager associated to it. This agent is
responsible for adding, deleting or modifying the members and contact agents.
By default it is the agent which creates the unit and is the only one allowed to
delete it.

All of this information regarding units in Magentix, is managed by the OUM
service, which stores it in the GUT (Global Unit Table). Similar to the previous
services, OUM is a distributed service composed by oum agents running on
each MAP host. The GUT table is replicated and synchronized on each host
of the MAP every time an update is made. Interaction between agents and
OUM service is carried out by the sending of messages using the OUM service
ontology.

4.4. RDF as framework for representing information

To develop large systems, standard language communication is a key require-
ment for allowing the interaction between heterogeneous entities. FIPA pro-

60 ComSIS Vol. 10, No. 1, January 2013



A Scalable Multiagent Platform for Large Systems

poses some Agent Communication specifications regarding the language used
for message exchanging in a MAP [30]. They standarize the structure of an
Agent Communication Language (ACL) message to ensure interoperability and
also Content Language (CL) specifications for representing the content of the
ACL messages. The use of standard specifications is vital in order to allow in-
teroperability between heterogeneous agents which could compose an open
system, as well as to define standard ontologies for accessing the MAP ser-
vices.

Resource Description Framework (RDF) is a language for representing infor-
mation about resources on the World Wide Web. By generalizing the concept of
a "Web resource”, RDF can also be used to represent information about things
even when they cannot be directly retrieved from the Web [6]. RDF is based
on the idea of identifying things using Web identifiers (called Uniform Resource
Identifiers, or URIs), and describing resources in terms of simple properties
and property values. The underlying structure of any expression in RDF is a
collection of triples, each consisting of a subject, a predicate and an object. The
subject can be any resource, the predicate is a named property of the subject
and the object denotes the value of this property. A set of such triples is called
an RDF graph. RDF also provides an XML-based syntax (called RDF/XML [7])
for recording and exchanging these graphs. RDF is intended for situations in
which this information needs to be processed by applications, rather than only
being displayed to people. RDF provides a common framework for expressing
this information so it can be exchanged between applications without loss of
meaning.

Due to the features of RDF and its widespread use in MAS [18, 24, 35, 36],
an RDF-based framework for managing information has been designed for Ma-
gentix and has been integrated into it. It allows a Magentix agent to manage all
of its information as RDF models (RDF graphs). Moreover, Magentix itself uses
the framework for the messages exchanged, for representing the information
that Magentix services manage, for interacting with the Magentix services and
for storing MAP events.

The framework is based on offering an API to deal with RDF management.
Of course, we did not implement an RDF support from scratch, the framework
is designed as a wrapper for existing RDF management libraries and is aimed
at simplifying the use of RDF inside a Magentix agent. There are some libraries
that deal with RDF models. However, because of the Magentix features, i. e.,
the fact that it is implemented in C language and is focused on achieving high
levels of efficiency, we have chosen the Redland libraries [8].

Redland is a set of free software C libraries that provide support for RDF.
The authors of Redland claim that it is portable, fast and with no known mem-
ory leaks. It allows the manipulation of the RDF graph, triples, URIs and Liter-
als. It can be implemented efficiently in C, providing memory storage with many
databases (Berkeley DB, MySQL, etc.). We use the RDF/XML syntax to serial-
ize the RDF graphs, but Redland also support other syntaxes, such as N-Triples

ComSIS Vol. 10, No. 1, January 2013 61



Juan M. Alberola et al.

or Turtle Terse RDF Triple Language. Queries can be carried out with SPARQL
or RDQL.

One of the functionalities of Magentix where the RDF has been used in it is
to represent messages. Agents and services use message sending to commu-
nicate with each other as we said in section 3.1. FIPA defines the structure of
an Agent Communication Language (ACL) and also defines the use of RDF to
represent the message content [31]. Message header and message content in
Magentix are represented as RDF models serialized as XML. Some MAPs use
this kind of serialization to represent the message content only (such as Jade),
just as FIPA proposes. We provide Magentix with RDF to represent the whole
message. Therefore, only one parser is needed and this simplifies the parsing
and serializing process of a message.

As far as we are concerned, representing the FIPA-ACL using RDF should
be standard, but currently it is not, so interoperability with other FIPA-compliant
MAPs is compromised. A simple gateway that directly translates both repre-
sentations can be added to solve this problem. Figure 2 shows an example
of a Magentix message. It is an RDF graph in which resources are drawn as
ellipses and literals are drawn as squares. As can be observed, all of the FIPA-
ACL fields are mapped as RDF properties describing a message resource. The
content of the message can also be seen as an RDF sub-graph inside the main
RDF graph representing the message. Therefore, any information that a Ma-
gentix agent has as an RDF graph, can be added or retrieved directly from a
message.

Regarding the representation of information about Magentix services, an
ontology for interacting with them has been defined using Web Ontology Lan-
guage (OWL) [5]. The ontology mainly focuses on describing the resources that
the services manage (hosts, agents, services, organizational units, etc.). There-
fore, all of the information is treated, without taking into account implementation
concerns, so that a change in the implementation does not have any effect on
the way the services treat the information. What is more, they can store all of
its information in a direct and simper fashion on a database.

In order to achieve rich and flexible interactions between agents and Ma-
gentix services, the ontology also includes actions that can be requested by a
Magentix service (creation of a new agent to the AMS, registering a service to
the DF, creation of a new organizational unit to the OUM, etc.). Therefore, any
Magentix agent that knows the ontology can interact with Magentix services
and also manage all of the related knowledge using the framework provided.

4.5. Security Model

The Magentix MAP has a security model [48, 47], which is based on both the
Kerberos protocol and the Linux OS access control. This model provides Ma-
gentix with authentication, integrity and confidentiality. By means of this model
each agent has an identity which it can prove to the rest of the agents and
services in a running Magentix MAP.

Magentix agents can have three identity types:

62 ComSIS Vol. 10, No. 1, January 2013



A Scalable Multiagent Platform for Large Systems

~ ~
4 \ http://gti-ia.dsic.upv.es/magentix#sender
I message | agentl

_ -
~

- http://gti-ia.dsic.upv.es/magentix#fipa_request \/
-~

~ >

http://gti-ia.dsic.upy.es/tourism/name
Murphy's Adam
Pub Slater

Fig. 2. Magentix Message represented in RDF

— Agent identity. Its identity as an agent. This identity is created by the AMS
when the agent is created.

— User identity. The identity of its owner, i.e, the identity of the user that cre-
ated the agent.

— Unit identity. The identity of each unit that the agent is in.

An agent always has at least its Agent identity and its owner’s User identity.
Therefore, a Magentix agent is provided with more than one identity, so a way of
letting the Magentix communication module know which Kerberos credentials it
has to use when sending a message is needed. This is done with a new field in
the message header. If this field is in the message header of a message to be
sent, the communication module tries to use the identity chosen; otherwise the
corresponding agent identity is used. If the Kerberos credentials associated to
the identity that the agent is requesting are not available, and the agent is trying
to use an identity that it does not own for instance, the sending of the message
fails.

Magentix services are based on information replication in each host. In order
to check the integrity of this information and protect it from being accessible to
non-authorized users, service communication needs to be secured. In order to
do so, the administrator creates a principal (the principal is the unique name of
a user or service allowed to authenticate using Kerberos) for each service with
a random key that is saved by default in /etc/krb5.keytab. This file is secured

ComSIS Vol. 10, No. 1, January 2013 63



Juan M. Alberola et al.

using Linux OS access control and can only be accessed by the root user, so
Magentix services have to run as root privileges.

When a service requires communication with another service, a security
context is established as a client with the principal of the MAP administrator
and as a server with the principal of the destination service. Using this security
context the information sent is encrypted and a message integrity code is cal-
culated. Therefore, the client is sure that the destination service is the service
expected. Moreover, the destination service knows that it is being contacted by
a service with the administrator’s identity, so the destination service will serve all
of the requests it receives. Thus, only MAP services can exchange information
with each other.

Securing agent communication is similar to securing service communica-
tion, but agents use the identity that the ams agent has created for them when
creating a security context to allow a secure interaction with each other.

In order to make efficient use of security contexts, a context cache has been
added to each agent. This cache contains the corresponding security context
associated with a destination agent. This cache is not related to the connec-
tions cache, so that, when a connection with an agent is closed, the associated
security context is not lost.

5. User Agents

Agents in Magentix are represented as Linux processes. Internally, every agent
is composed of Linux threads: a single thread for executing the agent tasks
(main thread), a thread for sending messages (sender thread) and a thread for
receiving messages (receiver thread). The ams agent manages the creation
and deletion of the user agents launched on the same host. The GAT is shared
between the ams agent and these user agents, so accessing the physical ad-
dresses of any agent of the MAP is fast and does not become a bottleneck.
Agents have free read access to the GAT, thus, searching for the address of
any agent registered in the MAP is efficient.

Magentix provides a template for developing agents written in C++. We pro-
vide different methods to manage the agent execution life cycle as well as the
message sending and reception. Furthermore, agent developers can extend
this model to include other requirements. Interaction with services is easily car-
ried out by means of a specific API. Interactions among agents are focused on
conversations. An agent can be interacting with several agents or services at
any time. Each interaction between two agents can be represented as a pattern
of communication where some messages are exchanged between the partici-
pants. These patterns can be predefined or not, but there is an initial message
and a final message. The entire amount of messages exchanged between two
participants represents a conversation. Magentix provides two functionalities for
managing conversations: mailboxes and conversation managers.

64 ComSIS Vol. 10, No. 1, January 2013



A Scalable Multiagent Platform for Large Systems

5.1. Mailboxes

Mailboxes are used to improve the management of incoming messages from
any agent. An agent is able to interact simultaneously with several agents. In
these scenarios the possibility of distributing the incoming messages in different
message queues, depending on the conversation that belongs each message,
becomes interesting. By default every agent has a unique Mailbox called DE-
FAULT_MAILBOX, which receives every message addressed to the agent.

Magentix allows agent developer to create new Mailboxes and later, asso-
ciate a conversation identifier to them. Then, when a message with this con-
versation identifier (represented as the conversation_id field of the message) is
received, this message is routed to the corresponding Mailbox. This functional-
ity allows messages to be filtered and split according to this field, so that, agent
developers can easily distribute the different conversations which an agent is in-
volved in among different Mailboxes. A Mailbox is not restricted to receive only
the messages of a specific conversation identifier since we consider the possi-
bility of associating several identifiers to the same Mailbox. The basic function-
ality an agent developer needs to bear in mind when working with Mailboxes is
creating new Mailboxes and then, associating them to conversation identifiers.
When an agent checks the message incoming queue, it specifies which Mailbox
it wants to check. We can see in figure 3 an image of the internal structure of a
Magentix agent.

SENDER THREAD RECEIVER THREAD

MAIN_MAILBOX
MAILBOX1

CONNECTION TABLE

Fig. 3. Magentix Agent

ComSIS Vol. 10, No. 1, January 2013 65



Juan M. Alberola et al.

5.2. Conversation Manager

Interactions between Magentix agents are focused on conversations. Thus, it
is important for us not only to the searching and sending of messages to other
agents but also to easily reproduce typical conversation patterns that can ap-
pear in a big variety of scenarios. An agent is able to simultaneously communi-
cate with several agents. Every interaction between a pair of agents very often
requires the exchanging of more than one message. Moreover, message ex-
change patterns are usually repeated in several interactions between agents,
i.e. to access some service, to request information, to send proposals to differ-
ent agents, etc. Thus, defining communication patterns to specify which mes-
sages exchanges are allowed for a specific interaction proves to be an interest-
ing and useful feature for agent developers.

FIPA defines standard interaction protocol specifications that agents can use
in their conversation with other agents ([32]). These specifications deal with
pre-agreed message exchange protocols for ACL messages. Magentix pro-
vides support for executing these protocols defined by FIPA, therefore, agent
developers can easily reproduce these interaction scenarios without needing
to consider the sequence of exchanged messages, the possible failures in the
execution of the protocol and so on. Agent developer only has to specify what
to do when some of the deterministic events of the protocol take place and the
protocol will automatically be checked and executed by Magentix.

Interaction protocols are defined by FIPA using UML-diagrams. In figure 4
we can see the protocol FIPA-request as an example. In these protocols there
are two roles, initiator and participant, which exchange some possible message
sequences. We translate this representation to Magentix as finite state ma-
chines. Each interaction protocol has a finite state machine associated to each
possible role of the protocol. In figure 5 we can see the FIPA-request protocol
for the initiator role. Each finite state machine has these properties:

— A not create initial state. This state is the first of every protocol.

— Transitions which allow the execution of the protocol depending on the mes-
sages received (represented as performatives such as refuse or agree) or
A-transitions, which take the protocol execution forward to the next state.

— Intermediate states for representing the intermediate steps of the protocol
execution.

— A delete state. This is the last one of every protocol.

In order to process these interaction protocols we define a conversation
manager. A conversation manager is an internal entity within Magentix agents,
which has one or more interaction protocols associated to it. When an agent is
using one of these protocols in its conversations with other agents, its conversa-
tion manager is in charge of automatically managing it and ensuring the correct
execution of the protocol, executing each step and transition of the protocol.
Several conversation managers can be assigned to a single agent, each one in
charge of the management of different interaction protocols. This decision de-
pends on the agent developer, which can run more conversation managers or

66 ComSIS Vol. 10, No. 1, January 2013



A Scalable Multiagent Platform for Large Systems

Initiator, Participant,
request, refuse*, not- |
understood®, agree, failure”, |
inform-done : inferm®,
(~ FIPA-Request-Protocol inform-ref : inform*

| Initiator ‘ ‘ Participant

i
request q

not-understood

Ag“uu“:u

refuse

agree

;

- failure

inform-done
< nlorm-done A, _|
[agreed]

1

—

! - inform-ret
1
i

Fig. 4. FIPA-request Interaction Protocol  Fig.5. Finite State Machine for FIPA-
request in Magentix

stop them according to its needs. The conversation manager is an abstraction
that hides the basic concepts of the conversations (makes sure the message
is exchanged, mailbox management, etc.) from the agent developer, which only
has to specify what to do in each step of the protocol, easily allowing the concur-
rent execution and management of several conversations. We are now working
to extend the conversation management funcionalities. We especially want to
facilitate the specification of any protocol interaction that agent developer could
require, apart from that predefined by FIPA.

6. The Tourism Service Application

In this section, we present a real application developed in Magentix which uses
some of the features provided. In order to test the performance of a MAP fo-
cused on large systems, we require examples aimed to be large-scale which
are so real as possible. The Tourism Service application [39] is a MAS that al-
lows users to find information about places of interest in a city according to their
preferences (restaurants, movie theaters, museums, theaters, and other places
of general interest such as monuments, churches, beaches, parks, etc.), by us-
ing their mobile phone or PDA. Once a specific place has been selected, the
tourist can make a reservation at a restaurant, buy tickets for a film, etc. Our

ComSIS Vol. 10, No. 1, January 2013 67



Juan M. Alberola et al.

research group has been working with a partnership developing MAS-based
recommender systems for tourists.

There are four different agent types in the application. A SightAgent man-
ages all of the information related to the features and activities for a specific
place of interest in the city. A UserAgent allows tourists to interact with the
system by means of a GUI on their mobile devices. A BrokerAgent mediates
between UserAgents and SightAgents. It also manages updated information
about the SightAgents registered on it. Finally, a PlanAgent manages all of the
planning processes in the system. The application offers search, reservation,
planning, and registration services. The Search service is offered by the Bro-
kerAgent and can be requested by a UserAgent. The result of the invocation of
this service is a list of descriptions of places that match user preferences. The
Reserve service is offered by a SightAgent and can be requested by a UserA-
gent. The result of this service is the confirmation of a successful reservation or
an error message. The "Plan a Specific Day” service is provided by the PlanA-
gent and can be requested by a UserAgent. The result of this service is a plan
consisting of a list of places or activities.

We have implemented this application using the Magentix MAP with RDF
support. The implemented ontology is represented in RDF and gives detailed
descriptions of tourist places, information about scheduling, etc; For example,
information about restaurants, represent issues related to menus, cuisine, in-
gredients, etc.

UserAgents can be implemented as Magentix agents in the MAP or by
means of an interface that is implemented using the J2ME (Java 2 Micro Edi-
tion) specification. In the latter case, UserAgents have to make HTTP requests
to a GatewayAgent, which acts as a gateway between UserAgents and the rest
of the system. This GatewayAgent is implemented as a Magentix agent, which
includes a micro-http server. This mechanism allows the interaction between
Magentix agents and external agents.

7. Large Scale Evaluation of the Messaging Service

In this section, we present different experiments in order to evaluate the mes-
saging service of Magentix, based on the application presented in Section 6.
As we stated in Section 2, this service is crucial when developing systems
with large agent populations with high message traffic. In [16], we presented
a testbed for MAP performance evaluation. These tests focused on evaluating
different parameters of the MAP in one and two hosts: the message traffic, the
message size, the registered services, the searched services, the CPU con-
sumption of the threads, the memory consumption, the network traffic, etc. Ac-
cording to these tests, the main bottleneck of a MAP performance is related to
the messaging service. These conclusions have also been confirmed by other
authors, who claim that other parameters such as the CPU cycles do not reach
saturations in large-scale environments [28]. Based on these conclusions, in
[49] we presented a set of large-scale benchmarks to test the messaging ser-

68 ComSIS Vol. 10, No. 1, January 2013



A Scalable Multiagent Platform for Large Systems

vice. The experiments shown here are based on these benchmarks and are
adapted to the Tourism Service Application presented in Section 6.

We compare Magentix against the performance of Jade, which is a well-
known MAP and is more scalable than other MAPs as we stated in Section
2. Since the initial implementation of the Tourism Service Application was in
Jade [38], we can determine the performance of the messaging service of both
MAPs simulating different scenarios in this domain. We used 20 PCs Intel(R)
Core(TM) 2 Duo CPU @ 2.60GHz, 2GB RAM, Ubuntu 10.10 and Linux Kernel
2.6.35. The computers were connected to each other via a 100Mb Ethernet
hub.

The first experiment is aimed at testing the MAPs performance when both
the number of agents and the message traffic increase. This experiment mea-
sures the capability of the MAP when messages are sent to different agents.
As an example, this situation can occur when a BrokerAgent requests different
SightAgents. We simulate this scenario by launching several groups of Broker-
Agents and SightAgents. The objective of each BrokerAgent is to send a mes-
sage to the first SightAgent on its list, which sends back the same message.
After that, each BrokerAgent sends a message to its corresponding SightAgent
placed in the next host and waits for the response. This experiment measures
the time elapsed between when the first message is sent by the first BrokerA-
gent and when the last message is received by the last BrokerAgent. The exper-
iment started with 100 agents in the system, increasing to 1000. The number of
messages sent by each BrokerAgent was specified at 1000.

1000

Jade —w—
Magentix ===4-=--
900 - k

800 1

Time (s)

100 200 300 400 500 600 700 800 900 1000
# Agents

Fig. 6. Experiment 1: population and traffic increase

ComSIS Vol. 10, No. 1, January 2013 69



Juan M. Alberola et al.

Figure 6 shows the time required for the two MAPs. The figure shows that
there is a performance degradation as the number of agents and the message
traffic increase. However, Magentix performance degrades less than Jade per-
formance. As an example, it can be observed that the elapsed time in Magentix
when the system is composed of 1000 agents is less than the elapsed time in
Jade when the system is composed of 200 agents.

Another typical scenario is the massive amount of message-sending to a
specific agent. The second experiment measures the ability of the MAPs when
a lot of agents send messages to a single one. This specific agent could be-
come a bottleneck in the system when multiple messages are addressed to
it. This scenario appears, for example, when UserAgents are requesting the
same BrokerAgent to retrieve information. The BrokerAgent has to serve every
received request. As the number of incoming requests increases, the time for
processing these requests may also increase. In order to simulate this, a single
BrokerAgent agent and several UserAgents were launched. The goal of each
UserAgent was to send messages to the BrokerAgent. The elapsed time be-
tween when the BrokerAgent received the first message and when it answered
all the messages is shown in Figure 7. In this experiment, we increased the
number of UserAgents up to 100, distributed among all the hosts. Each UserA-
gent sent 10000 messages.

120

Jade —x—
Magentix ---+---
110 b

Time (s)

20 I I I I I I I I I

10 20 30 40 50 60 70 80 90 100
# Agents

Fig. 7. Experiment 2: massive sending to an agent

It can be observed that the elapsed time increases in both MAPs as the
number of requests increases. However, as in the first experiment, the perfor-
mance degradation is less in Magentix. The time difference between the two

70 ComSIS Vol. 10, No. 1, January 2013



A Scalable Multiagent Platform for Large Systems

MAPs gradually increases as the number of agents increases. Therefore, Ma-
gentix is also more scalable and efficient than Jade in this scenario. Note that
in this scenario the receiver agent is not changed during the entire experiment.

The third experiment complements the second one. The distribution of agents
in this experiment was similar. However, there were the same number of Broker-
Agents as UserAgents. In this experiment, several BrokerAgents were placed in
the same host and each UserAgent communicated with its corresponding Bro-
kerAgent. The results obtained are shown in Figure 8. It can be observed that
the results for Jade are similar to the results for the second experiment. This is
due to the way that Jade implements communication among all the MAP hosts.
Therefore, the bottleneck is caused by the message transport system and not
by the way the message queue is managed by the agent itself. In contrast, the
performance in Magentix in the third experiment is slightly better than in the
second one.

120

jade —
Magentix ---+---

110

Time (s)

20 L L L L L L L L L
10 20 30 40 50 60 70 80 90 100

# Agents

Fig. 8. Experiment 3: host massive sending

The fourth experiment checks the limits of the MAPs. This experiment pro-
vides a different perspective from the previous experiments in which the re-
ceiver agents are predefined. This may give rise to different bottlenecks, show-
ing another typical scenario in real systems, in which some agents may be
more requested than others. In order to simulate this, several BrokerAgents
were placed in 10 hosts of the MAP and several UserAgents were placed in
the other 10 hosts. Each UserAgent had to send 1000 messages to a non-
predefined BrokerAgent. Thus, the specific BrokerAgent was randomly selected
before sending each message. This caused some BrokerAgents to be more

ComSIS Vol. 10, No. 1, January 2013 71



Juan M. Alberola et al.

overloaded than others. Furthermore, in this experiment, the number of agents
was increased to 2000, in order to overload the MAPs.

2000

Jade —w—
Magentix ---+---
1800 1

1600 1
1400 4
1200 1

1000 1

Time (s)

800 1

600 1

400 1

200 . o |

0 200 400 600 800 1000 1200 1400 1600 1800 2000
# Agents

Fig.9. Experiment 4: random requests

It can be observed in Figure 9 that Magentix offers better performance than
Jade, and the differences increase according to the increase in the traffic. The
figure also shows that the two MAPs present higher response times with respect
to the first experiment, in which the traffic was equally distributed among all the
BrokerAgents. This is due to the fact that, in this forth experiment, message load
is not spread over all of the receiver agents launched. Since the BrokerAgent in
each message sending is selected randomly, there may be BrokerAgents that
have to serve a lot of messages while others are idle. Therefore, as the second
experiment indicates, Jade performs quite badly when there is an agent that is
receiving a lot of messages. As a result, performance differences with respect
to the first experiment are much higher in Jade than in Magentix.

From the results provided in these tests, we can conclude that Magentix
improves the efficiency and scalability of the messaging service provided by
Jade, which is the most commonly used MAP and that it is more scalable than
other MAPs. In these tests, we have simulated four typical scenarios in order
to determine the efficiency and scalability in the Magentix and the Jade MAPs.
These tests represent critical situations so that we can see the degree of perfor-
mance improvement achieved more clearly. Although we scale up to 20 hosts in
these tests, the conclusions obtained can be extended to at least to 100 hosts
according to the results shown in [49].

72 ComSIS Vol. 10, No. 1, January 2013



A Scalable Multiagent Platform for Large Systems

8. Conclusions

The next generation of technologies aims to provide features such as distri-
bution, interoperability, scalability, organizations, service-oriented, open, geo-
graphically dispersed, and so on. MASs can contribute to these environments
by evolving new applications that will become more autonomous and social
from the point of view of the MAS field.

MAPs have traditionally been used as a support framework to facilitate the
development of these kinds of systems. A lot of MAPs have been developed
in the last few years; however, unfortunately, very few real MAS-based appli-
cations have appeared, probably due to the lack of suitability of the support
frameworks which did not fulfill all of the requirements. In order to support the
new generation of systems (in line with the latest trends in rapidly expanding
technologies), new MAP designs should focus on being interoperable, scalable,
and large-scale as just some of their key features.

In this paper, we have presented the Magentix MAP. Since its design is
closer to the OS level, it ensures that the MAP is efficient, especially when
running large systems. Basic services such as an agent directory service, a
service directory service, and a messaging service are provided by Magentix.
We have implemented and tested the performance of this MAP. Magentix also
provides a group-oriented communication mechanism. This mechanism allows
communication between individual agents as well as interaction among groups
of agents. When considering large systems, security concerns become an im-
portant issue and a necessary feature when these systems become open. Ma-
gentix has a security model that is based on the Kerberos protocol and Linux
OS access control which provides authentication, integrity, and confidentiality.
In order to achieve interoperable systems, we represented the information us-
ing RDF. This framework has been widely used in MAS for different purposes.
Magentix represents messages to be exchanged in RDF so that agents can
easily manage the information that is sent and received. Ontologies defined in
OWL have also used to interact with services.

Using a tourism service application, we have shown how Magentix can be
used as a support framework to develop MAS-based applications. The mes-
saging service evaluation shown in this paper demonstrates that a MAP design
that uses the OS services provides greater efficiency and scalability than other
high-performance middleware-based MAPs such as Jade.

With the features provided by Magentix we can establish the next objective
of the project: to provide Magentix with support for open MAS. We are working
on the development of an http-based gateway at MAP level, in order to allow
the interaction between Magentix agents and agents developed in other MAPs.
Virtual organizations where agents dynamically enter and exit the system and
form groups could also be created in Magentix.

Acknowledgments. This work has been partially supported by CONSOLIDER-INGENIO
2010 under grant CSD2007-00022, and projects TIN2011-27652-C03-01 and TIN2008-

ComSIS Vol. 10, No. 1, January 2013 73



Juan M. Alberola et al.

04446. Juan M. Alberola has received a grant from Ministerio de Ciencia e Innovacion
de Espana (AP2007-00289).

References

—
COXNOORLN~

—_
W =

—
N

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

74

Fipa-os. http:/fipa-os.sourceforge.net

FIPA (The Foundation for Intelligent Physical Agents). http://www.fipa.org/

Jack. http://www.agent-software.com

Madkit. http://www.madkit.org

OWL Web Ontology Language Overview. http://www.w3.org/TR/owl-features/
RDF. http://www.w3.org/TR/rdf-primer/

RDF/XML Syntax Specification. http://www.w3.org/TR/rdf-syntax-grammar/
Redland RDF Libraries. http:/librdf.org

Safeguard. http://www.ist-safeguard.org/

Standard for information technology - portable operating system interface (POSIX)

. Tryllian agent development kit (adk). http://www.tryllian.com
. Zeus agent toolkit. http://labs.bt.com/projects/agents/zeus/
. SACI - simple agent communication infrastructure. http://www.lti.pcs.usp.br/saci/

(2009)

. Alberola, .M., Mulet, L., Such, J.M., Garcia-Fornes, A., Espinosa, A., Botti, V.: Op-

erating system aware multiagent platform design. In: Proceedings of the Fifth Euro-
pean Workshop on Multi-Agent Systems (EUMAS-2007). pp. 658—667 (2007)
Alberola, J.M., Such, J.M., Espinosa, A., Botti, V., Garcia-Fornes, A.: Scalable and
efficient multiagent platform closer to the operating system. Atrtificial Intelligence
Research and Development 184, 7—15 (2008)

Alberola, J.M., Such, J.M., Garcia-Fornes, A., Espinosa, A., Botti, V.: A performance
evaluation of three multiagent platforms. In: Artificial Intelligence Review, Volume
34, Number 2. pp. 145—-176 (2010)

Batouma, N., Sourrouille, J.L.: Dynamic adaption of resource aware distributed ap-
plications. In: International journal of grid and distributed computing. vol. 4, pp. 25—
42 (2011)

Bauwens, B.: Xml-based agent communication: Vpn provisioning as a case study.
In: XML Europe’99 (1999)

Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: Jade a white paper. EXP 3, 6—19
(2003)

Bitting, E., C.J.G.A.: Multiagent system development kit: An evaluation. In: Proceed-
ings of Communication Networks and Services Research Conference, May 15-16,
pp. 80-92, Moncton, New Brunswick, Canada, 2003

Badica, C., Budimac, Z., Burkhard, H.D., lvanovic, M.: Software Agents: Languages,
Tools, Platforms. Computer Science and Information Systems 8(2), 255-298 (2011)
Burbeck, K., Garpe, D., Nadjm-Tehrani, S.: Scale-up and performance studies of
three agent platforms. In: IPCCC 2004 (2004)

Camacho, D., Aler, R., Castro, C., Molina, J.M.: Performance evaluation of zeus,
jade, and skeletonagent frameworks. In: IEEE International Conference on Systems,
Man and Cybernetics, 2002 (2002)

Cenk, R., Dikenelli, O., Seylan, I., Gurcan, O.: An infrastructure for the semantic
integration of fipa compliant agent platforms. In: AAMAS. pp. 1316—-1317 (2004)
Chmiel, K., T.D.G.M.K.P.: Testing the efficency of jade agent platform. In: Proceed-
ings of the ISPDC/HeteroPar’04, 49-56 (2004)

ComSIS Vol. 10, No. 1, January 2013



26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

46.

A Scalable Multiagent Platform for Large Systems

Cortese, E., FQuarta, Vitaglione, G.: Scalability and performance of jade message
transport system. EXP 3, 52—65 (2003)

E. Argente, A. Gilet, S.V.V.J., Botti, V.: Survey of mas methods and platforms fo-
cusing on organizational concepts. In: Recent advances in Artificial Intelligence Re-
search and Development. vol. 113, pp. 309-316. IOS Press (2004)

Fernandez, V., Grimaldo, F., Lozano, M., Ordufa, J.M.: Evaluating jason for dis-
tributed crowd simulations. In: ICAART (2). pp. 206—211 (2010)

FIPA: FIPA Abstract Architecture Specification. FIPA (2001),
http://www.fipa.org/specs/fipa00001/

FIPA: FIPA  ACL Message Structure Specification. FIPA  (2001),
http://www.fipa.org/specs/fipa00061/

FIPA: FIPA RDF Content Language Specification. FIPA  (2001),
http://www.fipa.org/specs/fipa00011/

FIPA: FIPA Interaction Protocol Library Specification. FIPA (2003),
http://www.fipa.org/specs/fipa00025/

Giang, N.T., Tung, D.T.: Agent platform evaluation and comparison (2002)

Hirsch, B., Konnerth, T., HeBler, A.: Merging agents and services — the JIAC
agent platform. In: Multi-Agent Programming: Languages, Tools and Applications,
pp. 159-185. Springer (2009)

Huynh, D., Karger, D.R., Quan, D.: Haystack: A platform for creating, organizing and
visualizing information using rdf. In: Eleventh World Wide Web Conference Seman-
tic Web Workshop (2002)

Laclavik, M., Balogh, Z., Gatial, E., Hluchy, L.: Agent architecture based on semantic
knowledge model. In: 5th annual conference. VSB-Technick. pp. 288-291 (2006)
Lee, L.C., Ndumu, D.T., Wilde, P.D.: The stability, scalability and performance of
multi-agent systems. BT Technology Journal 16, 94—103 (1998)

Lopez, J.S., Bustos, F.A., Julian, V., Rebollo, M.: Developing a Multiagent Recom-
mender System: A Case Study in Tourism Industry. International Transactions on
Systems Science and Applications 4(3), 206—212 (2008)

Lopez, J.S., Bustos, F.A., Inglada, V.J.: Tourism services using agent technology: A
multiagent approach. INFOCOMP - Journal of Computer Science - Special Edition
pp. 51-57 (2007)

Lynch, S.: Using meta-agents to build mas platforms and middleware. In: Interna-
tional Conference on Agents and Atrtificial Intelligence (ICAART) (2011)

Mulet, L., Such, J.M., Alberola, J.M.: Performance evaluation of open-source multi-
agent platforms. In: Proceedings of the Fifth International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMASO06). pp. 1107—1109. Association
for Computing Machinery, Inc. (ACM Press) (2006)

Nodine, M.H., Unruh, A.: Facilitating open communication in agent systems: the
infosleuth infrastructure (1997)

Omicini, A., Rimassa, G.: Towards seamless agent middleware. In: TAPOC 2004
Park, A.H., et al.: A flexible and scalable agent platform for multi-agent systems. In:
Proceedings of WASET Bangkok (2007) (2007)

Pesovic, D., Vidakovic, M., lvanovic, M., Budimac, Z., Vidakovic, J.: Usage of agents
in document management. Computer Science and Information Systems 8(1), 193—
210 (2011)

Shakshuki, E.: A methodology for evaluating agent toolkits. In: ITCC '05: Proceed-
ings of the International Conference on Information Technology: Coding and Com-
puting (ITCC’05) - Volume I. pp. 391-396. IEEE Computer Society, Washington, DC,
USA (2005)

ComSIS Vol. 10, No. 1, January 2013 75



Juan M. Alberola et al.

47. Such, J.M., Alberola, J.M., Espinosa, A., Garca-Fornes, A.: A Group-oriented Se-
cure Multiagent Platform. Software: Practice and Experience 41(11), 1289-1302
(2011)

48. Such, J.M., Alberola, J.M., Garca-Fornes, A., Espinosa, A., Botti, V.: Kerberos-based
secure multiagent platform. In: Sixth International Workshop on Programming Multi-
Agent Systems (ProMAS’08). pp. 173—186 (2008)

49. Such, J.M., Alberola, J.M., Mulet, L., Espinosa, A., Garcia-Fornes, A., Botti, V.:
Large-scale multiagent platform benchmarks. In: LAnguages, methodologies and
Development tools for multi-agent systemS (LADS 2007). Proceedings of the Multi-
Agent Logics, Languages, and Organisations - Federated Workshops. pp. 192-204
(2007)

50. Such, J.M., Alberola, J.M., Mulet, L., Garcia-Fornes, A., Espinosa, A., Botti, V.: Hacia
el diseo de plataformas multiagente cercanas al sistema operativo. In: International
workwhop on practical applications on agents and multi-agent systems (2007)

51. Vrba, P.: Java-based agent platform evaluation. In: Proceedings of the HoloMAS
20083. pp. 47-58 (2003)

Juan M. Alberola is a PhD student at the Departament de Sistemes Informatics

i Computacié of the Universitat Politecnica de Valéncia. His interest areas in-
clude agent organizations, adaptation, multiagent platforms, case-based-reasoning
and electronic markets.

Jose M. Such is Lecturer in the School of Computing and Communications
at Lancaster University (UK). He was previously research fellow at Universi-
tat Politecnica de Valéncia (Spain), by which he was awarded a PhD in Com-
puter Science in 2011. He is mostly interested in the following research topics:
Privacy, Security, Trust, Reputation, Multi-agent Systems, and Atrtificial Intelli-
gence.

Vicent Botti is Full Professor at the Universitat Politecnica de Valéencia (Spain)
and head of the GTI-IA research group of the Departament de Sistemes In-
formatics i Computacié. He received his Ph.D. in Computer Science from the
same university in 1990. His research interests are multi-agent systems, agree-
ment technologies, and articial intelligence, where he has more than 200 ref-
ereed publications in international journals and conferences. Currently he is
Vice-rector of the Universitat Politecnica de Valéncia.

Agustin Espinosa is Lecturer at the Departament de Sistemes Informatics
i Computacio of the Universitat Politecnica de Valencia and a researcher at
the GTI-IA Research Group of the Universitat Politécnica de Valéncia. His re-
search interests include multiagent systems, agent architectures, agent plat-
forms, agent frameworks, and real-time agents. He received his Ph.D. in Com-
puter Science from the Universitat Politécnica de Valencia, Spain in 2003.

76 ComSIS Vol. 10, No. 1, January 2013



A Scalable Multiagent Platform for Large Systems

Ana Garcia-Fornes is a Professor at the Departament de Sistemes Informatics
i Computacié of the Universitat Politecnica de Valéncia. Her interest areas in-
clude: real-time artificial intelligence, real-time systems, development of mul-
tiagent infrastructures, tracing systems, operating systems based on agents,
agent organizations, and negotiation strategies.

Received: October 29, 2011; Accepted: October 8, 2012.

ComSIS Vol. 10, No. 1, January 2013 77






DOI:10.2298-CSIS120713042R

Validation of Schema Mappings with Nested
Queries

Guillem Rull, Carles Farré, Ernest Teniente, and Toni Urpi

Departament d’Enginyeria de Serveis i Sistemes d’'Informacié
Universitat Politécnica de Catalunya (UPC)—BarcelonaTech
1-3 Jordi Girona, 08034 Barcelona, Spain
{grull, farre, teniente, urpi}@essi.upc.edu

Abstract. With the emergence of the Web and the wide use of XML for
representing data, the ability to map not only flat relational but also
nested data has become crucial. The design of schema mappings is a
semi-automatic process. A human designer is needed to guide the
process, choose among mapping candidates, and successively refine
the mapping. The designer needs a way to figure out whether the
mapping is what was intended. Our approach to mapping validation
allows the designer to check whether the mapping satisfies certain
desirable properties. In this paper, we focus on the validation of
mappings between nested relational schemas, in which the mapping
assertions are either inclusions or equalities of nested queries. We focus
on the nested relational setting since most XML’'s Document Type
Definitions (DTDs) can be represented in this model. We perform the
validation by reasoning on the schemas and mapping definition. In
particular, we encode the given mapping scenario into a single flat
database schema, and reformulate each desirable property check as a
query satisfiability problem.

