
Computer Science and Information Systems 21(1):167–202 https://doi.org/10.2298/CSIS221210006N

An Approach for Supporting Transparent ACID
Transactions over Heterogeneous Data Stores in

Microservice Architectures

Lazar Nikolić, Vladimir Dimitrieski, and Milan Čeliković

University of Novi Sad, Faculty of Technical Sciences
Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia

{lazar.nikolic,dimitrieski,milancel}@uns.ac.rs

Abstract. Microservice architectures (MSA) are becoming a preferred architec-
tural style for data-driven applications. A transaction within MSA can include re-
mote calls to multiple services, turning it into a distributed transaction. Participating
services may have their own data stores running local transactions with varying le-
vels of transactional support and consistency guarantees. Coordinating distributed
transactions in such an environment is a key challenge for MSA. The existing ap-
proaches are either highly consistent at the expense of scalability or scalable at the
expense of consistency. Furthermore, implementing any of them requires architec-
tural and code adaptation. In this article, we present the Service Proxy Transaction
Management (SPTM) approach, which offers scalable reads and ACID transactions
in MSA. The novelty of this approach is that it is based on intercepting inbound
messages to services, rather than having services directly communicate with a trans-
action manager. As a result, transaction management is completely transparent to
services and has little-to-no impact on code or architecture. We provide experimen-
tal results showing that SPTM can outperform lock-based approaches by up to a
factor of 2, while still providing high consistency without the scaling bottleneck
associated with locking.

Keywords: distributed transaction management, consistency, microservice, saga,
2pc, acid, base.

1. Introduction

In the past decade, there has been a shift from traditional, monolithic services to MSA uti-
lizing multiple small services for data-driven applications. The trend has spread to many
areas of the software industry, such as smart cities [55,46,10], e-commerce and finan-
cial systems [57,40], driving assistance [53], and edge computing [27]. The general idea
is to split a complex domain into subdomains and assign each to a service. Ideally, ser-
vices are small, mostly self-contained, and communicate with other services only when
their domain boundary is crossed. This leads to improvements in scalability, robustness,
and development flexibility enabled by loose coupling between services [48,45,66]. But
MSA also brings new challenges to the table, with data management being one of the
major categories [48,45,66]. One notable challenge in this category is facilitating trans-
actions, which arises from the way they are executed in MSA. With a monolithic service,
a transaction is comprised of a set of direct function calls to different submodules. The

168 Lazar Nikolić et al.

transaction and the data it handles are under the control of the monolithic service. In con-
trast, transactions in MSA include inter-service remote calls via messaging protocols such
as Hypertext Transfer Protocol (HTTP) or, more commonly, HTTP Secure (HTTPS). The
communication in this manner happens at the service communication level.

Each service may have its own data store in a database-per-service fashion, with which
it communicates at the database communication level. A particular data store used by a
particular service might be chosen to address the specific needs of the service. For exam-
ple, a service responsible for connections between people in a social network application
would benefit the most from a graph database. This is known as the polyglot persistence
paradigm [30], and applying it creates a heterogeneous environment of data stores. Pro-
viding a uniform level of consistency and transactional support is difficult even in homo-
geneous environments; heterogeneity takes it to another level of complexity. Transactional
support and consistency levels offered by data stores in a system following the polyglot
persistence principle are hardly ever uniform. For example, while relational databases are
highly consistent with full transactional support, NoSQL data stores come with low con-
sistency levels and transactional limitations. For instance, popular NoSQL data stores,
such as Elasticsearch [16] and Cassandra [17], ensure atomicity only at the level of indi-
vidual documents.

1.1. Motivation

Even if all the data stores in a system were identical, the challenge of coordinating a dis-
tributed transaction is still present. A distributed transaction in MSA is composed of mul-
tiple local transactions, each running on a different data store. Data stores have no inherent
mechanism to connect local transactions to a larger context of a distributed transaction.
Thus, distributed transaction coordination must be built on top of the data stores. Further-
more, transactional properties, such as Atomicity, Consistency, Isolation, and Durability
(ACID) guarantees, do not extend beyond local transactions. This means that even if a
distributed transaction is composed entirely of local ACID transactions, it is not ACID by
default.

Workloads in MSA generally fall under two broad categories: Online Analytical Pro-
cessing (OLAP) and Online Transactional Processing (OLTP). OLAP is characterized by
complex, long-running ad hoc queries over many items. In contrast, OLTP is character-
ized by short-lived transactions on a small number of items, usually involving write op-
erations. OLTP appears in data-driven applications very often [48]. An example of OLTP
is a typical e-commerce scenario: a user checks out a product, product stock is updated,
and payment is made. Within MSA, each step may be carried out by a different service in
a distributed transaction. ACID guarantees are natural requirements for OLTP workloads
due to the high consistency demands of data-driven applications handling them.

The level of consistency of a transaction can be tied to its isolation level [69]. Isolation
level is defined by how many isolation anomalies [6] it allows to happen: fewer anoma-
lies indicate a higher isolation level. An isolation anomaly is an unwanted effect on data
caused by concurrent execution of transactions. An example of an isolation anomaly is
Lost Update [1], in which a transaction can overwrite the result from another active trans-
action. Consider an example with transactions T1 and T2 that attempt to increment value
i=1. Both T1 and T2 read the value i=1 and write the incremented value, which is i=2. The

An Approach for Supporting Transparent ACID Transactions... 169

expected outcome would be i=3, but a result from one of the transactions is effectively
lost.

Isolation levels are defined in the order from the least to the most restrictive, as
follows: READ UNCOMMITED, READ COMMITED, CURSOR STABILITY, REPEAT-
ABLE READ, SNAPSHOT, and SERIALIZABLE [6]. The higher the level, the more checks
a system must run. This ultimately means that a higher isolation level leads to higher con-
sistency, but at the cost of lower performance. A high consistency level is also commonly
referred to as strong or strict consistency, whereas lower consistency levels are referred to
as weak consistency.

Existing approaches to handling distributed transactions are synchronous and strongly
consistent, or asynchronous and weakly consistent. The shortcomings of synchronous ap-
proaches are attributed to the locking of involved items [67,28], which is absent in asyn-
chronous approaches. The asynchronous approaches in turn bring challenges related to
weak consistency, such as transactions reading uncommitted values. There is a space of
solutions to be explored that avoids locking, while still offering a high consistency level.
Existing approaches also incur changes to both new and ongoing projects. Code and
sometimes architectural changes are necessary to accommodate the chosen distributed
transaction handling approach. Developers must be familiar with how distributed trans-
actions work within an approach to effectively apply it. This is a notoriously difficult
topic, so minimizing this requirement can be a huge boon to the development process.
Unfortunately, there is a lack of good and intuitive abstractions to help developers tackle
this issue, particularly for strongly consistent approaches, which can be a large barrier to
adoption [41,42].

1.2. Contribution

In this article, we describe Service Proxy Transaction Management (SPTM), an approach
to distributed transaction management in MSA that provides ACID guarantees for OLTP
workloads. ACID is provided even in heterogeneous data store environments, in which
not all data stores have ACID capabilities. SPTM combines the lock-free mechanism of
asynchronous approaches with the high consistency of synchronous approaches by mask-
ing intermediate results of ongoing transactions. SPTM also aims to be as non-invasive
to the existing codebase as possible with a low-performance overhead. It does so by in-
tercepting, evaluating, and modifying messages at the service communication level. From
the developer’s perspective, a distributed transaction within SPTM is a collection of re-
mote service calls with no additional libraries or frameworks, making the approach easy to
understand and use. We believe that offering transparent ACID capabilities with the flex-
ibility to combine it with both synchronous and asynchronous messaging makes SPTM
very valuable for microservice developers. We also explore the possibilities and limits of
the approach in which transactions are managed at the service communication level, using
only the information available in the messages.

1.3. Article structure

In addition to the Introduction and Conclusion, the article comprises five sections. In the
Related work section, we present and compare existing approaches to SPTM. The SPTM

170 Lazar Nikolić et al.

approach is described in the Service Proxy Transaction Management — SPTM section. In
the Evaluation section, we run benchmarks on an SPTM implementation and compare it
to an implementation of another commonly used approach. We also discuss and explain
the results of benchmarks. In the Threats to validity section, we briefly present factors that
could affect the results of this article, primarily the ones presented in the Evaluation sec-
tion. In the Limitations and future work section, we describe what the current limitations
are and how we plan to overcome them.

2. Related Work

There are several research threads that work on addressing the problem of facilitating dis-
tributed OLTP transactions in MSA from various angles. While they are very distinct from
each other, every thread exhibits three main characteristics: (i) support for synchronous
and asynchronous execution, (ii) consistency guarantees and ACID support, and (iii) im-
pact on the codebase and the software design. In this section, we compare current ap-
proaches through the prism of these characteristics. We have found that none fill the niche
of both synchronous and asynchronous execution support, high consistency and ACID
support, and low impact on the codebase — all of which SPTM strives to offer.

Two-phase commit protocol (2PC) can be considered a good match for OLTP work-
loads due to its synchronous nature and high consistency. As the name suggests, 2PC
carries out transaction execution in two phases: the prepare phase and the commit phase.
In the prepare state, participants check if conditions for applying changes. If the check
passes, the changes are applied in the commit phase. The phases are coordinated by a
transaction coordinator component that sends messages to participants. During the execu-
tion of both phases, locks are kept on the items involved in the transaction.

The locking mechanism of 2PC is a bottleneck for scalability and its main downside
[67,28]. Furthermore, the 2PC coordinator acts as a single point of failure in the system:
new transactions cannot be accepted nor executed if the coordinator is unavailable. 2PC
also heavily relies on all data stores providing commands for controlling a transaction
flow like BEGIN, COMMIT, and ABORT in SQL. Meeting this requirement is not always
possible in heterogeneous data store environments. For these reasons, 2PC is now rarely
used in practice within MSA [48]. There are also several 2PC variants, such as Distributed
Strong Strict Two-Phase Locking (SS2PL) [8] and 2PC* [28] which scale better, but still
fall behind approaches that eschew locking. 2PC only supports synchronous execution
with high consistency across all variants. It also comes with code changes and design
limitations, as it requires the use of client libraries and narrows the selection of data stores
to transactional ones.

Despite falling out of focus of literature and open-source MSA projects in the recent
years, 2PC is still present in industry and academia. It is still being used in industry with
at least 8-16% practitioners claiming they use it [48], while also being present in research,
with some more recent papers still referencing it or using it for comparison [28,73].

Saga is a pattern used for coordinating distributed transactions in Event-Driven Archi-
tecture (EDA). It consists of a series of subtransactions carried out by multiple services.
Transactions are coordinated by creating an event signaling that the next subtransaction
should start. This can be done in two ways [63]:

An Approach for Supporting Transparent ACID Transactions... 171

– Orchestrated Saga utilizes a central coordinator that coordinates subtransactions.
When a service finishes a subtransaction, it notifies the coordinator. The coordinator
in turn creates an event for the next service to start its subtransaction. Orchestrated
Sagas help implement complex transactions by having them defined in the coordina-
tor, with all the steps clearly laid out. The main disadvantage is that the coordinator
is a potential point of failure. It is also a complex component to develop and maintain
[52].