Keywords: schema mapping, nested relational model, nested query,
query equality, query inclusion, validation.

1. Introduction

Schema mappings are specifications that model a relationship between two
data schemas. They are key elements in any system that requires the
interaction of heterogeneous data and applications [16]. Such interaction
usually involves databases that have been independently developed and that
store the data of the common domain under different representations; that is,
the involved databases have different schemas. In order to make the
interaction possible, schema mappings are required to indicate how the data
stored in each database relates to the data stored in the other databases.
This problem, known as information integration, has been recognized as a
challenge faced by all major organizations, including enterprises and
governments [5].



Guillem Rull, Carles Farré, Ernest Teniente, and Toni Urpi

With the emergence of the Web and the wide use of XML for representing
data, the ability to map not only flat relational but also nested data has
become crucial. A sign of this is the growing interest of the research
community during the last years on the topics of XML mappings—see, for
instance, [3, 4]—and mappings between nested relational schemas—e.g.,
[20, 15].

However, the mapping design process is not a fully automatic one. A
human designer is needed to guide the process, choose among mapping
candidates, and successively refine the mapping [20]. Intricate manual work
may actually be required to refine a particular mapping. Since manual design
is labor-intensive and error-prone, the designer needs a way to figure out
whether the mapping is what was intended.

In order to address this need of validation, we propose an approach that
allows the designer to ask questions about the mapping. In particular, it allows
the designer to check whether the mapping satisfies certain desirable
properties. In this paper, we focus on two properties that have been identified
as important properties of mappings in the literature: mapping satisfiability [3]
and mapping inference [19]. An additional property, mapping losslessness
[22], is also addressed in the extended version of the paper [23].

Our approach is based on reasoning on the schemas and the mapping
definition, and does not rely on specific schema instances, since that might
not reveal all the potential pitfalls.

In this paper, we focus on the application of this validation approach to
mapping scenarios in which nested data is involved. More specifically, we
address the validation of mapping scenarios in which the source and the
target schema are nested relational [20], and in which the mapping is a set of
assertions. Mapping assertions are in the form of either query inclusions, i.e.,
Qs < Qr, or query equalities, i.e., Qs = Qr, where Qs and Qr are queries over
the source and the target schema, respectively, and whose result is a nested
relation (i.e., Qs and Qr are nested queries). Note that a query inclusion
(equality) assertion holds for a given pair of mapped schema instances if and
only if the answer to Qs over the source instance is a subset of (equal to) the
answer to Qr over the target instance.

We focus on the nested relational setting since it covers the most common
class of the well-known Document Type Definitions (DTDs) [3], and also
because it is the model that is typically used in the data exchange context to
represent semi-structured schemas [20].

The class of schemas and mappings that we consider is quite expressive.
We consider schemas with integrity constraints, where these constraints are
in the form of disjunctive embedded dependencies [10] (this class of
dependencies is applied here to the nested relational setting instead of the
traditional flat relational one in the same way as tuple-generating
dependencies are applied to the nested relational setting in [20]). The integrity
constraints of the schemas and the queries of the mapping may contain
arithmetic comparisons and negations. Union of nested queries is also
allowed. This class of mapping scenarios subsumes those considered by
previous works on mapping validation [7, 6, 1], which also focus on the nested

80 ComSIS Voal. 10, No. 1, January 2013



Validation of Schema Mappings with Nested Queries

relational setting but do not consider arithmetic comparisons nor negation.
Moreover, these previous works deal with a class of constraints and mapping
assertions—in the form of tuple-generating dependencies [13]—that is known
to be a particular class of the disjunctive embedded dependencies that we
consider [10].

To actually perform the validation, we propose a reformulation of each
desirable property check in terms of the query satisfiability problem over a
single flat relational database. Given a nested relational mapping scenario, we
encode it into a flat database and define a query over this database such that
the query is satisfiable if and only if the desirable property holds. This
encoding takes into account the nested structure of the schemas, their
integrity constraints, and the nested queries defined over them. Moreover, this
encoding rewrites the mapping assertions as integrity constraints over the
new flat relational database.

In this way, we extend our previous work on validating relational mappings
[22] and make it applicable to the nested case.

We solve the query satisfiability problem by means of the Constructive
Query Containment (CQC) method [14]. This method is able to deal with flat
relational databases in which queries and integrity constraints have no
recursion and may contain safe negation—on base and derived predicates—,
equality and inequality (=) comparisons, and also order comparisons (<, <, >,
>). To the best of our knowledge, the CQC method is the only query
satisfiability method able to handle this class of schemas and queries. The
use of the this method together with the encoding that we present in this
paper is what allows us to address nested relational mapping scenarios that
are more expressive than the ones addressed in the previous literature.

Reasoning on the class of mapping scenarios that we consider here is,
unfortunately, undecidable. However, extending the approach proposed by
[21], we studied in [24] a series of conditions that, if satisfied, guarantee the
termination of the CQC method for the current query satisfiability check. A
detailed performance evaluation of the CQC method has been done in [22,
24] for the case of flat relational mapping scenarios. This performance
evaluation showed that, for those scenarios in which termination is
guaranteed, the cost of the method is exponential with respect to the size of
the mapping scenario, as expected given the complexity of reasoning on such
an expressive language.

We would also like to remark that the reduction that we propose of each
desirable property in terms of query satisfiability is linear with respect to the
size of the given mapping scenario. Moreover, this reduction does not
increase the complexity of the problem, that is, checking query satisfiability is
not more complex than checking the desirable properties [22].

We have performed some experiments to show the feasibility of our
approach, using mapping scenarios from the STBenchmark [2]. The results
are reported in the extended version of the paper [23].

Summarizing, the main contributions of the paper are the following:

o We validate nested relational mappings by means of checking whether they
satisfy certain desirable properties. We focus on two properties that have

ComSIS Vol. 10, No. 1, January 2013 81



Guillem Rull, Carles Farré, Ernest Teniente, and Toni Urpi

been identified as important properties of mappings: mapping satisfiability
and mapping inference.

e We consider a class of mapping scenarios that is significantly more
expressive than those considered by previous works on nested relational
mapping validation.

¢ We propose an encoding of the nested relational schemas in the mapping
scenario into a single flat relational database.

o We propose a rewriting of the mapping assertions as integrity constraints
over the new relational database.

o We extend our previous work on validating relational mappings [22] to the
nested relational case. In particular, we propose a reformulation of each
desirable property of nested relational mappings in terms of the query
satisfiability problem over a flat relational database. Such a query
satisfiability check can be solved by means of the CQC method.

To better motivate the kind of validation that we propose, the next
subsection discusses detailed examples. The rest of the paper is structured
as follows. Section 2 introduces base concepts. Section 3 outlines our
approach for validating mappings with nested queries. Section 4 and Section
5 detail how to encode a given nested relational mapping scenario into a
single flat database schema. Section 6 explains how to reformulate the check
of each desirable property of mappings in terms of the query satisfiability
problem. Section 7 reviews the related work. Section 8 concludes the paper.

1.1 Examples of Mapping Validation

Consider a mapping scenario in which an airline company wants to publish
information about their flights and connecting flights into a certain flight-
searching Web site. Fig. 1 shows the source and the target schema of this
scenario, where dashed lines denote referential constraints and the
underlined attribute denotes a key.

Example 1
Let us assume the mapping designer has come up with two mapping
airline: Red flightDB: Rcd
flights: Set of Rcd flights: Set of Rcd
.% flight-id from
2, ¢ from to
%4 to departureTime
x4 . s
P departureTime airline
AN ticketPrice ticketPrice
<~ connections: Set of Red connectsWith: Set of Rcd
N : ~flight flight-to
~connectingFlight departureTime
airline
(a)
(b)

Fig. 1. Example source (a) and target (b) nested relational schemas.

82 ComSIS Voal. 10, No. 1, January 2013



Validation of Schema Mappings with Nested Queries

candidates. The first candidate is a mapping with two assertions: {m;, my}.
Assertion my maps the information of individual flights available in the source
schema, independently of whether these flights have connecting flights or not.
Assertion m,, maps the information about the connecting flights.

for f in airline.flights for f in flightDB.flights
my. return f.from, f.to, f.departureTime, C return f.from, f.to,
f.ticketPrice, “airlineXY” f.departureTime,

f.ticketPrice, f.airline

for cin airline.connections,
f1 in airline.flights,
f, in airline.flights
where c.flight = f;.flight-id and
c.connectingFlight = f,.flight-id
return f1.from, fy.to,
fi.departureTime,
“airlineXY”, f.to,
fi.departureTime, “airlinexXY”

for f in flightDB.flights,
c in f.connectsWith
return f.from, f.to,
f.departureTime,
f.airline, c.flight-to,
c.departureTime, c.airline

IN

The second candidate is a mapping with a single assertion: {ms}. Assertion
m3 maps both the information of individual flights and of their connecting
flights at the same time. It uses nested queries to ensure that flights without
connecting flights are also mapped; that is, for each flight in the source, it
creates a tuple that contains not only the flight's data but also a set with the
corresponding connecting flights; a set that may be empty if the flight has no
connecting flights.

for fin airline.flights

return f.from, f.to, f.departureTime, - -
“airlineXY", f.ticketPrice, for fin flightDB flights
for c in airline.connections return f.from, f.to, f.departureTime,

f,in airline flights f.airline, f.ticketPrice,

M where c.flight = f flight-id c for ¢ in f.connectsWith
and c.connectingFlight = return c flight-to,
f.flight-id c.departureTime,

c.airline

return f,.to, f..departureTime,
“airlinexy”

The designer could think that both mapping candidates may be actually
equivalent and that in that case he would feel more inclined to choose
mapping {ms} since it seems more compact. Let us suppose that the designer
wants to be sure before making the decision. He could then check whether m;
is actually inferred from {m;, m,}, and whether m; and m, are both inferred
from {m3}.

The check of the mapping inference property [19] would reveal that while
assertions my and m, are indeed inferred from mapping {ms}, assertion mj is
not inferred from mapping {my, my}. Fig. 2 shows an instantiation of the
mapping scenario that exemplifies the latter, i.e., it shows a source and a
target instance that satisfy {m;, my} but not m;. The example shows that
mapping {m,, my} does not ensure the correlation between a flight's ticket
price and the flight's connecting flights. Notice that there is one single flight

ComSIS Vol. 10, No. 1, January 2013 83



Guillem Rull, Carles Farré, Ernest Teniente, and Toni Urpi

(a) Source instance:

flights connections
flight-id | from | to | departureTime | ticketPrice | | flight | connectingFlight
1 A |B T4 50 2 3
2 A |C T, 70 2 4
3 Cc |D T3 45 2 5
4 C |E T4 60
5 C |F Ts 55
(b) Target instance:
flights
from | to | departureTime airline ticketPrice connectsWith
A B T4 airlineXyY 50 %)
A C T, airlineXyY 70 %]
C D T, airlineXY 45 %)
C E Ty airlineXyY 60 %)
C F Ts airlineXyY 55 %)
flight-to | departureTime airline
A C T, airlineXY 80 D T3 airlineXY
E T, airlineXY
- flight-to | departureTime airline
A (o} T, airlineXY 90 = T airlinexy

Fig. 2. Example (a) source and (b) target instances.

with connecting flights on the source instance, and that the data of that flight
is split in three tuples on the target instance: a first one with no connecting
flights but with the right ticket price, a second one with a wrong ticket price
and with only two of the three connecting flights, and a third one also with a
wrong ticket price and with the remaining connecting flight.

The designer could thus conclude that mapping {m3} is preferable not only
because is more compact but also because is more accurate than {my, my}.

Example 2

Let us assume now that, according to a new business rule, only the most
expensive connecting flights should be advertised by means of the flight-
searching Web site. Let us also assume that the Web site has a constraint t;
according to which, only flights with a ticket price no greater than 200 can be
published.

t1: for f in flightDB.flights then f.ticketPrice < 200

Taking into account the business requirement and target schema’s t
constraint, the designer could decide to adapt mapping {m3} and introduce
and additional condition in the inner query block (shown in bold). The result is
mapping {m}.

Let us also assume that another business rule was introduced, which the
designer thinks has no effect on the mapping. The requirement is enforced by
a new constraint s; on the source schema, which requires that the connecting
flights must be cheaper than the initial flight.

s1: for ¢ in airline.connections, f1 in airline.flights, f in airline.flights
where c.flight = f.flight-id and c.connectingFlight = f,.flight-id
then f,.ticketPrice < fy.ticketPrice

84 ComSIS Voal. 10, No. 1, January 2013



Validation of Schema Mappings with Nested Queries

for fin airline.flights
return f.from, f.to, f.departureTime,

“airlineXY”, f.ticketPrice, for f in flightDB.flights
for c in airline.connections, return f.from, f.to, f.departureTime,
f, in airline.flights f.airline, f.ticketPrice,
my: where c.flight = f.flight-id C for c in f.connectsWith
andc.connectingFlight = return c.flight-to,
f2.flight-id c.departureTime,
and f,.ticketPrice = 200 c.airline
return f5.to, f,.departureTime,
“airlinexXyY”

In order to be sure that no further modifications to the mapping should be
made as a result of this new business requirement, the designer could check
the non-trivial satisfiability of mapping {m,} at all its levels of nesting. By doing
that, he would realize that m,’s inner level of nesting never maps any data,
i.e., mapping {m,} is only mapping those flights with no connecting flights. The
problem is that there is a contradiction between source constraint s; and the
source query of my; in particular, since the source query of m, selects only
connecting flights with ticket price equal to 200 in its inner query block, and s;
requires these connecting flights to be cheaper than the initial flight selected
by the outer query block, that implies the initial flight should have a ticket price
greater than 200, which is not allowed by the target schema.

2. Preliminaries

In this section, we introduce the basic concepts of nested relational mapping
scenarios and of flat relational databases. We also discuss the query
satisfiability problem and its solution by means of the CQC method.

2.1 Nested Relational Mapping Scenarios

A nested relation R(A1, ..., A,) is a relation in which each attribute A; can be
defined either as a simple type (e.g., integer, real, string) or as another nested
relation. For instance, the nested relation flights on Fig. 1b has five simple-
type attributes: from, to, departureTime, airline and ticketPrice; and one
attribute that is also a nested relation: connectsWith.

A nested relational schema consists of a root record whose elements are
either simple types or nested relations. Nested relational model generalizes
the relational one. A flat relational schema can be modeled as a nested
relational schema in which the root record is a collection of flat relations, i.e.,
relations with all their attributes defined as simple types. Fig. 1a shows a flat
relational schema and Fig. 1b a truly nested relational one.

ComSIS Vol. 10, No. 1, January 2013 85



Guillem Rull, Carles Farré, Ernest Teniente, and Toni Urpi

We consider nested relational schemas with integrity constraints. An
integrity constraint is a Boolean condition in the form (we adapt the XQuery-
like notation of [20]):

for variable1 in relation,, ..., variable, in relation, where condition, then condition:

The variables in the for clause are bound to tuples from the relation that
follows the in. A variable; can be used in relation;.s,...,relation,, condition, and
condition,. The condition in the where and then clauses denotes a Boolean
expression that may include arithmetic comparisons (=, #, <, <, >, >) and
make use of conjunction, disjunction, and negation. As an example, see the
constraints s; and t; on the Example 2 of Section 1.1.

An instance of a nested relational schema is consistent if it satisfies all the
integrity constraints defined over the schema. Fig. 2 shows a consistent
instance for each of the two schemas in Fig. 1.

A nested query is a query whose answer is a nested relation. That is,
nested queries define derived nested relations. We use a notation similar to
that of the integrity constraints (also adapted from [20]):

for variable in relation,, ..., variable, in relation,
where conditions return results, ..., result,

where each result; can be either a simple-type expression or another nested
query. See, for example, the queries on assertion mj; in the Example 1 of
Section 1.1.

A mapping scenario is a triplet (S, T, M), where S is a source nested
relational schema, T is a target nested relational schema, and M is a set of
mapping assertions.

A mapping assertion m is a pair of nested queries related by a < or =
operator; the query on the left-hand side being defined over the source
schema, and the query on the right-hand side being defined over the target
schema: Qsource =/= Qtarget-

An instantiation of a mapping scenario (S, T, M) consists of an instance /s
of S and an instance /7 of T, such that /s and I+ satisfy all the assertions in M.

A mapping assertion Qsource =/= Quarget is satisfied by instances /s, I7 iff the
answer to Qsource ON Is is included/equal to the answer to Qyarget ON /7.

We apply the definition of inclusion and equality of nested relations used in
[18].

The inclusion of two nested structures R;, R, of the same type T, i.e., Ry
R5, can be defined by induction on T as follows:

(1) If Tis asimple type, Ric R iff Ri =R,

(2) If T is a record type (i.e., a tuple), Ri=[R11,...,R1n] < Ro=[Ro1,...,Rz,] iff
RitcRoin... ARincRop

(3) If Tis a set type, R1={R1’1,...,R1’n} c R2={R2’1,...,R2’n} iff Vi E|j R1’i c Rzyj

Equality of nested structures, i.e., Ry = Ry, can be defined similarly:

(1) If Tis a simple type, Ry = R,

(2) If T is arecord type, [R1’1,...,R1’n] = [R2’1,...,R2’n] iff R1’1 = R2’1 Ao A R1’n =
R2,n

86 ComSIS Voal. 10, No. 1, January 2013



Validation of Schema Mappings with Nested Queries

(3) If Tis a set type, {R1y1,...,R1yn}={R2,1,...,R2,n} iff Vi E'j R1,i = Rz,j A VJ Ji Rz,j =
R‘l,i
Note that, given the definitions above, Q; = Q; is not equivalent to Q; < Q;
A Qyc Q1 [18].

2.2 Flat Relational Databases

A flat relational schema is a finite set of flat relations with integrity constraints.
We use first-order logic notation and represent relations by means of
predicates. Each predicate P has a predicate definition P(A1,...,A,), where
A1,... A, are the attributes. A predicate is said to be of arity n if it has n
attributes. Predicates may be either base predicates, i.e., the tables in the
database, or derived predicates, i.e., queries and views. Each derived
predicate Q has attached a set of non-recursive deductive rules that describe
how Q is computed from the other predicates. A deductive rule has the
following form:

X)) (YDA oo AT(Y ) A =Lmst(Z ) A oo A=EZ) A CyA ... A Cy

Each C;is a built-in literal, that is, a literal in the form of t; op t,, where op €
{<, <, > 2 = #}and t; and t, are terms. A term can be either a variable or a
constant. Literals r(Y,) and —r(Z,) are positive and negated ordinary literals,
respectively (note that in both cases r; can be either a base predicate or a
derived predicate). Literal g(X) is the head of the deductive rule, and the
other literals are the body. Symbols X, Y, and Z; denote lists of terms. We
assume deductive rules to be safe, which means that the variables in Z;, X
and C; are taken from Y, ..., Y,, i.e., the variables in the negated literals, the
head and the built-in literals must appear in the positive literals in the body.
Literals about base predicates are often referred to as base literals and literals
about derived predicates are referred to as derived literals.

We consider integrity constraints that are disjunctive embedded
dependencies (DEDs) [10] extended with arithmetic comparisons and the
possibility of being defined over views (i.e., they may have derived predicates
in their definition). A constraint has one of the following two forms:

HYD)A o Ar(Ys) > Civ.v G
MYDA e ALY )ACIA o AC— AV (U 1) v .. v AV s (U )

Each V; is a list of fresh variables (i.e., variables that have not been used
anywhere else before), and the variables in U, are taken from V;and Y1, ...,
Y. Note that each predicate r; (on both sides of the implication) can be either
base or derived. We refer to the left-hand side of a constraint as the premise,
and to the right-hand side as the consequent.

Formally, we write S = (PD, DR, IC) to indicate that S is a database
schema with predicate definitions PD, deductive rules DR, and integrity
constraints /C. We omit the PD component when it is clear from the context.

ComSIS Vol. 10, No. 1, January 2013 87



Guillem Rull, Carles Farré, Ernest Teniente, and Toni Urpi

An instance D of a schema S is a set of facts about the base predicates of
S. A fact is a ground literal, i.e., a literal with all its terms constant. An instance
D is consistent with schema S if it satisfies all the constraints in /IC. The
extension of the queries and views of S when evaluated on D is the
intensional database (IDB) of D, denoted IDB(D). The answer to a query Q on
an instance D, denoted Aaq(D), is the set of all facts about predicate g in the
IDB of D, i.e., Aa(D) = {q(&) | q(&) < IDB(D)}, where & denotes a list of
constants.

2.3 Query Satisfiability and the CQC Method

A query Q is said to be satisfiable on a database schema S if there is some
consistent instance D of S in which Q has a non-empty answer, i.e.,
Aa(D) # & [17].

The CQC (Constructive Query Containment) method [14], originally
designed to check query containment, tries to build a consistent instance of a
database schema in order to satisfy a given goal (a conjunction of literals).
Clearly, using literal q(X) as goal, where X is a list of distinct variables,
results in the CQC method checking the satisfiability of query Q.

The CQC method starts by taking the empty instance and uses different
Variable Instantiation Patterns (VIPs) based on the syntactic properties of the
views/queries and constraints in the schema, attempting to generate only the
relevant facts that are to be added to the instance under construction. If the
method is able to build an instance that satisfies all the literals in the goal and
does not violate any of the constraints, then that instance is a solution and
proves the goal is satisfiable. The key point is that the VIPs guarantee that if
the variables in the goal are instantiated using the constants they provide and
the method does not find any solution, then no solution is possible.

The solution space that the CQC method explores is a tree, called the
CQC-tree. Each branch of the CQC-tree is what is called a CQC-derivation. A
CQC-derivation can be either finite or infinite. Finite CQC-derivations can be
either successful, if they reach a solution, or failed, if they reach a violation
that cannot be repaired. As proven in [14], the CQC method terminates when
there is no solution, that is, when all CQC-derivations are finite and failed, or
when there is some finite solution, i.e., when there is a finite, successful CQC-
derivation.

A series of sufficient conditions for the termination of the CQC method has
been studied in [24]. These conditions extend the ones proposed by [21].

A detailed performance evaluation of the CQC method has been done in
[22, 24] for the case of flat relational mapping scenarios. It showed that, for
those scenarios in which termination is guaranteed, the cost of the method is
exponential with respect to the size of the mapping scenario. This is expected
given the complexity of reasoning on such an expressive class of mapping
scenarios.

88 ComSIS Voal. 10, No. 1, January 2013



Validation of Schema Mappings with Nested Queries

3. Validation by Means of Checking Desirable Properties

We understand mapping validation as checking whether the mapping being
designed meets the intended needs and requirements. To perform this
validation, we propose to allow the designer to check whether the mapping
has certain desirable properties. In this paper, we focus on two desirable
properties of mappings (we will provide the formal definition of these
properties in Section 6): satisfiability and inference.

As illustrated in the Example 2 of Section 1.1, mapping satisfiability allows
detecting contradictions either between the mapping assertions or between
the mapping assertions and the integrity constraints of the schemas. Mapping
inference allows to detect redundancies in the mapping, i.e., redundant
mapping assertions, and also to compare mapping candidates.

In order to actually check these desirable properties of mappings, we
propose to translate the mapping scenario from the nested relational setting
into the flat relational one. That implies flattening not only the nested relational
schemas, but also the nested queries on the mappings. Then, we propose to
take advantage of previous work on validating mappings in the relational
setting [22] and reformulate the desirable property checking on this new flat
relational mapping scenario in terms of the query satisfiability problem. To do
so, we firstly combine the relational versions of the two mapped schemas into
a single relational schema. Secondly, we rewrite the mapping assertions as
integrity constraints over this single relational schema. Finally, for each
mapping desirable property that we want to check on the original nested
mapping scenario, we define a query on the single relational schema in such
a way that this query will be satisfiable on this schema if and only if the
mapping desirable property holds on the original mapping scenario.

In the next sections we discuss in detail how to translate the nested
relational mapping scenario into the flat relational one (Section 4 and Section
5), and how to reformulate each desirable property check in terms of a query
satisfiability problem over this flat relational translation (Section 6).

4. Flattening Nested Schemas and Queries

In this section, we detail how to encode the nested schemas and the nested
queries of a given nested relational mapping scenario into a single flat
database schema. Note that when we say nested queries we mean those in
the mapping assertions. We will later rely on this encoding of the nested
queries to rewrite the mapping assertions as integrity constraints.

ComSIS Vol. 10, No. 1, January 2013 89



Guillem Rull, Carles Farré, Ernest Teniente, and Toni Urpi

(b) Nested relational instance:

org
org-
name employees
name | address projects
proj-id budget
el A 1 1000
orgXY 22 500
proj-id budget
e2 B 03 2000
(a) Nested relational schema (c) Elat relational instance:
org: Red org
org-name .
employees: Set of Rcd @I:e))\ pi‘;ﬁln t orgr n)a(\? e
name AN 9
address _S—employees
projects: Set of Rcd | [ @key [ parent\ name | address
proj-id SN el A
budget AN 1 e2 B
N _/“ \\
NN projects
@key'| parent | proj-id budget
(R p1 1000
2 w1 p2 500
3 23 p3 2000

Fig. 3. A (a) nested relational schema, an (b) instance of this schema, and (c)
the translation of the instance into flat relations

4.1 Nested Schemas

Our translation of nested relational schemas into flat relational ones is based
on the hierarchical representation used by Yu and Jagadish in [25]. They
address the problem of discovering functional dependencies on nested
relational schemas. They translate the schemas into a flat representation, so
algorithms for finding functional dependencies on relational schemas can be
applied.

The hierarchical representation assigns a flat relation to each nested table.
To illustrate that, consider the nested relational schema in Fig. 3a, which
models data about an organization, its employees, and the projects each
employee works on. The hierarchical representation, as defined in [25], of this
nested relational schema would be the following set of flat relations:

{org(@key, parent, org-name), employees(@key, parent, name, address),
projects(@key, parent, proj-id, budget)}

90 ComSIS Voal. 10, No. 1, January 2013



Validation of Schema Mappings with Nested Queries

Note that each flat relation keeps the simple-type attributes of the nested
relation, and has two additional attributes: the @key attribute, which models
an implicit tuple id; and the parent attribute, which references the @key
attribute of the parent table and models the parent-child relationship of the
nested relations. Fig. 3b shows an instance of the previous nested relational
schema, and Fig. 3c shows the corresponding instance of the flat relational
schema into which the previous nested schema is translated.

For simplicity, we skip the flat relation of the root record when it has only
set-type attributes and no simple-type ones. We also skip the parent attribute
of those relations that do not have a parent relation, and we skip the @key
attribute of those relations that do not have child relations. For example, we
would translate the source and target schema of the mapping scenario in Fig.
1 into flat relations as follows:

source = {flightss(flight-id, from, to, departureTime, ticketPrice),
connections(flight, connectingFlight)}
target = {flightst(@key, from, to, departureTime, airline, ticketPrice),
connectsWith(parent, flight-to, departure Time, airline)}

The semantics of the @key and parent attributes are made explicit by
means of adding the corresponding key and referential constraints to the flat
relational schema that results from the flattening process. As an example, the
flat version of the target schema in Fig. 1 (see above) would include the
following key and referential constraint:

key: flightst(@key, f, t, dt, a, tp) A flightst(@key', f, t, dt, a, tp) > @key = @key'
ref. connectsWith(parent, ft, dt, a) — flightst(parent, f', t', dt’, a’, tp’)

The integrity constraints that already exist on the original nested schemas
can be straightforwardly translated into constraints over the flat relational
version of the schema. For example, let us consider again the source and
target constraint s; and t; of the Example 2 of Section 1.1; the constraints
would be translated into the following:

s1": connections(f, cf) A flightss(f, frm, to, dt, tp) A flightss(cf, frm’, to’, dt’, tp") > tp' < tp
t": flightst(@k, frm, to, dt, a, tp) — tp <200

4.2 Nested Queries

Regarding the flattening of nested queries, we follow a variation of the
approach used in [18]. In this approach, each nested query is translated into a
collection of flat queries, one for each nested query block. For example, let us
consider the source schema from Fig. 1, and let us suppose that we have the
following nested query Q defined over this source schema, which selects the
flights with a ticket price of at least 50 and, for each of these flights, selects
the connecting flights that are cheaper than the original flight:

ComSIS Vol. 10, No. 1, January 2013 91



Guillem Rull, Carles Farré, Ernest Teniente, and Toni Urpi

Q: for fin airline.flights where f.tp > 50
return f.from, f.to, f.departureTime, “airlineXY”, f.ticketPrice,
for ¢ in airline.connections, fz in airline.flights
where c.flight = f.flight-id and c.connectingFlight = f,.flight-id
and fo.ticketPrice < f.ticketPrice
return f,.to, fo.departureTime, “airlineXY”

The nested query Q has two query blocks: the outer block Qqter

Qouter: for f in airline.flights where f.tp > 50
return f.from, f.to, f.departureTime, “airlineXY”, f.ticketPrice

and the inner block Qipner-

Qinner: for c in airline.connections, f; in airline.flights
where c.flight = f.flight-id and c.connectingFlight = f,.flight-id
and fo.ticketPrice < f.ticketPrice
return f,.to, fo.departureTime, “airlineXY”

Since both query blocks are flat queries when considered independently,
and assuming we have already flattened the corresponding schema (the
source schema in this case), each of these blocks can be straightforwardly
translated into a query over the flat version of the schema. The only technical
detail, and the main difference with respect to [18], is the treatment of the
inherited variables—called indexes in [18]—, which are the variables defined
in the for clause of the outer block that are also used in the inner block. In
[18], the translation of both the outer and the inner block would be extended to
select the key attributes of the relations bound to the inherited variables; in the
case of the inner block, since it uses the inherited variables but does not
define them, that would require copying in the inner block’s translation those
literals from the outer block’s translation that correspond to the definition of
the inherited variables. In our example, the inherited variable “f’ is defined in
the translation of Qe by the literal “flightss(fid, frm, to, dt, tp)”, where “fid”
corresponds to the key attribute and is selected by this translation. The
translation of Q. should thus contain a copy of this literal (shown below in
bold) and also select “fid”:

Qouter(fid, frm, to, dt, “airlineXY”) « flightss(fid, frm, to, dt, tp) A tp > 50
Qinner(fid, to', dp’, “airlineXY”) «— connections(fid, cf) A flights(cf, frm’, to’, dp’, tp')
A flightss(fid, frm, to, dt, tp) A tp’' < tp

Notice that without the literal in bold, Q.- would not have access to
variable “tp” (i.e., f.ticketPrice) and could not make the required comparison.

The flat relational equivalent to answering the original nested query Q
would be making a left outer join of the translations of Quuer and Qipner With
“fid” as the join variable.

In order to simplify the translation, not only that of the nested queries
themselves but specially the translation of the mapping assertions (see next
section), we use access patterns [9]; in particular, we consider derived
relations with “input-only” attributes in addition to the traditional “input-output”
ones. We use R<xy, ..., Xp>(¥1, ..., ¥n) o denote that xi,...,x, are input-only

92 ComSIS Voal. 10, No. 1, January 2013



Validation of Schema Mappings with Nested Queries

terms bound to derived relation R, and y;,...,y, are input-output ones. As an

example, we would translate Qe and Qouter as follows:

Qouter(fid, tp, frm, to, dt, “airlineXY”) « flightss(fid, frm, to, dt, tp) A tp > 50

Qinner<fid, tp>(to’, dp’, “airlineXY”) <« connections(fid, cf) A flights(cf, frm’, to’, dp’, tp’)
Atp'<tp

Notice that we enforce the translation of Q... to select the variables “fid”
and “tp”, which are then to be inherited by Qe through its input-only
attributes. Note also that there is no need now to repeat the ordinary literal of
Qouter in Qinner-

In order for a deductive rule to be safe, the variables that appear as input-
only terms of some literal in the body of the rule must either appear as input-
output terms of some other positive ordinary literal in the same body, or
appear in the head of the rule as input-only terms. Similarly, the variables that
appear in a negated or built-in literal in the body of a rule must either appear
as input-output terms of some other positive ordinary literal in the same body,
or appear in the head of the rule as input-only terms. See for instance,
variable “tp” in Q;.ner above, which appears in the body of the rule in a built-in
literal, and in the head of the rule as an input-only term.

5. Rewriting Mapping Assertions As Integrity Constraints

A nested relational mapping scenario consists of two nested relational
schemas and a mapping with nested queries that relates them. We have
already discussed how to translate each nested schema into the flat relational
formalism. In order to complete the translation of the nested relational
mapping scenario into the flat relational setting, we must see now how to
translate the mapping assertions. We assume the queries in both sides of the
mapping are part of each schema’s definition and have already been
translated along with them.

To translate a mapping assertion Qgource /= Qiarger, We Will make use of the
definition of inclusion/equality of nested structures from [18] (see Section 2.1),
and we will rely on the flat queries that result from flattening Qsource @aNd Qiarger-
As an example, consider the mapping assertion m; from Example 1 (see
Sectlon 1.1). Let us assume the source and tar Sget query—let us caII them Q°
and Q'—are translated into the flat queries Q outer Q° inner @nd Q' outers Q' inners
respectively, as follows:

Qsou.er(fid, frm, to, dt, “airlineXY”, tp) « flightss(fid, frm, to, dt, tp)
Qsinner<fid>(to, dt, “airlineXY”) «— connections(fid, cf) A flightss(cf, frm, to, dt, tp)

QTouter(@k, frm, to, dt, a, tp) « flightst(@k, frm, to, dt, a, tp)
QTinner<@k>(t0 dt, a) «- connectsWith(@Jk, to, dt, a)

According to the semantics of query |ncIu5|on two schema instances /s and
I satisfy m; |f and only if the answer to Q°on Is, i.e., AQ%(ls), is included in the
answer to Q" on I, i.e., AQ'(I7). Recall that, as deflned in [18], a nested

ComSIS Vol. 10, No. 1, January 2013 93



Guillem Rull, Carles Farré, Ernest Teniente, and Toni Urpi

structure such as AQ°(ls) is included in another nested structure such as
AQ'(I7) if and only if each tuple a in AQ%(/s) “matches” some tuple b of AQ'(l7),
where “matches” means that each simple-type attribute on b (e.g., the from
attribute) must have the same value than the corresponding attribute of a, and
that the value of each set-type attribute on b (e.g., the connectsWith attribute)
must be a set that recursively includes the set bound to the corresponding
set-type attribute of a. Notice that this is a recursive definition, where simple-
type attributes are the base case and set-type ones are the recursive case.

We can express the above definition as a Boolean condition over the flat
translations of the mapped schemas. The condition will be true if the given
schema instances satisfy the mapping assertion, and false otherwise. The
condition begins with the requirement that for all tuple a returned by the outer
query block of Q° there must be a matching b on the result of the outer query
block of Q" with the same value on the simple-type attributes:

vfid,frm,to,dt,a,tp (Qsouter(fid, frm , to, dt, a, tp) > I@k (QTouter(@k, frm, to, dt, a, tp) ...

The condition must also include the requirement that the set-type attributes
of a must be included in the corresponding set-type attributes of b, i.e., the
recursive case:

. A VHOdt,a" (QSmer<fid>(t0’, dt’, ") — QTimer<@k>(t0', dt’, a’)) ))

By making the union of the flat mapped schemas and introducing this
Boolean condition as an integrity constraints over this union, we will get that
each consistent instance of the resulting flat database schema will correspond
to a consistent instantiation of the mapping scenario (i.e., an instantiation in
which the mapping assertions are true), and vice versa. The only problem is
that the above condition does not fit the syntactic requirements of the class of
constraints we consider, i.e., disjunctive embedded dependencies (DEDs),
which are expressions of the form vX (¢(X) — 3Y1 wi(X, Y1) v ... v 3Y,
wn(X, Y.)) in which V¥ quantifiers are not allowed inside vy, ..., y,. Fortunately,
we can take advantage of the fact that we are able to deal with negation and
get rid of that inner V quantifier. We can introduce a double negation —— in

front of the V quantifier, and move one of the negations inwards:
... A —3dto’,dt',a’ (Qsinner<ﬁd>(t0', dt, a') A —|QTinner<@k>(tO', dt, a’) ))

There are only two details remaining now. The first is that we only allow
direct negation of single literals and not of conjunction of literals. However, we
do allow negation of derived literals, so we can just fold the conjunction into a
new derived relation:

vfid,frm,to,dt,a,tp (Qsouter(ﬁd, frm , to, dt, a, tp) — I@k (QTouter(@k, frm, to, dt, a, tp)
A —Q%inner-not-included-in- Qinner<fid, @k>() ))
where

Q%nner-not-included-in- Qinner<fid, @k>( ) < Q iner<fid>(to’, dt’, a’)
A =QTinner<@k>(to’, dt’, a')

94 ComSIS Voal. 10, No. 1, January 2013



Validation of Schema Mappings with Nested Queries

The second detail is that we do not allow the explicit use of negation in the
integrity constraints, i.e., the literals in ¢ and in y4,...,y, cannot be negated.
We do however allow constraints in which the consequent is a contradiction,
e.g., 1 = 0. With that and the introduction of double negation in front of the
remaining vV quantifier, we can rewrite the expression as follows. First, we
introduce the double negation and move one of the negation inwards just as
we did before:

—3fid,frm,to,dt,a,tp (Quer(fid, frm, to, dt, a, tp) A =I@K (Q outer(@K, frm, to, dt, a, tp)
A —Q%inner-not-included-in- Qinner<fid, @k>() ))

To get rid of the inner —3 quantifier, we fold the conjunction into a new
derived relation:

—3fid,frm,to,dt,a,tp (Qsouter(fid, frm, to, dt, a, tp) A
—aux- Q°uter-not-included-in-Q oueer<fid, frm, to, dt, a, tp>()
where

aux- Q%ouer-not-included-in-Qouer<fid, frm, to, dt, a, tp>( ) «
Q ouer(@K, frm, to, dt, a, tp) A —Qinmer-not-included-in- Q inner<fid, @k>()

We still make an additional folding to get rid of the remaining —3 quantifier,
and we get:

—Q°%outer-not-included-in-Q outer( )
where

Q5 suter-not-included-in-Q outer( ) < Q outer(fid, frm, to, dt, a, tp) A
—aux- Qsouternot-included-in-QTouter<fid, frm, to, dt, a, tp>()

Finally, we can get rid of the — by stating that the atom implies a
contradiction:

Q% uter-not-included-in-Q ouer( ) &> 1=0

This constraint, together with the deductive rules that define the new
derived relations that we just introduced, enforces the mapping assertion ms.

In a more generic way, the rewriting of a query inclusion mapping assertion
can be formalized as follows.
Let @ and Q° be two generic (sub)queries with compatible answer:

QA:fg' vary in rely, ..., vary, in rel,, where cond return A, ..., Ap, By, ..., Bk
QB:fg' vary'in rel,..., vary,' in rel,,’ where cond' return A4, ..., An', B1',..., B{'

where each A; and A/ are simple-type expressions, and each B; and B; are
subqueries. Let us assume the outer block of Q" is translated into the derived
relation QAouter<X1, s Xka)(V1, oty Vina, My ooy I'm), Where Xxi,...,Xxs denote the
variables inherited from the ancestor query blocks, vi,...,v, denote the
additional variables to be inherited by the inner query blocks of Q" outer, and
r1,...,rm denote the simple-type values returned by the block. Similarly, let us
also assume the outer block of Q° is translated into QBoute,»(x{, s XipY(VH', s,
an', I’1', vy I’m').

ComSIS Vol. 10, No. 1, January 2013 95



Guillem Rull, Carles Farré, Ernest Teniente, and Toni Urpi

We use T- mclusmn(QA Q°, {i, ..., in}) to denote the translation of Q< @,
where {is, ..., i} is the union of the vanables inherited by @" and Q® from the|r
respective parent blocks (if any):

T-inclusion(@Q”*, Q°, {ix,...,i}) = ~Q"-not-included-in-Q%i,...,in)
where

Q"-not-included-in-Q%(is,...,iny < Q" outer X1y, XkaY Vi, sVnas Fyenslm) A
—aux-Q*-not-included-in-Q%ii, ..,in, Viy.esVnay I1yeeeslm)

A . . B,. .
aux-Q"-not-included-in-Q{is,...,in, V1,...;Vna, Myeeeslm) <
B
Q OUtel’<X1,1"'1Xkb,>(v1,1"'avnb,a r11---1rm) A
T-inclusion(By, B1', {i1,-- sk, ViyeesVia, Myeeirlmy Vi'seet Vip'}) A ceo A
T-inClUSion(Bk, Bk', {i1,...,ih, ViyeesVnay Myeeosmy V1',...,V,-,b'})

If @ and Q° are not subqueries but full queries, then the following
constraint is to be introduced:

—T-inclusion(@", Q°, {i1,....i}) > 1=0

Similarly, the rewriting of a generic query equality assertion @' = Q° as a
set of integrity constraints can be formalized as follows:

—T- equanty(of* B Lt . i) >1=0
—T-equality(Q Q/* {i, .. i) >1=0

where
T-equality(Q", Q°, {is....,in}) = —Q"-not-eq-to-Q%(is,....i)
and

QA-nOt-eq-to-QB<i1!"'!ih> <« quutef<x1!"-!Xka>(v1y---1vnay r’ly"'!rm) N
—aux-Q*-not-eq-to-Q%iy,....in, Vi,e.Vias [1yeeesF

aux-QA-not-eq-to-QB<i1,...,ih, ViyeeVinas Py fm) <—
Qouted X"y Xk Y(Vi' sy Vit Fryeeeslim) A
T-equality(B1, B1', {i1,...,ih, ViyeeisVnay Myeeosmy V1',...,an'}) A
T-equality(B1', B1, {i1,...,ih, ViyeeisVnay Myeesmy V1',...,an'}) A e A
T-equality(Bk, Bk', {i1,...,ih, ViyeeisVnay Myeeosmy V1',...,an'}) A
T-equality(Bk', Bk, {i1,...,ih, ViyeeisVnay Myeesmy V1',...,an'})

The two constraints above, together with the deductive rules of the
corresponding derived relations, enforce the definition of query equality as
defined in [18] (see Section 2. 1)

Intuitively, T-equality(Q*, Q°, {i1,...,i,}) denotes the condition that, for each
instantiation of the mapping scenario, each tuple in the answer to Q" must
have an equal tuple in the answer to Q°. Notice that in order to fully ex ress
the definition of query equa lity, we need to enforce both T-equality(Q", Q%
{i1,...,ix}) and T-equality(Q°, {/1, Jp}).

96 ComSIS Voal. 10, No. 1, January 2013



Validation of Schema Mappings with Nested Queries

6. Desirable Properties in Terms of Query Satisfiability

In this section, we show how two desirable properties of mappings—
satisfiability and inference—can be reformulated as a query satisfiability check
over the flat relational translation of mapping scenarios we have presented in
Section 4 and Section 5.

6.1 Mapping Satisfiability

We say a mapping is satisfiable if there is a pair of schema instances that
make all the mapping assertions true in a non-trivial way. An example of trivial
satisfaction would be a pair of empty schema instances, which is not the case
we are interested in here. We distinguish two kinds of satisfiability: strong and
weak.

Intuitively, a mapping is strongly satisfiable if all its mapping assertions can
be non-trivially satisfied at the same time at all their levels of nesting, e.g., the
inner query block of mapping assertion m,’s source query from the Example 2
of Section 1.1 never maps any data (i.e., always provides an empty answer);
therefore, although the outer query block does map some data, mapping {m;}
is not strongly satisfiable.

Definition 1 (Strong Satisfiability). A mapping M is strongly satisfiable iff
there exist /s, I+ instances of the source and target schema, respectively, such
that Is and /7 satisfy the assertions in M, and for each assertion Qsource 0P
Qtarget IN M, the answer to Qsource in Is is a strong answer. We say R is a strong
answer iff

(1) Ris a simple type value,

(2) Ris arecord [R4, ..., Rj] and Ry, ..., R, are all strong answers, or

(3) Ris a non-empty set {R, ..., R} and R4, ..., R, are all strong answers.

Intuitively, we say a mapping is weakly satisfiable if at least one mapping
assertion can be satisfied at least at its outermost level of nesting. As an
example, mapping {m,} is indeed weakly satisfiable.

Definition 2 (Weak satisfiability). A mapping M is weakly satisfiable iff
there exist Is, I+ instances of the source and target schema, respectively, and
some mapping assertion m: Qsource /= Qarget iIN M, such that Is, Ir make m
true and the answer to Qgource ON Is is Not empty, i.e., AQuuw(ls) # .

Let us assume M is a mapping with assertions {QS1 op Q' ..., Q5 op QT,,}.
Let S = (PDs, DRs, ICs) be the flat translation of the source schema, and T =
(PDr, DRy, ICr) be the flat translation of the target schema. Let us also
assume that /ICy and DR,, are the constraints and deductive rules that result
from the rewriting of the assertions in M. The flat database schema that
encodes the mapping scenario is:

DB = (PDsUPDT, DRsUDRTUDRM, ICsUICTUICM)

ComSIS Vol. 10, No. 1, January 2013 97



Guillem Rull, Carles Farré, Ernest Teniente, and Toni Urpi

The reformulation of strong satisfiability of M as a query satisfiability check
over DB is the following:

Qstrongsat < StrongSat(Q®;, @) A ... A StrongSat(Q°,, @)

where StrongSat is a function generically defined as follows. Let Q be a
generic (sub)query:

Q: for var, in rel, ..., vars in rels where cond return A,, ..., An, Ba, ..., Bk

where A;,...,A, are simple-type expressions and B,...,Bx are inner query
blocks. Let predicate Q.- be the translation of the outer query block of Q.
Then,

StrongSat(Q, inheritedVars) = Qouted X1, sX)(V1yee s Vsy yeeeslm) A
StrongSat(B;, inheritedVars {vy,...,Vs, Mycccfm}) A .. A
StrongSat(By, inheritedVars U{vs,...,Vs, I1,....Im})

where {x4,...,x;} < inheritedVars.

Boolean query Qstongsat iS Satisfiable over DB if and only if mapping M is
strongly satisfiable.

Intuitively, if we can find an instance of DB that satisfies Qstrongsat, WE can
obtain from that database instance a source and a target instance for the
mapping scenario. These two instances will be consistent with their respective
schemas and with the mapping assertions because DB includes the
corresponding integrity constraints. The strong satisfiability property will hold,
because Qsrongsat is encoding its definition.

As an example, let us assume the outer query block of mapping assertion
my’s source query in Example 2 is translated into derived relation QSoute,(flight-
id, from, to, departureTime, airline, ticketPrice), and the inner query block into
derived relation Qsmne,<f/ight-id>(to, departureTime, airline). Then, strong
satisfiability of {m,4} would be reformulated as follows:

QstrongSat <~ Qsouter(ﬁda frm; tO, dt; a, tp) N Qsinner<ﬁd>(t0'a dt’! a')

The reformulation of weak satisfiability of M as a query satisfiability check
over DB is the following:

s _
Queaksat < Q1,0ute(X 1)

s _
Queaksat < Qn,outer(X n)

where Qs1,oute,,...,an,0ute, are the translations of the outermost query blocks of
the source mapping’s queries.

Boolean query Queasat is satisfiable over DB if and only if mapping M is
weakly satisfiable.

The intuition is that Qyeasar Can only be if some of the outermost blocks of
the source mapping’s queries is not empty. Therefore, if Queasat iS true, we
can extract from the corresponding instance of DB an instantiation of the
mapping scenario that exemplifies the property.

98 ComSIS Voal. 10, No. 1, January 2013



Validation of Schema Mappings with Nested Queries

As an example, weak satisfiability of mapping {m,} would be reformulated
as follows:
Queaksat < Qouter(fid, frm, to, dt, a, tp)

Notice that there is only one deductive rule for Queaxsat because the
mapping has only one assertion.

6.2 Mapping Inference

The mapping inference property [19] checks whether a given mapping
assertion is inferred from a set of others assertions. It can be used, for
instance, to detect redundant assertions in a mapping, or to test equivalence
of candidate mappings. As an example, recall mapping {m1, m2} from
Example 1. Assertions m1, m2 are each one inferred from mapping {m3}, but
assertion m3 is not inferred from {m1, m2}.

Definition 3 (Mapping Inference). Let M be a mapping from schema S to
schema T. Let F be an assertion from S to T. We say F is inferred from M iff
Vls, I+ instances of schema S and T, respectively, such that /s and /; satisfy
the assertions in M, then Is and I also satisfy assertion F.

As with the previous property, the flat database schema that encodes the
mapping scenario is:
DB = (PDS WPDyr, DRsUDRrUDRy, ICs UICTUICM)

In order to reformulate mapping inference in terms of query satisfiability, we
must get rid of the universal quantifier that appears in the property’s definition.
The reason is that by means of query satisfiability we can check whether
there exists an instance that satisfies the property encoded by the query, but
not whether all instances satisfy that property. We can address this situation
by checking the negation of the property instead of checking the property
directly; that is, we will check whether there is a pair of schema instances that
satisfy the mapping but not the given assertion.

If the assertion to be tested is a query inclusion, i.e., Qsouce = Qrarger, then
the query to be tested satisfiable on DB is defined by a single deductive rule:

Qnotlnferred <~ _'T'inCIUSion(Qsource; Qtargeh ®)

If the assertion to be tested is a query equality, i.e., Qsource = Qtarger, then the
query to be tested satisfiable on DB is defined by two deductive rules:

Qnotlnferred <~ _‘T'equa"tY(Qsoume; Qtargeh ®)
Qnotlnferred <~ _‘T'equa"tY(Qtarget; Qsource; ®)

Boolean query Qpotmferred iS satisfiable over DB if and only if the given
assertion F is not inferred from mapping M.

Fig. 2 shows an instantiation of the example mapping scenario in Example
1 which satisfies mapping {m4, m,} but not assertion ms, i.e., the instantiation
is an example that illustrates mj is not inferred from {m,, my}.

ComSIS Vol. 10, No. 1, January 2013 99



Guillem Rull, Carles Farré, Ernest Teniente, and Toni Urpi

7. Related Work

In this section, we compare our approach with the previous works on nested
relational mapping validation and on translating nested queries into the flat
relational setting.

7.1 Mapping Validation on Nested Scenarios

Previous work on mapping validation on the nested relational setting has
mainly focused on instance-based approaches: the Routes approach [7], the
Spicy system [6], and the Muse system [1]. These approaches rely on specific
source and target instances in order to debug, refine and guide the user
through the process of designing a schema mapping, which do not
necessarily reflect all potential pitfalls.

The Routes approach requires both a source and a target instance in order
to compute the routes. The Spicy system requires a source instance to be
used to execute the mappings, and a target instance to compare the mapping
results with. The Muse system can generate its own synthetic examples to
illustrate the different design alternatives, but even in this case the detection
of semantic errors is left to the user, who may miss to detect them.

Routes, Spicy and Muse allow both relational and nested relational
schemas with key and foreign key-like constraints—typically formalized by
means of tuple-generating dependencies (TGDs) and equality-generating
dependencies (EGDs)—, and mappings expressed as source-to-target TGDs
[20]. Muse is also able to deal with the nested mapping formalism [15], which
allows the nesting of TGDs. Comparing with our setting, the class of
disjunctive embedded dependencies (DEDs) with derived relation symbols
and arithmetic comparisons that we consider includes that of TGDs and
EGDs. That is easy to see since it is well-known that traditional DEDs already
subsume both TGDs and EGDs [11]. Similarly, our mapping assertions go
beyond TGDs in two ways: (1) they may contain negations and arithmetic
comparisons, while TGDs are conjunctive; and (2) they may be bidirectional,
i.e., assertions in the form of Q4= Qg (which state the equivalence of two
queries), while TGDs are known to be equivalent to global-and-local-as-view
(GLAV) assertions in the form of Q4 = Qg [13].

Outside the nested relational setting, other works have proposed and
studied desirable properties for different classes of XML mappings.

In [3], the authors study the consistency checking problem for XML
mappings that consist of source-to-target implications of tree patterns
between DTDs. Such a mapping is consistent if at least one tree that
conforms to the source DTD is mapped into a tree that conforms to the target
DTD. This work extends the previous work of [4], where mapping consistency
is addressed for a simpler class of XML mappings.

The mapping consistency property of [3] is very similar to our notion of
mapping satisfiability; the main difference is that we introduce the requirement

100 ComSIS Voal. 10, No. 1, January 2013



Validation of Schema Mappings with Nested Queries

that mapping assertions have to be satisfied in a non-trivial way, that is, a
source instance should not be mapped into the empty target instance. We
introduce this requirement because the class of mapping scenarios we
consider—uwith integrity constraints, negations and arithmetic comparisons—
makes likely the existence of contradictions either in the mapping assertions,
or between the mapping assertions and the schema constraints, or between
the mapping assertions themselves; which may result in mapping assertions
that can only be satisfied in a trivial way.

7.2 Translation of Assertions with Nested Queries into Flat Relational

Since our mapping assertions are in the form of query inclusions and query
equalities, the problem of translating these assertions into the flat relational
setting matches the problem of reducing the containment and equivalence
check of nested queries to some other property check over flat relational
queries. The works in this latter area that are closer to ours are [18, 12, 8].

In [18], Levy and Suciu address the containment and equivalence of COQL
queries (Conjunctive OQL queries), which are queries that return a nested
relation. They encode each COQL query as a set of flat conjunctive queries
using indexes. An indexed query Q is a query hose head is in the form of Q(/4;
g gy Vi, ., V), where 14, ..., 14 denote sets of index variables, and variables
Vi, ..., V,, denote the resulting tuple. Relying on the concept of indexed query,
Levy and Suciu define in [18] the property of query simulation, and reduce
containment of COQL queries to an exponential number of query simulation
conditions between the indexed queries that encode them. Levy and Suciu
also define the property of strong simulation [18], and reduce equivalence of
COQL queries which cannot construct empty sets to a pair of strong
simulation conditions (equivalence of general COQL queries is left open).

In [12], Dong et al. adapt the technique proposed by Levy and Suciu [18] to
the problem of checking the containment of conjunctive XQueries. They also
encode the nested queries into a set of indexed queries, and also reduce the
containment checking to a set of query simulation tests between the indexed
queries. Dong et al. also propose some extensions to the query language,
such as the use of negation and the use of arithmetic comparisons. They
however do not consider both extensions together as we do, and they do not
consider the presence of integrity constraints in the schemas.

In [8], DeHaan addresses the problem of checking the equivalence of
nested queries under mixed semantics (i.e., each collection can be either set,
bag or normalized bag). DeHaan proposes a new encoding for the nested
queries into flat queries that captures the mixed semantics, and proposes a
new property: encoding equivalence, to which nested query equivalence
under mixed semantics can be reduced to. Notice that this approach is
different with respect to ours in the sense that it focus on mixed semantics
while we focus on set semantics ([18, 12] focus on set semantics too). We
consider set semantics since it makes easier the generalization of our

ComSIS Vol. 10, No. 1, January 2013 101



Guillem Rull, Carles Farré, Ernest Teniente, and Toni Urpi

previous results from the relational setting. DeHaan also proposes some
extensions to the query language, but he does not consider the use of
negation or arithmetic comparisons.

The main difference of the approach followed by these three works with
respect to ours is that we do not intend to translate the mapping assertions
into some condition over conjunctive queries. Instead, we propose a
translation that takes into account the class of queries and constraints the
CQC method is able to deal with, especially the fact that the CQC method
allows for the use of negation on derived atoms. We take advantage of this
feature and propose a translation that expresses the definition of query
inclusion and query equality into first-order logic, and then rewrites it into the
syntax required by the CQC method by means of algebraic manipulation. We
finally obtain a set of integrity constraints (DEDs) that model the semantics of
the mapping assertions and that allows us to encode the mapping when we
reformulate mapping validation in terms of query satisfiability.

8. Conclusion

We follow and approach to mapping validation that allows the designer to
check whether the mapping satisfies certain desirable properties. We focus in
this paper on how to apply this approach to the validation of nested relational
mapping scenarios in which mapping assertions are either inclusions or
equalities of nested queries. We encode the given nested relational mapping
scenario into a single flat database schema. That includes the flattening of the
mapped schemas and the mapping’s queries, and the encoding of the
mapping assertions as integrity constraints. Then, we take advantage from
our previous work on validating flat relational mappings [22] and reformulate
each desirable property check in terms of a query satisfiability problem over
the flat database schema. The idea is that the nested relational mapping will
satisfy a certain desirable property if and only if the query that results from the
reformulation is satisfiable on the flat database schema. To solve the query
satisfiability problem, we apply the CQC method [14], which, to the best of our
knowledge, is the only method able to deal with the class of scenarios that we
consider here.

Acknowledgments. This work has been partly supported by the Spanish Ministerio de
Ciencia e Innovacién under project TIN2011-24747.

References

1. Alexe, B., Chiticariu, L., Miller, R. J., Tan, W. C.: Muse: Mapping Understanding
and deSign by Example. In: Proc. ICDE, 10-19. (2008)

2. Alexe, B., Tan, W. C., Velegrakis, Y.: STBenchmark: towards a benchmark for
mapping systems. PVLDB 1(1), 230-244. (2008)

102 ComSIS Voal. 10, No. 1, January 2013



10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.
21.
22.
23.

24.

25.

Validation of Schema Mappings with Nested Queries

Amano, S., Libkin, L., Murlak, F.: XML schema mappings. In: Proc. PODS, 33-42.
(2009)

Arenas, M., Libkin, L.: XML data exchange: Consistency and query answering. J.
ACM 55(2). (2008)

Bernstein, P. A., Haas, L. M.: Information integration in the enterprise. Commun.
ACM 51(9), 72-79. (2008)

Bonifati, A., Mecca, G., Pappalardo, A., Raunich, S., Summa, G.: Schema
mapping verification: the spicy way. In: Proc. EDBT, 85-96. (2008)

Chiticariu, L., Tan, W. C.: Debugging Schema Mappings with Routes. In: Proc.
VLDB, 79-90. (2006)

DeHaan, D.: Equivalence of nested queries with mixed semantics. In: Proc.
PODS, 207-216. (2009)

Deutsch, A., Ludascher, B., Nash, A.: Rewriting queries using views with access
patterns under integrity constraints. Theor. Comput. Sci. 371(3), 200-226. (2007)
Deutsch, A., Tannen, V.: Optimization Properties for Classes of Conjunctive
Regular Path Queries. In: Proc. DBPL, 21-39. (2001)

Deutsch, A., Tannen, V.. XML queries and constraints, containment and
reformulation. Theor. Comput. Sci. 336(1), 57-87. (2005)

Dong, X., Halevy, A. Y., Tatarinov, I.: Containment of Nested XML Queries. In:
Proc. VLDB, 132-143. (2004)

Fagin, R., Kolaitis, P. G., Miller, R. J., Popa, L.: Data exchange: semantics and
query answering. Theor. Comput. Sci. 336(1), 89-124. (2005)

Farré, C., Teniente, E., Urpi, T.: Checking query containment with the CQC
method. Data Knowl. Eng. 53(2), 163-223. (2005)

Fuxman, A., Hernandez, M. A., Ho, H., Miller, R. J., Papotti, P., Popa, L.: Nested
Mappings: Schema Mapping Reloaded. In: Proc. VLDB, 67-78. (2006)

Halevy, A. Y.: Technical perspective - Schema mappings: rules for mixing data.
Commun. ACM 53(1), 100. (2010)

Halevy, A. Y., Mumick, |. S., Sagiv, Y., Shmueli, O.: Static analysis in datalog
extensions. J. ACM 48(5), 971-1012. (2001)

Levy, A. Y., Suciu, D.: Deciding Containment for Queries with Complex Objects.
In: Proc. PODS, 20-31. (1997)

Madhavan, J., Bernstein, P. A., Domingos, P., Halevy, A. Y.: Representing and
Reasoning about Mappings between Domain Models. In: Proc. AAAI/IAAI, 80-86.
(2002)

Popa, L., Velegrakis, Y., Miller, R. J., Hernandez, M. A., Fagin, R.: Translating
Web Data. In Proc. VLDB, 598-609. (2002)

Queralt, A., Teniente, E.: Decidable Reasoning in UML Schemas with Constraints.
In: Proc. CAISE, 281-295. (2008)

Rull, G., Farré, C., Teniente, E., Urpi, T.: Validation of mappings between
schemas. Data Knowl. Eng. 66(3), 414-437. (2008)

Rull, G., Farré, C., Teniente, E., Urpi, T.: Validation of schema mappings with
nested queries. Technical Report ESSI-TR-12-5 http://hdl.handle.net/2117/16746
(2012)

Rull, G.: Validation of Mappings between Data Schemas. Ph.D. Thesis.
Universitat Politecnica de Catalunya. http://hdl.handle.net/10803/22679. (2011)
Yu, C., Jagadish, H. V.: XML schema refinement through redundancy detection
and normalization. VLDB J. 17(2), 203-223. (2008)

ComSIS Vol. 10, No. 1, January 2013 103



Guillem Rull, Carles Farré, Ernest Teniente, and Toni Urpi

Guillem Rull is currently postdoc researcher at the Department of Service
and Information System Engineering (ESSI) at the Universitat Politécnica de
Catalunya — BarcelonaTech. He received his Ph.D. degree from the Technical
University of Catalonia in 2011. His current research interests are involved
with schema and mapping validation.

Carles Farré is currently associate professor at the Department of Service
and Information System Engineering (ESSI) at the Universitat Politécnica de
Catalunya — BarcelonaTech. He received his Ph.D. degree from the Technical
University of Catalonia in 2003. He worked on deductive databases, query
containment and schema validation. His research interests are involved with
conceptual modeling and data and service integration.

Ernest Teniente is a full professor at the Department of Service and
Information System Engineering at the Universitat Politécnica de Catalunya —
BarcelonaTech, where he teaches graduate and undergraduate courses on
software engineering and databases. He got his PhD in Computer Science
from the same university. He was a visiting researcher at the Politecnico di
Milano and at the Universita' di Roma Tre, in ltaly. His current research
interests are focused on conceptual modeling, automated reasoning on
conceptual schemas and data integration. He is author of more than 50
publications in international conferences and journals in the areas of
databases and software engineering, and he is regularly invited to serve on
the Program Committees of international conferences in these areas.

Toni Urpi is currently associate professor at the Department of Service and
Information System Engineering (ESSI) at the Universitat Politécnica de
Catalunya — BarcelonaTech. He received his Ph.D. degree from the Technical
University of Catalonia in 1993. He worked on deductive databases, database
updates, integrity constraint maintenance, query containment, and schema
validation. Current research interests are involved with conceptual modelling
and data integration.

Received: July 03, 2012; Accepted: October 04, 2012.

104 ComSIS Voal. 10, No. 1, January 2013



DOI: 10.2298-CS1S120102041J

Accessibility Algorithm Based on Site Availability
to Enhance Replica Selection in a Data Grid
Environment

Ayman Jaradat!, Ahmed Patel’, M.N. Zakaria', and
A.H. Muhamad Amina’

" Faculty of Science & Information Technology,
Department of Computer & Information Sciences
Universiti Teknologi PETRONAS
ayman418@yahoo.com, {nordinzakaria, ananghudaya}@petronas.com.my
2 School of Computer Science,
Centre of Software Technology and Management (SOFTAM)
Faculty of Information Science and Technology (UKM)
Universiti Kebangsaan Malaysia (UKM)
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2 Visiting Professor
School of Computing and Information Systems
Faculty of Science, Engineering and Computing
Kingston University
Kingston upon Thames KT1 2EE, United Kingdom

Abstract. A data grid functions as a scalable base for grid services to
manage data files and their scattered replicas around the world. The
principal objective of grid services is to support various data grid
applications (jobs) as well as projects. Replica selection is an essential
high-level service that selects a Grid location which verifies the shortest
response time for the users' jobs among numerous different locations.
In the grid environment, estimating response time precisely is not a
simple task. Existing replica selection algorithms consume high
response time to retrieve replicas because of miss-estimating replicas
transfer times. This paper proposes a novel replica selection algorithm
that considers site availability in addition to data transfer time. Site
availability has not been addressed in previous efforts in the same
context this paper does. Site availability is a new factor that can be
utilized to estimate response time more accurately. Selecting an
unavailable site or selecting a site with insufficient time will likely lead
to disconnection. This in turn will require shifting to another site to
resume the download or to start the download from scratch depending
on the fault tolerance mechanism. Simulation results demonstrate that
the performance of the new algorithm is proved to be better than the
existing algorithms mentioned in literature.

Keywords: data grid architecture, grid computing, grid component
failure, virtual organization, OptorSim.


http://www.utp.edu.my/staff/ex.php?mod=ex&sn=122061
mailto:ayman418@yahoo.com
mailto:nordinzakaria@petronas.com.my
mailto:ananghudaya@petronas.com.my

Ayman Jaradat, Ahmed Patel, M.N. Zakaria, and A.H. Muhamad Amina

1. Introduction

In numerous scientific disciplines, terabyte (possibly soon to be petabytes)
scale data collections is emerging as critical community resource. The
required “data grid” infrastructure needs to support potentially thousands of
users. Especially scientists who want to work collaboratively in their field all
over the world [1]. Conversely, it is evident that one virtual organization (VO)
alone may not be sufficient to manage the massive volume of data produced
from experiments and simulations. Contextually, the exponential growth of
scientific applications has opened up a new research horizon for computer
scientists and researchers. This can produce efficient techniques and
algorithms for scientific applications that require access, storing, transferring,
analysis and replication of an immense amount of data in geographically
distributed locations [2]. Replication and distribution of data among diverse
grid sites are needed to address the requirement to increase data reliability
and availability. Replicated data lead to the requisite of replica selection, a
process which selects one replica location from among many replicas based
on their response times. The response time is a critical factor that influences
the job turnaround time. In previous studies, data transfer time was utilized to
estimate the response time. However, measuring transfer time alone is
insufficient. The continuity of service provided by the selected site plays a
major role in assuring that the estimated response time will be maintained
and not interrupted. This is due to the local policies of the provider that offers
services to outsiders for specific hours only. According to the authors of [3],
once a user is allowed to gain access to a resource based the access policy,
the usage Service Level Agreement (SLA) determines how much of the
resources the user is permitted to use.

Just to recap: in the literature, availability signifies the production of a
number of copies for a single file (resource) in order to make it constantly
available [4]. Availability in this research is defined as the capability of a
given resource to fulfill a given task until it is completed. To distinguish
between these two definitions, we use site availability or accessibility to refer
to the second definition.

In [5] it is reported that only 65% of users’ submitted jobs are executed
successfully due to unknown causes of failure. The main causes of failures
within grid infrastructures are grid component failures, network failures,
information faults, and excessive delays. Grid component failures involve
both software and hardware account for 25%-30% of the total failures.
However, according to [6] the Open Science Grid (OSG) [7], encountered a
30% job submission failure rate with 90% of them due to disk filling errors,
gatekeeper overloading, and network disruptions. Though many
enhancements have been done, the grid keeps growing in both size and
complication. The total improvements are often not enough: for instance, the
LCG grid [8] is still reporting about a 25% error rate [9]. Troubleshooting grid
middleware is very challenging due to large number of interconnected
components. For example, one action, like reliably transmitting a directory of

106 ComSIS Vol. 10, No. 1, January 2013



Accessibility Algorithm Based on Site Availability to Enhance Replica Selection in a
Data Grid Environment

files, could result in the coordination of a wide-ranging collection of loosely
coupled software tools. Each of them normally generates its own log files in
their own log format, semantics, and identifiers. To troubleshoot a problem as
it cascades from one component into the next, this information must be
combined to form a logically consistent trail of activity.

Causes of failures are mostly vague and request further investigations.
Although, we can conjecture that excessive delays and the insufficient time of

the resources to complete tasks are among of the reasons . Therefore
integrating site availability in the replica selection process is necessary to
avoid such faults or delays. To the best of our knowledge, none of the
researchers have introduced site availability with the same concept that we
have specifically detailed in this research. Site availability is defined as: The
relationship between the operating time declared by the service provider to
serve certain VOs and the required time to transfer a file from the same
provider during the replica selection decision process.

This study tries to highlight that incorporating site availability as a new
intervention for a deliberated estimation of response time enhances the data
grid environment. Incorporating site availability as a selection factor in replica
selection algorithm provides replication management systems with more
guaranteed response time estimation.

2. Related Works

Data replication modeling has received increasing attention especially in the
past few years. Replica selection algorithm is one of the major functions of
replication management system which determines the best replica location
for grid users. Such determination is critical because the resources are
limited and users competing for it. Replica selection algorithms are
categorized into two groups namely partitioned and greedy. Partitioned
algorithms [10-12] are classified into two sets namely ‘available’ and
‘unavailable’. The forecasted server latency is computed for each replica and
compared with a pre-calculated threshold value to categorize replicas into
‘available’ or ‘unavailable’. In greedy algorithms [13, 14], the client is
assigned to a replica, which is forecasted to provide the best transaction
performance. This transaction performance needs to be estimated before
selecting the most optimum replica. On the other hand weighted algorithms
[14, 15] estimate the proportional rate of assigning a user to a certain replica
based on the weight assigned to each of these replicas. The authors of [16]
have proposed a variety of replication strategies, which are evaluated on

'Each site has its operating hours to serve the others based on its local policy.
However accessing sites which are available for shorter time than required will lead
to timeout and this obliges to complete or to restart the task the in another site if
such mechanism is available. Sometimes also the problems occur and it is very
difficult to know or to trace the causes.

ComSIS Vol. 10, No. 1, January 2013 107



Ayman Jaradat, Ahmed Patel, M.N. Zakaria, and A.H. Muhamad Amina

hierarchical grid architecture. The proposed replication algorithms are based
on the hypothesis that popular files of one location will also be popular at
another location. The number of hops for each site that houses the replica is
considered. The best replica is the one that requires the minimum number of
hops to reach the requesting user. On the other hand, the authors of [17]
used the log files of the Grid File Transfer Protocol (GridFTP) only as the
tool to predict the replica with the fastest response time. However, in [18] the
researchers have proved that GridFTP alone is insufficient for the best
prediction. Preferably, a regression technique model should be constructed to
forecast the data transformation time from the source to the destination
based on the three data points, mainly GridFTP, Network Weather Service
(NWS), and I/O Disk. On the other hand, the researchers in [19] have
proposed the K-Nearest Neighbor (KNN) rules. This KNN selects the best
replica by taking into consideration the history of transferring the preceding
replicas which is collected from the logs’ files. They also proposed a
predictive procedure to estimate transfer time between sites via neural
networks.

In [20] the researchers conceived a fuzzy logic technique to evaluate the
replication “state” (i.e., negative, normal and/or positive) using the gray
prediction model to analyze the factors that affect replica selection but site
was not their concern.

Some other works have focused on utilizing parallel techniques to reduce
replica transfer time. Their approaches retrieved replicas concurrently from
all the available sites [20, 21] that housed that replica. In such approaches,
the required file was divided into parts and each part would be retrieved from
different servers. The authors of [21] proposed a new grid data-transfer tool
(rFTP) that retrieves partial segments of data in parallel.

The authors of [22] devised a PU-DG Optimizer toolbox (also recognized
as PU-DG Optibox) that is a package containing some efficient techniques
and algorithms. The algorithms are operating as middleware on the top of
data grid platforms to optimize file downloads by improving its effectiveness
and performance. The toolbox allows the users to select their preferences. It
adopts three network factors including bandwidth (B), distance (D), and
history record (H). Therefore, the preferences have totally six different
options: BDH, BHD, DBH DHB, HBD, and HDB, in which the user can choose
one. The toolbox utilizes mathematical formulations for download time. It is
transformed into dynamic programming problem, in order to reduce the final
time complexity to O(n), where n is the number of candidate replica sites.
The toolbox also provides manual and automatic download modes for users,
independently whether they are experts or not in computing. It is anticipated
that such an approach could decreases the problems that most users could
possibly face, of operating and managing files in a data grid environment.

Some recent works [23-26] have addressed the notions of utilizing security
to select resources in a grid environment and others have integrated it with
replica transfer time to identify the best replica. They defined security in
different ways, namely: trust, self-protection, reputation and reliability.

108 ComSIS Vol. 10, No. 1, January 2013


http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6WKJ-4T5TPK1-1&_mathId=mml8&_user=10&_cdi=6908&_rdoc=1&_acct=C000050221&_version=1&_userid=10&md5=2df455c1f1154b7cf9c8147357df5660

Accessibility Algorithm Based on Site Availability to Enhance Replica Selection in a
Data Grid Environment

While there have been several works on replica selection, none to the best
of our knowledge incorporates the site availability as a factor that influences
response time. Moreover, none has considered site availability as a selection
factor.

3. System Design

The architecture of the data grid services is divided into two levels as shown
in Figure 1 [1]. The upper level includes the high-level services that utilize the
low-level or core services. Replica selection optimization technique is high-
level service so it invokes a number of core services. Information about an
individual resource or set of resources is collected and maintained by a Grid
Resource Information Service (GRIS) daemon [27]. GRIS is designed to
gather and announce system configuration metadata describing that storage
system. For example each storage resource in the Globus data grid [1]
incorporates a GRIS to circulate its information. Typically, GRIS informs
about attributes like storage capacity, seek times, and description of site-
specific policies governing storage system usage. Some attributes are
dynamic varying with various frequencies such as total space, the available
space, queue waiting time and mount point. Others are static such as disk
Transfer Rate.