– Choreographed Saga has no central coordinator. Instead, each service creates an
event that will trigger the next subtransaction. More complex transactions can be
harder to implement and understand when compared to Orchestrated Saga, but the
availability is better due to not having a coordinator that is a potential point of failure.

Saga relaxes ACID in favor of Basically-Available, Soft-state, Eventually-Consistent
(BASE) [61]. Given a proper application of Saga and BASE, some of the ACID guarantees
can be supported to an extent:

– Relaxed atomicity is achieved by undoing the results of a failed transaction with
compensating operations. For example, a compensating operation for creating a user
would be deleting the user.

– Strong consistency is replaced by eventual consistency. A properly implemented Saga
pattern guarantees that the system will eventually reach a consistent state.

– Isolation is not supported to any extent. Active transactions can see intermediate re-
sults of other active transactions.

– Durability can be supported if events are persisted. Replaying an event will execute
the corresponding transaction once again. This can be useful when, for example, the
effects of a transaction are lost.

Issues arising from favoring BASE over ACID are some of the major pain points
for developers [48,45,66]. These include non-atomic message processing, feral ordering,
and isolation anomalies. Still, despite the issues and the expressed importance of ACID
by developers [45], Saga remains the most popular approach in MSA because the loose
coupling of transaction participants is perceived as a good fit for MSA [48,45]. Despite
claims within both white and grey literature that Saga scales better than 2PC, we have
found only one research paper that directly compares the two approaches [26].

Saga only supports asynchronous, eventually consistent transactions, which is the ex-
act opposite of what 2PC has to offer. It also has a large impact on software design by
requiring the application to apply the EDA.

Transaction coordinators are a loose group of approaches for distributed transac-
tion handling in MSA applications. Although this landscape is quite varied, all of the
approaches either fall into synchronous, highly consistent and asynchronous, eventually
consistent categories. Granola [13] and CloudTPS [70] use the classic locking mechanism
of 2PC facilitated by a transaction coordinator to ensure high consistency across multiple
heterogeneous data stores. Cherry Garcia [14] works on the same principle, but has no
central transaction manager. Instead, the transaction state is embedded in the data store
objects as a part of the metadata. This comes at the cost of Cherry Garcia being lim-
ited to only data stores that provide Test-and-Set operators, which enables atomic writes
on an object in a single instruction. ReTSO [43] works by combining data-store meta

172 Lazar Nikolić et al.

fields and centralized transaction manager to provide SNAPSHOT ISOLATION consis-
tency level. The transaction state is managed by the Timestamp Oracle component, which
is a bottleneck and the single point of failure of the solution. Typhon [3] uses a separate
layer for transactional metadata and instead relies on Vector Clocks [56] to avoid cen-
tralized timestamp generation, but only comes with causal consistency guarantees. GRIT
[68] executes transactions optimistically, by first capturing read and write sets, before
logically committing and physically materializing the changes in data stores. It comes
with a large architectural requirement: not counting microservices and data stores, GRIT
brings six additional components into the application. Furthermore, data stores must sup-
port multi-versioning and snapshot reads, further narrowing down the available options.
All of the discussed approaches come with client libraries or large design limitations, like
the aforementioned Test-and-set requirement of Cherry Garcia, or the specific technol-
ogy stack imposed by Narayana. Ultimately, none fulfills the criteria of supporting highly
consistent synchronous and asynchronous transactions with low impact on the codebase.

Federated databases (FDS) [65] and Polystores [31] tackle the data management
issue by acting as a query execution layer on top of all data stores in a system. This way,
a heterogeneous data store environment appears to be homogeneous to a service. A single
language is used for querying and manipulating all the data in a system. A service working
with data is unaware from which data store the data originates. This is a major upside
of Polystores, which keeps services unaffected by the choice of data store technologies.
However, there is an overhead added by underlying data migrations involved in query
execution. The overhead is acceptable for OLAP workloads but is not favorable for short-
lived transactions of OLTP workloads. Transactions on Polystores are asynchronous and
eventually consistent, due to how data is replicated between data stores. The impact on
the code is minimal as long as services are already using a querying language offered by
the polystore. Polystores also bring a limitation to the choice of data stores, as only the
ones supported by the polystore can be used.

Database transaction middlewares follow the principle of separation of concerns to
bring transactional properties to heterogeneous data store environments. They are similar
to FDS and Polystores from the perspective of layered data store approach. The general
approach of this thread of work is to add a transactional layer to separate transaction
execution from data storage, which is delegated to data stores. MIDDLE-R [59], Calvin
[67], Bolt-On Consistency [5], Deuteronomy [50] follow this principle by adding a layer
responsible for transaction execution, fault tolerance, and logical replication across dif-
ferent data stores, regardless of their transactional or replication capabilities. As a result,
transactional properties and safety guarantees are unified across all data stores. This way
strong consistency can be achieved for both synchronous and asynchronous transactions
in MSA applications. SPTM takes this thread of work and applies it to microservices
instead of data stores, but leaves the microservice source code intact.

Transaction middlewares for Function-as-a-Service (FaaS) are one of the more
recent developments in the area of transaction management. Their primary objective is
twofold: to act as a cache for objects used in ongoing transactions, and to provide a
certain level of consistency guarantees. HydroCache [71] and FaaSTTC [54] are prime
examples in this category that offer Transactional Casual Consistency level (TCC) [2],
while also improving the overall performance of transactions in a FaaS context. While
TCC is weaker than Snapshot Isolation, it is currently noted as being the highest con-

An Approach for Supporting Transparent ACID Transactions... 173

sistency level achievable without a consensus [4]. Transaction middlewares offer client
libraries for reading and writing objects within a transactional context that need to be ex-
plicitly invoked in the client code. Strong consistency is supported for both synchronous
and asynchronous transactions, but code and architecture need to be adapted to use the
middleware.

In Table 1 we present an overview of related work compared by the characteristics
defined at the beginning of this section. For this comparison, we consider the consistency
level as high if it offers stronger guarantees than causal consistency [69]. TCC and SNAP-
SHOT ISOLATION are examples of such levels. We show that the existing approaches
do not cover the desired characteristics of synchronous and asynchronous support, high
consistency, and low impact on the codebase and the software design. At best, some ap-
proaches, such as transactional FaaS middlewares, cover the first two characteristics. The
latter is never considered, which is a gap that SPTM aims to address.

Table 1. Overview of related work
Approach Sync/Async Consistency Code and design impact
2PC Sync High - Client libraries

- Data stores must all be transactional
Saga Async Eventual - Must apply the EDA defensive cod-

ing due to BASE (e.g. message re-
play, atomic processing)

CloudTPS [70]
Granola [13]

Sync High - Client libraries

Cherry Garcia [14] Sync High - Client libraries data store Test-and-
set operation

ReTSO [43]
Typhon [3]

Both High - Client libraries

GRIT Async Eventual - Architecture must be adapted to im-
plement GRIT

FDS and Polystores Async Eventual - Can only use data stores supported
by the Polystore/FDS

Database transaction mid-
dlewares

Both High - Client libraries
- Can only use data stores supported
by the Polystore/FDS

Transaction middlewares
for FaaS

Both High - Client libraries

3. Service Proxy Transaction Management — SPTM

In this section, we present the SPTM approach. First, we provide a high-level overview of
the SPTM approach and provide a list of requirements that a system must fulfill in order
to utilize SPTM. Then, we delve into more details on how SPTM assigns and identifies
transactions and involved objects from messages. Afterward, we describe how SPTM
can achieve fault tolerance and scalability. Next, we present a reference architecture for

174 Lazar Nikolić et al.

the client-server messaging model. Finally, we highlight how SPTM differs from related
work.

3.1. Overview of the SPTM Approach

Microservices provide a set of functions that can be invoked remotely, called endpoints.
Similarly to regular functions, an endpoint defines a name, a set of parameters, and a
return value. The name is usually given as a path or a Uniform Resource Locator (URL).
The parameters and the results of an endpoint are sent via the network within messages.
The format of these messages is defined in a message schema. Endpoints and rules on
how to use them form an Application Programming Interface (API) of a service.

SPTM is an approach for transaction management with a focus on transparency to
reduce the impact on microservice source code. It does so by fulfilling the following
responsibilities:

– R1 Message metadata retrieval: SPTM retrieves the information on which mes-
sages can be involved in transactions and how data objects (DO) can be extracted and
identified from them.

– R2 Message interception: Inbound and outbound messages are intercepted and their
contents are inspected and modified.

– R3 Transaction context and data object detection: This includes transaction iden-
tifiers, transaction state transition commands, and DOs involved in the transaction.

– R4 Transaction lifecycle management: Transaction state is transitioned based on
transaction commands or message success status.

– R5 Data object version control: DOs modified by a message are stored within a ver-
sion control storage. This version control storage is then used to replace uncommitted
DOs with their committed versions.

– R6 Distributed state management: The updated transaction and version control
storage states are distributed to multiple nodes for scaling and fault tolerance.

The SPTM approach is designed to work with any type of messaging protocol, as long
as it meets the following four criteria. First, messages must contain a metadata (header)
section that can carry additional data, such as the HTTP header section. Second, mes-
sages must contain information identifying the name of the endpoint of a service. Third,
messages must be able to carry a payload that can be parsed and inspected. Fourth, the
messaging protocol allows for building a layered system, in which a participant cannot
tell if it is directly communicating with another participant or not. Specifically, a proxy
can be installed between any two participants.

The SPTM approach can be applied to both synchronous and asynchronous messag-
ing patterns. Transactions in both synchronous and asynchronous usually begin with a
synchronous message that confirms that the operation is accepted. This is sufficient for
SPTM to build and detect the transactional context, as long as the followup messages
belong to the same transaction.

SPTM is not an all-or-nothing choice and can be applied to a selection of endpoints
in a system. Those endpoints need to satisfy the following three criteria. First, the end-
points are using a messaging protocol that meets the requirements of SPTM. Second, only
the DOs identified from the messages involved in the endpoint are used in a transaction.

An Approach for Supporting Transparent ACID Transactions... 175

This includes all the messages generated during the endpoint execution, not just the re-
quest and the response exchanged in client-server communication. Third, the values in
the metadata/header section generated and used by SPTM must not be modified after a
transaction starts. They should also be propagated in all of the messages generated by an
endpoint that are part of a single transaction.

3.2. Message Metadata Retrieval, Message Interception, and Data Object
Detection

In this subsection, we delve into details about how SPTM deals with message metadata
retrieval, message interception, and data object detection.