Fig. 1. Major components and structure of data grid architecture. (Adopted from[1])

The new algorithm, as illustrated in Figure 2, commences by receiving the
user request via the Grid Resource Broker (RB). RB then retrieves related
physical file names and locations from the Replica Location Service (RLS).
Subsequently, the algorithm receives information about the sites which hold
the replicas and their network status from the GRIS such as: Network

ComSIS Vol. 10, No. 1, January 2013 109



Ayman Jaradat, Ahmed Patel, M.N. Zakaria, and A.H. Muhamad Amina

Weather Service (NWS)2 [28], Meta-computing Directory Service (MDS) [29]
and Grid File Transfer Protocol (GridFTP) [29]. Then, the best replica site for
the concerned user's job is chosen. In this context, the replica that promises
the minimum response time with the least probability of disruption is the best.
Hence, the new high-level service replica selection algorithm is an
optimization approach. The proposed algorithm is designed to perform
caching not replication. Caching [30] occurs on the user side; the user
decides which replica is the best and copies the required replica to the local
site. On the other hand, replication occurs on the server side; the server that
houses the replicas decides which replicas are to be created and where to
place them.
The exact sequence of steps in the proposed algorithm is as follows:

e Collects jobs from the Resource Broker.

e Collects replica of physical file names and locations from Replica Location
Service.

o Collects sites’ operating hours from their log files.

e Collects sites’ current criteria values like bandwidth from the information
service providers for instance GridFTP, NWS, and MDS.

o Calculates the response time and site availability of each site and rates
them by percentage. The site that demonstrates the best Response Time
(T) will be given the value of 100% and the rest of sites will be rated
based on their performance in comparison to the site that gets 100%. On
the other hand, the rank of site availability 100% will be given to the site
or the sites that show sufficient time to complete the transfer even if the
dynamic conditions of the network are degraded to some extent. A site is
assigned 100% site availability if it shows availability equal to the
predicted download time pulse the reserve time required to accommodate
any decline in the network. Site availability of the remaining sites is rated
based on the predicted download time and how much time is required for
the reserve time.

e Selects the best location that houses the required replica for the grid user.
The best location is the one that shows minimum transfer time and the
least probability of failure to complete the job due to site downtime.

This study focuses on incorporation of site availability as an essential
element in the process of locating the best replica. Site availability in this
work is defined as the relationship between the required time to download a
replica and the remaining time declared by the site that offers this service.
The remaining time of any site is the remaining over time to serve the user.
The response time is defined as the time elapsed when moving data file from
one site to another. The following subsections detail the calculation of site
availability, response time, remaining time and the best site selection:

2 NWS conducts end-to-end network probes (which it uses to measure available
network performance) and then applies fast statistical models to probe histories to
make performance forecasts

110 ComSIS Vol. 10, No. 1, January 2013



Accessibility Algorithm Based on Site Availability to Enhance Replica Selection in a
Data Grid Environment

Fig. 2. An overview of the new proposed algorithm

3.1. Calculating Time

Response time is a dynamic value changing as time passes based on the
load on the network or the storage devices. However it is anticipated to be
steady for a while or change slightly positively or negatively. But since it is
difficult to estimate the response time in a dynamic manner, the response
time can be estimated at the decision time (NWS applies fast statistical
models to probe histories to make performance forecasts). The response
time’s dynamicity is considered by integrating the new factor site availability
(more details about site availability is in subsection B). The response time for
a given site i is estimated by using the following equations proposed in a
recently published work [31]:

Ti=Tii+ T2i + T3i. (2)

T1 represents the transfer time, T2 represents the storage access latency
and T3 represents the requested waiting time in the queue. T1 represents the
data transmission via a wide area network, which depends on the network
bandwidth, either a wide area network (WAN) or a local area network (LAN)
and the file size which is computed by the following equation [32]:

FileSize (MB)

= . 2
T1i ™ Bandwidth (MB/SEC) @

ComSIS Vol. 10, No. 1, January 2013 111



Ayman Jaradat, Ahmed Patel, M.N. Zakaria, and A.H. Muhamad Amina

In general, the operating systems schedule the disk 1/0O requests in a manner
that improves system performance [33]. The process of scheduling is
implemented by maintaining a queue of requests for the storage device.
Therefore, the storage speed and the number of requests in the queue play a
major role in the average response time experienced by applications. As a
result, storage access latency (T2) is the delayed time of the storage
machines to cater the requests and the delayed time depending on the file
size and the storage type. Hence, T2 increased due to larger data files.
Moreover, different storage machines have discrepant speeds (data transfer
rates) during I/O operations. For example, a tape drive is slower than a disk
pool and there are many types of tape drives with different speeds. For
instance: the Hewlett-Packard (HP) Storage Works Ultrium 920 Drive speed
= 120 MegaBytes per second (MBps) while the HP Storage Works Ultrium
448 Drive speed = 24 MBps [31]. Storage access latency (T2i) is calculated
using the following equation:

T - FileSize (MB)
2i Storage Speed (MB/SEC)’

®3)

Storage machines receive many requests at the same time, but they can only
serve one request at a time. This leads to pending the requests on waiting in
the queue. Input data transfer must be performed prior to an actual request.
Similarly, output data transfer must be completed after an actual write
process request. This buffering technique balances required time for requests
waiting in the queue and the required time for storage media to serve the
request in process [33]. Furthermore, the site will be busy during the period
that it transfers any replica from the storage machine to the network. Any new
incoming data requests have to wait for the transaction to complete and for
the requests that join the queue prior to the underlying request [32].
Consequently, the new request should wait all the earlier requests to be
processed in the storage queue. The waiting time is the sum of time from the
first request in queue to the last. Each of these times is the storage access
latency time T2. The request waiting time in queue (T3i) is calculated using
the following equation:

Ty :Zn: Ta )

(n) represents the number of requests which are waiting in the queue prior to
the underlying request. To make it simple, this work assumes the queuing
model is M/M/1/N Poisson arrivals and service. The queuing model
represents a single server which has a waiting queue only for N customers
(including the one in service). The discipline is the first come, first served
(FCFS) [34]. Substituting Equations 2, 3 and 4 in Equation 1 produces:

112 ComSIS Vol. 10, No. 1, January 2013



Accessibility Algorithm Based on Site Availability to Enhance Replica Selection in a
Data Grid Environment

FileSize FileSize .
T - + > Tl (5)
' BW Storage Speed = A
However, it is worth mentioning that modern storage systems with disks

and flash memories allow networking and storage to occur simultaneously.
Hence, Equation 5 is modified as follows:

FileSize FileSize 3
-=MAX + + e 5a
T { BW } {StorageSpeed } .2:1: T (52)

Table 1. 10 GB and 100 GB replicas with different metric values for: common
storage speed and bandwidth, queue waiting time and remaining time

m (%)

wn O ) = > 8

5| w| S 3 3 2| 8| ©o| &

m = I @ ) =s c 8
= o s c o 3 ) o @
) Q o ® @ o . =3 = (%)) 4
[%) @ s s Q o 3 == < > 2
N| 9| E| 8 | = 8135|188 g| 2 3
° % 5| 5|2 | ofl28|85| 2| 8| &
5| &| 2| & |2 | 2|=39|8| | & -
w sl S o s | &3 @ 3 = 8

z = = = o | - o)
= @ | 3 = = Py Sl 81 @ o
W b ) = = = 2 o < >

E - —~ @ 8 o = a I

—~ ) —~ X = o o

D S =, o

~ =]

-
a
o

0.99 40.99

100, 150 45 100 3058 20 3700 60 63 2.83 65.83
100 600| 622 700 1035 61 1500 72 33 0.78 33.78
100, 150 45 1200) 4158 15 8500| 100 60 6.01 66.01
100] 300] 156 400 1397 45 1900 68 44 1.63 45.63

Therefore the replica selection algorithms should be aware of the
technology utilized in each site in order to estimate its response time
accurately. However, the proposed algorithm is not limited to using the

ComSIS Vol. 10, No. 1, January 2013 113



Ayman Jaradat, Ahmed Patel, M.N. Zakaria, and A.H. Muhamad Amina

abovementioned data transfer speed models; any other valid model could
easily replace the above mentioned models as an alternative solution.

Rating sites based on their response time (Tyi) is denoted by the following
equation:

ming T
aliy

TOi: Ti

For example, as shown in Table 1 which reflects real bandwidth, storage
speeds and file sizes, the estimated download time based on Equation 5 from
sites 1, 2, 3 and 4 are 295s, 249s, 333s and 109s respectively. Site 4 displays
the minimum download time so it is rated as a 100% site, site 2 is rated

based on Equation 6, %xlOOz%%while site 3 is rated

100. (6)

%x100243% and site 3 is rated%xloo =32%. As a result, all sites are

rated based on estimated download time to make the selection decision in
the next step feasible and easier. The content of Table 1 will be discussed in
detail in the following subsections.

3.2.  Calculating Site Availability

Site availability is the relationship between the operating time declared by the
service provider to serve certain VOs and the time required to transfer a file
from the same provider during the replica selection process. Therefore, site
availability (A) is computed as follows:

1.Ascertaining the remaining operation time (or allowed time) in seconds
(Rs) from the site.

2.Estimating the required time to transfer the file (Ts).

3.Site availability is calculated by:

_ Rs(SEC) 7)
Ts(SEC)x2a

The value of a is measured based on the network expected performance
and the expected download time as well. The replicas usually are very large
in size that is why they require long time to be downloaded. During this time,
the network performance is prone to change either negatively or positively.
The more stable the network condition is, the smaller value of a is required.
For example, if the network performance shows that the real time to transfer
a file is two times more than the estimated transfer time Ts, then a should be
equal to 2. The value of a can be obtained based on some factors like: place,
workdays, holidays, weekends, mornings, evenings, midnights and the
comparison of file transfer history and estimated time transfer history. The
minimum value of a should not be less than one. This is when the replica

114 ComSIS Vol. 10, No. 1, January 2013



Accessibility Algorithm Based on Site Availability to Enhance Replica Selection in a
Data Grid Environment

download time estimation is 100% accurate; the value of a is obtained from
the history information by comparing the estimated transfer times with the
actual transfer times. On the other hand, the maximum value of A should not
exceed 100% because it is adequate and more than 100% is considered
overqualified, which adds no values as demonstrated in Equation 8. In the
example below, we assigned the value 1 to a, assuming 100% accuracy in
download time estimation. However, based on our approach this number
should be multiplied by 2 in order to be more confident that the transfer will
commence and terminate from the same site and to avoid any risk of
disconnection prior to download completion as shown in Equation 7. Hence,
the minimum acceptable value for A is 50% but a higher value increases the
success rate. On the other hand, estimating a requires more attention, which
is outside the scope of this study. We plan to address this estimation issue in
future work.
Site availability is rated as follows:

100 Rs>aTS
=1_RSGEC) 100, Rs<aTs(" (8)
Ts(SEC)x 2ax

For example, using the same data shown in Table 1, the estimated
download time based on Equation 5 from sites 1, 2, 3 and 4 are 295s, 249s,
333s and 109s respectively and the remaining operating time for each are
500s, 300s, 70s and 200s respectively. Assuming the value of a is 1, the site

availability for site 1 is ﬂxmo =843%, and the site availability for
295x2x1
. . 300 . .
site 2 |s—2><100 =60% . The rest of the calculations are shown in Table
X £ X

1.

3.3. Estimating the Best Site

The new approach proposes an imaginary ideal or model value to be 100%
Time (T) and 100% Site availability (A) as shown in Figure 3. The best site is
the one with the closest distance (d) to the ideal value (T in Figure 3). We
titled it as the quality distance (qd) which is calculated using the following

equation:
\/(100—T 0)2 - (100— Ao)2

ComSIS Vol. 10, No. 1, January 2013 115



Ayman Jaradat, Ahmed Patel, M.N. Zakaria, and A.H. Muhamad Amina

The distance in Equation 9 is divided by V2 to normalize its value to be
between 0 and 100. The smaller the qd value, the better the site.

Fig. 3. Visual representation for sites and their model values

As shown in Figure 3, site T is the best site because it is the closest to the
model value. If we do not have site T, the algorithm will select site A, B, C or
D randomly because they all have the same distance from the Model value.
In fact, the best in this scenario is site B because it is composed of two
similar or almost similar values. This signifies a balanced solution, which is
not extreme for site availability or transfer speed as opposed to site F. Site F
displays high site availability but low quality transfer speed, which is still
better than site A. Site A, displays high-quality transfer speed and low-quality
site availability which could lead to a fault (disconnection). Moreover, it is
clear that site R is better than sites A, C and D. To select a balanced solution
and to avoid the extreme values as experienced in sites A or D as illustrated
in Figure 3, the standard deviation (sd) is conceptualized by yielding a
balanced optimal composition of time and availability. For example sd
(70,70) = 0, sd (50,50) = 0, sd (30,30) = 0 while sd (60,40) = 14.14 and sd
(70,30) = 28.28, and thus, the new equation for finding gqd is modified to be as

follows:
2 2
mad = ad +sa (T, + A )= J(loo_TO)E(loo_AO) +8(T,+ Ay) 10

Where sd increases the value of the quality distance which means
degrading qd, if the values of its parameters are distant as explained in the
previous example.

116 ComSIS Vol. 10, No. 1, January 2013



Accessibility Algorithm Based on Site Availability to Enhance Replica Selection in a
Data Grid Environment

Conversely, our experiments proved that adopting the standard deviation
sometimes has side effects that could divert from the optimal solution. For
example, if site X has the combination (63,100) for time and availability,
utilizing Equation 10, mqd = 52.16 and site Y has the combination (61, 72),
mqd = 40.78 meaning Y is better than X, even when it is clear that X is better
than Y for both parameters, site availability and time. This example proves
that the standard deviation has side effects and needs to be utilized wisely.
To overcome the problem of standard deviation, it has been scaled down by
dividing it into a number B as in Equation 11. The result, site X rating is
corrected to be better than Y. The other sites’ rates were corrected as well to
reflect reality. The last version of mqd equation is denoted by:

\/(100 T 0)2 * (100_ AO)2 + sd (To + Ao)
J2 B

Estimating the value £ was carried out using a comprehensive search for
all possible paired values of availability A and time T (A, T). We created a
table containing all the possible values of A and T. The value 50 was
assigned to availability in the first column, which is the minimum applicable
value when & =1, the second 51 and so on until the last column was given the
value 100. We assigned the first row the value 30 for T and the second 31
until the last row was assigned the value 100. Table 2 depicts a summary of
the real table. The objective is to find a value forfthat satisfies the following
conditions:

1- Decreases the value of mqgd (smaller mqd, better performance) while
moving in the table from top to bottom. It is logical that the pair (50, 95)
is better than (50, 30); certainly if we have both options we will choose
the former.

2- Decreases the value of mqd while moving from left to right because it is
logical that the pair (90, 30) is better than (50, 30).

3- Balances, to some extent, the values of A and T, for example (50, 50) is

better than (90, 30) but (60, 44) is the best because 44 is faster than 30
and 60 is safer than 50.

mqd = (12)

Different values for g has been tried, from 1 onwards; thus far, the

conclusion the value of 10 is the best. For instance, as shown in Table 2,
beneath row 8 the value of mqgd increases while T increases which is illogical
and contravenes condition 1 as well. On the other hand, if we increase the
value of B to be greater than 10, (90, 30) will be better than (50, 50)
resulting in an unbalanced combination. In actuality, estimating S requires
further researches which will be conducted by the researchers in the future.
Therefore, at the moment we leave tuning its value to grid administrators and
users’ preferences because some users prefer speed over reliability or vice
versa or a balance of the two. Our preliminary experiments found that the
best value for B is 10 as presented in Tables 1, 2 and 3.

ComSIS Vol. 10, No. 1, January 2013 117



Ayman Jaradat, Ahmed Patel, M.N. Zakaria, and A.H. Muhamad Amina

Table 2. All possible paired values of availability A and time T and various values for

B

T

57.01 59.13 70 30 53.85 56.68 80 30/51.48 55.01 90 30 50.00 54.24

53.37 55.06 70 36 43.38 52.38 80 36 47.41 50.52 90 36
52.77 54.39 70 37 43.34 51.67 80 37 |GHGHMGNE 90 37 45.11 48.85
52.17 53.73 70 38 48.70 50.57 80 38 46.07 49.04 90 38 44.41 45.08
5158 53.06 70 33 48.07 50.26 80 39 45.39 48.29 90 39 43.71 47.32
50.99 52.40 70 40 [EEIENREIEE =0 40 44.72 47.55 90 40 43.01 46.55
70 44 44.92 46.75 80 44 42.05 44.53 90 44 40.22 43.48
50 45.28 45.98 70 50 |41.23 42.65 80 50/38.08 40.20 90 50/36.06 38.83
94 28.60 31.00 70 94 21.63 23.33 80 94 14.76 15.75 90 94 8.25 B.53
95 28.50 30.98 70 95 21.51 23.27 80 95 14.58 15.64 90 95 7.91 8.26

60.83 74.97
57.43 67.33
56.87 66.07
56.32 64.81
55.77 63.55
55.23 62.30
53.08 57.33

A
50
50
30
30
50
50
50

35.61 66.72
35.53 67.35

232323223338 ¢r

The modified distance mqd will be titled as TA in this study because it is
composed of time and site availability and is given a new metric TA instead
of meter (cm or km) because we are not measuring a normal distance. TA is
derived from Time and Site availability where the site with the smallest TA is
the best, since it is the closest to the imaginary ideal value. Table 3 is a
mathematical example of our approach where column 1 represents the value
of site availability; column 2, the estimated download time; column 3, the
distance from the model value; column 4, the standard deviation of the two
values for each site (estimated download time and site availability) divided by
10 and column 5, the total of columns 3 and 4. Again, as shown in Table 3,
qd is the lowest in row 3, with the values 56, 90 TA for site availability and
time respectively. However, it is clear that a value of 56 for site availability is
very dangerous and thus prone to fault. As a result, this is not the best
combination, even when the value of time is the highest. Therefore, standard
deviation corrects the selection as can be seen in row 1, which shows the
values site availability and time values of 68 each, as the best selection and
row 2, as the second choice if row 1 is not available. On the other hand, the
new algorithm excludes from the selection any site with site availability less
than 50. For instance, referring to Table 3, if sites 1 to 5 do not exist and the
competition is only between sites 6 and 7, and both of them have the same
TA value, the winner is site 6 because the site availability for site 7 is less
Than 50% which is for sure not enough.

Table 3, Example of applying the proposed algorithm

68 68 32.00 0.00 32.00
65 70 32.60 0.35 32.95
56 90 31.91 2.40 34.31
60 79 31.95 1.34 33.29
50 51 49.50 0.07 49.57
60 42 49.82 1.27 51.09
42 60 49.82 1.27 51.09

118 ComSIS Vol. 10, No. 1, January 2013



Accessibility Algorithm Based on Site Availability to Enhance Replica Selection in a
Data Grid Environment

The pseudo code below emphasizes the detailed algorithm:

1. get R ( list of physical file names and locations for
the required replica) from RLS

2. get Rs for each replica from the data grid’s log file
3. estimate B

4. i=1

5. while R not empty

5.1 calculate Ty, Ag

2 2
(100— )+(100— ) sd o+
5.2 calculate mgd (i)z\/ To = Ao) (Toﬂ Aol
2

5.3 1 = i+l
6. best = maqgd(l)

7. 4=2
8. While j <= i
8.1 if mqd(j) < best & A(f) > 50

8.1.1 best = mqd(j)

9. halt

4. Performance Evaluation

To assess the impacts of the new replica selection algorithm, a simulation
tool was used to conclude the performance. The researchers, thereby,
conducted a comprehensive search on distributed and parallel systems, in
particular, simulators that merit grid features [35] for example: MicroGrid,
GridSim, SimGrid, OptorSim, Monarc, ChicSim and Bricks. However,
OptorSim was found to be the most suitable given that it simulates the replica
selection and the data replication strategies [36, 37]. The designer of
Optorsim, Figure 4, states that it was developed to “model the interaction of
the individual grid components of a running data grid as realistically as
possible” [37]. Accordingly, OptorSim has been chosen because it is the most
realistic test bed. However has been modified to fit the current research.
Figure 4, presents OptorSim architecture.

ComSIS Vol. 10, No. 1, January 2013 119



Ayman Jaradat, Ahmed Patel, M.N. Zakaria, and A.H. Muhamad Amina

Fig. 4. OptorSim architecture

5. Simulation Setup

OptorSim is designed as an evaluation tool to test the performance of
different job scheduling and replica optimization strategies (a job is usually
specified as a set of data files that require analysis). It has a massive number
of elements to accomplish in a realistic environment. It contains Computing
Elements (CEs) to which the jobs are passed; storage elements (SEs) as a
place to keep data; and network elements to connect the grid sites. Like the
real grid, bandwidth between sites is integrated in the simulation as well as
other network status elements. The remaining two elements are the resource
brokers, which submit jobs to grid sites based on scheduling algorithms and
the Replication Manager (RM) that plays a role in replication optimization
strategies. The OptorSim structure adapts European data grid (EU data grid)
topology and configuration. The grid topology as an input to OptorSim
consists of 20 sites in the USA and Europe that were utilized during a data
production form (CMS test bed) for major LHC experiments [37] as shown in
Figure 5 and the other input simulates grid jobs and data file configurations.
The European Organization for Nuclear Research (CERN) and Fermi
National Accelerator Laboratory (FNAL) are producing the original files and

120 ComSIS Vol. 10, No. 1, January 2013



Accessibility Algorithm Based on Site Availability to Enhance Replica Selection in a
Data Grid Environment

storing them locally with a storage capacity of 100 GB each and other sites
which have at least one CE and a storage capacity of 50 GB each. The order
in which a job requests files is determined by the Access Pattern used. Some
different access patterns have been selected for the simulation. Such as
sequential (all files are requested in a predetermined order), Gaussian
random walk [37] (successive files are selected from a Gaussian distribution
centered on the previous file) and Zipf. A Zipf-like distribution can be
regarded as a special kind of exponential distribution allowing the simulation
of several types of grid job. Additional essential feature is background
network traffic, which can fluctuate variably over time. Any replica selection
algorithm has to be flexible enough as to adapt to the constantly fluctuating
environment, obtaining the best performance for its users.

The default settings of OptorSim were utilized. They were copied from the
EU data grid parameters. The bandwidth between the two sites is marked in
Figure 5. In addition, the default OptorSim system workloads’ values and
parameters’ values were utilized as shown in Table 4 (The detailed
parameters’ values of each site are included in the example folder within
OptorSim package. These values represent the real values of the EU data
grid).

There are several configuration files used to control various inputs to
OptorSim. The grid configuration file describes the grid topology and the
content of each site. That is the resources available and the network
connections to other sites. The job configuration file contains information on
the simulated files, jobs and the site policies for each site (the list of files
each site will accept). The simulation parameters file contains various
simulation parameters which the user can modify. If the user wishes to
simulate background network traffic, a bandwidth configuration file is needed
along with several data files to describe the simulated traffic. The simulation
accomplished on an Hp desktop with 2.8 G CPU and 2 G RAM. Since
OptorSim does not consider site availability, it was amended by assigning
service hours to each site ranged from 1second to 24 hours (sites available
for less than 1 second are not declared by replica catalog). Thereafter, if the
simulator faces a selected replica from a site with insufficient operating time,
it will then increase the replica transfer time based on the expected delay.
This is done by adding the reconnection setup time (10s) and half of the time
consumed to transfer the replica before disconnection because fault
tolerance techniques may require resuming or restarting from the beginning.
In the simulation the average fault cost is calculated as follow:

Fault Cost = Rr+Trls+Rd+Cs+Ror (12)

Rr:  Required time to recognize that there is a fault

Trls: Time to inquire and get the response from RLS

Rd: Replica selection decision time

Cs: Connection setup time

Ror: Resume or restart from scratch time, which is based on fault
tolerance technique

ComSIS Vol. 10, No. 1, January 2013 121



Ayman Jaradat, Ahmed Patel, M.N. Zakaria, and A.H. Muhamad Amina

In the simulation, Rr and Trls are set to 2s each, Rd 1s and Cs set to 5s each.
The total is 10s, which is not that critical for usually huge replicas but in
contrast, Ror has a significant impact especially if the fault tolerance
technique requires restarting from scratch. Fault tolerance techniques have
an important impact to the replica selection process, which will be addressed
in our future work.

Table 4, Workload and system parameter values

Description Value

Number of files 200

File size 1G

Storage available at an SE 30 G-100000 G
Number of files accessed by a job 3-20

a 1

B 10

Fig. 5. Grid topology for CMS test bed

6. Performance Metrics & Cost

In a grid environment, users normally send their jobs to the RB, which locates
the best site to carry out the jobs. The executed jobs commonly require some

122 ComSIS Vol. 10, No. 1, January 2013



Accessibility Algorithm Based on Site Availability to Enhance Replica Selection in a
Data Grid Environment

data files; the optimizer locates the best locations of the required files.
However, each site services the users based on their local policy, which
allows the users to be served for a specific number of hours per day or night,
or even possibly, only on weekends. Hence, selecting the site at an improper
time could lead to disconnection. Depending on the fault tolerance approach,
the job could be resumed by another site (which may also be prone to
disconnection if site availability is not considered or it may be required to
restart the entire process from scratch. Therefore, the job’s time requirement
will increase. The job’s time requirement begins from the time the RB
transmits the job until the time that the job has completed its execution. This
time is called the job turnaround time and includes the response time. The
best replica selection according to the new algorithm decreases the response
time and consequently decreases the job turnaround time. Therefore, the
Average Job Turnaround Time (AJTT) is suitable for a performance metric
that evaluates our overall algorithm performance and can be measured by
using the following equation:

ST T

AJTT = ['—1 (13)

n

Tin represents the time the job is received by the algorithm to begin
execution, Tout represents the time the job has completed the execution, and
n represents the total number of jobs processed through the system. On the
other hand, the new algorithm considers two factors to select the best replica.
The first is time expenditure and the second is site availability. Therefore, a
new quality of service (QoS) value composed of the two factors (Time and
Availability) has emerged and titled TA. The lowest value of TA means the
best quality. Table 1, illustrates scenarios for 10 GB and 100 GB replicas with
different metric values for: storage speed, bandwidth, queue waiting time and
time remaining. Column 6 shows that the time metrics combinations for the
best sites are located in rows 4 and 7 for the 10 GB replica. Row 4 is the best
due to high site availability and less disconnection risk. On the other hand, for
the file size of 100 GB, the candidate site shown in row 12 reveals the best
transfer time of 735s but was discarded because it is available only for 500s,
which is not sufficient and a certain error will occur. The optimizer selected
the site presented in row 13, which shows 28.62 TA. Even the site presented
in row number 14 shows a 62s better transfer time. This decision is due to the
anticipated high risk from site 14. It is difficult to estimate the cost of our new
approach. In the aforementioned example, it was 62s but different situations
have different costs but nonetheless, it is worth it for a reliable transfer.

ComSIS Vol. 10, No. 1, January 2013 123



Ayman Jaradat, Ahmed Patel, M.N. Zakaria, and A.H. Muhamad Amina

7. Results and Discussion

OptorSim is equipped with different built-in replication strategies (i.e., Least
Recently Used (LRU), which always replicates and deletes the least recently
used file, Least Frequently Used (LFU), which always replicates and deletes
the least frequently used file and the Economic Model-Binomial (EB), which
replicates, if it is economically advantageous, using a binomial prediction
function for values). However, within these replication strategies only one
built-in replica selection algorithm is applied. It selects the best replica
locations that show the least transfer time [30-31].

The simulations have been performed to calculate AJTT as the average of
the total time required for all jobs, measured in seconds. The simulation
commenced by investigating the best value for B. Several values were tested
for B starting from 1 until 18. On the other hand, due to the fact that there is a
strong relationship between a and f, the abovementioned tests were
performed utilizing different values for a under LFU replication strategy.
Table 5 depicts the results of these experiments wherein the best value of
is 10 when a =1 or 1.5, and the best value of B is 9 when a =2.

Table 5, Average jobs’ time in seconds for 500 jobs with different values of a and

B AJTT when AJTT whena AJTT whena
a=1 =1.5 =2
1 698314.10 1313303.40 1525233.60
2 678414.25 1046605.20 1370006.00
3 650086.10 1023575.94 1335122.10
4 716841.20 1159565.00 1324494.40
5 732999.25 918903.44 1315733.10
6 635794.00 1093129.10 1276658.80
7 680829.75 1418769.50 1376628.80
8 698921.40 978713.56 1353125.50
9 685447.56 1220957.00 1225239.60
10 594141.75 893544.75 1176878.20
11 979156.90 836304.30 1323419.00
12 753310.75 993881.50 1473392.90
13 743662.50 1106562.00 1240304.00
14 634496.50 937375.10 1514095.50
15 734516.50 1029952.30 1438059.80
16 665705.60 1133184.00 1618809.80
17 643339.60 1061195.90 1245205.20
18 801867.10 1104780.40 1318509.40

Moreover, to compare the performance when the systems allows storage
and networking to occur simultaneously (Equation 5a), and when it does not
allow that (Equation 5), the simulator was operated using both scenarios. The
results are illustrated in Table 6. It is clear that overlapping reduces AJTT

124 ComSIS Vol. 10, No. 1, January 2013



Accessibility Algorithm Based on Site Availability to Enhance Replica Selection in a
Data Grid Environment

which reflects better performance. Because the scope of this study is only
site availability, and it is anticipated that grid systems are still using legacy
storage systems, the remaining experiments were carried out based on
Equation 5.

Table 6. Average jobs’ times in seconds for 500 jobs based on Equations 5 and 5a

LUR LFU Economic
Test #
Eq 5a Eq 5 Eq 5a Eq 5 Eq 5a Eq 5
1 12756230 11839082 8973130 11083612 8856054 8628327
2 9173741 8574796 11902111 12664846 9315399 9670981
3 9474930 9842670 10641312 10206533 8758650 9393326
4 8839858 12177088 8817204 12174020 7927166 10171052
5 10249128 10639864 9871939 11989452 9487867 10921624
AITT 10098777 10614700 10041139 11623692 8869027 9757062
o
53
2 » 9 4.86% 13.61% 9.10%
v s 0
Q >
(@]
Table 7. Average jobs’ times in seconds for 100 jobs when availability is always
100%
LUR LFU Economic
> > > > > >
— = 0 S e 5 © 5 ™ O A &5 @ O
o 93 |98 | B3 |8 8| ©3 S 3T
-+ 3. T 3. =+ 0 3. T 3. =+ 0 3. T = o]
* 52 |FZa| F8 |FX3| Fg | FIg
ST 3 ES ST 3 g 38 3 3
1 286111 231099 278278 230458 1060176 906395
2 275035 242358 271168 220449 1085247 1035999
3 284864 222627 255691 223970 913550 904781
4 238518 232944 288959 216565 1005183 954523
5 256388 224360 242888 224768 977966 1062441
AITT 268183 230678 267397 223242 1008424 972828
> ©
TS o
932 13.99 % 16.51 % 3.53%
S o ® 35
3 a k5]

To verify that the only difference between the proposed algorithm and the
built-in in OptorSim is site availability, both algorithms were run with site
availability always set to 100%. The expectation was that similar performance
would be achieved from both because response time is the only selection
factor in the built-in OptorSim and should be in the proposed algorithm when
site availability is 100%. However, the simulation results in Table 7 below
were surprising. They show that the proposed algorithm is less efficient in all

ComSIS Vol. 10, No. 1, January 2013 125



Ayman Jaradat, Ahmed Patel, M.N. Zakaria, and A.H. Muhamad Amina

three of the replication strategies. The justification for that is the number of
jobs in this experiment is 100. Each of them is accompanied by 10 to 100
replicas, which means on average around 5500 replicas (decisions).
Therefore, there will certainly be some overhead.

Table 8 (a). Average jobs’ times in seconds for 100 jobs

LUR LFU Economic
> v > > v > > v >
o &3 |#®S | &3 |&°sS | &3 |®@%
-+ S o 9 =08 S o 9 =8 ST S =3
* =9 = % C =9 = % G =9 & % 0
> 8 S = S = S
3 o 3 3 3 o 3 3 3 o 3 3
1 704189 1278467 628694 1544662 933333 932571
2 582321 1090155 747886 1013950 909764 855317
3 582266 1280359 579806 1243939 836163 946263
4 720064 1105045 706270 1248695 855435 956849
5 650280 1041018 648674 1161950 934881 964598
AITT 647824 1159009 662266 1242639 893915 931120
>5 m
.
=3 3 = 4411 % 46.70 % 4.00 %
S ® 3
3 o <

Based on the abovementioned experiments, the remaining simulation
experiments were carried out by setting the value of $ to 10. In view of the
fact that the number of jobs influenced data transfer time, we evaluated our
algorithm’s performance in three different scenarios by varying the number of
jobs each time. In the first, second and third scenarios, the number of jobs
were 100, 500 and 1000 respectively.

We executed the simulation 5 times for each scenario along with a
predetermined site operating time scenario, utilizing both our algorithm and
the built-in extended algorithm in OptorSim. We did our experiments using
three different OptorSim built-in replication strategies, namely, LRU, LFU and
EB. Our new replica selection algorithm was tested by performing several
executions on the same replicas with a different number of jobs. The results
of the simulation demonstrated that the AJTT in the new algorithm was less
than the AJTT of the OptorSim built-in replica selection algorithm for all
scenarios and under different replication strategies as shown in Tables 8 (a,
b, c), which signified that the proposed algorithm outperformed the previous
algorithms.

126 ComSIS Vol. 10, No. 1, January 2013



Accessibility Algorithm Based on Site Availability to Enhance Replica Selection in a
Data Grid Environment

Table 8 (b). Average jobs’ times in seconds for 500 jobs

LUR LFU Economic
> > > > > >
= w2 m @ O N O m @ O TR ™ @ O
o S 3 ST S 3 ST @3 |Scs
-+ = T S = 0 = T S = 0 =. T S =+ 0
E-3 =+ 0O & = =+ 0O = I =+ 0O o =
32 37 3 32 37 3 38 |37 35
1 12108976 17167802 9644758 19077332 9065388 8516753
2 11204400 15578618 11485171 12449995 9751129 8698534
3 8571915 17896652 9990595 17365892 8654000 9336498
4 12741477 14618266 11045485 16848332 8335365 10864292
5 9886645 14733334 10801072 13096076 9451450 9190288
AJITT 10902682 15998934 10593416 15767525 9051466 9321273
>
£35 93
=S -c (= o
= 2 = % 31.85% 32.81% 2.89%
S o © 5
S o 2
Table 8 (c). Average jobs’ times in seconds for 1000 jobs
LUR LFU Economic
> > > > > >
7 53 |59 | 535 |59 | 53 |§¢E¢
] S 3 = S 3 A S 3 =
3+ (=] [ (=] [= A (=] [= AT
=25 59 ol SHSEY g & 52
ST 3 3 ST 3 3 38 3 3
1 44425416| 59635972 41978100 51684568 30145046 291046946
2 41558504| 72720032 44334344 73405680 24623898 24063774
3 41331136 64606356 41013108 67973424 26333746 27421194
4 45374036 60879928 42693512 58488172 28583260 26592294
5 45420436 83777552 42533128 75843184 28765640 26274540
AJITT 43621905| 68323968 42510438 65479005 27690318 79079749
>3
mS X
2352 36.15 % 35.08 % 64.98 %
S o ®© 3
3 a k5]

Figure 6 (a, b, c) depicts the average jobs’ total time for the proposed
algorithm and the OptorSim built-in algorithm under the replication strategies
LRU, LFU and EB where the number of jobs was 100, 500 and 1000
respectively. It is clear that when we increase the number of jobs AJTT will
be increased regardless of the algorithm or the strategy utilized. However, the
increment will be more if site availability is not implemented in the algorithm;
this is because the probability of selecting unavailable sites, or sites available
for an insufficient amount of time, increases.

ComSIS Vol. 10, No. 1, January 2013

127




Ayman Jaradat, Ahmed Patel, M.N. Zakaria, and A.H. Muhamad Amina

Fig. 6 (a). Average jobs’ total time in seconds for 100 jobs

Fig. 6 (b). Average jobs’ total time in seconds for 500 jobs

128 ComSIS Vol. 10, No. 1, January 2013



Accessibility Algorithm Based on Site Availability to Enhance Replica Selection in a
Data Grid Environment

Fig. 6 (c). Average jobs’ total time in seconds for 1000 jobs

In real life scenarios, replica selection based only on response time could
perform better than the proposed algorithm if the selected sites display
insufficient availability but still succeed to deliver the replicas without any
disconnection, or if all the sites are available 24 hours per day

8. Conclusion

In this paper, we have introduced a new replica selection algorithm in the
data grid environment. The algorithm engaged a new QoS criterion namely
site availability in the replica selection process. We defined this novel QoS
criterion, demonstrated its importance and integrated it into a replica
selection optimizer. A grid simulator (i.e. OptorSim) was utilized to evaluate
the algorithm. The simulation experiments were setup by expanding some
modules in OptorSim. The strengths of the algorithm had been investigated
and the results of our experiments were presented. The simulation results
demonstrated that the new algorithm enhanced the performance of the grid
environment and thus, decreased the job’s average total time. A new network
performance parameter a was proposed and its value will be addressed in
our future work. Also, the impact of fault tolerance techniques against the
download time was highlighted and would be utilized in the replica selection
process in our future work.

ComSIS Vol. 10, No. 1, January 2013 129



Ayman Jaradat, Ahmed Patel, M.N. Zakaria, and A.H. Muhamad Amina

References

1.

10.

1.

12.

13.

14.

15.

16

17.

130

S. Vazhkudai, S. Tuecke, and I. Foster, "Replica selection in the globus data
grid," in Cluster Computing and the Grid, Brisbane, Qld. , Australia 2001, pp.
106-113.

A. Chervenak, E. Deelman, |. Foster, L. Guy, W. Hoschek, A. lamnitchi, C.
Kesselman, P. Kunszt, M. Ripeanu, and B. Schwartzkopf, "Giggle: a framework
for constructing scalable replica location services," in 2002 ACM/IEEE
conference on Supercomputing, Baltimore, Maryland 2002, pp. 1-17.

C. Dumitrescu and |. Foster, "GRUBER: A Grid resource usage SLA broker,"
Euro-Par 2005 Parallel Processing, pp. 644-644, 2005.

M. Lei, S. V. Vrbsky, and X. Hong, "An on-line replication strategy to increase
availability in Data Grids," Future Generation Computer Systems, vol. 24, pp. 85-
98, 2008.