A DO is a key-value structure containing data about an entity handled by an applica-
tion. Each key is associated with a field of the corresponding entity, with at least one field
acting as an identifier (ID). The ID field can be used to uniquely identify the instance of
the entity which is represented by the DO. DOs are carried within messages at the service
communication level in a data serialization format. A DO representing a user in JavaScript
Object Notation (JSON) format is presented in Listing 1. The user is uniquely identified
by the ”id” field and carries information about a person named John Doe.

Listing 1. An example of a user DO in JSON format
{

"id": 123,
"email": "johndoe@email.com",
"firstName": "John",
"lastName": "Doe"

}

SPTM works on the premise that messages exchanged at the service communication
level contain enough information to determine what DOs are involved and the operation
applied to them. This is particularly true for Representational State Transfer (REST) [29].
Consider a typical REST request PUT /user/123. One can conclude that this is an update
on a user type, judging from the /user prefix. The /123 suffix indicates that it is a user with
identifier 123. PUT indicates that this is an update operation; a new version of the object
will be created.

Operation type on a DO can be CREATE, READ, UPDATE, or DELETE (CRUD).
Complex operations on multiple DOs commonly used in MSA can be defined as a com-
position of CRUD operations on individual DOs. To ensure atomicity, compensating oper-
ations can be defined as operations with the opposite effect. CREATE is compensated with
DELETE, and vice-versa. UPDATE can be compensated with another UPDATE carrying
the previous value of a DO. The limitation is that SPTM must be able to create a compen-
sating operation out of the information available in the original operation. For example,
a CREATE operation must contain an identifier that would be used by the compensating
DELETE operation.

To our knowledge, there are no strict rules or standards on how a message schema is
defined. Still, no matter the schema, messages can contain enough information to detect
DOs and determine the operation type. A developer may, for example, choose the Remote
Procedure Call style (RPC) over REST for user updates. RPC user update can be defined
as POST /updateUser. The URL /updateUser indicates that this is an update on the user
object, while the message body carries a user DO that contains the identifier 123.

176 Lazar Nikolić et al.

Since there are no certain assumptions that we can make about message schema at
the service communication level, developers must provide the message metadata. SPTM
does not have a prescribed way of gathering message metadata but has the requirement
of low impact on the source code. We see several ways of achieving this. For example,
analysis of a microservice’s source code could reveal what endpoints are used and what
DOs are involved in transactions. The same goes for API specifications, such as OpenAPI
for REST [21], or Protocol Buffer definitions for gRPC [23]. A dedicated configuration
file can also be provided to SPTM, which could be hand-written or generated from the
source code. Finally, messages can be extended with metadata that can be evaluated on-
the-fly. The on-the-fly message schema inspection is the most flexible as it can adapt to
message schema changes, in contrast to other approaches presented here, which operate
offline. On the other hand, the offline approaches do not bring as much runtime overhead,
as most of the computation is already done before runtime.

SPTM has no information about the semantics of a model nor its constraints. Instead, it
relies on microservice logic to check the correctness of the detected DOs. This is achieved
by optimistically passing them to the microservice, which will determine the outcome
of the operation. Subsequent read requests will have their responses replaced by either
committed DOs, or DOs written by the transaction in which the request belongs. Allowing
writes to finish lets SPTM avoid locking which is a commonly cited problem with 2PC.

In summary, DOs are detected within requests and responses based on a provided con-
figuration. This configuration contains a list of involved services, their endpoints, what
DOs they carry, and operation type. Operation types are the standard CRUD. Each end-
point definition also carries information about how to evaluate and identify DOs. For
example, a PUT /users/123 request applies an update based on the JSON message body
to the user 123. Endpoints can optionally define a rollback (compensating) endpoint. For
example, user creation can be compensated by user deletion.

3.3. Transaction Context, Transaction Lifecycle Management and Data Object
Version Control

In this subsection, we delve into details about how SPTM deals with transaction lifecycle
management and data object version control.

Since distributed transactions within MSA are spread across multiple remote calls,
there is a need to correlate messages to a transaction. This information is carried within a
transaction context via message headers. Specifically, transaction context is an identifier
carried via Begin-Txn, Commit-Txn, Abort-Txn, and Txn-Id message headers. A Univer-
sally Unique Identifier (UUID) value is chosen because generating such an identifier does
not require coordination. A transaction is created by an SPTM node in the STARTED state
as soon as a Begin-Txn value is encountered for the first time, with the value used as the
transaction ID. If a transaction with the detected ID already exists, the transaction is in-
stead rejected and the client can choose to restart the transaction with a new Txn-Id value.
This is the start transaction lifecycle as illustrated in Fig. 1. Subsequent messages carry-
ing the same Txn-Id value belong to the same transaction. If any of the messages fail, the
transaction transitions to the FAILED state and is aborted. Compensating messages are
then sent where necessary and the transaction transitions into the ROLLED BACK state if
they all succeed. Otherwise, it transitions to the ROLLBACK FAIL state. Transactions can

An Approach for Supporting Transparent ACID Transactions... 177

be committed or aborted by sending the transaction ID in the Commit-Txn or the Abort-
Txn header, transitioning them to the COMPLETED or FAILED states, respectively.

STARTED

COMPLETED

All done

Operation fails

TIMED_OUT

ROLLED_BACK ROLLBACK_FAIL

Operation fails

All done

FAILED

Commit-Txn detectedNo activity

Operation fails / Abort-Txn detected

Txn-Id detected

Fig. 1. SPTM transaction lifecycle

SPTM maintains a version chain with multiple versions of a single DO. When a trans-
action modifies a DO, a new version of the DO is added to the version chain. Transactions
can access adequate DO versions using transaction timestamps, which can be physical
or logical. Using physical timestamps over logical timestamps could be considered more
practical, but runs the risk of clock skew if timestamp generation is not centralized [47].
A timestamp is generated when a transaction starts, which is then used for subsequent
operations, regardless of the physical time of the operation. Transactions can only access
committed DO versions with starting time before and ending time after the timestamp, or
written by themselves.

Conflict detection is initiated on a transaction commit. SPTM goes through versions
of DOs involved in a transaction and looks for write-write dependencies in the following
manner. Consider a scenario with a transaction T1, that writes a new version v1 on DO1
at time t1. A write-write dependency is detected for transaction T1 if there is a transaction
T2 at time t2 that: (i) is in the COMMITTED state, (ii) has written a new version v2
on DO1, and (iii) t2 > t1. Read-write and write-read dependencies are necessary for
SERIALIZABLE isolation level [60], but would require a consensus for reads as well,
which would adversely affect performance. Therefore the maximum supported isolation
level offered by SPTM is SNAPSHOT ISOLATION.

Conflict resolution is done in the first-writer-wins or last-writer-wins approach. Nor-
mally, the last-writer-wins approach carries the risk of messages being ordered differently

178 Lazar Nikolić et al.

than what SPTM had observed, potentially violating the happens-before relation between
transactions. Consider a scenario in which SPTM receives a message from T1 writing a
version v1 of DO at t1, and T2 writing a version v2 at t2. SPTM observes that t1 < t2,
but once messages are sent out to the microservice, they can be processed in any order.
The risk is increased with the number of components involved in the processing, which is
commonly at least two: microservice and its data store. Furthermore, even if the order of
processing on all of the involved components stays identical, the responses could arrive in
a changed order. Consider that tw1 and tw2 are the times of response for write operations
and tdb1 and tdb2 are data store write times of T1 and T2 respectively. If tdb1 < tdb2, but
tw2 < tw1, SPTM would conclude that t2 < t1 and abort T2. This is not a problem as
long as all read and write operations are served through SPTM, as it possesses a consistent
snapshot in which T1 is committed and T2 is aborted. First-writer-wins approach might be
a better choice if retrying a transaction is less expensive than compensating it, for exam-
ple when compensations are needed for aborted transactions. However, first-writer-wins
effectively behaves pessimistically: all newly started transactions modifying a DO that is
modified by an active transaction will be aborted.

Traditional database transactions are directly tied to database connections: when a
database connection is closed, the transaction ends. With SPTM, transactions can span
many independent messages. Services can fail while processing messages, leading to
abandoned transactions. Abandoned transactions take up resources indefinitely and can
cause all future transactions to be aborted due to conflicts, should the SPTM implemen-
tation use first-writer-win conflict resolution. Transactions that have not seen activity for
an extended period will transition into the TIMED OUT state and are treated identically
to FAILED transactions.

Fig. 2 gives an overview of the concurrency control scheme described by SPTM. For
simplicity, we use integers both for transaction identifiers and timestamps. The blue value
is the latest committed value, while the green value is the value written by the ongoing
transaction started by the green writer. Both readers access the value at timestamp T=6,
which falls within the timespan of both versions. The green reader can see uncommitted
values written by the green writer due to them being in the same transaction. The blue
reader cannot see the uncommitted value because it is a part of another transaction.

3.4. Distributed State Management

In this subsection, we delve into details about how SPTM can deal with distributed state
management.

SPTM is able to operate on multiple nodes by replicating transaction state changes
and DO version chain updates. There are several potential points at which updates can be
sent to the cluster:

1. Option 1 — After each message: SPTM sends an update containing the new trans-
action state and newly extracted DOs whenever a new message is processed.

2. Option 2 — On transaction state change: SPTM sends the new transaction state
and DO deltas only when a transaction is transitioned to a new state.

3. Option 3 — Periodically: SPTM sends transaction state and DO deltas at fixed time
periods, when a certain number of operations has been executed, or using a combina-
tion of both.

An Approach for Supporting Transparent ACID Transactions... 179

ID Val Status

1 111 COMPLETED

1 222 COMPLETED

Start

1

3

End

3

NULL

1 333 STARTED 5 NULL

Txn-Id=2
T=6

READ 1
RESULT: 222

Txn-Id=1
T=5

 UPDATE 1
VAL: 333

Txn-Id=1
T=5

 UPDATE 1
VAL: 333

Writer Service

Reader

SPTM

Txn-Id=1
T=6

READ 1
RESULT: 333

Reader

Fig. 2. Concurrency control overview of SPTM

Options should be chosen carefully based on architecture and workload profiles. For
example, Option 1 offers the lowest replication lag, but also incurs the highest overhead
because updates are sent out on each update. It is suitable for architectures in which mul-
tiple nodes can work on a single transaction with high consistency. On the other hand,
shared-nothing architectures would benefit more from Option 2 and Option 3. The key
design choice here is whether to partition the system on DOs or transactions. Partitioning
on DOs is desirable for traditional OLTP workloads in which there are groups of interde-
pendent DOs that are frequently processed together [44]. Such DOs can be collocated on
a single node for highly efficient in-memory operations. Distributed state change is nece-
ssary only when a transaction operates on multiple unrelated DOs, or to replicate state
for fault tolerance. On the other hand, partitioning on transactions could be more efficient
when processing multiple unrelated DOs, but has a risk of conflicting writes on DOs.