D. Zeinalipour-Yazti and N. Kyriacos, "Managing Failures in a Grid System using
FailRank," Department of Computer Science,University of Cyprus2006.

I. Foster, J. Gieraltowski, S. Gose, N. Maltsev, E. May, A. Rodriguez, D. Sulakhe,
A. Vaniachine, J. Shank, and S. Youssef, "The Grid2003 production Grid:
Principles and practice," in 13th IEEE International Symposium on High
performance Distributed Computing, 2004, Honolulu, Hawaii, 2004, pp. 236-245.
(2011, 6-11). Open Science Grid Consortium. Available:
http://www.opensciencegrid.org

(2011, 28/10). LCG Grid. Available: http://www.gridpp.ac.uk.

M. Aggarwal, D. Colling, B. McEvoy, G. Moont, and O. Aa v. d., "A Statistical
Analysis of Job Performance within LCG Grid," presented at the CHEPOG,
Mumbai, India, 2006.

S. Lewontin and E. Martin, "Client side load balancing for the web," in 6th
International World Wide Web Conference, Santa Clara, California, 1997, pp. 7-
11.

Z. M. Fei, S. Bhattacharjee, E. W. Zegura, and M. H. Ammar, "A novel server
selection technique for improving the response time of a replicated service," in
Seventeenth  Annual Joint Conference of the IEEE Computer and
Communications Societies., San Francisco, CA , USA 1998, pp. 783-791 vol. 2.
L. Zuo, S. H. Liu, J. Wei, Y. L. Feng, and G. C. Fan, "Adaptive component replica
selection model and algorithms," Ruan Jian Xue Bao(Journal of Software), vol.
19, pp. 1212-1223, 2008.

R. Vingralek, Y. Breitbart, M. Sayal, and P. Scheuermann, "Web++: A system for
fast and reliable web service," in USENIX Annual Technical Conference, USA,
1999, pp. 13-13.

M. Sayal, Y. Breitbart, P. Scheuermann, and R. Vingralek, "Selection algorithms
for replicated web servers," ACM SIGMETRICS Performance Evaluation Review,
vol. 26, pp. 44-50, 1998.

C. Tan and K. Mills, "Performance characterization of decentralized algorithms
for replica selection in distributed object systems,” in the 5th international
workshop on Software and performance, New York, NY, USA 2005, pp. 257-262.
R. Kavitha and |. Foster, "Design and evaluation of replication strategies for a
high performance data grid," in International Conference on Computing in High
Energy and Nuclear Physics, Beijing, China 2001.

Y. Zhao and Y. Hu, "GRESS-a grid replica selection service," in 16th
International Conference on Parallel and Distributed Computing Systems, Reno,
Nevada,USA, 2003.

ComSIS Vol. 10, No. 1, January 2013


http://www.opensciencegrid.org/
http://www.gridpp.ac.uk/

Accessibility Algorithm Based on Site Availability to Enhance Replica Selection in a

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

Data Grid Environment

S. Vazhkudai and J. M. Schopf, "Using regression techniques to predict large
data transfers," International Journal of High Performance Computing
Applications, vol. 17, p. 249, 2003.

R. M. Rahman, R. Alhajj, and K. Barker, "Replica selection strategies in data
grid," Journal of Parallel and Distributed Computing, vol. 68, pp. 1561-1574,
2008.

C. ze Wu, K. gui Wu, M. Chen, and C. X. Ye, "Dynamic Replica selection
services based on state evaluation strategy,” in Fourth ChinaGrid Annual
Conference, 2009, Yantai, Shandong 2009, pp. 116-119.

J. Feng and M. Humphrey, "Eliminating replica selection-using multiple replicas
to accelerate data transfer on grids," 2004, pp. 356-366.

K. C. Li, H. H. Wang, K. Y. Cheng, and T. Y. Wu, "Strategies Toward Optimal
Access to File Replicas in Data Grid Environments," Journal of Information
Science and Engineering, vol. 25, pp. 747-762, 2009.

V. Vijayakumar and R. S. D. W. Banu, "Security for resource selection in grid
computing based on trust and reputation responsiveness," International Journal
of Computer Science and Network Security, vol. 8, pp. 107-115, 2008.

G. Kavitha and V. Sankaranarayanan, "Secure Resource Selection in
Computational Grid Based on Quantitative Execution Trust," World Academy of
Science, Engineering and Technology, vol. 72, pp. 149-155, 2010.

B. Zhang, Y. Xiang, and Q. Xu, "Trust and Reputation Based Model Selection
Mechanism for Decision-Making," in Second International Conference on
Networks Security Wireless Communications and Trusted Computing, 2010,
Wuhan, Hubei 2010, pp. 14-17.

S. Naseera, T. Vivekanandan, and K. Madhu Murthy, "Data Replication Using
Experience Based Trust in a Data Grid Environment," Distributed Computing and
Internet Technology, vol. 1, pp. 39-50, 2009.

D. H. Kim and K. W. Kang, "Design and implementation of integrated information
system for monitoring resources in grid computing," in 10th International
Conference on Computer Supported Cooperative Work in Design Nanjing, 2006,
pp. 1-6.

R. Wolski, "Dynamically forecasting network performance using the network
weather service," Cluster Computing, vol. 1, pp. 119-132, 1998.

S. Fitzgerald, |. Foster, C. Kesselman, G. Von Laszewski, W. Smith, and S.
Tuecke, "A directory service for configuring high-performance distributed
computations," 1997, pp. 365-375.

K. Ranganathan and |. Foster, "Identifying dynamic replication strategies for a
high-performance data grid," Grid Computing—GRID 2001, pp. 75-86, 2001.

H. H. E. AL-Mistarihi and C. H. Yong, "Response Time Optimization for Replica
Selection Service in Data Grids," Journal of Computer Science, vol. 4, pp. 487-
493, 2008.

K. Ranganathan and |. Foster, "Identifying dynamic replication strategies for a
high-performance data grid," in the Second International Workshop on Grid
Computing Denver,C0O,2001, 2001, pp. 75-86.

S. Aberham, P. Baer, and G. Greg, Operating System Concepts Seventh ed. vol.
5. New York, NY, USA.: Wiley, 1973.

S. M. Ross, Introduction to probability models, 6th ed.: Academic Pr, 1997.

A. Sulistio, C. S. Yeo, and R. Buyya, "A taxonomy of computer - based
simulations and its mapping to parallel and distributed systems simulation tools,"
Software: Practice and Experience, vol. 34, pp. 653-673, 2004.

ComSIS Vol. 10, No. 1, January 2013 131



Ayman Jaradat, Ahmed Patel, M.N. Zakaria, and A.H. Muhamad Amina

36. W. H. Bell, D. G. Cameron, R. Carvajal-Schiaffino, A. P. Millar, K. Stockinger,
and F. Zini, "Evaluation of an economy-based file replication strategy for a data
grid," in 3rd IEEE/ACM International Symposium on Cluster Computing and the
Grid, 2003, Tokyo, Japan, 2003, pp. 661-668.

37. W. H. Bell, D. G. Cameron, A. P. Millar, L. Capozza, K. Stockinger, and F. Zini,
"Optorsim: A grid simulator for studying dynamic data replication strategies,"
International Journal of High Performance Computing Applications, vol. 17, pp.
403-416, 2003.

Ayman Jaradat has obtained his MSc from Universiti Sains Malaysia in 2007
and BSc, Yarmouk University, Jordan in 1989. He is specialized in Computer
Science more specifically in distributed systems. His research interest
includes grid computing which focuses on data grids, genetic algorithm,
distributed algorithms and applications. Jaradat is currently pursuing his PhD
at Universiti Teknologi PETRONAS, Malaysia.

Ahmed Patel received his MSc. and PhD. degrees in Computer Science
from Trinity College Dublin (TCD), Ireland. He is a Professor in Computer
Science at Universiti Kebangsaan Malaysia. His research interests is in Cloud
& Grid Computing, Smart Grid, Cyber Security & Digital Forensics. He has
published well over 220 technical and scientific papers and co-authored 2
books on computer network security and 1 book on group communications,
and co-edited a book distributed search systems for the Internet.

Nordin Zakaria has obtained his PhD from Universiti Sains Malaysia in 2007,
MSc from Universiti Malaya in 1999, and BSc from Universiti Putra Malaysia
in 1996. Zakaria is specialized in Computer Science and his research
interest includes high-performance computing, genetic algorithm, distributed
algorithms and applications. Zakaria was assigned to establish and lead the
High-Performance Computing Service Center at Universiti Teknologi
PETRONAS.

Anang Hudaya Muhamad Amin is a senior lecturer in the Department of
Computer & Information Sciences, Universiti Teknologi PETRONAS (UTP),
Malaysia. He received a BTech (Hons.) in Information Technology from UTP,
Malaysia, and Master of Network Computing and PhD. from Monash
University, Australia. His research interests include artificial intelligence with
specialization in distributed pattern recognition and bio-inspired
computational intelligence, wireless sensor networks and distributed
computing.

Received: January 02, 2012; Accepted: October 04, 2012.

132 ComSIS Vol. 10, No. 1, January 2013


http://www.yu.edu.jo/en/

DOI: 10.2298/CSIS110927038J

Ant Colony Optimization Algorithm
with Pheromone Correction Strategy for
the Minimum Connected Dominating Set Problem

Raka Jovanovic! and Milan Tuba?

! Texas AM University at Qatar
PO Box 23874, Doha, Qatar
rakabog@yahoo.com
2 Megatrend University Belgrade, Faculty of Computer Science
Bulevar umetnosti 29, N. Belgrade, Serbia
tuba@ieee.org

Abstract. In this paper an ant colony optimization (ACO) algorithm for
the minimum connected dominating set problem (MCDSP) is presented.
The MCDSP become increasingly important in recent years due to its ap-
plicability to the mobile ad hoc networks (MANETSs) and sensor grids. We
have implemented a one-step ACO algorithm based on a known simple
greedy algorithm that has a significant drawback of being easily trapped
in local optima. We have shown that by adding a pheromone correction
strategy and dedicating special attention to the initial condition of the ACO
algorithm this negative effect can be avoided. Using this approach it is
possible to achieve good results without using the complex two-step ACO
algorithm previously developed. We have tested our method on standard
benchmark data and shown that it is competitive to the existing algorithms.

Keywords: Ant colony optimization (ACO), Minimum connected dominat-
ing set problem, Swarm intelligence, Optimization metaheuristics

1. Introduction

A dominating set for a graph G(V, E) is a subset of vertexes D C V that has
a property that every vertex in GG either belongs to D or is adjacent to a vertex
in D. Finding the dominating set with the smallest possible cardinality among
all dominating sets for a graph is one of the standard NP-complete problems. A
very important variation of the minimum dominating set problem is its connected
version. We call a dominating set connected if it has the property that any node
n € D can reach any other node m € D by a path that stays entirely within
D. That is, D induces a connected subgraph of G. The minimum connected
dominating set is the one with the minimum number of vertexes. The minimum
connected dominating set problem (MCDSP) is also NP-complete.

This research was supported by Ministry of education and science of Republic of
Serbia, Grant 111-44006.



Raka Jovanovic and Milan Tuba

The MCDSP has gained popularity due to its close connection to the mobile
ad hoc networks (MANETS) and sensor grids. In practical problems that can be
transformed to the MCDSP there is usually no need to get the optimal solution,
near-optimal solutions are sufficient in most cases.

In this paper we introduce an improved ACO algorithm for the MCDSP. The
rest of the paper is organized as follows. In the next section we present different
approaches to the MCDSP. In the third section a greedy algorithm for solving
the MCDSP is introduced. In the fourth section we present the implementation
of the ACO for the MCDSP. In the fifth section we explain our approach to avoid
stagnation in ACO using a pheromone correction strategy and our method of
selecting the initial vertexes. In the last section, we analyze and compare the
use of pure ACO and its combination with pheromone correction on standard
benchmark problems and generated examples for the MCDSP.

2. Minimum Connected Dominating Set Problem (MCDSP)

Different methods have been developed to find near-optimal solutions for the
MCDSP. There are two main directions in developing algorithms for solving this
problem: centralized and distributed, each of them closely connected with the
type of application they are used for. In this article we focus on centralized
algorithms.

Several heuristics and appropriate greedy algorithms have been developed
for the MCDSP. Some of them are one-step [25] or two-step [6], [22], [12] grow-
ing techniques, or pruning-based greedy algorithms [4], [5]. A multi-step collab-
orative cover heuristic approach has been presented in [23]. The MSDSP has
also been solved using a combination of simulated annealing and taboo search
[24], neural networks [13] and parameterized approximation [10].

The ant colony optimization (ACO) is a meta heuristic that has been de-
veloped by Doringo for the traveling salesman problem [9]. ACO and other
evolutionary algorithms have been proven to be effective on a wide range of
combinatorial and continuous optimization problems [1], [19], [3], [2], [27]. Pre-
viously, ACO has been applied to the MDSP with great success [14], also on its
weighted version [17]. For implementation of a network cluster presented as a
MCDSP, a two step ACO approach was used [31]. As the first step a dominating
set is created and next, as the second step, new vertexes are added to make it
connected. The effectiveness of the ACO has been improved by use of differ-
ent types of hybridization, like combining ACO with GA [20], [18] or differential
evolution (DE) [32].

In this article we present an implementation of the ACO algorithm for the
MCDSP. In our ACO implementation, we use a one-step approach applying the
heuristic proposed by Guha and Khuller [12]. This approach was avoided in
article [31] because of fear of early trapping in local optima and a more com-
plex one was chosen. We propose to overcome this problem by introducing a
method for avoiding early stagnation. We use a pheromone correction strategy
(PCS), similar to the one used in our article [15], to direct the ant colony to

134 ComSIS Vol. 10, No. 1, January 2013.



Ant Colony Optimization for the Minimum Connected Dominating Set

areas were good solutions are more likely. The idea of this approach is to up-
date the pheromone trail used in ACO based on a heuristic that determines the
desirability of vertexes in the solution, depending on the properties of the cur-
rently best found solution. We further improve the effectiveness of this method
by implementing a good procedure for setting initial conditions of the algorithm.
In our tests we show that our method is a good choice compared to existing
methods and that the use of ACO combined with pheromone correction strat-
egy has significantly better performance than the standard max-min ant system
(MMAS) [26] version of ACO for this problem.

3. Greedy Algorithms for the MCDSP

There are two possible approaches to create a greedy algorithm for the MCDSP.
The first one is to use a one-step approach in which the solution is constructed
using only one heuristic. Another approach is represented by two-step greedy
algorithms. In that case an intermediate problem like the MDSP or the maximal
independent set is solved first, and at the second stage obtained solution is
converted to the solution for the MCDSP as in articles [12], [6], [22]. Two-step
methods usually give better results, but at the cost of being more complex for
implementation. The improved results are a consequence of less constrained
selection of new vertexes at the first stage. Using this type of algorithm as a
base for ACO does not come natural since a separate ACO has to be developed
for each stage of the algorithm.

Because of the problems mentioned, we propose a one-step greedy algo-
rithm as a base for our ACO implementation. We have chosen to use the first
greedy algorithm given by Guha and Khuller [12]. The idea of this approach is
the following: we start with an initial vertex vy € V with the highest degree. The
degree of a vertex v is the number of edges that v is incident to. Now, vy is the
root of the tree T'. At each step we pick a vertex w, which is a neighbor of some
vertex v in T', that covers the highest number of uncovered vertexes. We call a
vertex v covered if v € T, or there exists vertex w € T for which (v,w) € E. We
repeat this process until all vertexes in G are covered.

To implement this greedy algorithm we need to be able to easily distinguish
between neighboring, covered and uncovered vertexes. We accomplish this by
using the following process. Initially all vertexes are colored white. When a new
vertex is added to T it is colored black. We mark all its neighbors that are
not already in 7" with the gray color. In the next step we select a gray colored
vertex that is connected to the highest number of white vertexes. The algorithm
is finished when all of the vertexes have been colored. An illustration of this
algorithm is given in Fig. 1.

As noticed by Guha and Khuller [12], this type of heuristic for the greedy al-
gorithm is easily trapped in local optimal solutions due to its short-sightedness.
Because of this, more complicated algorithms have been created. Guha and
Khuller have used the same approach, but instead of using single vertexes,
they used pairs of them. In article [25] a heuristic that tracks the number of

ComSIS Vol. 10, No. 1, January 2013. 135



Raka Jovanovic and Milan Tuba

Fig. 1. Example of creating a connected dominating set using the greedy heuristic: 1)
Input graph, 2) Initial step 3,4) Further steps in the algorithm

black and gray vertexes, and the number of separate black sections is used in
the greedy algorithm. In [4] and [5] a greedy pruning-based approach is used
where the least important vertex is removed from the dominating set. All these
algorithms have a more complicated and slower implementation. We show that
shortcomings of the mentioned first simple heuristic are greatly reduced when
it is combined with ACO and our improvements.

4. Implementation of ACO for the MCDSP

In the ACO implementation for the MCDSP there are significant differences
compared to its implementation for the traveling salesman problem (TSP). In
the case of TSP the solution is a permutation of the set of all the cities; contrary
to this for the MCDSP the solution is a subset of the set of graph vertexes where
the order is unimportant. The heuristic function for the TSP is static because it
represents the distance between cities. For the MCDSP the heuristic function
is the number of white neighbors (not yet covered), which is dynamic because
more vertexes are marked black or gray as new vertexes are added to the solu-
tion subset. Finally, in the case of TSP at each step all the non visited vertexes
are potentially selected, while in the case of MCDSP only the vertexes marked
gray are considered. These three differences affect the basic algorithm in the
following way: the ants leave the pheromone on vertexes instead of edges, the
heuristic function is dynamically updated and potential candidates have to be

136 ComSIS Vol. 10, No. 1, January 2013.



Ant Colony Optimization for the Minimum Connected Dominating Set

tracked. Such variant of ACO with dynamic heuristic and a solution that con-
sists of a subset instead of a permutation have also been used for solving the
set partitioning [7], minimum vertex cover [15], set covering [21] and maximum
clique [11] problems.

When implementing ACO, we first need to represent the problem in a way
that makes simple the dynamic calculation of the heuristic function. This can
be done in the following way. Initially, for each vertex i the value of the heuristic
function n? is it's degree, or in other words, the number of connections that it
has. Three sets are then created: white W that initially holds all the vertexes
and two empty sets, B for black and Gr° for gray vertexes. As mentioned
before, the heuristic is dynamic and it has to be updated as new vertexes are
added to the result set. If at step j vertex v is added, all it’s neighbors have their
degree decreased by one giving the new heuristic function »7. At this step we
also move vertex v from the Gr? to B7, and all its neighbors from W7 to GrJ.

To define ACO algorithm for a problem, three parts need to be defined: ant
transition rule, global update rule and local update rule. We start by defining the
transition rule using heuristic function * in the following equation:

k {0 J & Gry (1)

p; = prob;? ,j € Gry,
1 14> qo & j = arg max myny
K2 Tk
. k
probt = 0 4> qo & j # arg ax 7, (2)
o <
Zq‘,ecv‘k Tjn:;c yd > qo

In Equation (2) parameter ¢y is used to define exploitation/exploration rate.
Connected to it, ¢ is a random variable upon which the next selection depends.
Unlike the TSP transition rule, the selection does not depend on which vertex
was added last to the current solution, but only on the current state of the graph.
That is why 7; is used instead of 7;; for pheromone trail, and n¥ instead of 7;;
for the heuristic function. To fully specify the ACO algorithm, it remains to define
the global (when ants finish their paths) and the local (when an ant chooses a
new vertex) update rules.

0 gV

ATZ:{H}-, ,ZEV/ (3)

In Equation (3) Ar; is quality measure of the best global solution subset V"’

that contains vertex i (|V’| is the number of vertexes in V). It is used when the

global update rule in Equation (4) is defined. Parameter p is used to set the
influence of a newly found solution on the pheromone trail.

Ti=(1—-p)1 + A7y (4)

We wish to emphasis that Ar; is equal to zero for most of the vertexes, which
means that the pheromone will be falling to zero for points that are not part of
the global best solution.

ComSIS Vol. 10, No. 1, January 2013. 137



Raka Jovanovic and Milan Tuba

The formula for the local update rule has the standard form

7 = (1= )7 + 10 (5)

The quality measure of the solution acquired by the greedy algorithm (where
the vertex with the best ratio of vertex degree and weight is selected) is taken for
the value of ry. Parameter ¢ is used to specify the strength of the local update
rule.

5. Avoiding Stagnation in ACO for the MCDSP

When ACO algorithm with the heuristic approach given by Guha and Khuller
[12] is used for the MCDSP, there is a strong possibility of getting trapped in
local optima. There are two main reasons for this. The first one is that this is a
standard problem with ACO due to the way the pheromone matrix is created.
The second one is induced by the way Guha and Khuller's greedy algorithm,
which is a base for ACO implementation, works where the initially selected ver-
tex has a very strong influence on the final result.

5.1. Pheromone Correction Strategy

We first focus on a way to avoid the problems caused by updating of the phero-
mone matrix. The basic approach to avoid stagnation in ACO is to use the
MMAS version of ACO, in which an extra constraint is added which requires
that all pheromone values are bounded, 7; € [Tmin, Tmax]- IN OUr case this is
very important because our update rule can lower the minimum value of the
pheromone very close to zero and inflicted vertexes will practically never be se-
lected. The problem with MMAS is that for keeping the search greedy enough
Tmin Nas to be very small but the search will never be intensified after the
pheromone for a vertex has reached 7,

Another interesting approach is combing ACO with the minimum pheromone
threshold strategy (MPTS) as proposed in article [29]. The idea of the MPTS is
to intensify search around vertexes that have been rarely selected. This is done
by adding a minimum threshold value 7,,,; that is bounded 7,,.in, < Tt < Trmaz-
In the beginning 7,,; is set to some initial value and then adjusted during the
search, depending on the performance. Threshold 7,,; is used for updating the
pheromone trail. When the search is conducted, values in the pheromone trail
7; are compared to the 7,,,; and if ; is lower than 7,,;, than 7, is changed to
some significantly higher value. In our experiments this approach proved to be
efficient for small graphs, but for larger problems the search would not be greedy
enough and would give results that are of lower quality than ones acquired by
the MMAS version of ACO.

To improve the performance of ACO we implemented a pheromone correc-
tion strategy similar to the one used for minimum weight vertex cover prob-
lem (MWVCP) [15]. The idea of this approach is to change the pheromone

138 ComSIS Vol. 10, No. 1, January 2013.



Ant Colony Optimization for the Minimum Connected Dominating Set

matrix by analyzing some of the properties of the best found solution. More
precisely, when the search for a better solution becomes stagnant we update
the pheromone matrix. We do this by using a simple heuristic function that de-
scribes the desirability of a vertex in the solution. For example, a vertex that is
part of the solution and does not cover any vertexes solely by it self is not very
desirable. For an undesirable vertex in the solution we greatly decrease the
value of the pheromone and as a consequence, that vertex is not often chosen
as a part of the solution in the following steps of the algorithm.

We have adapted this approach for the MCDSP. First, let us define n(v, V')
as the number of vertexes that vertex v, which is part of the best found solution
V', solely covers.

Sus (6)

14, V)

In Equation (6) we have defined Sus as the undesirability of a vertex in
the solution. The next step in the pheromone correction strategy is to select
a random number RK of vertexes which solely cover the smallest number of
vertexes. For each vertex i in the solution the probability of it being selected for
pheromone correction is:

RK — RankSus(i, V') @
RK
In Equation (7) instead of using the value of Sus for vertexes, we used
RankSus which represents their rank by undesirability . RK is the maximum
number of vertexes that are considered for correction. The final step is to lower
the pheromone trail for the selected vertexes:

pi(selected) =

Vi € Selected

T — (STL‘

(8)

The use of Sus(v,V’) as a measure of desirability is not fully effective be-
cause the same group of vertexes would be repetitively selected until a better
solution set was found. Because of this we introduce an improved desirability
criterion:

CorSus(i, V') = Sus(i,V') * ExSusepect(i) 9)

The improvement consists of tracking which vertexes have already been
selected and preferring the selection of new vertexes. To do this, a new array
ExSuspect is introduced with elements initially set to 1. If vertex i is selected,
the following correction is done:

0<A<l1

ExSuspect(i) = ExSuspect(i) * A (10)

This type of approach in which the pheromone value has been greatly de-
creased for some vertexes that are part of the best solution has been applied

ComSIS Vol. 10, No. 1, January 2013. 139



Raka Jovanovic and Milan Tuba

to the MWVCP with good results [15]. The ant colony in the following steps of
the algorithm avoids using these vertexes when creating new solutions. This
approach however, does not give good results when extended to graph covers
that also need to be connected. The problem is that when a vertex is removed,
it is highly likely that it will leave the remaining vertex set disconnected. In the
following steps it is hard for the ants to create a new good solution avoiding
the removed vertexes due to the connectivity problem. Because of this a new
type of correction is added, which is used to make it easier for new solutions to
be constructed. This is done by increasing the pheromone values at vertexes
that are not a part of the best found solution but are highly likely to appear in
new good solution. We will consider a vertex that is not part of the solution, but
covers many of the vertexes in the best solution, desirable to appear in good
solutions.

Now we define a method for pheromone correction for vertexes that are not
part of the best solution. First, let us define Des(v, V') as the number of vertexes
that are a part of the best found solution that v ¢ V' is connected to. The next
step in the pheromone correction strategy is to select a random number RK' of
vertexes which cover the greatest number of vertexes that are in the best found
solution or in other words, have the greatest value of Des. For each vertex i not
in the solution the probability of being selected for pheromone correction is:

RK’ — RankDes(i, V') (1)
RK'

In Equation (11) instead of using the value of Des for vertexes, we used
RankDes which represents their rank by desirability. RK’ is the maximum num-
ber of vertexes that are considered for correction. The final step is to correct the
pheromone value pheromone for the selected vertexes by increasing the value
of pheromone:

pi(selected) =

Vi € Selected

= Tmax ‘2|' Tmin (1 2)

For vertexes for which the pheromone values will be increased we also track
how often they are selected with the array ExSuspect and use a new corrected
desirability function CorDes in the same way as for vertexes that are a part of
the solution.

Finally, we need to define a stagnation criteria for recognizing if the search
has been trapped in a local minimum. The criterion used is that there has been
no improvement in the solution in n iterations of the ant colony. In our imple-
mentation we use separate values n, and n for the two pheromone correction
methods.

5.2. Initial Vertex Selection

When the starting point for creating an ACO algorithm for the MCDSP is Guha
and Khuller’s greedy algorithm, the performance is extremely influenced by the

140 ComSIS Vol. 10, No. 1, January 2013.



Ant Colony Optimization for the Minimum Connected Dominating Set

vertex that is initially selected. This is because the solution set slowly grows
from the initial vertex through its neighbors. As previously mentioned, the heuris-
tic function is dynamic, so the previously selected vertexes not only affect the
potential candidates but also which one of them will be selected. This way the
initially selected vertexes have a snowball effect on the final solution. In the case
of the TSP this problem is also present but it is less severe and can be solved
by selecting the first vertex at random, out of all the vertexes in the graph since
they all participate in the best solution. In our case this is not a good approach
because only a relatively small number of vertexes are part of the best solution
so the search becomes too wide. In the case of MWVCP [15] where the solution
is also a small subset of V, we selected a random vertex of the best solution.
However, if we choose the initial vertex for MCDSP in this way the search be-
comes too narrow. This is because in the case of MWVCP the previous steps
only affect the heuristic function but in the case of MCDSP the candidate list is
also affected.
We try to balance these two approaches in the following way:

Random/(V") ,5 < Sp

Random(V, T) ,S = Sp (13)

InitVertex = {

In Equation (13) s is a random variable on which the type of selection de-

pends, so is a fixed parameter that defines how often the initial vertex will

be selected from the global best solution V'’ or from all the vertexes in V. In

case it is selected from V, the probability distribution is only dependent on the
pheromone trail corresponding to vertexes.

5.3. Our Improved ACO Algorithm for the MCDSP

The recapitulation of the key elements of our improved ACO algorithm for the
MCDSP is:

— ACO algorithm for the MCDSP is implemented with necessary adjustments
considering that for the MCDSP solution is a subset of the set of graph
vertexes where the order is unimportant and that the heuristic function is
dynamic. That affects the basic algorithm in a way that the ants leave the
pheromone on vertexes instead of edges, the heuristic function is dynami-
cally updated and potential candidates have to be tracked.

— The mentioned ACO algorithm is based on the first greedy algorithm given
by Guha and Khuller [12]. It starts with an initial vertex v € V with the
highest degree as the root of the tree 7. At each step a vertex w is picked,
which is a neighbor of some vertex v in T', that covers the highest number
of uncovered vertexes. This process is repeated until all vertexes in G are
covered.

ComSIS Vol. 10, No. 1, January 2013. 141



Raka Jovanovic and Milan Tuba

— ACO algorithm for the MCDSP based on Guha and Khuller’s greedy algo-
rithm is strongly influenced by the vertex that is initially selected because
the solution set slowly grows from the initial vertex through its neighbors.
We introduce modification that narrows the selection to vertexes that be-
long to the global best solution, but not always, according to Equation (13).

— When stagnation is detected, search has to move to, at that moment, less
promising areas. Rather than using more standard method of increasing the
pheromone level for vertexes that currently do not belong to the best found
solution, we decrease the pheromone level for, by defined criteria, unde-
sirable vertexes in the best found solution. This novel approach improves
leaving local optima in the directions that lead to better solutions.

— The previous step, very successful for some other problems [15], creates
some problems when unmodified applied to graph covers that also need to
be connected. The problem is that when a vertex is removed, it is highly
likely that it will leave the remaining vertex set disconnected. Because of
this a new type of correction is added, which is used to make it easier for
new solutions to be constructed. This is done by increasing the pheromone
values at vertexes that are not a part of the best found solution but are, by
defined criteria, highly likely to appear in new good solution.

The program for our experiments was written in C#, using the framework
from article [16]. The program implements the following pseudo code

Reset Graph Info
Reset Solution for all Ants
Select Initial Vertex for all ants

while (! AllAntsFinished)
for All Ants
if (AntNotFinished)
begin
add new vertex A to solution based on probability
correct ant’s cover graph data
calculate new set of candidates
calculate new heuristic
local update rule for A
end
end for
end while

Compute DeltaTaul
Compute Taul

142 ComSIS Vol. 10, No. 1, January 2013.



Ant Colony Optimization for the Minimum Connected Dominating Set

o

If (Iteration_NoChange % nl)
Use CorSus for Pheromone Correction

If (Iteration_NoChange % n2)
Use CorDes for Pheromone Correction

6. Test and Results

We have conducted two types of tests. In the first type we analyze the effec-
tiveness of our method on benchmark data sets with existing solutions. In the
second group of tests we generate problem instances as proposed in article
[14] that correspond to ad hoc network clustering problems.

The ACO algorithm is implemented in its MMAS version. For both, ACO with
and without pheromone correction, we conducted ten separate colony simula-
tions and compared average solutions and standard deviations. All the colonies
had the following parameters: ¢y = 0.9 specifies the exploitation/exploration
rate, p = 0.1 and ¢ = 0.1 specify the global and local update rules. These are
the standard values used by most authors and after some testing we decided
that there is no need to change them. The value of the parameter that defines
initial vertex selection is sy = 0.2. This parameter is specific for our method and
was determined empirically after significant number of tests. The parameters
used for our pheromone correction had the following values: coefficient for the
pheromone correction 6 = 0.0001, the maximum number of selected vertexes
RK = 'TV‘ where s is a random number from the interval [2,10] and A = 0.9. We
determined these parameters in [15] and after some testing determined that
the same values are appropriate for this problem. The stagnation parameters
had the following values: n; = 20 and ny = 40. These values were empirically
proven to balance two corrections specific for our method. In our tests we used
10 colonies for both, ACO and ACO with pheromone correction strategy. In both
cases we used random seeds with values from 0 to 9.

We have tested our method on benchmark data sets that have been used on
the Tenth International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’09) [28]. The maximum number of iterations for a colony
was 350 which means that 3500 solutions have been created. We compare the
quality of solutions achieved by our ACO combined with a pheromone correction
strategy to standard MMAS ACO using the basic version of Guha and Khuller’s
heuristic, to pure greedy algorithm and to known best benchmark results from
the LPNMR’09. These results are in Table 1.

In Table 1 we only give the results for problem instances that have had a
satisfactory solution (the solution is known) given in the LPNMR benchmark.
The best found solution for the ant colonies, which is commonly shown, does
not appear in the table due to the fact that both ACO algorithms have achieved
the best given solution in all the benchmark examples. We first notice that the
basic greedy algorithm of Guha and Khuller performs poorly and gives the av-
erage error of 126% compared to the best solution. The MMAS variation of
ACO gives results that on average have 8.5% error. This shows that the use of

ComSIS Vol. 10, No. 1, January 2013. 143



Raka Jovanovic and Milan Tuba

Table 1. Comparison of LPNMR, Greedy 1, simple ACO and ACO combined with MPTS

Problem LPNMR Greedy ACO MMAS ACO with PCS
Dimensions Result Average St.Dev. t Average St.Dev t
40*200 5 10 58 0.60 3.2 5.3 0.45 4.1
45*250 5 15 5.8 0.40 3.5 55 0.50 4.3
50*250(1) 8 15 8.1 0.54 4.8 8.0 0.00 6.1
50*250(2) 7 17 75 0.50 5.0 71 030 6.5
55*250 8 20 8.8 0.98 5.6 8.3 045 7.3
60*400 7 15 7.0 0.00 6.1 7.0 0.00 9.1
70*250 13 32 142 0.74 11.0 13.9 1.04 13.5
80*500 9 20 10.0 0.44 12.1 9.8 0.40 16.9
90*600 10 19 10.9 0.83 14.0 10.6 1.01 17.3
Average 8.00 18.11 8.68 8.34

ACO, with careful selection of the initial vertex, manages to overcome the short-
sightedness of the underlying greedy method. Finally, the results that have been
archived by adding the pheromone correction strategy to ACO manages to im-
prove the results even further to have an average error of 4.2%. Standard de-
viation is also improved in most cases. Columns marked with ¢ report compu-
tational times in seconds for ten runs. They should be used only for coarse
comparison since they include hard disk time, no optimization of the algorithm
was attempted and it was written in C#.

As an illustration of the effectiveness of this method we give a comparison
with results for the problem viewed as decision problem achieved by Answer Set
Programming (ASP), Propositional Satisfiability (SAT) and Constraint Program-
ming (CP) that are given on the LPNMR’09 web site. The benchmark test set
consists of 21 problems of different sizes, and for each it is requested to answer
if a solution of a certain number of vertexes exists. For each of the test exam-
ples we have conducted two colony runs with a fixed number of iterations (350),
and we check if any of the colonies has found a solution with the requested
number of vertexes; if it has the problem is satisfied, otherwise it is not. The test
have been done on similar hardware (ours slightly better): at LPNMR’09 Dell
OptiPlex 745, 1 CPU with 2 cores: Genuinelntel Intel(R) Core(TM)2 CPU 6600
@ 2.40GHz 4 GB RAM, and in our case Dell OptiPlex 755, 1 CPU with 2 cores:
Genuinelntel Intel(R) Core(TM)2 CPU E8500 @ 3.16GHz 3 GB RAM. The soft-
ware used at LPNMR’09 was created in C++ and our application was made
using C# which gives them a speed advantage. Our method had successfully
solved all the problem instances and for that it needed 52 seconds. In compari-
son to this, the best method from LPNMR’09 has solved all the problems in 36
seconds, and the following ones needed 128, 169, 316, 465 and 535 seconds.
Although the comparison is not fully accurate it still shows that our method is
very competitive.

144 ComSIS Vol. 10, No. 1, January 2013.



Ant Colony Optimization for the Minimum Connected Dominating Set

In our second group of tests we generated graphs in the same way as pro-
posed by Chen [14]. The graphs are generated in the following way. In some
fixed area N x N a random number of points are selected with a uniform dis-
tribution which represent the nodes of our graph. If the distance between two
nodes i and j is smaller that some value R than edge (i,j) is a part of our
graph. We have generated problems with different number of nodes and differ-
ent edge densities and used them to compare ACO and ACO with a pheromone
correction strategy. We use the same parameters for ACO as before, except for
the maximum number of iterations for a colony which is now 5000 due to the
increased size of the problems. We can see the results in Table 2.

For each of the 41 test instances we compared the best found solution and
the average solution for ACO and ACO combined with pheromone correction.
We first wish to point out that the basic greedy algorithm performs poorly for
larger problem instances. Both ACO approaches improve the minimal solution
2-3 times compared to the greedy algorithm. ACO combined with a pheromone
correction strategy improved the best found solution in 18 cases and decreased
its quality in only 3 cases. When the average solution is observed the addition
of a pheromone correction strategy improved the result quality in 33 cases and
decreased its quality in 6 cases. The advantages of using the PCS are greater
in the case of small and medium problem instances. We explain this by the fact
that the PCS parameter values have been chosen from analyzing the behavior
of the algorithm for small problem instances. We believe that the same level of
improvement can be archived with a better choice of parameters.