3.5. Reference Architecture

In this subsection, we present a reference architecture that can be used to implement an
SPTM transaction manager. In this particular case, we focus on the client-server commu-
nication model. Fig. 3 illustrates the reference architecture and its six components: one
for each of the responsibilities defined in Section 3.1.

Metadata retriever is the component that fulfills R1. It reads message metadata from
a configuration file, which is either generated from the API specification of a microservice
or manually created by its developers. Metadata information is then passed on startup to
an SPTM node to be used by other components. We use denoted lines in Fig. 3 for this
activity to emphasize that it does not happen during runtime.

Message interceptor is the component that fulfills R2. It is a proxy that can inter-
pret, load, and modify messages of the chosen protocol. Once it detects a request message

180 Lazar Nikolić et al.

Message
interceptor

Context
manager

DO version
storage

Distributed state
manager

ServiceClient

Transaction
lifecycle manager

Durable logs

SPTM node 1

SPTM
node 2

SPTM
node N...

Metadata
retriever

Fig. 3. SPTM reference architecture

matching a rule in the configuration file, it loads the payload and additional data, such as
headers, into memory to be processed based on the transaction context. Once the process-
ing is finished, a new connection to the intended microservice is created and the content
modified by other components is sent through it. After receiving the response message,
the payload, headers, and status are sent to the context manager. If the transaction fails, the
response message is modified to reflect transaction failure, usually by setting the appro-
priate status code. Otherwise, the response message is loaded and processed identically
to the request message. The only exception is that the modified content is sent back to the
connection that carried the request message instead of creating a new one.

Context manager is the component that fulfills R3. It builds a transaction context,
which consists of transaction information and DOs involved in the message. Transaction
information carries the transaction timestamp, which the context manager uses to fetch
DO versions available to the transaction. These DO versions are then used by the message
interceptor to replace the original DOs found in the message payload.

Transaction lifecycle manager is the component that fulfills R4 and is responsible
for keeping track of transaction information. This includes their status, timestamp, and
dependencies. It is also responsible for transitioning the transaction state and triggering
the corresponding actions, such as sending out compensating messages when specified.

An Approach for Supporting Transparent ACID Transactions... 181

DO version storage is the component that fulfills R5 and is responsible for managing
DO versions and providing DO versions for a given timestamp. It is also responsible for
detecting conflicting DO operations done by different transactions.

Distributed state manager is the component that fulfills R6. It manages the dis-
tributed state through the use of durable logs. A durable log contains basic information
about a state update and is first stored on a local disk to ensure durability. At first, the log
is uncommitted and its effects are not applied. It is then distributed across the network to
other SPTM nodes: nodes two through N in Fig. 3. These nodes persist the durable log
on their local disks and apply the changes, before sending back a confirmation message.
Once the number of confirmations reaches a certain threshold, e.g., the majority of nodes
have sent a confirmation, the durable log is committed and its effects are applied.

3.6. Differences to Related Work

In this subsection, we present the rationale behind SPTM and how it differs from existing
approaches.

There are two key differences between the existing approaches and the SPTM ap-
proach. First, SPTM strives to be non-invasive, with little-to-no impact on the code. This
lifts the burden of distributed transactions from developers, allowing them to focus on ap-
plication logic. Second, SPTM intercepts, evaluates, and modifies messages at the service
communication level. Other approaches operate at the database communication layer: as
a proxy to a data store, by embedding metadata in the data store, or as a standalone com-
ponent that the service must use.

We chose SPTM to operate at the service communication level because REST style
with HTTP appears to be the de facto standard in the industry. In Table 2 we show the
technology choices of eight open-source MSA projects. The table, alongside industry
studies [9], reveals that HTTP/REST is the only constant across all services, unlike data
stores that are more varied. Relational databases are most common but are too different
even among themselves. Supporting all of them with a single solution is not a simple task:
it remained an unresolved challenge of FDS [11].

The results of industry studies cannot be extended to the entire industry due to sample
size. However, we believe they provide a good case that there is much less variance in
service level protocols than in data stores. Operating at the service communication level
allows SPTM to cover more ground with a single implementation. The SPTM approach is
applicable to any protocol and style beyond HTTP/REST, such as gRPC [20] or GraphQL
[19]. Furthermore, it allows SPTM to support both synchronous and asynchronous mes-
saging, as long as the chosen messaging protocol satisfies the requirements of the SPTM,
as defined in Section 3.1.

4. Implementation

As a part of our research, we implemented a transaction manager called fed-agent that fol-
lows the reference architecture defined in Section 3.5. It is written in the Go programming
language [18], with a focus on the REST architecture and JSON DOs.

Message metadata is provided in a configuration file and is built using the same build-
ing blocks used to define a microservice endpoint. These are the URL, the message body,

182 Lazar Nikolić et al.

Table 2. Overview of technologies in open source MSA projects
Project Languages Messaging Data stores

eShopOnContainers [32] C#, .NET HTTP REST, Rab-
bitMQ

SQL Server, Redis

ESPM [33] Java, Spring HTTP REST, Rab-
bitMQ

MySQL, Redis

LakesideMutual [35] Java, Spring HTTP REST, Rab-
bitMQ

H2

FTGO [34] Java, Spring HTTP REST, Kafka MySQL, DynamoDB
Vert.x Blueprint [39] Java, Spring HTTP REST, Kafka MySQL, MongoDB,