7. Conclusion

In this paper we have presented an ant colony optimization algorithm for the
minimum connected dominating set problem. Our implementation is fast and
simple one-step ACO method based on a greedy heuristic where our pheromone
correction strategy and special attention to the initial condition of the ACO over-
come shortcomings of that heuristic. The tests on standard benchmark data
as well as on standard generated examples have shown that our algorithm
generates good solutions compared to other state of the art algorithms. More-
over, the execution time is favorable compared to the results obtained on 10¢h
International Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR’09) benchmark data sets. This is important since such solutions
are usually used in MANETs and the speed of execution is more important
than optimality. We used successfully the similar strategy to improve ACO for
the MWVCP and another version for the TSP so we can consider that our
pheromone correction strategy is a rather general method of improving ACO.
Future research may include additional tuning for larger examples and use of
different pruning-based greedy heuristics as in [4], [5]. They are more complex
for implementation but natural for the ACO since these are one-step algorithms
that much less depend on the initial vertex selection. Some recent improve-
ments in greedy algorithms [30], [8] can also be included in the future research.

ComSIS Vol. 10, No. 1, January 2013. 145



Raka Jovanovic and Milan Tuba

Table 2. Comparison of ACO and ACO combined with pheromone correction on different
MCDSP instances

Area(N*N) R Greedy ACO ACO + PCS
Nodes Min Avg Min Avg
400 60 48 20.0 21.6 19 21.2
80 70 33 16 17.0 15 16.2
80 35 12 14.0 12 13.1
90 41 11 11.8 11 11.6
100 23 8 9.0 8 8.9
110 25 8 8.5 8 8.5
120 17 7 7.5 7 7.2
600 80 38 23 24.7 22 23.6
100 90 40 22 23.8 21 23.6
100 38 17 20.0 17 19.0
110 35 15 17.2 15 16.8
120 36 15 16.2 14 15.5
700 70 96 46 50.7 46 49.6
200 80 89 41 43.7 41 43.9
90 84 34 36.0 33 35.7
100 75 28 30.8 28 31.0
110 70 23 27.4 22 26.4
120 68 21 23.6 21 23.4
1000 100 96 46 50.7 46 49.6
200 110 92 43 44.9 42 44.8
120 82 37 39.9 37 39.8
130 91 32 34.7 32 34.9
140 76 30 31.3 29 31.3
150 83 28 29.6 26 28.8
160 86 24 26.6 25 26.5
1500 130 158 60 64.5 60 64.3
250 140 144 53 57.2 52 57
150 170 51 54.9 51 54.4
160 151 47 50.5 45 49.8
2000 200 178 55 58.6 52 58.8
300 210 151 51 53.5 50 52.8
220 140 47 48.9 45 48.4
230 166 44 47.5 44 46.9
2500 200 198 79 82.0 79 81.5
350 210 185 75 79.1 74 78.2
220 205 68 72.6 69 73.8
230 193 66 69.2 66 68.9
3000 210 259 99 101.6 98 104.0
400 220 225 88 95.4 91 97.6
230 205 86 91.4 86 90.3
240 210 82 85.8 80 84.1

146 ComSIS Vol. 10, No. 1, January 2013.



Ant Colony Optimization for the Minimum Connected Dominating Set

Acknowledgment. Authors thank anonymous reviewers for useful comments

that helped improve the quality of this paper.

References

1.

10.

11.

12.

13.

14.

15.

Abbaspour, R.A., Samadzadegan, F.: An evolutionary solution for multimodal short-
est path problem in metropolises. Computer Science and Information Systems 7(4),
789-811 (2010)

Bacanin, N., Tuba, M.: Artificial bee colony (ABC) algorithm for constrained opti-
mization improved with genetic operators. Studies in Informatics and Control 21(2),
137-146 (2012)

Brajevic, I., Tuba, M.: An upgraded artificial bee colony algorithm (ABC) for con-
strained optimization problems. Journal of Intelligent Manufacturing (published On-
line First), DOI: 10.1007/s10845-011-0621—6 (2012)

Butenko, S., Cheng, X., Oliveira, C., Pardalos, P.: A new heuristic for the minimum
connected dominating set problem on ad hoc wireless networks. In: Recent De-
velopments in Cooperative Control and Optimization. pp. 61-73. Kluwer Academic
Publishers (2004)

Butenko, S., Oliveira, C., Pardalos, P.: A new algorithm for the minimum connected
dominating set problem on ad hoc wireless networks. In: CCCT’03. pp. 39-44. In-
ternational Institute of Informatics and Systematics (IlIS) (2003)

Cheng, X., Ding, M., Chen, D.: An approximation algorithm for connected dominating
set in ad hoc networks. In: Proc. of International Workshop on Theoretical Aspects
of Wireless Ad Hoc, Sensor and Peer-to-Peer Networks (TAWN) (2004)

Crawford, B., Castro, C.: Ant colonies using arc consistency techniques for the set
partitioning problem. In: Professional Practice in Artificial Intelligence. pp. 295-301.
Springer, Boston (2006)

Das, A., Mandal, C., Reade, C., Aasawat, M.: An improved greedy construction of
minimum connected dominating sets in wireless networks. In: 2011 IEEE Wireless
Communications and Networking Conference (WCNC). pp. 790-795. IEEE (2011)

. Dorigo, M., Gambardella, L.M.: Ant colonies for the travelling salesman problem.

Biosystems 43(2), 73—-81 (July 1997)

Downey, R.G., Fellows, M.R., McCartin, C., Rosamond, F.A.: Parameterized approx-
imation of dominating set problems. Information Processing Letters 109(1), 68-70
(2008)

Fenet, S., Solnon, C.: Searching for maximum cliques with ant colony optimiza-
tion. In: Applications of Evolutionary Computing. pp. 291-302. Springer-Verlag,
Berlin/Heidelberg (2003)

Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Al-
gorithmica 20(4), 374-387 (1998)

He, H., Zhu, Z., Makinen, E.: A neural network model to minimize the connected
dominating set for self-configuration of wireless sensor networks. IEEE Transactions
on Neural Networks 20(6), 973-982 (June 2009)

Ho, C.K., Singh, Y.P., Ewe, H.T.: An enhanced ant colony optimization metaheuristic
for the minimum dominating set problem. Applied Artificial Intelligence 20(10), 881—
903 (2006)

Jovanovic, R., Tuba, M.: An ant colony optimization algorithm with improved
pheromone correction strategy for the minimum weight vertex cover problem. Ap-
plied Soft Computing 11(8), 5360-5366 (December 2011)

ComSIS Vol. 10, No. 1, January 2013. 147



Raka Jovanovic and Milan Tuba

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

148

Jovanovic, R., Tuba, M., Simian, D.: An object-oriented framework with correspond-
ing graphical user interface for developing ant colony optimization based algorithms.
WSEAS Transactions on Computers 7(12), 1948—-1957 (2008)

Jovanovic, R., Tuba, M., Simian, D.: Ant colony optimization applied to minimum
weight dominating set problem. In: Proceedings of the 12th International conference
on Automatic control, modelling and simulation. pp. 322-326. ACMOS’10, World
Scientific and Engineering Academy and Society, Stevens Point, Wisconsin, USA
(2010)

Jun-Qing Li, Q.K.P, Xie, S.X.: A hybrid variable neighborhood search algorithm for
solving multi-objective flexible job shop problems. Computer Science and Informa-
tion Systems 7(4), 907—930 (2010)

Kratica, J., Kostic, T., Tosic, D., Dugosija, D., Filipovic, V.: A genetic algorithm for the
routing and carrier selection problem. Computer Science and Information Systems
9(1), 49-62 (2012)

Lee, Z.J., Su, S.F, Chuang, C.C., Liu, K.H.: Genetic algorithm with ant colony opti-
mization (GA-ACO) for multiple sequence alignment. Applied Soft Computing 8(1),
55-78 (2008)

Lessing, L., Dumitrescu, I., Sttzle, T.: A comparison between ACO algorithms for the
set covering problem. In: LNCS 3172, Springer. pp. 1-12 (2004)

Min, M., Du, H., Jia, X., Huang, C.X., Huang, S.C.H., Wu, W.: Improving construction
for connected dominating set with steiner tree in wireless sensor networks. Journal
of Global Optimization 35(1), 111-119 (2006)

Misra, R., Mandal, C.: Minimum connected dominating set using a collaborative
cover heuristic for ad hoc sensor networks. IEEE Transactions on Parallel and Dis-
tributed Systems 21(3), 292-302 (June 2010)

Morgan, M., Grout, V.: Metaheuristics for wireless network optimisation. In: The
Third Advanced International Conference on Telecommunications, AICT 2007. p. 15
(May 2007)

Ruan, L., Du, H., Jia, X., Wu, W,, Li, Y., Ko, K.I.: A greedy approximation for minimum
connected dominating sets. Theor. Comput. Sci. 329(1-3), 325-330 (2004)

Stiitzle, T., Hoos, H.H.: Max-min ant system. Future Gener. Comput. Syst. 16(9),
889-914 (June 2000)

Tuba, M., Brajevic, I., Jovanovic, R.: Hybrid Seeker Optimization Algorithm for Global
Optimization. Applied Mathematics and Information Sciences, 7(3), 867-875 (2013)
URL: The second answer set programming (asp) competition: Submitted bench-
marks (2009), http://dtai.cs.kuleuven.be/events/ASP-competition/encodings.shtml
Wong, K.Y., See, P.C.: A new minimum pheromone threshold strategy (MPTS) for
max-min ant system. Applied Soft Computing 9(3), 882—888 (June 2009)

Yang, D., Wang, X.: Greedy Algorithms for Minimum Connected Dominating Set
Problems. In: Proceeding of the 10th International Conference on Intelligent Tech-
nologies. pp. 643—646 , Guangxi Normal Univ., Guilin, Peoples Republic of China,
(December 2009)

Zhang, C., Xu, Q.: Clustering approach for wireless sensor networks using spa-
tial data correlation and ant-colony optimization. In: Proceedings of the 2009 Inter-
national Conference on Networks Security, Wireless Communications and Trusted
Computing - Volume 01. pp. 538-541. IEEE Computer Society, Washington, DC,
USA (2009)

Zhang, X., Duan, H., Jin, J.: Deaco: Hybrid ant colony optimization with differen-
tial evolution. In: IEEE Congress on Evolutionary Computation. pp. 921-927. IEEE
Computer Society (2008)

ComSIS Vol. 10, No. 1, January 2013.



Ant Colony Optimization for the Minimum Connected Dominating Set

Raka Jovanovic is a Ph. D. candidate at the University of Belgrade, Faculty of
Mathematics where he also received B.S. and M.S. degrees in Computer Sci-
ence. He worked as a research assistant/associate at the Institute of Physics,
University of Belgrade and was employed as a research associate at Texas AM
University at Qatar. His research interests include Optimization problems, Data
compression, Image processing, Numeric simulation and Fractal imaging.

Milan Tuba is Professor of Computer Science and Provost for mathematical,
natural and technical sciences at Megatrend University of Belgrade. Before that
he was associate professor at Faculty of Mathematics, University of Belgrade
and assistant professor of Electrical Engineering at Cooper Union, New York.
He received B. S. in Mathematics, M. S. in Mathematics, M. S. in Computer Sci-
ence, M. Ph. in Computer Science, Ph. D. in Computer Science from University
of Belgrade and New York University. His research interest includes mathemat-
ical, queuing theory and heuristic optimizations applied to computer networks,
image processing and combinatorial problems. Professor Tuba is the author of
more than 100 scientific papers. He is coeditor or member of the editorial board
or scientific committee of number of scientific journals and conferences. Mem-
ber of the ACM since 1983, IEEE 1984, New York Academy of Sciences 1987,
AMS 1995, SIAM 2009, IFNA 2012.

Received: September 22, 2011; Accepted: October 10, 2012.

ComSIS Vol. 10, No. 1, January 2013. 149






DOI:10.2298/CSIS110804035G

Ontological Model of Legal Norms for Creating
and Using Legislation

Stevan Gostoji¢, Branko Milosavljevi¢, and Zora Konjovié

Faculty of Technical Sciences, University of Novi Sad
Trg D. Obradovi¢a 6, 21000 Novi Sad, Serbia
{gostojic, mbranko, ftn_zora}@uns.ac.rs

Abstract. This paper presents a formal model of legal norms modeled in
OWL. It is intended for semiautomatic drafting and semantic retrieval
and browsing of legislation. Most existing solutions model legal norms
using formal logic, rules or ontologies. Nevertheless, they were not in-
tended as a basis for drafting, retrieval and browsing of legislation. The
proposed model formally defines legal norms using their elements and
elements of legal relations they regulate. The duality between the con-
tent and the form of legislation is exploited by connecting it to the XML
model of legislation based on the CEN MetalLex specification. Those
models are verified by applying them to the norms contained in an exist-
ing piece of legislation and by developing a prototype application for
semantic browsing of legislation that is based on the models.

Keywords: legal norms, legislation, ontology, OWL, XML, CEN
Metalex, browsing

1. Introduction

The quality of legislation and legislative drafting procedures is questionable.
Drafting of legislation starting from its semantics (cf. [1]), with the semi auto-
mation of the application of legislative drafting guidelines, can improve the
quality of legislation (its consistency, intelligibility and usability) and drafting
procedure (its efficiency and effectiveness).

In order to make decisions, lawyers use legislation corpus as a knowledge
base of legal norms and their relations, since legal norms are applied as they
are formulated in legislation. Traditional legislation retrieval and browsing
systems are based on text retrieval and browsing. Those systems do not
solve the problem of legal rule fragmentation (the property of the legal system
that legal norms which regulate one social relation or elements of one legal
norm are contained in different legislation or different elements of a piece of
legislation). This property is one of the main reasons for ineffective and ineffi-
cient usage of legislation, especially by citizens who are not lawyers. The
semantic retrieval and browsing of legislation, based on the meaning of the
legal norms it contains, is a promising solution to this problem.



Stevan Gostoji¢, Branko Milosavljevi¢, and Zora Konjovi¢

This paper proposes a formal model of legal norms used as a basis for the
development of expert systems for semiautomatic drafting and semantic re-
trieval and browsing of legislation. It is connected with the formal model of
legislation based on the CEN Metalex specification as described in [2]. The
model was specified in Web Ontology Language (OWL).

The rest of this article is structured as follows. Section 2 reviews related
work. Section 3 defines basic legal concepts and describes the proposed
formal model of legal norms that is based on those concepts. Section 4 gives
an example of the usage of the proposed model as applied to norms con-
tained in a specific legislation [3] and describes a prototype application used
for semantic browsing of legislation. Finally, the last section gives concluding
remarks and proposes directions of future research.

2. Related Work

Most commonly used formalisms for the representation of legal norms are
formal logic, rules and ontologies. Some logical formalisms for their represen-
tation are described in [4], [5] and [6].

Biagioli and Grossi in [4] present a logic-based approach to legislative me-
ta-drafting. They introduce classes of meta-data, corresponding to the specific
classes of legal provisions. The provisions in the model are divided into two
main families: rules (constitutive and regulative provisions) and rules on rules
(modificatory provisions). The constitutive provisions lay out the components
of the relevant pieces of legislation by introducing new types of entities, defin-
ing new terms or procedures, creating new institutional bodies, and attributing
powers. The regulative provisions concern deontic concepts. The modificatory
provisions manage the dynamics of laws. They are divided into modifications
and derogations.

This formal model expressed in DL had large influence on the design of our
ontology. Nevertheless, we have come to different results by introducing legal
relation in our model and paying special attention to the structure of the legal
system, the legal norm and the legal relation.

Sartor in [5] gives a formal reconstruction of some fundamental patterns of
legal reasoning. Legal norms are represented as unidirectional inference rules
that can be combined into arguments. The value of each argument (its qualifi-
cation as justified, defensible, or defeated) is determined by the importance of
the rules it contains. Applicability arguments, intended to contest or support
the applicability of legal norms, preference arguments, purporting to establish
preference relations among norms, and interpretative arguments are also
formalized.

Gordon in [6] presents Legal Knowledge Interchange Format (LKIF). LKIF
is an XML schema for representing theories and proofs constructed from the-
ories. A theory in LKIF consists of a set of axioms and inference rules.

152 ComSIS Voal. 10, No. 1, January 2013



Ontological Model of Legal Norms for Creating and Using Legislation

Some ontologies that model legal norms are Conceptual frame-based on-
tology of Law [7], FOLaw [8], LRI-Core [8], DOLCE+CLO [9], OWL Ontology
of Fundamental Legal Concepts [10] and LKIF-Core [11].

Conceptual frame-based ontology of Law is constituted by three frame
structures. These structures are the norm frame, the act frame and the con-
cept-description frame. A legal-theoretical analysis has determined the form of
the structures. Every norm must comprise a norm subject, a legal modality
and an act description. Identified types of norms are norms of conduct, norms
of competence, duty imposing, permissive, general, individual, categorical and
hypothetical norms. Depending on the type of a norm (categorical or hypothet-
ical), these elements can be supplemented with conditions of application. The
aspects of the act are an agent, an act type, a modality (modality of means
and manner), a setting (temporal, spatial and circumstantial aspect), a ra-
tionale (a cause, an aim and an intentionality) and a final state. The aspects of
the concept description are the concept to be defined, conditions under which
a concept is applicable, instances of a concept, a concept type and applica-
tion provisions. Some additional elements of all three frames are the identifier
(used as a point of reference for a frame), the promulgation (links a frame to
its source) and the scope (limits the application range of a frame).

The focus of the Conceptual frame-based ontology of Law was on concep-
tual primitives used to model the legal domain, not on the formal version of
the ontology nor on the development of expert systems. Therefore, the result
of this research could not be directly applied to the drafting, retrieving and
browsing of legislation.

FOLaw and LRI-Core ontologies were developed at the Leibniz Center for
Law. FOLaw specifies functional dependencies between types of knowledge
involved in legal reasoning. It distinguishes six types of knowledge. Normative
knowledge is the most typical category of legal knowledge, norms express
(un)desirable behavior using deontic operators permission, obligation and
prohibition. Meta-legal knowledge is knowledge needed to resolve conflicts
between individually applicable norms. World knowledge contains description
of the behavior in the world of discourse. Responsibility knowledge establish-
es a relation between the violation of a norm and an agent who is responsible
for its violation. Reactive knowledge specifies which reaction should be taken
when the norm is violated. Creative knowledge allows the creation of social
institutions and legal persons. The authors have developed a new representa-
tion and inference formalisms for the normative knowledge that are an alter-
native to deontic logic [12].

FOLaw is a functional ontology. It presents a legal-sociological view rather
than a perspective from the law itself since it is based on the roles that the
legal system plays in a society. Structural ontology of law is better suited for
drafting, retrieval and browsing of legislation.

LRI-Core is written in OWL. One may distinguish many concepts in law, but
not many are typical for law. These concepts are usually specializations of
common sense concepts. Therefore, LRI-Core contains two levels. The more
abstract level is a foundational ontology that covers concepts from physical,
mental, and abstract worlds and roles. The more concrete level is a legal core

ComSIS Vol. 10, No. 1, January 2013 153



Stevan Gostoji¢, Branko Milosavljevi¢, and Zora Konjovi¢

ontology. The legal core ontology is used for development of domain ontolo-
gies.

Its major objective is to provide support for developing legal domain ontolo-
gies by clarifying common conceptual denominators in the legal domain (e.g.
role, norm, responsibility, etc). As such, it is too abstract with respect to the
goals set out during the development of the ontology described in this paper.

Core Legal Ontology (CLO) is a result of collaboration between ISTC-CNR
and ITTIG-CNR. It organizes legal concepts and relations about the physical,
cognitive, social, or properly legal worlds based on formal properties defined
in DOLCE. In CLO, a legal norm is a subclass of the social norm, which is
expressed by a normative text, and is realized by a document. It distinguishes
constitutive and regulative norms. Constitutive norms introduce new entities in
the ground ontology, while regulative norms provide constraints on existing
ground entities. Definitions and power-conferring rules are subclasses of con-
stitutive norms. Regulative norms define behavior courses, and have at least
one modal description as a proper part.

Although it is useful for the definition of legal domain ontologies, it is our
opinion that CLO is rather heavyweight for the problem we are planning to
solve and does not describe the structure of the legal system with the needed
level of detail.

The OWL Ontology of Fundamental Legal Concepts has been developed
under the ESTRELLA [13] project with the aim of clarifying the basic theoreti-
cal constituents of legal concepts and of contributing to enable semantic ac-
cess to digital legal information. The formal language chosen to express the
first version of this ontology is OWL. The first classification of legal concepts
includes two main classes: norms and normative judgments. Norms state
normative judgments. Norms can be unconditional, that is their judgment may
not depend upon any antecedent condition. Conditional norms are distin-
guished into rules that make a normative judgment dependent upon sufficient
conditions. Initiation rules state that a certain normative proposition starts to
hold when the rule’s conditions are satisfied. Termination rules state that a
normative proposition ceases to hold when the rule’s conditions are satisfied.
Supervenience rules state that a normative proposition holds as long as the
conditions are satisfied. Factor-links make a normative judgment dependent
upon contributory conditions (the condition favors the judgment, but it does
not determine it). A normative judgment is the proposition expressing or stat-
ing a normative fact.

The LKIF-Core ontology consists of several modules, each representing a
relatively independent cluster of concepts: expression, norm, process, action,
role, place, time and mereology. The concepts in these modules were formal-
ized using OWL. It is divided into three layers: the top level, the intentional
level and the legal level. The top-level clusters of the ontology provide defini-
tions of the context in which any legally relevant fact, event or situation oc-
curs. Modules at the intentional level include concepts and relations neces-
sary for description of mental state and behavior of agents. At the legal level,
the LKIF-Core ontology introduces a comprehensive set of legal agents and

154 ComSIS Voal. 10, No. 1, January 2013



Ontological Model of Legal Norms for Creating and Using Legislation

actions, rights and powers, typical legal roles, and concept definitions that
allow the expression of normative statements.

Although the most comprehensive legal ontology so far, in our opinion
LKIF-Core is not suitable for the solution of the posed problem for similar rea-
sons as CLO.

Yet another formalism for the representation of legal norms is described in
[14]. Olbrich and Simon in [14] discuss visualization and formal modeling of a
legally regulated process. They explicitly derive a process structure that is
implicitly specified within the paragraphs themselves. The Semantic Process
Language (SPL) is used to translate paragraphs into process models, since it
enables articulation of language structures into executable workflow models.

Not surprisingly, the main element of all reviewed ontologies is the (legal)
norm. Some of those ontologies also identified key concepts such as (legal)
subjects, (legal) actions, legislation, etc.

Nevertheless, none of the reviewed ontologies identifies legal relation as a
key concept in the legal domain and they do not pay special attention to the
structure of the legal system, the legal norm and legal relation.

3. Ontological Model of Legal Norms

The model of legal norms presented in this paper adopts the structural view of
the legal system and defines other concepts starting from the elements of the
legal relation and the legal norm. It is based on the related work on modeling
legal norms reviewed in Section 2 and the interpretation of legal-theoretic
views presented in [15], [16] and [17].

Bearing in mind computational properties, we decided to develop a light-
weight ontology suited for a particular task instead of adopting existing gen-
eral-purpose ontologies. Some of the specified concepts (e.g. subject, object,
act, social norm, etc.) have very general meaning and can be imported from
existing foundational ontologies. One candidate is DOLCE ontology [18] be-
cause it focuses on social entities (e.g. organizations, collectives, norms, etc.)
and is minimal in comparison to other foundational ontologies. Other concepts
(i.e. legal norm, legal act, right, duty, etc.) have more precise (legal) meaning
and can be imported from existing legal ontologies. Some candidates are
CLO and LRI-Core (especially CLO because it shares many concepts such as
legal norm, legal fact, legal act, legal subject with our ontology). Nevertheless,
this was not our primary concern in this paper.

As noted earlier, the purpose of this model is to provide for semiautomatic
drafting and semantic retrieval and browsing of legislation by exploiting duality
between the form of legislation (textual formulation of a system of legal
norms) represented in XML using CEN MetaLex compliant model and the
content of legislation (a system of legal norms contained in it) represented in
RDF using the proposed model.

That means that the scope of the model are general and abstract legal
norms, abstract social relations, abstract subjects, abstract objects and legis-

ComSIS Vol. 10, No. 1, January 2013 155



Stevan Gostoji¢, Branko Milosavljevi¢, and Zora Konjovi¢

lation since the legal system is a system of general and abstract legal norms,
while legislation formulates a part of the legal system. Abstract terms refer to
ideas or concepts. Concrete terms refer to objects or events that can be
sensed. General terms refer to groups. Specific terms refer to individuals.

We used top-down approach to ontology development to identify and for-
mally specify concepts that are essential for the description of a legal system
(a system of legal norms) paying attention to criteria such as clarity, coheren-
cy and extensibility [19].

Legal concepts were modeled as OWL classes while relations between
those concepts were modeled as OWL properties. OWL was used as a mod-
eling language because of its inference semantics, open world assumption
and distributed nature. Inference semantics allows the use of existing tools
(OWL reasoners and RDF data stores) as the basis for the development of
expert systems. We have chosen to use OWL DL sublanguage because it
offers maximum expressiveness without losing computational completeness
and decidability. Open world assumption is a natural state of affairs in the
legal domain. This model has to be distributed since different people (or or-
ganizations) will presumably model different parts of a legal system. Further-
more, the usage of open standards promotes technical interoperability with
other information systems and the usage of existing tools.

The most important classes and properties of the model are described in
this section (special attention is paid to the legal relation and the legal norm
as central classes of the model). They are expressed either textually using N3
notation or graphically using figures created by the Protégé tool. When using
N3 notation, namespace prefixes and nonessential properties are omitted due
to space constraints. The full version of the ontology can be downloaded from
[20].

A subject (Subject) is an observer (of an object). According to [15] and [16],
it can be abstract (e.g. a natural person) or concrete (Alice). Since concrete
subjects are out of the scope of our model, (the concept of) a subject was
modeled as an OWL class, while a natural person (an abstract subject) was
modeled as an OWL instance. On another level of abstraction, (the concept
of) a natural person could be modeled as an OWL class, while Alice could be
modeled as an OWL instance. In that case, the natural person could be a
class and an instance at the same time, although that would compromise
computational completeness and decidability of the model.

One abstract subject can be a specialization or a generalization of another
abstract subject (e.g. a natural person is a specialization of a person). Those
relations were modeled with specializes and generalizes properties. It should
be noted that built-in rdfs:subClassOf property could not be used because it
applies to classes only.

A legal subject (LegalSubject) is a subject that is a part of a legal relation.
In other words, it is the holder of legal capacity.

An object (Object) is a thing being observed (by a subject). Objects can al-
so be abstract (a telephone number) or concrete (the +381214852426 tele-
phone number). One abstract object can be a specialization or a generaliza-

156 ComSIS Voal. 10, No. 1, January 2013



Ontological Model of Legal Norms for Creating and Using Legislation

tion of another abstract object (e.g. a telephone number is a specialization of
the personal data).

A legal object (LegalObject) is an object that connects legal subjects into
legal relations or, in other words, an asset that is allocated between legal
subjects. That asset can be a physical object (e.g. land, human body, data
carrier, etc.) or a mental object (e.g. intellectual property, honor, data, etc.).

A social relation (SocialRelation) is a relation between two or more sub-
jects. Abstract social relations are relations between abstract subjects (e.g.
love between a man and a woman). Concrete social relations are relations
between concrete subjects (e.g. love between Romeo and Juliet).

Since social relations are usually organized into hierarchies, one relation
can be a specialization or a generalization of another relation (e.g. being a
child is a specialization of being a descendant).

The legal relation (LegalRelation) is a social relation (SocialRelation) that is
regulated by a legal norm (LegalNorm). This is a central class of the model.
The legal relation is a starting point when modeling legal norms (that will be
transformed into legislation). It is also used for retrieval of norms and legisla-
tion using criteria such as regulated social relations, addressed subjects and
deontic modalities. To accommodate for that use case, legal relations have
elements.

The elements of the legal relation (RelationElement) are a right (Right) and
a duty (Duty). A right is the possibility of acting according to a particular dis-
position that is protected by the state. A duty is the necessity of acting accord-
ing to a particular disposition that is sanctioned by the state. An obligation
(Obligation) is a duty that orders particular action. A prohibition (Prohibition) is
a duty that forbids particular action. A competence (Competence) is a right to
act in the interest of another legal subject, so it is a right and a duty at the
same time. The elements of legal relation are shown in Figure 1.

- __| Right =—— Competence

e e
"__ RelatiDnElernent#_'-‘ —

-

1 pDuty +— Prohibition )
AT R

([ Obligation )

Fig. 1. The elements of a legal relation.

Legal relation elements connect legal subjects and legal objects into legal
relations. A legal subject is connected with a legal relation element (its right or
duty) with has property. Legal relation elements are connected with a legal
object with allocates property. That way, a legal object connects the right of
one subject and the duty of another subject into legal relation. Relations be-
tween legal relation, legal relation elements, subjects and object are shown in
Figure 2.

ComSIS Vol. 10, No. 1, January 2013 157



Stevan Gostoji¢, Branko Milosavljevi¢, and Zora Konjovi¢

Fig. 2. The relation between legal relation and its elements.

A policy (Policy) determines the purpose of a legal norm, reasons why
some social relations are acceptable to the society (or the state) while others
are not. Usually, the purpose of the legal norm is to promote or preserve so-
cial values. Those values can also be promoted or preserved with other types
of social norms. There are different types of policies: abstract policy
(AbstractPolicy) or concrete policy (ConcretePolicy), basic policy (BasicPolicy)
or special policy (SpecialPolicy), temporary policy (TemporaryPolicy) or per-
manent policy (PermanentPolicy), etc. Different classes of policies are imple-
mented with different classes of legal norms. For example, temporary policies
are usually implemented with norms that have a date of repeal. Policies are
shown in Figure 3.

{ F' ermanentP olicy B

4 —
y. . TermporaryPalicy
_r'; "_'__.--"" z'-.. == -
P [ ConcretePolicy )
A Folicy E:f_-_ . : )
_T.J_;‘:;nh --'Z-_ SpecialP olicy )
\\\\ I BasicPolicy 3

\\‘.

AbstractP Dlii:‘_-,-'.::'

Fig. 3. The types of policies.

The policy is used for the interpretation of the meaning of legal norms that
implement it. According to legislative drafting guidelines, each law is sup-

158 ComSIS Voal. 10, No. 1, January 2013



Ontological Model of Legal Norms for Creating and Using Legislation

posed to explicitly state policies it implements, so judges and public officers
could use textual formulations of policies to interpret and apply legal norms.

A social norm (SocialNorm) is a rule of conduct (or behavior) in a society.
There are different kinds of social norms such as customs, moral and legal
norms.

Social norms can be abstract or concrete and general or individual. Ab-
stract norms are usually general and vice versa, but that is not always the
case. A norm that pardons all prisoners for a concrete reason is a concrete
and a general norm. A norm that elects a specific judge is an abstract and a
specific norm.

:F' rohibtivel nrm.:: )]

= —

',’/ -':::.F'rm.risinnalNnrm.:,‘-
/ - — =
rd . MormOfConduct
[ et
.'l' .-'--
.'I _r'.; "’/ — - T
/ _MermOfCompetance
I:'Il_.": z"’/ __._.--"".-- o T o
- _'E’ﬁvp{> A _ UncondtionalMarm
ll: Socialtorm "KZII—'I: LegalMorm ) . o
. o = B —— ' ._ '
_'_':";:l,:: R '.’t Entitlingterm
'..'-_ N "‘ — 4
A —
\ '.__-. W, ."'_'_-_-..-- ————
Y \\ (_ConditionalMarm
Y e ———
\\\ F eremptoryierm _' |
., o
A e
N -\___?bligatoryNorrh_ )]

I Inunctivetlarm )

Fig. 4. The types of legal norms.

Although there are different views on what constitutes a legal norm
(LegalNorm), for the purpose of this ontology it is defined as a social norm
that is sanctioned by the state. It is a central class of the model. A legal norm
is a rule of conduct in a society that contains a rule on the application of a
sanction in the case of its violation. Legal norms describe and prescribe
(dis)allowed legal relations. Since the state of the legal system is a set of legal
states of legal subjects (the set of their rights and duties), they also describe

ComSIS Vol. 10, No. 1, January 2013 159



Stevan Gostoji¢, Branko Milosavljevi¢, and Zora Konjovi¢

and prescribe (dis)allowed states of the legal system. The legal norm and its
different types are shown in Figure 4.

Legal norms can be classified according to legal relations they regulate and
elements they contain. Prohibitive norms (ProhibitiveNorm) regulate legal
relations that contain prohibitions. Provisional norms (ProvisionalNorm) con-
tain dispositive disposition. Norms of conduct (NormOfConduct) regulate legal
relations that contain right or duty (or equivalently contain categorical, alterna-
tive or dispositive dispositions). Norms of competence (NormOfCompetence)
regulate legal relations that contain competence (or equivalently contain dis-
cretionary disposition). Unconditional norms (UnconditionalNorm) do not con-
tain disposition hypothesis. Entitling norms (EntitlingNorm) regulate legal rela-
tions that contain a right. Conditional norms (ConditionalNorm) contain dispo-
sition hypothesis. Peremptory norms (PeremptoryNorm) contain imperative
disposition. Obligatory norms (ObligatoryNorm) regulate legal relations that
contain obligations. Injunctive norms (InjunctiveNorm) regulate legal relations
that contain a duty. Those classes of legal norms are not necessarily mutually
exclusive. For example, the definition of norm of competence is shown in
Listing 1.

Nor mf Conpet ence
a ow : C ass;
ow : equi val entd ass [
a ow : C ass;
ow :intersectionOf (
Legal Norm [
a ow : Restriction;
ow : onProperty hasEl enent;
ow : someVal uesFrom Di screti onaryDi sposition

1)
1;

ow : equi val entd ass [
a ow : C ass;
ow :intersectionOf (
Legal Norm [
a ow : Restriction;
ow : onProperty regul at es;
ow : sonmeVal uesFrom [
a ow : Restriction;
ow : onProperty hasEl enent;
ow : sonmeVal uesFr om Conpet ence
]
D
1.

Listing 1. The definition of the norm of competence.

Unlike some of the reviewed ontologies, our ontology does not specify the
concept of constitutive norm, since that concept is not in the focus of the pa-
per.

A legal norm is a basic building block of the legal system that is being
modeled. It is used for modeling (a part of) a legal system that is going to be
transformed into legislation that formulates it. It is also used for retrieval of
legal norms and legislation using its properties. A legal norm has one or more

160 ComSIS Voal. 10, No. 1, January 2013



Ontological Model of Legal Norms for Creating and Using Legislation

elements, regulates one or more legal relations, implements one or more
policies, is a part of a legal institution, is contained in legislation, enters into
force, is repealed and has efficacy on particular dates. Legal norm’s proper-
ties are shown in Figure 5.

m effectiven  (=ingle date)

M enteredintoForceon  (=single date)

mm formulats  isingle Legalact)

MW hasElermnent  {rmultiple MormElement or RelationElement)

M implements  (single Policy)

M istApplied  [multiple Case)

[ isCreated isingle LegislativeCreation or LegislativeMaodification)

m isinterpreted  (multiple Expertopinion)

[ isRepealed (single LegislativeRepealment or LeqgislativeModification)

M repealedOn (single date)

(| hasPart  [muoltiple ClassificationElernent)

(| isPart  (rmultiple ClassificationElerment)

(| requlates  (sinale SocialRelation)

Fig. 5. The legal norm's properties.

Each legal norm consists of two main elements: a disposition and a sanc-
tion. A disposition (Disposition) is a rule of conduct in a society. A sanction
(Sanction) is a rule of conduct of both the subject that has violated the dispo-
sition and the state (organization) that is mandated to use the appropriate
measure on the violator. The subsidiary elements of legal norms are a dispo-
sition hypothesis, a sanction hypothesis and an exception. A disposition hy-
pothesis (DispositionHypothesis) is the condition under which a subject has a
right or a duty to act according to the disposition. A sanction hypothesis
(SanctionHypothesis) is the condition of the application of the sanction. Viola-
tion of the disposition (a legal offense) is the necessary condition for the ap-
plication of the sanction, but not the sufficient condition since further condi-
tions may apply. Exception (Exception) limits the applicability of a norm.

There are several classes of dispositions. A categorical disposition
(CategorialDisposition) is a disposition that describes and prescribes one and
only one conduct. An alternative disposition (AlternativeDisposition) is a dis-
position that describes and prescribes one conduct from a set of alternative
conducts that a subject can choose. A discretionary disposition
(DiscretionaryDisposition) is a disposition that empowers a subject to regulate
behavior of other subjects. Those classes of dispositions are the subclasses
of imperative disposition (ImperativeDisposition). A dispositive disposition
(DispositiveDisposition) is a disposition that describes and prescribes a con-
duct, but empowers a subject to create another disposition instead. The sub-
ject has to comply with the rule of conduct only if he/she does not create an-
other disposition.

ComSIS Vol. 10, No. 1, January 2013 161



Stevan Gostoji¢, Branko Milosavljevi¢, and Zora Konjovi¢

Sanctions can also be classified into imperative sanctions (that can further
be classified into categorical sanctions, alternative sanctions and discretionary
sanctions) and dispositive sanctions, although categorical sanctions are al-
most exclusively used. The norm element and its subclasses are shown in
Figure 6.

-::Nterna‘tiveDisposition bl
e bategoricalDispos'ﬂ:ion b

[ ::'imperativeD ispositi

' !Z.J.lsposrtlctn. ey

P o T T_i:iis.posi‘tiueDisposi‘tlin.:u;'i:'- i :I:]Ii‘s-;:retionaryDisposﬂ.:i;:uln- ]
" ( DispestionHypothesis I P
"_II‘.JDrmElemenii ;::I|—< ..Excep‘tion_. | B o I
- - (;g\\\“ : _-_::ElJ-isposi‘tiveSanctic;l;.: ) [ :A-IternativeSanctic.n.-._: )
™. ' Sanction E'\_-_%:_____-__ T : _— ‘ :
. ) ) - ; § T :I.r-r;perativeSanctiIDA;: — iZ.)islcretiDnarySanct.inéuﬁ: p)
! :_S.‘:a.nctionHypothe.s-i.s.' ) I e

_ [ :.CategoricaISanction: ¥

Fig. 6. The legal norm element and its subclasses.

Legal norms do not have textual formulation. Its elements have it. Legal
norms are not directly connected with their textual formulations since different
elements of legal norms can be contained in different (parts of) legislation.
The element of legal norm can be formulated as a plain text or an URI refer-
ence to the XML element that formulates the norm element.

The element of a legal norm is used in several ways. Firstly, it is used to
connect the content (legal norms) and the form of legislation (its text). Sec-
ondly, it is used for browsing legal norms by their elements since different
legal norms can share same elements (e.g. different norms can have same
sanction, the sanction or the disposition hypothesis of one legal norm can be
the disposition of another, etc.).

A legal system (LegalSystem) is a set of legal norms arranged in a series
of units that are connected with each other in a non-contradictory whole.
Those units are a legal norm (LegalNorm), a legal institution (Legallnstitution),
a legal branch (LegalBranch) and a legal area (LegalArea). A legal institution
is a set of legal norms that regulate the same legal relation (or few similar
legal relations) with the same policy (e.g. ownership, marriage, privacy, etc.).
It should not be confused with an (state) organization although these concepts
are related since (state) organizations are created in order to apply legal
norms. A legal branch is a set of legal institutions (e.g. civil law, criminal law,
family law, etc.). A legal area is a set of legal branches (e.g. public law, pri-
vate law, national law, international law, etc.).

The purpose of those concepts is to organize legal norms into legal system
in an explicit manner. This is made possible by having a property (isPart) that

162 ComSIS Voal. 10, No. 1, January 2013



Ontological Model of Legal Norms for Creating and Using Legislation

specifies that an individual belonging to one unit is a part of an individual be-
longing to another unit. The classification elements are shown in Figure 7.
'l .Legaanrm. b
- ’ ’ Legallnst'rtutin:rr;
{_ClaEEiﬁCEtiDnElEl‘ﬁEl‘lt_. = +—— LegalSystem

[ LegalBranch )

.

| Legaltrea

Fig. 7. The classification elements.

Legal norms are also implicitly organized with relations expressed by the
Latin phrases lex posterior derogat legi priori (more recent law prevails over
an inconsistent earlier law), lex superior derogate legi inferiori (a superior law
prevails over an inconsistent inferior law) and lex specialis derogat legi
generali (a specific law prevails over an inconsistent general law) that can be
inferred from the model. The first relation can be inferred from the dates on
which norms entered into force. The second relation can be inferred from the
hierarchical relations between legal subjects that enacted legislation that con-
tains norms. The third relation can be inferred from hierarchical relations be-
tween legal relations that are regulated by norms.

The structure of the legal system is used for retrieval of legal norms and
legislation that formulates it.

A legal fact (LegalFact) is a fact that influences creation, modification or
termination of legal relations (rights and duties). In other words, it is a fact that
has legal consequences. It is usually described by disposition and sanction
hypotheses.

An act (Act) is a change of state of things that is influenced by an agent (an
agent is a subject that acts).

A mental act (MentalAct) is a change of mental state of a subject. This
change is always influenced by an agent (subject itself), so it is an act.

The term legal act (LegalAct) has two main connotations. The first connota-
tion of this term (its content, its subject matter) is a mental act that has legal
consequences, that changes state of the legal system by changing legal
states of legal subjects (their rights and duties). It has two parts. The main
part of its content is a statement of will that has legal consequences. The
subsidiary part of its content is the naming of the act itself (usually consisting
of the type of the act, the subject that enacted it, legal grounds for its enact-
ment, the place and the time of enactment, the procedure by which it was

ComSIS Vol. 10, No. 1, January 2013 163



Stevan Gostoji¢, Branko Milosavljevi¢, and Zora Konjovi¢

enacted, the goal for its enactment, etc.). It is represented with an URI (e.g.
accordance with URN:LEX [21] specification).

The second connotation of this term (its form) is the materialization of men-
tal act that has legal consequences, usually expressed by natural language.
The form of a legal act is a set of material means with which it is created and
expressed. The legal theory distinguishes three main elements of its form: the
subject, the procedure and the materialization. The subject is the body that is
authorized to enact a legal act. The procedure is what is needed for its en-
actment. The materialization is the accommodation to sensory perception and
expression of the legal act. The legal act and its subclasses are shown in
Figure 8. _ _

__Zi Decision :Z

"

| Bylaw [ -
N J— '--.;’_"T"'----"'--.- ---::..,S_tatm?.-::
4 LegalFact 2 4 LegalAct =2 [ Law |
;:_.Ctrnstitutiur';._:;

Fig. 8. The different types of legal acts.

Information about the subject, the procedure and the materialization is ex-
pressed by properties shown in Figure 9.

MW contains  (multiple Legalkorm)

m effectiven  (single date)

M enactedOn  (=ingle date)

MW isEnacted (single LegalSubject)

MW isPromulgated  (single LegalSubject)
MW isPublished (single Gazette)

e promulgatedon (sinale date)

M publishedOn  (single date)

M signer  (sinagle string)

W type  (single string)

Fig. 9. The legal act's properties.

Those properties are used to retrieve legislation and legal norms contained
in it (since legal act is explicitly connected with legal norms it contains).

It should be noted that the legal act in not a common term in the English
language and countries with the common law legal system in general. For the
purpose of this paper, the second connotation of this term, when contains
(mostly) abstract and general legal norms, is synonymous with the term legis-
lation.

164 ComSIS Voal. 10, No. 1, January 2013



Ontological Model of Legal Norms for Creating and Using Legislation

4. An Example of the Model's Application

The Law on Personal Data Protection [3] of the Republic of Serbia regulates
acquisition and processing of data within the context of protecting privacy of
individuals.

We have represented both the form and the content of this law. The con-
tent of this law (i.e. norms it contains) is represented in RDF according to the
OWL model described in Section 3. The modeling procedure is as follows:
determine the scope, determine the policy, model social relations in the scope
(and its elements), model legal norms that regulate those relations according
to the chosen policy (and its elements) and express elements of those norms
as plain text or XML. Due to space constraints, the original model of the law
expressed in N3 notation is available at [20].

As noted, this system of legal norms is inferred from existing legislation.
The procedure could also be reversed. Legislation could be textually formal-
ized starting from the system of legal norms.

The form of this law (textual formulation of norms) is represented using the
CEN MetalLex compatible model of legislation similar to the model described
in [2].

The CEN Metalex is intended to impose a standard view of legislation in
order to facilitate information exchange and software interoperability. To meet
those requirements, the CEN MetalLex defines mechanisms for XML schema
extension, addition and extraction of metadata and implementation of identifi-
cation mechanisms.

The CEN MetalLex schema defines abstract, generic and concrete types
and declares abstract and generic elements. Abstract data types correspond
to legal documents design patterns [21]. To enable the use of substitution
groups in the declaration of conforming elements, the abstract types have
corresponding elements. The CEN MetaLex schema contains generic types
for each abstract type. Generic elements are declared for each generic type.
They may be instantiated. Concrete types are included for all abstract types.
They should be used for defining subtypes or elements conforming to the
specification. In order to be compliant with the CEN Metalex specification,
each declared element has to be of a concrete type and has to have one of
the abstract elements as its substitution head.

Legislative drafting guidelines of the National Assembly of the Republic of
Serbia are regulated by [22]. All legislation enacted by the National Assembly
has to be written in accordance with those guidelines. According to [22],
based on its form, legislation is structured into parts, chapters, sections, sub-
sections, articles, items, points, subpoints and lines. The CEN MetalLex speci-
fication has been extended in order to comply with [22]. New elements were
declared for each structural parts of legislation. A full XML schema along with
several examples of the legislation represented according to this model is
available at [20].

The CEN MetalLex metadata is represented by RDF statements (subject,
predicate and object). An OWL schema that specifies the allowed values of
subjects, predicates and objects has been developed. It defines general con-

ComSIS Vol. 10, No. 1, January 2013 165



Stevan Gostoji¢, Branko Milosavljevi¢, and Zora Konjovi¢

cepts, concepts that identify the document and concepts that are citations of
other documents [23]. Only the subset of metadata specified in [23] was used
in the CEN MetalLex representation of legislation presented in this paper. That
subset contains classes and properties that were necessary for naming of
legislation. RDFa was used as a method of serialization of RDF triplets.

The CEN MetalLex specification does not define the syntax or the seman-
tics of identifiers. It defines rules that naming conventions must satisfy in order
to be compliant with the specification. The CEN MetalLex distinguishes identity
of legislation at FRBR [24] work, expression, manifestation and item levels.
Feature set has been chosen to identify uniquely legislation at work, expres-
sion and manifestation levels. Those features are serialized both into RDF
metadata in conformance with [23] and into IRIs of the syntax in conformance
with [25].

This representation is straightforward. Each formal element of the legisla-
tion (e.g. article, item, point, etc.) is represented by a corresponding XML
element that has id attribute as a unique identifier. The XML element provision
represents textual formulation of a part (element) of legal norm. The original
document is available at [20].

It is important to notice that the RDF representation of the elements of legal
norms (content of legislation) and the XML representation of provisions (form
of legislation) are connected with asURI property. Therefore, legal norms are
connected with their formulations (elements of legislation), while legislation is
connected with its content (legal norms).

The duality between the form and the content of legislation was used as a
basis for developing a prototype expert system for semantic browsing of legis-
lation. It stores legislation as XML documents in accordance with the CEN
MetalLex specification and legal norms as RDF triplets in accordance with the
model described in this paper. The usage of this prototype is described in the
remaining of this section.

User interface of the prototype consists of several tabs. Legislation is
shown in Content tab. It contains several views that can be shown by pressing
button > or hidden by pressing button <. Furthermore, it is possible to show
the table of content (Table of Content tab), the list of attachments (Attach-
ments tab), the list of bylaws (Bylaws tab) and the legislation metadata
(Metadata tab). The table of contents and the list of attachments are automat-
ically generated from the XML representation of legislation. The list of bylaws
and the legislation metadata are automatically generated from the RDF repre-
sentation of norms contained in legislation.

Legislation can be browsed by form or by content. It is browsed by form
simply by following textual hyperlinks between different elements of legislation
(articles, items, points, etc.) or different legislation altogether.

166 ComSIS Voal. 10, No. 1, January 2013



Ontological Model of Legal Norms for Creating and Using Legislation

P O6pana Ges npueraia
naw 12,
= Metadata
O6ipan 623 rpvcra jo Joasorea:
Synopsts: O6paga Bz NPUCTANKA I8 QOIOMEKA! =
Legal Retation: Offiasa nosaTaxa ez ngncTasKa
Palicy: JAUTHTA NPaSA KB MPHBATHOCTH 2 y r’ —:." P -':
Logal Instmtion: - paTHoc RSk 5 4 A b St RO
Entered into Force:  Thu Oct 23 00:00:00 CEST 2008
Repealed: T e T e e
Efficacy: ‘Thu Oct 23 00:00:00 CEST 2008 MPONUCOM [|ONETIM ¥ CHNALY C3 OBMM 3SKNHOM, PEAM OCTBAPENLA NPETEAHON
opaenasor
6paa o cTPaWe oprawa BnacTH
Hraw 13,
i Opran anscrn ofpeliyle nojaTes Gea NpuCTEE Muua, SO 8
oBpana eoNAMY pank OBARILAA NOCBA K3 CUCHE HAANERHEETH npelesate
> saceiou yisny
jomme BesfemooTa, ofpNE SeWNLE, CpEMBGA, OTEMINLA, WCTPTE W
TS 8 KUY [OA, SHOMTI, QN0 GWANCHCH. WiTEpeCa
AT, FALTHTE ASANL ¥ LSS, SALITHTE DS # ENOBGA H ATYTOF jaBKor
VNTD0G3. & ¥ ONTAA CTBISRIME KA DO THCMENOT MHCTIHIG TR
Mprrynmame nozarara
w14,
MNanaun o8 NPWTILAY Ofl NAUA HA KO B GIHOCE M ON OPraHA
YMpase wojt o koM OB Metan 33 XD MG
T T pp————
» Elements of Legal Norm 1) o 70 MPARMhEND TORGOM JKNAHENM CA THLOM 1 S B
oA oavocs:
sCase Law 21 Jo T0 MPONHCENO TANHOM WK ZIPYTHM FDOTIAOOM ZOHOTM ¥
cxnagy ca aseonow

» Expert Opinions

3118 70 HAOARNHD € OBIWDOM 1 AW NOCAA

Fig. 10. Metadata view.

OBpana Gea npueTanKa
nan 12.

+ Search Results

» Metadata
OBpana 63 NOHCTEN |8 QDIBOM-AHA:
1) aa b

- Elements of Legal Norm

Dispasitian; Acticle 12, tem 1, 2) y capiy WBpWewS 06ABEIS OPENEKHX JBKIMOM, BITOM

Dispasition Bcticle 12, Item 1, Pt 3, Aticle 12, Item 3, POinL 1, Acticle 12, e e G L e e e s

Hypothesis: Item 1, Point 2, PRCAS0US, K0 U BAGH NP S8y eins YOBOR,

Sanction: Acticle 57, Item 1 Article 57, [tem 3 Article 57, Item 2 3) y APy GnyaieEMMA ONpEREHM OBUM JAKIHOM KN PYTIM

Sanction Hypothesis: PONMGIM AoHETAM  CHRGY GA e JaKMOM, PARN DTTEGJEEL MPETERNDN
e

Exception:
O8pana o3 cTpaHe oprawa macTH
Ynaw 13

Opran anacrn ofipefiyle negarke Ges npucTaska MWua, Beo fe
afpaa Heonwaga pagk olaBm NOCASa K3 CHCje HAANEXIHOETH CRpele:
> sancwou Yipumy

[T er A A e ————
ML I3 KMDNND 1G7A, CXOMCMCRIK, OANOCHD (DRHIHGHOWTX KHTEPOCA
ZIDRADS, 32USTHTS JDABTY W MODAN, SALTHTE MHANA W CTOBGAA K AYTOr SO
WHTBPEC3, 3  DYTHM CIy<BIOEHMB KA OHOBY TICMEHOF MOHCTEHID LS.

Npiynisame nogaTaka
nan 14,

Mlanaun oo npwsynInaly 0 NIA Ha e 08 AAHOCE 1 N OpFANA
Ypese Ko c 2aR0HOM GBNANEK 33 KAXDSO NENRYITLAKS

Flasim 06 MOy MpHRYTIATH W OfF APYYON kLA 2K
1) e 70 NpeaBMhERO YTOROPOM JAKLIMEHM O TMUSM KA KON CF
AL omiocs;

* Case law 2) jo TO MPOMKCING JARCHOM WINPT TECTIGON SOHETAM ¥
cxnany ca JscHOM,
» Expert Opinions

3118 70 HAOARNHD € OBIWDOM 1 AW NOCAA

Fig. 11. Elements of Legal Norm view.

Browsing by content is facilitated in the following way. When a provision
that formulates an element of a legal norm is clicked, provisions that formulate
all the elements of that legal norm are shown in different colors - disposition is
yellow, disposition hypothesis is lime, sanction is aqua, sanction hypothesis is
fuchsia and exception is silver. The Metadata view displays norm metadata

ComSIS Vol. 10, No. 1, January 2013 167



Stevan Gostoji¢, Branko Milosavljevi¢, and Zora Konjovi¢

(Figure 10). The Elements of Legal Norm view displays a list of elements of
this norm (Figure 11). When an element of this norm is clicked, its textual
formulation is shown in the Content tab. The Search Results view displays a
list of legal norms that contains the elements formulated by the provision that
was clicked (Figure 12). When a legal norm from the list of legal norms dis-
played in the Search Results view is clicked, it is displayed in the similar man-
ner. The Case Law view displays a list of case laws that are related to the
selected norms. Similarly, the Expert Opinions view displays a list of expert
opinions related to the selected norms.

it

Tpeher

- Search Results
Bpuery Hagaopa cansuheno e j Aysse 0B Nowe
nenumusiytle OBpasal nenmrusaipe nporwcyle Mosepersis.

Omoryhanmses BpweIA HAIIOPa

Synopsis: AXRHE Y 02 NPERYIMY TEXHHKE, KAAROHCHE ¥ OPIBHISAUMONE MEPE o 5,
" . inaw

ole cy DGTReGne 43 G G 1OAIA

SO 3 s s o et

Oanauheta Nosepermsa y Kamopy

. T T T AT e 55
e— = < e fen Ll b Ao oo rpRTMGM SBIBRLA HAROPA YTORAK 43 £y rompeee
PB4 0PI W CENCYRNHM MMBOT MOry ce 0fgaRMeATH ka DCHOBY onpents 3akoka KoMwa cr ypefnyie opana, MoBepeswr ho yTICICOATH PYKOBIOUA
e HA HENPABHTHOCT Y GEPATH. Ha 0CHOBY HANGIR OBNALLNEHOT NHALA, 1oBepaHAK
Contained < Mo
o 3aKEH 0 SALTHTH NOZATEKE O MHAKOCTH 1) HAPSLHTH 25 C& HENDAEATHOCTH STKIIOHE Y OIPSNEHOM POKY.
[ L R — > 2) rowmpoweno abomum ofpay Kia te cHwmna CRETHO
in ompentama onor 3aKoHa:
3) vapeniTW GpWcaLe NODATARR MPRLENX 6oy TpaBor

Synopais: oonona,

IpGTWB 474 W3 CTABS 2. 0BOF N XANE nife ACIBCILENA, AN
+ Matadata = M NorpernyTH ypasI Enop.

Goposalere mepa Wa ciosa 2 oeor wnara ypelyie oo aKTo
» Elements of Legal Norm [ e—

» Case Law Nosspaa Jo A . nowecs npespusy roveey shor

nospena o panaa oacr saros
» Expert Opinions X

KASHEHE OfIPE[IEE
Hnaw 57

Fig. 12. Search Results view.

5. Conclusion

This article describes a formal model of legal norms developed using OWL. It
is intended for semiautomatic drafting of legislation from a system of legal
norms it contains and semantic retrieval and browsing of legislation annotated
with the information about legal norms they contain. The model is verified by
applying it to an existing piece of legislation and by developing a prototype
application intended for semantic browsing of legislation that can solve the
problem of legal rule fragmentation.

The main contribution of the paper is the adoption of the structural view of
the legal system and subsequent definition of all relevant concepts of the
model using the elements of the legal relation and the elements of the legal
norm. While reviewed ontologies connect legal norm with the action or behav-
ior of the legal subject it describes or prescribes, we connect it with legal rela-

168 ComSIS Vol. 10, No. 1, January 2013



Ontological Model of Legal Norms for Creating and Using Legislation

tions they regulate. To the best of our knowledge, no other model of legal
norms used this approach.

Nevertheless, modeling of a system of legal norms contained in legislation
requires considerable time and expertise. Apart from being acquainted with
OWL and the described model, a person responsible for this task is required
to be an expert in normalized legal drafting as well as in the area that is being
regulated. Therefore, our future work is directed in two complementary direc-
tions.

There are multiple research projects with the goal to develop legislative
drafting environment [26], but the semiautomatic application of legislative
drafting guidelines is on the rudimentary level. None of those tools supports
semiautomatic drafting of legislation starting from its semantics. One possible
solution to this problem is the use of a modeling tool that can generate draft
legislation from the model of a system of legal norms. That way, apart from
improving drafting process and the quality of resulting legislation, a model of a
system of legal norms would be a byproduct of the drafting process. Drafting
of legislation can be automated to some extent by transforming the model of a
system of legal norms in accordance with the described formalism, using
transformations described in specific legislative drafting guidelines, to the
model of legislation in accordance with the CEN MetalLex specification (cf.
[1]). Although this process cannot be completely automatic, the structure of
the draft legislation can be a considerable help to the legislative drafter and
annotated legislation can be used for semantic retrieval and browsing.

Retrieval and browsing of legislation can be facilitated by exploiting duality
of legislation and legal norms and the structure of the legal relation, the legal
norm and the legal system. Developing a prototype expert system for seman-
tic retrieval of legislation is a natural continuation of the research on browsing
of legislation. Semantic retirieval is based on the meaning of legislation (the
legal norms contained in it).

Furthermore, the model could be expanded to include specific and concrete
legal norms, although that can effect computing properties of the model since
the expanded model would not necessary be the OWL DL model. Ontology
presented in this paper can be integrated with existing (legal) ontologies, alt-
hough this was not the focus of the research described in this paper.

Acknowledgments. The research presented in this paper was financed by the Minis-
try of Education and Science of the Republic of Serbia as part of the research project
“Intelligent Systems for Software Product Development and Business Support based
on Models” (grant no. 44010). The authors would also like to thank anonymous re-
viewers for suggestions that considerably improved the quality of the paper.

References

1. Biagioli, C., Cappelli, A., Francesconi, E. and Turchi, F.: Law Making Environment:
Perspectives. In: Biagioli, C., Francesconi, E. and Sartor, G. (eds.): Proceedings

ComSIS Vol. 10, No. 1, January 2013 169



Stevan Gostoji¢, Branko Milosavljevi¢, and Zora Konjovi¢

10.

1.

12.

13.

15.

16.

17.

18.

170

of the V Legislative XML Workshop, European Press Academic Publishing, Flor-
ence, 267-283. (2007)

Gostoji¢, S., Milosavljevi¢, B. and Konjovié, Z.: Modeling MetaLex/CEN Compliant
Legal Acts. In: Szakal, A. (ed.): Proceedings of the 8th International Symposium
on Intelligent Systems and Informatics, IEEE, New York, 285-290. (2010)

Law on Personal Data Protection (“Sluzbeni glasnik RS”, br. 97/2008, 104/2009).
(in Serbian)

Biagioli, C. and Grossi, D.: Formal Aspects of Legislative Meta-drafting. In:
Francesconi, E., Sartor, G. and Tiscornia, D. (eds.): Proceeding of the 2008 Con-
ference on Legal Knowledge and Information Systems: JURIX 2008: The Twenty-
First Annual Conference, 1I0S Press, Amsterdam, The Netherlands, 192-201.
(2008)

Sartor, G.: A Formal Model of Legal Argumentation. Ratio Juris, Vol. 7 No. 2, 177—
211. (1994)

Gordon, T.: The Legal Knowledge Interchange Format (LKIF). University of Am-
sterdam, Amsterdam, The Netherlands. (2008)

Kralingen, R.: A Conceptual Frame-based Ontology for the Law. In Proceedings of
the First International Workshop on Legal Ontologies, University of Melbourne,
Melbourne, 15-22. (1997)

Breuker, J. and Hoekstra, R.: Epistemology and Ontology in Core Ontologies:
FOLaw and LRI-Core, Two Core Ontologies for Law. In: Gangemi, A. and Borgo,
S. (eds.): Proceedings of the Workshop on Core Ontologies in Ontology Engineer-
ing, RWTH, Aachen, 15-27. (2004)

Gangemi, A.: Design Patterns for Legal Ontology Construction. In: Casanovas, P.,
Biasiotti, M., Francesconi, E. and Sagri, M. (eds.): Proceedings of the 2nd Work-
shop on Legal Ontologies and Artificial Intelligence Techniques, RWTH, Aachen,
65-85. (2008)

Rubino, R., Rotolo, A. and Sartor, G.: An OWL Ontology of Fundamental Legal
Concepts. In: van Engers, T. (ed.): Proceeding of the 2006 Conference on Legal
Knowledge and Information Systems: JURIX 2006: The Nineteenth Annual Con-
ference, 10S Press, Amsterdam, 101-110. (2006)

Breuker, J., Hoekstra, R., Boer, A., van den Berg, K., Sartor, G., Rubino, R,
Wyner, A., Bench-Capon, T. and Palmirani, M.: Deliverable 1.4: OWL Ontology of
Basic Legal Concepts (LKIF-Core). University of Amsterdam, Amsterdam, The
Netherlands. (2007)

Valente, A., Breuker, J., Brouwer, B.: Legal Modeling and Automated Reasoning
with ON-LINE. International Journal of Human-Computer Studies, Vol. 51, No. 6,
1079-1125 (1999)

http://www.estrellaproject.org (current 1 June 2011)

. Olbrich, S. and Simon, C.: Process Modelling Towards e-Government — Visualisa-

tion and Semantic Modelling of Legal Regulations as Executable Process Sets.
Electronic Journal of e-Government, Vol. 6 No. 1, 43-54. (2008)

Luki¢, R. and Kosuti¢, B.: Introduction to Law, IRO Naucna knjiga, Belgrade, Ser-
bia. (1988) (in Serbian)

Vukadinovi¢, G.: Theory of State and Law, Futura publikacije, Novi Sad, Serbia.
(2006) (in Serbian)

Pajvanci¢, M.: Legislative Drafting, Advokatska komora Vojvodine, Novi Sad,
Serbia. (1995) (in Serbian)

Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A. and Schneider, L.
Deliverable 1.7: The WonderWeb Library of Foundational Ontologies and the
DOLCE ontology. ISTC-CNR, Padova, Italy (2002)

ComSIS Voal. 10, No. 1, January 2013



Ontological Model of Legal Norms for Creating and Using Legislation

19. Gruber, T. Toward Principles for the Design of Ontologies Used for Knowledge
Sharing: International Journal of Human-Computer Studies, Vol. 43 No. 5-6, 907—
928 (1995)

20. http://informatika.ftn.uns.ac.rs/legal (current 1 June 2011)

21. Vitali, F., Di lorio, A. and Gubellini, D.: Design Patterns for Descriptive Document
Substructures. Paper presented at The 2005 Extreme Markup Languages Confer-
ence, 1-5 August 2005, Montréal. (2005)

22. Legislative Drafting Guidelines (“Sluzbeni glasnik RS”, br. 21/2010). (in Serbian)

23. http://svn.metalex.eu/svn/MetalLexW S/branches/latest/metalex-cen.owl (current 1
June 2011).

24. International Federation of Library Associations and Institutions: Functional Re-
quirements for Bibliographic Records, International Federation of Library Associa-
tions and Institutions, The Hague, The Netherlands (2007). Available:
http://www.ifla.org/en/publications/functional-requirements-for-bibliographic-
records (current 1 June 2011)

25. Spinosa, P., Francesconi, E. and Lupo, C.: A uniform resource name (URN)
namespace for sources of law (LEX). Internet Engineering Task Force, Fremont
(2011)

26. Arsovksi, S., Konjovic, Z., Milosavljevic, B., Gostojic, S.: ,Legislative editors based
on open standards and open source. YUINFO 2010, Kopaonik, Serbia (2010)

Stevan Gostoji¢ has a Ph.D. in electrical engineering and computer science
from University of Novi Sad. Currently, he works as an assistant professor at
Faculty of Technical Sciences in Novi Sad. His research interests are legal
informatics, e-government, document management, business process man-
agement, distributed computing, WWW, XML and semantic web.

Branko Milosavljevi¢ is an Associate Professor in the Faculty of Technical
Sciences, University of Novi Sad, Serbia, where he earned his doctoral de-
gree in Computer Science. His research interests include information retrieval,
document management, access control, and digital libraries.

Zora Konjovi¢ is Full Professor in the Faculty of Technical Sciences, Novi
Sad, Serbia. Dr. Konjovi¢ received her Bachelor degree in Mathematics from
the University of Novi Sad, Faculty of Science and Master degree and Ph. D.
degree both in Robotics from the University of Novi Sad, Faculty of Technical
Sciences. She has participated in six scientific and more than thirty profes-
sional projects; she was the project leader for five of these. Dr. Konjovi¢ has
published more than 180 scientific and professional papers.

Received: August 04, 2011; Accepted: July 02, 2012.

ComSIS Vol. 10, No. 1, January 2013 171






DOI:10.2298/CSI1S111127040L

Indexing moving objects: A real time approach:

George Lagogiannis', Nikos Lorentzos', and Alexander B. Sideridis'

"Agricultural University of Athens, lera Odos 75, 11855 Athens, Greece
{lagogian, lorentzos, as}@aua.gr

Abstract. Indexing moving objects usually involves a great amount of
updates, caused by objects reporting their current position. In order to
keep the present and past positions of the objects in secondary
memory, each update introduces an I/O and this process is sometimes
creating a bottleneck. In this paper we deal with the problem of
minimizing the number of I/Os in such a way that queries concerning the
present and past positions of the objects can be answered efficiently. In
particular we propose two new approaches that achieve an
asymptotically optimal number of I/Os for performing the necessary
updates. The approaches are based on the assumption that the primary
memory suffices for storing the current positions of the objects.

Keywords: Persistence, /0 complexity, Indexing structures.

1. Introduction

Objects that change their position and/or shapes over time introduce large
spatio-temporal data sets. The efficient manipulation of such data sets is
crucial for an increasing number of computer applications (location aware
services, traffic monitoring etc). Considering in particular, moving objects as
vehicles that move in a city, we can think of many interesting queries such as
“find the closest police car”, or “find the number of vehicles that went through
the center of the city between 11:00 and 13:00”.

In the real time version of our spatiotemporal problem, we can consider a
client-server architecture where each moving client (object) sends its position
to the server, at discrete times. The server collects information reports
(messages) of the form (object Id, current-cell, current time) from the moving
objects, every P seconds. We assume that the objects move in a 2 d space.
Queries on such data sets may be of a “historical” kind or may be posed
strictly on the current position of the objects. This paper does not deal with the
present time. By current position of an object we mean the position indicated
by the last message sent by the object. The actual current position is
unknown, and one can only guess, according to the latest position, and the
speed vector of the object. Thus we only deal with the past. The term “real

'An abstract version of this work was presented in WSKS 2010 (see [8])



George Lagogiannis, Nikos Lorentzos, and Alexander B. Sideridis

time”, is used to denote that the updates on the data structures (in secondary
memory) caused by the messages (sent by the vehicles) are not postponed,
but instead, these structures are updated with every incoming message.

In building a system to index moving objects, we have two alternatives for
indexing the space involved (a 2-d space in our case), static and dynamic
indexing. In static indexing, the 2-d space is divided into “cells” and the area
occupied by each such cell does not change during the monitoring period, i.e.,
it is static. In dynamic indexing, the 2-d space is divided into regions in such a
way that, at all times, there is a minimum number of objects in every region.
To satisfy this property, we need to update the regions as objects move
(hence the regions are dynamic). In this paper we provide solutions based on
both static and dynamic indexing strategies, aiming at minimizing the number
of I/Os needed to store the messages sent by the objects. Assuming that with
each I/O we can store B such messages (i.e. B messages fit into a disk
block), we conclude that the minimum number of I/Os can be achieved if we
manage to store B messages with each 1/O. If we manage to store c*B
messages per /O, (where c is a constant less than 1) then we say that our
solution is asymptotically optimal. Such solutions are present in this paper.

Optimizing the 1/Os of existing multidimensional indexing structures (mainly
the R-tree) is the target of many recent efforts (see [3], [4], [6], [11], [12], [14]).
A common part of most of these solutions is a secondary index structure,
used for accessing the leaf of the main indexing structure that contains a
given object. This secondary index structure is used to avoid the multiple
paths search operation in the R-tree during the top-down update. This way a
bottom-up approach is proposed.

Compared with the related work described above, our work differs because
of the combination of the following three characteristics:

i) We use a worst case efficient data structure instead of an R-tree,
since the R-tree is not very efficient under a large amount of updates. The
worst case framework which we apply is important for real time applications,
where the data structures involved should be completely predictable with
respect to their time complexities. Searching for example for the closest taxi
requires a predictable amount of time because the positions of the objects
change rapidly and the taxi closest, one minute ago, may not currently be the
closest taxi. Tight bounds tend to make such applications more reliable and,
in this sense, reliability is really promoted by using a worst case efficient
indexing structure and in particular, partially persistent B-trees (see [2], [13]).

i) We aim at storing not only the present positions of the objects, but
also the past ones. The past positions are crucial for the answering of
historical queries and such queries are certainly of interest.

iii) In contrast with most of the related work, which is implementation
oriented, a practical implementation is not our objective, i.e. our work should
not be seen as competitive to practical, implementation-oriented solutions. It
must be noted that in reality, a simple observation of the way by which the
objects tend to move may prove to be more useful than the theoretical
asymptotical optimality, which we provide. For example, one could logically
neglect messages from motionless vehicles and, therefore, reduce the

174 ComSIS Vol. 10, No. 1, January 2013



Indexing moving objects: A real time approach

number of 1/0s. We do not make any assumptions or real life observations
relevant to the way of the movement of the objects. Thus, our work should be
seen as an approach into which many observations from real applications can
be incorporated, in order for practical implementations to be created.

2. Problem definition

As is obvious, storing the past positions of objects requires the use of

secondary storage because of the huge amount of data involved. Given that a

large number of objects is being tracked, the main concern is to face the

bottlenecks caused by the large volume of I/Os for storing into secondary

memory the messages sent by the objects. The parameters involved are

summarized as follows.

N: The maximum number of tracked objects.

M: The amount of main memory used.

P: The time period of communication between the objects and the base
station, measured in seconds.

R: The number of I/Os per second supported by the hard disk of our
system.

B: The number of messages that fit into a disk block.

W: The total number of messages received by the system during the
tracking time.

An 1/0 may be of one of the following two types:

e Message storing 1/0, which stores some (optimally O(B)) messages, into a

disk block.

e Rebalancing I/O: This I/O is caused by the indexing structure.

The first type of I/O is caused by the incoming messages. For an example
of an 1/O of the second type, consider a message-storing I/O that inserts a
new record into a leaf of a B-tree. This may cause a split of the leaf and of
some of the ancestors of this leaf. The additional 1/Os, required to rebalance
the B-tree, are the rebalancing I/Os.

Since at most B messages can be stored into secondary memory by one
I/O, it follows that the minimum number of 1/Os that can be achieved is W/B.
In fact, this number can be achieved by the following trivial solution: Each new
message sent by an object is copied into a buffer, whose capacity is equal to
B messages. When this buffer is filled, we store its B messages at the end of
a secondary memory file and the buffer is then freed. Clearly, this solution
achieves W/B 1/Os all of which are message-storing, since no indexing
structure is used.

Such a solution, though optimal with respect to the number of 1/Os, does
not efficiently answer queries concerning the objects, due to the lack of an
indexing structure. Our objective is to achieve asymptotically optimal solutions
with respect to the number of I/Os, that are still query efficient. In particular,
we allow for the number of 1/Os to be O(W/B) (i.e. the number of 1/Os is
multiplied by a constant factor) rather than W/B (of the trivial solution) and

ComSIS Vol. 10, No. 1, January 2013 175



George Lagogiannis, Nikos Lorentzos, and Alexander B. Sideridis

show that this sacrifice is enough to achieve query efficient solutions. In
conclusion, the solutions we present have the following property.
Property 1. To store the total number of messages (W) received by the
system, the required number of message-storing 1/0s is O(W/B).

For our purposes, it is assumed that the primary memory is sufficiently
large to store the current position of tracked objects. Assume, for example,
that 5 million moving vehicles are being tracked in a city. Assume also that,
for each vehicle, a tuple of c bytes is maintained in primary memory,
containing the Vehicle Id and the necessary additional data. Then the primary
storage required is not more than 5*c Mbytes. Assuming that we use
sophisticated data structures, this number has to be multiplied by only a small
constant. Such an amount of primary memory is not considered to be
prohibitive nowadays neither from a technical nor from an economical point of
view.

As mentioned in the introduction, one can index the 2-d space where the
objects move, statically and dynamically. In this paper we follow both
approaches.

Our static indexing approach is based on a grid. We assign an indexing
structure to each cell of the grid. Such an indexing strategy is suitable for the
processing of range queries. In this paper we explore this strategy for the
processing of spatiotemporal range predicates. A spatiotemporal range
predicate is a pair (S, T) where S is a spatial constraint and T is a temporal
constraint which can be either a time instance or a time interval. The output of
the query is either the set of objects inside S at the time instance T, or the set
of objects inside S at some time instance during the time interval T.

By indexing the space in a dynamic way, we are able to efficiently process
spatio-temporal nearest (k-nearest) neighbour predicates. Such a predicate is
a pair (Q, T), where Q is a point on the map and T can again be either a time
instance or a time interval. The output is the nearest object (or the k-nearest
objects) to Q, at the time instance T or during the time interval T.

The time complexities of the solutions provided are derived in the external-
memory model of computation given in [1], i.e. we neglect the time spent for
primary memory actions and the only measurement of efficiency we care
about is the number of 1/Os.

The remainder of the paper can be summarized as follows: The partially
persistent B-tree, briefly presented in Section 3, represents the base structure
for the description of the proposed approaches. Sections 4 and 5 aim at
reducing the message storing I/Os. The approach in Section 4 is based on the
static indexing of the involved space whereas in Section 5 dynamic indexing is
discussed. In Section 6 we discuss rebalancing 1/Os. In Section 7, we finally
draw conclusions and discuss issues of further research.

176 ComSIS Vol. 10, No. 1, January 2013



Indexing moving objects: A real time approach

3. Partial Persistence

Traditional data structures are ephemeral, in the sense that we do not
maintain older versions, we only update the current version. Maintenance of
the old versions leads to persistent data structures. There are three kinds of
persistence: In partial persistence, the latest version can be updated, and the
old versions can only be searched. In full persistence, all versions can be
searched and be updated. Finally, in confluent persistence, one property is
added, that two different versions can be merged.

In the seminal paper by Driscoll, Sarnak, Sleator and Tarjan, [5], two
general methods are presented, that transform an ephemeral data structure
into a partially persistent: The fat-node method (also achieving full
persistence) and the node-copying method. By applying the fat-node or the
node-copying method to an ephemeral (initial) structure we can create its
partially persistent version.

A fat node corresponds to a node of the (initial) ephemeral structure. It can
become arbitrarily big, and it contains the entire history of the corresponding
ephemeral node. The node-copying method produces fixed-size nodes and it
is optimal, i.e., the time complexity of the produced partially persistent
structure is asymptotically equal to the time complexity of the (initial)
ephemeral structure.

Applying the methods of [5] in secondary memory turned out to be a
separate research area, because its straightforward application leads to a
huge amount of wasted space. Having been inspired by the fat-node method,
Lanka and Mays [10], proposed a method, called fat field, that reduces the
space requirements of their data structure. In this method, the empty fields of
a block in a fat node are used to store modifications of data fields, as long as
they do not cause overflows. Using this method, they presented fully
persistent B-trees which can also be used for the partially persistent case
except that the time complexities achieved this way, are not optimal.

To achieve optimal partially persistent B+-trees, one must adjust the node-
copying method to secondary memory. Such partially persistent B-trees have
also been developed, in particular the Multi Version B-Tree (MVBT) by Becker
et al. [2] and the Multi Version Access Structure (MVAS) by Varman and
Verma [13]. These methods essentially share the same ideas. The
approaches presented in the next sections are based on the partially
persistent B-tree ([2], [13]). A brief description of these structures follows.

In general, a partially persistent B-tree is a modified B+-tree. Its internal
nodes contain index records and its leaves contain data records. A data
record contains the fields key, start (the time instance that the record was
inserted into the tree), end (the time instance when the record was “deleted”),
and info (information associated with the key). An index record contains the
fields key, start, end and ptr, where ptr is a pointer to a node of the next level.
The node pointed by the ptr pointer contains keys no less than key, has been
created at the time instance start and has been copied at the time instance
end. A data record is active (live) if its end field has value ‘¢, i.e. it has not
been updated, “deleted” or copied to another node. If this is not the case, the

ComSIS Vol. 10, No. 1, January 2013 177



George Lagogiannis, Nikos Lorentzos, and Alexander B. Sideridis

data record is inactive (dead). Thus, to “delete” a record we just set its end
value to the current time. An index record is active if it points to an active node
at the immediately lower level.

From the above description it follows that the current version of a partially
persistent B-tree contains all the active data records. A node that contains
active records is also called active otherwise it is inactive. Thus, the current
version of a partially persistent B-tree contains all its active nodes. A node
becomes inactive when it is rebalanced.

Figure 1 shows a possible instance of a partially persistent B-tree, and a
simple scenario. At time 5 (upper part of the figure), the tree consists of two
nodes, the root and one leaf, which contains all the data records. The figure
shows that key A was inserted at time 1, key C was inserted at time 2 and
was subsequently modified at times 3 and 4, and key F was inserted at time
5. Then, at time 6, key D is to be inserted. This insertion causes an overflow
of the single leaf. Two new leaves are then created and the old leaf becomes
inactive (all the inactive records appear shaded). The index record of the root,
which points to the inactive leaf, also becomes inactive (shaded). The set of
live records of the old leaf is sorted by key, is divided into two halves and
each of these halves is copied to one of the two new leaves. Two new index
records are created in the root. Their start value is the time at which the
pointed leaves were created, i.e. time 6. To delete a record, we set its end-
value to the current time instance and then count the remaining live records of
the leaf. If they are too few, we may borrow some live records from a
neighbour leaf, and create one or two new leaves.

The fact that one or two leaves may be created requires some brief
discussion. In the scenario of Figure 1, the rebalanced leaf contains less than
5 active records. Since however 5 records fit into one leaf, one would expect
that only one new leaf is needed. Instead, one can see that we have created
two new leaves. Appropriate explanation for this decision is now justified by
the following: In general, the number of new leaves created is dictated by our
need to create “stable” leaves that will not be rebalanced soon. As an
example, let us set to B the capacity of each node of the persistent tree. If the
leaf being rebalanced contains B active records, then we can move all the
active records to a new leaf but this leaf will immediately be rebalanced if a
new insertion occurs inside it. The general rule is that we create one or two
“stable” leaves, each of them requiring ©(B) updates (insertions or deletions)
in order to be rebalanced again. After a deletion, we count the number of
active records inside the node containing the “deleted” record. If the number is
smaller than a threshold, then we may transfer some active records to that
node, from a neighboring node, or merge this node with a neighboring node,
and create one or two stable nodes. It is easy to see that creating stable
nodes is not a difficult task (further details can be found in [2] and [13]). Thus,
partially persistent B-trees have the following property, which is important for
our solutions.

Property 2: When a new node is created, it is able to tolerate ©(B) updates
until it becomes inactive.

178 ComSIS Vol. 10, No. 1, January 2013



Indexing moving objects: A real time approach

In order to achieve Property 2, the minimum number of active records
inside a node must be O(B) otherwise, a node will have to be merged before it
“‘experiences” O(B) “delete” operations. Assuming for example that the
minimum number is 4 then, by merging two nodes, we create one node with
at least 8 active records. This node can then experience 4 deletion operations
before it has to be merged again. The fact that the minimum number of
records is set to ©(B), leads to Property 3, which is also important for our
solutions.

Property 3: If we navigate into the persistent structure at time instance t,
each node we access has O(B) records, valid at this instance.

Initially, at time 5

(A1,9)

.

(A,1,9)](C,2,3)|(C,3,4)[(C.4.9)| (F.5,9%)

After inserting D at time 6

(A,1,6)[(A,6,9)[(C.,6,9)

(C.4.9) |(D.6,9)

(A.1.9) |(F.5,9)

(A,1,6) |(C,2,3) |(C,3,4) |(C.,4,6) |(F,5,6)

Fig. 1. A simple scenario of a partially persistent B-tree. The ptr-field for each record is
visualized through an arrow pointing to the level below. The fields key, start and end,
are shown in the same order. The shaded records are inactive and the remainder are
active.

Let us now briefly describe the navigation inside a partially persistent B-
tree. To search for a key K that is valid at time t, we start from the root. We
ignore the records with start values greater than t and the records with end
values less than t. From the remaining records we choose the one with
greatest key value, less than or equal to K; if there are several such records,
we choose that one with the greatest start value. We follow the pointer to the
next level and we then apply the same procedure at this level. Note that this
process introduces a unique path towards the leaf level, where a leaf is

ComSIS Vol. 10, No. 1, January 2013 179



George Lagogiannis, Nikos Lorentzos, and Alexander B. Sideridis

accessed. The record will be found in the leaf if it really exists; otherwise,
there was no record with key K valid at time t. Searching for example for
element F at time instance 5 of Figure 1, we shall ignore records (A, 6, $) and
(C, 6, $) because they were created after time instance 5. If, on the other
hand, we search for element D at time 6, we shall ignore record (A, 1, 6) in
the root of the structure, because this record was “deleted” at time 6. From the
remaining records, we choose (C, 6, $) and we then follow the pointer
indicated by this record.

The space consumption of optimal partially persistent B-trees is O(m/B)
blocks (where m is the total number of updates) and updates can be
performed in a O(logg(m/B)) worst case time. In the amortized case, the
update time is constant (see [2], [13]).

4. Static Indexing

We consider a grid on our 2-d map. In the static indexing we assume that the
horizontal and vertical lines of the grid are determined in advance and they do
not move during the monitoring period. Hence, the 2-d map is divided into
static cells. Each incoming message is a tuple (O, Cig, t), where Oy is the id
of the object that sent the message, Cjg is the id of the cell that contains Oy,
and t is the time at which the message was sent. For simplicity, we assume
that each object can determine its current cell, i.e., it has some computational
power. If this is not the case, the current cell can easily be determined by the
system, with a simple calculation. The objects inside each cell are indexed by
a partially persistent B-tree. Each time an object leaves a cell C, and enters
another cell C;, its record, which is located in C, is set to inactive, by replacing
the value $ of its end field by the time at which the object sent the message.
Next, a new record for this object is inserted into the persistent B-tree of C;.
Its start value is set equal to the time at which the message was sent, and its
end value is set to $. This approach is described in Subsections 4.1 and 4.2.
To avoid complicated details, we assume that if an 1/O is needed, it is
performed immediately. Note that although this is an unrealistic assumption, it
allows for simplifications. The realistic assumption is that if an I/O is needed, it
may not be completed instantly, because another I/O is performed at the
same time. Thus, the 1/0Os become pending I/Os, and are inserted into a list
called 1/O-list. Message storing 1/0Os are executed by extracting pending I/O
requests from the I/O list in FIFO order. In Subsection 4.3, we analyze the
approach by taking into account this last, realistic assumption. Finally, in
Subsection 4.4, we explore the efficiency of the approach for the handling of
spatiotemporal range predicates.

180 ComSIS Vol. 10, No. 1, January 2013



Indexing moving objects: A real time approach

4.1 Data Structures

For each cell C; of the grid, we maintain in secondary memory a partially
persistent B-tree, called PBC;. In primary memory we maintain the following
data structures:

For each cell C; of the grid, we maintain an indexing structure called
active_PBCi. Let C; be a cell. PBC; contains both active and inactive
nodes. The active_PBC; is the tree defined by the active nodes of PBC;
and the pointers that connect these active nodes. For every leaf V of the
active_PBC;, there is a leaf X in PBC; which satisfies the following
property: At the time V was created, X was also created to be identical to
V. We call X, image of V, and we store into V a pointer towards X.

A table A containing the tracked objects. Suppose that we receive a
message from object i. Then entry A[i] contains the current cell of the
object.

4.2 Algorithm to Handle Incoming Messages

Suppose we receive a message (O;, Cy, t). The algorithm for the processing of
this message follows, and the result of the algorithm is visualized in Figure 2.

Primary memory
Active_PBCy Update V Active_PBC;;

T A el =

' Secondary memory \ \

\
|: PBC, UpdateX%ﬁE\‘:
> I
IaES X x[_ x| [ Ix

Fig. 2. Deactivating leaf V in cell Cy, leads to updating its image leaf X on the disk

Step 1: We go to A[i] and find the current cell of O;. Let C; be that cell. If Cy =

C;, we do nothing. Otherwise we store Cy, in Afi] and proceed to Step 2.

Step 2: We find the appropriate leaf V in the active_ PBCy and insert into it the

new tuple. If V is not full, we are done. If V is full we may have either to
split, or merge V with a neighboring leaf. In either case, one or two new

ComSIS Vol. 10, No. 1, January 2013 181




George Lagogiannis, Nikos Lorentzos, and Alexander B. Sideridis

leaves must be created. Figure 2 shows the actions of Step 2, in the case
at which V is split into two leaves, named V; and V,. We execute the
insertion algorithm of the partially persistent B-tree on the active_PBC,,
with one difference: we throw away all the inactive nodes. For example, in
Figure 2, leaf V is thrown away when the algorithm finishes. By following
the pointer from V we reach X, the image of V. We then update X, to be
identical to V. Next, we proceed with the insertion algorithm on PBC,, and
we create the image leaf of each new leaf created by the insertion
algorithm in the active_PBCy (X; is the image leaf of V; and X; is the
image leaf of V,). We connect each new leaf in primary memory, with its
image leaf in secondary memory.

Step 3: In the active_PBC;j, we find the leaf that contains the tuple of O;. We
execute the deletion algorithm of the partially persistent B-tree on the
active_PBC;, in order to delete the tuple of O;, in the same way we
executed the insertion algorithm in Step 2.

4.3 Analysis of the Solution

Lemma 1: If W is the total number of messages received by the system, then
the approach of this section stores these messages in O(W/B) message
storing 1/Os, i.e., Property 1 holds:
Proof: When a leaf in primary memory becomes inactive, all its records are
stored in the image leaf. According to the algorithm of the partially persistent
B-tree, every leaf of an active PB remains active until ©(B) insertions or
“deletions” (i.e., record deactivations) occur (due to Property 2). Each
insertion or “deletion” corresponds to a message that has not been stored.
Thus, when a leaf is deactivated, ©(B) new messages are stored in
secondary memory. By new, we mean messages that have not been stored in
secondary memory earlier. As a result, in order to store all the W messages,
we need O(W/B) I/Os. \
Lemma 2: Let S; be the amount of primary memory occupied by active
nodes. Then, S; is O(N).
Proof: Let u be an active node of an active PB. Then u contains active
records. We know that, in every node, the total number of records is at most B
and the number of active records is ©(B) (due to Property 3). Since the
number of active records stored in all the active leaves of active PBs is N
(equal to the number of tracked objects), we conclude that the total number of
records stored in all the active leaves of active_PBs is ©(N). Adding the space
occupied by the internal nodes, the total space is multiplied by a constant less
than 2. Therefore we conclude that the total space consumed by the
active_PBs is O(N). [
At this point, we add to the approach already presented in Subsection 4.2,
the realistic assumption that an 1/O list exists. Whenever a leaf in main
memory is deactivated, it is inserted into this 1/O list. I/Os in this list are
processed in a FIFO order. Once the I/O indicated by the leaf has been
served, the space in main memory which was occupied by the leaf is set free.

182 ComSIS Vol. 10, No. 1, January 2013



Indexing moving objects: A real time approach

Due to this, the definition of active PBs has to be revised as follows: If C; is a
cell of the grid then the active_PBCi contains all the active nodes of PBC; plus
the inactive nodes inside the 1/O list.

To determine the amount of main memory consumed by the approach of
this section, we notice that this amount is equal to the space (S;) occupied by
the active nodes, plus the space occupied by the deactivated nodes inside the
/O list. Let S, be the amount of primary memory occupied by nodes
deactivated during one time-period. As Lemma 3 states, the space occupied
by nodes deactivated during one time-period, is O(N).

Lemma 3: The amount of primary memory occupied by the nodes deactivated
during one time-period is O(N).

Proof: We attach a counter on every leaf of the active_PBs. When a new leaf
is created, its counter is set to 0. Each incoming message may produce an
update to at most two leaves, the leaf that contained the object, and the leaf
that contains the object currently. If an update occurs inside a leaf, the
counter of the leaf is increased by 1. Assume now that the N messages sent
within the same time period have been processed (the I/O list is empty), and
let X be the number of times that any counter has been increased by 1. Since
every message increases by 1 at most two counters, it is obvious that X < 2N.
From these X times that a counter has been increased, only X / ©(B) times
have led to a rebalancing operation, because of Property 2. Thus, the total
number of rebalancing operations among the leaves of the active PB'’s is
O(N/B). The nodes involved in these rebalancing operations are those that
became inactive during the time period and, since each of them occupies
O(B) space, we conclude that the total space occupied by them in primary
memory is O(N). \

All we now need is to make sure that the hardware is capable of performing
all the 1/0Os created during a time period, before the next time period ends
(otherwise the I/O list would grow indefinitely, leading to a vast consumption
of primary memory). Thus R, the maximum number of I/Os the hardware can
perform, must be big enough. This is logical, because even if the number of
I/Os caused by our solution is asymptotically optimal, we still need hardware
that can handle this amount of 1/0s, otherwise the solution will not work. This
is why parameter R and the /O list have been included in the solution, i.e. in
order to indicate the hardware requirements. Apart from that, they add nothing
to the solution. From Lemmas 2 and 3, it follows that, as long as R =
O(N/(T*B)) we conclude that M = S1+S2= O(N).

From the analysis of partially persistent B-trees ([2], [13]), it can easily be
deduced that the secondary memory used is O(W/B) blocks.

4.4 Spatiotemporal Range Predicates

As mentioned before, static indexing is suitable for the efficient processing of
Spatio-temporal Range Predicates (S, T). The output is either the set of
objects inside the spatial constraint S at the time instance T, or the set of
objects inside S at some time instance during the time interval T. The efficient

ComSIS Vol. 10, No. 1, January 2013 183



George Lagogiannis, Nikos Lorentzos, and Alexander B. Sideridis

processing of such a predicate by using a grid and a persistent structure for
each cell of the grid was discussed in [9]. Here, we use the same solution,
except from the fact that now we have to additionally search in primary
memory.

Consider the predicate (S;, T1), where S; is the cell C; and T, is the time
instance t;. Let F(Cy, t;) be the set of objects satisfying the predicate (Cy, t).
We then have to look in both the active_PBC, and in PBCy, in order to retrieve
all the records that correspond to objects that were inside cell C; at time
instance t;. Let D; and D, be the set of objects corresponding to the records
retrieved from active_ PBC, and PBC4, respectively. Then F(Cy, t;) = D; U D».

Now assume that the temporal constraint T, is the time interval [t;, t;]. To
retrieve all the records corresponding to the objects that were inside the cell
for a time instance in [t, t;], we have to look again in both the active_PBC;
and in PBC,. First, we access all the leaves that were active at time t;. Then
we can follow the history from time t; up to time t,. The ability to follow the
history is justified as follows: When one or two leaves of the index structure
become inactive, either one or two new leaves are created. When a leaf L
becomes inactive we store into it a pointer to the newly born leaf. If two new
leaves are created, we store two pointers into L. Following the pointers we
retrieve all leaves that were valid at some time instance during the interval [t;,
t,]. These leaves contain the output of the query.

In [9] it is proved that, we can evaluate the spatiotemporal predicate (C,
T,), by sparing at most O(loggWC; + F(C,, T1)/B)) I/Os, where WC; is the
number of updates occurred inside cell C;.

5. Dynamic Indexing

The approach of Section 4 may not be the best if we are interested in nearest
and k-nearest neighbour predicates. Such a predicate is a pair (Q, T), where
Q is a point on the map and T can be either a time instance or a time interval.
The output is the nearest object (or the k-nearest objects) to Q, at the time
instance T or during the time interval T. The reason for the potential
inefficiency of static indexing in this case is the following: If the query point is
on an empty cell, we have to start searching the neighbouring cells. That is, in
case of a sparse traffic, we will end up consuming too much time (one I/O per
cell) discovering empty cells. To face the disadvantages of the grid approach,
we need a more dynamic partitioning of the 2-d space. Thus, we divide our 2-
d space by using only vertical lines. The area between two consecutive
vertical lines is called slab, thus each slab is determined by its left and right
border in the x-coordinate. Contrary to grid cells, slabs can easily be indexed
in a way that their x-range is not static, i.e., the vertical lines that define slabs
can “move” during the monitoring period. The reason is that by moving a line
we have to update only 2 slabs whereas in Section 4, if we move a vertical
line, we will have to update many cells. The reason for moving a line is to
maintain “equally balanced” slabs. The definition of “equally balanced” slabs

184 ComSIS Vol. 10, No. 1, January 2013



Indexing moving objects: A real time approach

follows: If d is a constant, it is said that the slabs are equally balanced if the
most populated slab has at most d times the number of objects of the least
populated slab.

Maintaining equally balanced slabs, we know that the slab containing the
query point will always contain an object that is “fairly close” to the query
point, and can be used as a starting-point in order to find the nearest
neighbor. After finding a starting point, we are able to bound the search area
for the nearest neighbor, by searching for objects that are closer to the query
point than the starting-point. Each time we find a new nearest neighbor, we
bound further the search area.

We index the objects inside each slab, by their y-coordinate. Assuming that
the slabs are thin enough, the y-coordinate suffices to track the objects inside
each slab with a satisfactory precision. If follows, that we can track the current
position of the objects by a two-level indexing structure (Figure 3). The upper
level is an index for the slabs. Each leaf of the upper level corresponds to a
slab and it is connected to an indexing structure of the lower level, which
stores the objects inside the slab, by their y-coordinate. If we want to track the
past positions of the objects also, we have to make this two level indexing
structure partially persistent.

®_ \
_ Slab 2 Slab i
Object with min y- ¥ ~ Object with max y-
coordinate in slab i coordinate in slab i

Fig. 3. The two-level partially persistent indexing structure.

To make things easier during the description of the approach we assume,
as in Section 4, that when a message storing /O is needed, it is performed
immediately. In Subsection 5.4, we add an I/O list to the solution i.e., when a
message storing 1/0 is needed, it is inserted into the I/O list that works in FIFO
order. Finally, in Subsection 5.5, we explore the efficiency of the approach for
the handling of nearest and k-nearest queries.

ComSIS Vol. 10, No. 1, January 2013 185



George Lagogiannis, Nikos Lorentzos, and Alexander B. Sideridis

5.1 Data Structures

In secondary memory we maintain the two-level persistent indexing structure
described above. We call this structure, slab_index. The upper part is a
persistent B-tree, and the same also holds for each tree of the lower part.

In primary memory we maintain an indexing structure created by the active
nodes of the slab_index. We call this structure active_slab_index. In primary
memory we also maintain a table A, to store the objects. Position i of A stores
a pointer to the record of object i, in the active_slab_index.

5.2 Splitting and Merging Slabs

A slab has to merge with another slab, if its objects reduce to N, -1 and it has
to split if its objects increase to Ny+1. Parameters N and Ny are going to be
determined later on. A slab that has more than Ny objects is called big,
whereas a slab that has less than N objects is called small. A slab that is
neither big nor small is called normal. The split and merge operations are
incremental i.e., they are completed through small steps, where each such
step costs a constant amount of time. Incremental split/merge steps are
performed each time we receive a message from an object that is either
inside or entered or left one of the involved slabs.

The incremental merge operation works as follows: Assume that slab S;
has N -1 objects. Let TR; be the tree of the lower level of the
active_slab_index that corresponds to S;. Let S; be the slab that is going to be
merged with S;, and TR; be the lower level tree that corresponds to S;. TR; and
TR; have the same parent, u. Our objective is to merge trees TR; and TR;,
incrementally. The merging procedure is straightforward. In particular, every
incremental step merges O(1) objects from each tree, according to their y-
coordinate, starting from the leftmost leaf of each tree. Each merged record is
inserted into tree TRy, which is going to replace trees TR; and TR;
Incremental merge steps are performed each time we receive a message
from an object that is either inside or entered or left one of the two merging
slabs.

Suppose now that the number of objects of slab Sy increased to Ny+1, i.e.
we have to split Sy. Again, the split is incremental. Each incremental step,
processes O(1) records of the lower level tree, TRy, corresponding to Sy, and
inserts them into a temporary balanced binary search tree, according to their
x-coordinate. When all the records of Ty are inserted into the temporary tree,
we start creating the two new slabs that are going to replace Sy. We
incrementally traverse the leaves of the temporary tree (O(1) records per
incremental step) from left to right. The left half data records enter the new
lower level tree TRy, that corresponds to the new slab Sy;. The right half data
records enter the new lower level tree TRy, that corresponds to the new slab
Sk2- When the traversal is over, the leaf of the upper level corresponding to Sy

186 ComSIS Vol. 10, No. 1, January 2013



Indexing moving objects: A real time approach

is split into two, and each new upper level leaf is connected with one new

lower level tree.

During the incremental merge, an object O; may have a valid record in at
most two trees. The first record (the one pointed by the pointer in position A[i])
is inside a leaf (L;) of a lower level tree (T;) corresponding to an existing slab.
The second record is inside a leaf (L,) of a tree under creation (T,). If a new
message arrives from Object O;, both leaves must be updated. We reach the
record of O; in L, by storing to the record of O;in L, a pointer to L,.

It remains to give the algorithm that triggers these split/merge operations.
This algorithm, which is called overall algorithm, guarantees that there is an
upper and a lower bound to the number of objects inside each slab. The
problem that needs to be solved is the following: Assume that a slab S; has
N.-1 objects, therefore it must merge with another slab. However, both
neighboring (to S;) slabs are under an incremental splitmerge operation.
Then, S; must wait for at least one of these split/merge operations to finish.
The overall algorithm must guarantee that S; will not wait forever and
furthermore, all slabs are “equally balanced”. The main idea of the overall
algorithm is the introduction of critical slabs. If S; is found to be small and all
the neighbouring to S; slabs are under splitfmerge operations, then S;
becomes critical. From that point, and as long as S; is critical, when an update
occurs inside S;, an incremental step is performed for each neighbouring (to
S)) split/merge operation. The overall algorithm follows.

Begin (overall algorithm)

We set Ny = 10N and we also set for each incremental step, to process at

least 65 active records. Suppose that we perform an update inside a slab S..

Step1: If S; is already under a split/merge operation, we perform an
incremental step for this splitfmerge operation.

Step 2: If S; is found to be big (i.e. if it has more than Ny objects), a split
operation starts for S;.

Step 3: If S; is critical, then an incremental step is performed for each
neighbouring (to S;) split/merge operation.

Step 4: If S; is found to be small (i.e. it has less than N, objects), we have to
find another slab to merge it with S;. If there is a slab S; next to S;, such
that S; is not under a splitmerge operation, then we merge S; with S;.
Otherwise, S; becomes “critical”.

Step 5: If we have just executed the last incremental step for a merge
operation and the resulting slab is big, (see Lemma 4) then the resulting
slab immediately starts a split operation.

Step 6: If we have just executed the last incremental step for a merge
operation and the resulting slab is normal, the resulting slab starts a merge
operation with its neighbour that first became critical (if it has critical
neighbours).

Step 7: If we have just executed the last incremental step for a split operation,
then (according to Lemma 5), the resulting slabs are normal. Each of the
resulting slabs merges with its critical neighbour, if such a neighbour
exists.

End (overall algorithm)

ComSIS Vol. 10, No. 1, January 2013 187



George Lagogiannis, Nikos Lorentzos, and Alexander B. Sideridis

Since every incremental step is executed each time an update occurs, it
follows that the objects inside a slab may increase by 1 in every incremental
step, if the update that caused the incremental step was an insertion. Thus, if
L is the number of objects inside a slab when the slab begins to split, then the
number of incremental steps needed for the split is at most L/64 (since we
process at least 65 objects per incremental step and one object can be
added per incremental step). Similarly, if the total number of objects inside a
pair of slabs that start to merge is L then the merge operation will need at
most L/64 incremental steps.

Lemma 4: A merge operation always creates either a big or a normal slab.
Proof: First of all, it is trivial to show that a merge operation may create a big
slab. Assume that two slabs start to be merged. One of these slabs must be
small, and the other must be non-big. We conclude that when the merge
operation starts, the maximum number of involved objects is 11N, -1. Even if,
during the merge operation, the two slabs experience only deletions, then the
resulting slab will have more than 11N_. — 1 — (11N_ — 1)/64> 10N_ objects,
i.e., it will be big.

We are now going to prove that a merge operation does not create a small
slab. In order to do that, we are going to determine the minimum number of
objects involved in a merge operation, according to the overall algorithm.
Assume thus that a slab S; becomes small, but all the neighbouring slabs are
under a merge operation. Thus, S; becomes critical, and at the time one of
these merge operation ends, S; has at least N.-11N. /64 elements objects
(each merge operation involves at most 11N, objects). Let S; be the slab that
results from this merge operation. S; is then merged with its neighbouring slab
that first became critical, and this neighbouring slab may not be S;. Thus, S;
remains critical until this new merge operation ends, and let Sy be the bucket
that results from this merge operation. According to the overall algorithm, Sy
will be merged with S;, because if Sy has two critical neighbors, S; is the one
that first became critical. When Sy starts to be merged with S;, S; has at least
N_-22N,/64 objects. Thus the minimum number of objects inside a slab, when
the slab starts a merge operation is N.-22N,/64. We conclude that the
minimum number of objects involved in a merge operation, when the merge
operation starts is 2(N.-22N,/64) objects. Even if during the merge operation,
all the updates that occur inside the two slabs are deletions, it follows that the
resulting slab has at least 2(N_-22N/64) - 2(N.-22N /64)/64>2N_-3N /8>N_
objects. Therefore, the resulting slab is not small. \

Lemma 5. A split operation always creates normal slabs.

Proof: First of all we have to determine the maximum number of elements
inside a slab, when this slab starts to be split. If slab S; drops to N.-1 objects,
it starts to merge with a slab S;, which is not under a split process. When the
incremental merging process completes, the resulting slab has at most
11N +11N /64 objects (if S; had Ny objects and only insertions occurred
during the merge operation). Thus, the maximum number of elements inside a
slab, when this slab starts to be splitis 11N +11N_/64.

Now, we are going to show that a split operation creates non-big slabs. If
the split starts with 11N +11N_ /64 objects (and only insertions occur during

188 ComSIS Vol. 10, No. 1, January 2013



Indexing moving objects: A real time approach

the split operation), then at the time the split ends, the number of objects may
increase to 11N +11N. /64 +(11N_+11N_/64)/64< 12N_ which means that each
new slab has at most 6N, objects (i.e., it is not big)

Let us now show that a split operation creates non-small slabs. Each split

starts with more than 10N_+1 objects. If only deletions occur during the split
operation, the resulting slabs will have more than (10N_-10N. /64)/2 >4N_
elements. \
Lemma 6. The slabs are “equally balanced”.
Proof: From Lemmas 4 and 5 it follows that the minimum number of objects
inside a slab is N -22N,/64, whereas the maximum number is less than 12N,.
This means that the maximum number is less than is 19 times greater than
the minimum number and according to Definition 3, Lemma 6 follows \

We have not set the value of N.. From a theoretical point of view, any value
is fine. From a practical point of view however, a very small value would
create too thin slabs, leading to many split‘merge operations between slabs,
which will increase the number of 1/Os (although they will still be
asymptotically optimal). On the other hand, a big value would create too thick
slabs, and this fact will have a negative effect on the efficiency of the system
for answering queries. Thus, the value of N should be determined according
to the above guidelines, through experiments.

A technical detail still remains in the dark. When a split (merge) operation
completes, the lower level tree (trees) corresponding to old slab (slabs)
becomes inactive. For each object inside the leaves of such (i.e., inactive)
trees, we update the corresponding pointer in table A, to point to the correct
position, which is a leaf of the new tree. The space occupied by the nodes of
this tree cannot be released immediately. Some leaves of the tree may not be
identical to their image leaves in secondary memory. These image leaves
must be updated. This task is called cleaning procedure, and it is charged on
the slabs created by the split‘merge procedure. It is easy to see that the I/Os
caused by the cleaning procedure do not asymptotically change the number
of message storing 1/Os, since a slab being cleaned, has experienced O(N,)
updates, and the number of message storing I/Os needed to clean it is
O(N/B).

5.3 Algorithm to Handle Incoming Messages.

Suppose we receive a message (O, x_value, y-value, t).

Step 1. We search the active_slab_index in order to find the slab (which is a
leaf of the upper level) containing that x_value. Let S; be that slab. We
search table A and find the record of the object. Moving upwards in the
lower level tree containing that record, we reach its root, and therefore we
find the previous slab of the record. Let S; be the previous slab.

Step 2. If i=j, we reach the current record of Oy and update its y-coordinate.
We do that by deactivating the current record of the object (we set its end-
value to the current time instance), and inserting a new record for that
object, with the current y-coordinate of that object as key. Then we

ComSIS Vol. 10, No. 1, January 2013 189



George Lagogiannis, Nikos Lorentzos, and Alexander B. Sideridis

proceed to the update algorithm of the persistent structure. As in Section
4, if an active leaf becomes inactive we update its image leaf in the
slab_index, and if a new active leaf is created, we create its image-leaf in
the slab_index. If the record of an object is copied (as a result of the
rebalancing of a leaf) to a new leaf, we update the pointer in A for that
object. In particular, we store in A[K] a pointer pointing to the new record of
object Oy.

Step 3. If i#, we delete (deactivate) the current record of the object in S; and
we insert a new record for that object in S;. The insertion or deletion is
performed as in step 2.

Step 4. We update S; and S; according to the overall algorithm.

5.4 Analysis of the Solution

Assuming that no slab is ever split or merged with another one, it can be
easily derived using the arguments of Section 4 that the total number of
message storing 1/0Os is O(W/B), i.e. property 1 holds. However, the existence
of split/merge operations between slabs complicates things, because it is not
now clear that Property 1 holds. All we need to show is that the total number
of message storing 1/Os because of the split/merge operations between slabs
is also O(W/B). This is proved by Lemma 7.
Lemma 7. The total number of message storing 1/Os created by the
incremental split/merge operations between slabs is O(W/B).
Proof. We attach a counter on every slab. When a new slab is created, its
counter is 0. If an update occurs inside a slab, the counter of the slab is
increased by one. Therefore, each incoming message may produce an
update into at most two slabs. After the W messages have been applied, let X
be the number of times that any counter increased by 1. It is obvious that X <
2W. From these X times that a counter was increased, only X/O(N.)
split/merge operations occurred, because each split/merge operation “costs”
O(N.) incoming messages (since each incoming message triggers an
incremental splitfmerge step and each such step processes a constant
number of data records). Thus, the received messages generate at most
O(WI/N.) splitymerge operations. Each split/merge operation creates ©(N,/B)
message storing 1/0Os. We conclude that the total number of message storing
I/Os because of the incremental splitfmerge operations s
O(W/NL)*©(N./B)=0O(W/B). \
The space occupied by our structures in secondary memory is O(W/B)
blocks, as in Section 4. This can be easily derived by the analysis of partially
persistent B-trees (see [2], [13]). Concerning the space occupied by the active
nodes in primary memory, Lemma 2 continues to be satisfied and as a result,
this amount of space is O(N). Assuming that each 1/O is performed
immediately, no additional amount of primary memory is needed. Otherwise,
we can assume that the I/Os are performed by the use of an I/O list that works
in a FIFO manner (as we have assumed in Section 4). In order to guarantee
that the total amount of primary memory used is still O(N), all we need is to

190 ComSIS Vol. 10, No. 1, January 2013



Indexing moving objects: A real time approach

make sure that the space occupied by inactive nodes corresponding to
pending I/Os (inside the 1/O list), is also O(N). Lemma 3 continues to hold
and, as a result, we conclude that the amount of primary memory used
remains O(N), as long as R = O(N/(T*B)).

5.5 Nearest and k-nearest Neighbor Queries

As mentioned in Section 2, by indexing the space in a dynamic way we are
able to efficiently process Spatio-temporal nearest (k-nearest) neighbor
predicates. Suppose we have to process the nearest neighbor predicate ((x,
y), T), where X, y are the x- and y-coordinates of the query point and T is a
temporal constraint (time instance or time interval).

Assume first that T is a time instance t. We find the slab containing (x, y) at
time t, by searching the slab_index and the active_slab_index, using x and t
as keys. When we reach the leaf of the upper level that is connected to the
slab of interest, we proceed to the lower level tree. We search the lower level
tree using y and t as keys. We extract O(B) records valid at time t and, from
these records, we choose the closest to the query point. Let Oy be that object.
Figure 4 shows a possible scenario. Observe that Oy, which is found to be the
closest object to the query-point inside the slab that contains the query-point,
is not actually the closest object. Indeed, it is O; which is is closer. This “error”,
occurred because we use only the y-coordinate to index all the objects inside
the same slab and, with respect to the y-coordinate, Oy is closer than O; to the
query point. Object Ox may not be the closest to the query point, but it can be
used as a “pruning tool”. In particular, we now know that there is no reason to
search for the nearest object outside the circle in Figure 4. This circle enables
us to search inside the gray area, because this is the best we can do
according to our indexing structures. (We can afford to efficiently search

between two y-coordinates inside each slab.)
S1 . S, S5, S, Object O;

Object Oy

Query point

Fig. 4. O is not the closest object to the query point inside Ss, although it was
retrieved as such by searching inside Sz

Observe that O;, in Figure 4, may not in fact be the object closest to the
query point, because slab S, may contain an object that is even closer. A
search in S, will reveal the one closest. The advantage of the above
described strategy is that we always find an initial object, which can be used

ComSIS Vol. 10, No. 1, January 2013 191



George Lagogiannis, Nikos Lorentzos, and Alexander B. Sideridis

as a pruning tool (O in Figure 4), because all slabs have objects. This
advantage may prove valuable in terms of time efficiency, especially in cases
where the number of objects is small or in cases where the movement of the
objects tend to form areas of very sparse traffic.

If the time constraint T is a time interval [t;, t;], things are more
complicated. Here is a general description. During time, we keep the “history”
of the leaves by using pointers as explained in Subsection 4.4. We find the
nearest neighbour to the query point, at time t;, as described in the previous
paragraph. Suppose that the nearest neighbour at time t; is object O; (see
Figure 5). Then, the area of interest contains the slabs intersected by the
circle (i.e., S; and S3, between y; and y,). For each slab, we must search in
the interval (i, t;], for a potential new nearest neighbour. All we need to do is
to “follow the time”. This can easily be achieved by the use of pointers that
lead, with respect to time, to the descendants of each leaf. Since at most two
leaves can be created by a leaf rebalance, it follows that we can move
forward in time, by storing two pointers in each leaf. We start from each leaf
that contains elements in the gray area at time t;, and follow the pointers
leading to the future, until we reach leaves created after t,. In each leaf we
access, we search for a potential new nearest neighbor. Every time we find a
new nearest neighbor, we update the slabs and areas of interest.

Y2 Object O;

Query point

Y1

Fig. 5. The dark-shaded area is the area of interest created by O;, which is the nearest
neighbour of the query point at time t1. Accessing the leaves that correspond to the
gray area at time t1, and moving forward in time until we reach t,, we manage to
retrieve the f