Redis
Sentilo [36] Java, Spring HTTP REST, Kafka MongoDB, Elastic-

search, Redis
Spring Pet Clinic [38] Java, Spring HTTP REST HSQLDB, MySQL
Sock Shop [37] Java, Spring, Go HTTP REST, Rab-

bitMQ
MySQL, MongoDB

the headers, and the method. In Listing 2 we show a configuration example for a single
HTTP/REST endpoint. PUT /user/{id} request is an UPDATE operation on a user iden-
tified from the path parameter id. The request field describes the content of the request. It
is a JSON object, as described by the content type field. It contains a single user DO, that
can be identified by reading the id property of the JSON object within the message body.
The configuration also describes a compensating operation in the rollback field. The tar-
get field contains the name of the endpoint that will undo the effects of this operation. It
is the same endpoint, but the data field has a data source subfield specifying how to form
a compensating operation. In this instance, the last committed version of the DO should
be used in the request body of the compensating operation.

Not all messages need to be intercepted by fed-agent though and it should be posi-
tioned within the architecture in a manner that only adds overhead where necessary. More
specifically, only messages involved in OLTP workloads should be considered. When an
HTTP request is received, fed-agent first checks if the URL is specified in the configura-
tion. If not, the request is passed through to the microservice and is ignored by fed-agent.
Otherwise, fed-agent copies the payload and deserializes its JSON payload for inspection
before passing the unmodified request to the microservice. After receiving the response,
fed-agent does a series of operations depending on the operation type. In the case of
writes, fed-agent first checks the response code. If the code is not in the success range,
i.e. 2XX, the transaction state is set to FAILED, and the update is sent via consensus. Oth-
erwise, DOs are extracted from the request payload based on the configuration rules and
added to the DO version store. The new versions are then sent out via consensus and the
state is reconstructed by the followers. For reads, fed-agent deserializes the JSON payload
and extracts all the DOs from it. Then it finds the last committed version of each DO and
replaces their occurrences in the payload before sending the modified response payload
to the client.

Listing 2. Fed-agent configuration example for a user update endpoint

An Approach for Supporting Transparent ACID Transactions... 183

{
name = "update-user-profile"
idempotent = true
method = "PUT"
path = "/user/{id}"
type = "UPDATE"
request {

content_type = "json"
entities {

user {
id_source = "body"
id_path = "id"

}
}

}
response {
}
rollback {

target = "update-user-profile"
data {

content_type = "json"
entities {

user {
data_source = "version"
data_target = "body"

}
}

}
}

}

To provide a high level of isolation and consistency, fed-agent needs to ensure that
intermediate results of active transactions are not visible to other transactions. For this
purpose, a concurrency control scheme needs to be in place. We chose Multi-version con-
currency control (MVCC) [7] using timestamp ordering (MVTO) [72] as the concurrency
control scheme in fed-agent. There are also two other MVCC variants: two-phase lock-
ing (MV2PL) and optimistic (MVOCC). We find these less suitable due to the following
reasons. MV2PL acquires locks on DOs, which can lead to deadlocks and connection
exhaustion. MVOCC works by holding on to changes until the end of the transaction, at
which point all of the changes are sent to storage, or in this case, services. This is not
desirable for two reasons. First, fed-agent has no information about data constraints and
validation: they are delegated to the services. Therefore, fed-agent cannot determine the
validity of DOs in a message until it gets a response from a service. Second, applying all
changes at the end of a transaction can generate a burst of messages in a short period. The
pressure created by a large burst of messages can disrupt microservices, leading to failed
messages. Failed requests can trigger compensating messages, which amplifies the issue.
However, as an SPTM implementation, fed-agent keeps a consistent snapshot of DOs and
compensating operations are not necessary if all reads and writes go through fed-agent.
We leave this as an option to allow for eventual consistency of DOs, in case they need to
be accessed directly in data stores.

Fed-agent periodically runs a background routine that deletes data from finished trans-
actions and progresses active transactions toward their finished state. A transaction is in a
finished state if its status is COMPLETED, ROLLED BACK, or ROLLBACK FAIL. Fed-

184 Lazar Nikolić et al.

agent first goes through finished transactions and deletes their DO versions from the DO
version store. The only exceptions are DO versions from COMMITTED transactions that
are the last committed version for their respective DOs. Then, fed-agent tries to progress
currently active transactions. A transaction is moved from STARTED to TIMED OUT
state if there have been no operations within a configured period. Compensating opera-
tions for TIMED OUT and FAILED transactions are attempted for a configured number
of retries or until a configured period is passed before transitioning to ROLLED BACK or
ROLLBACK FAIL.

With fed-agent, we chose Option 1 from Section 3.4 for distributed state management.
Fed-agent uses the Raft [58] consensus protocol for transaction tracking. A fed-agent
cluster has one leader and multiple followers that can serve reads. Updates to transaction
statuses and the version chain are accepted by the leader and replicated to followers on
each intercepted message. Having more followers increases availability, fault tolerance,
and read parallelism at the cost of write performance. Should the leader become unavail-
able, one of the followers can become the new leader. The new leader then triggers the
recovery process for in-flight messages: messages that were detected and passed to a ser-
vice, but a response was not registered. Since no response is received, the transaction state
cannot be determined and it must be either replayed or aborted. If a message is marked as
idempotent in the configuration, it can be replayed safely. Otherwise, the corresponding
transaction must be aborted to maintain consistency.

Transaction updates are made durable by writing a log to persistent storage. A log
contains information about a non-read transaction operation, namely its type, timestamp,
and data. After accepting a non-read operation, the leader writes a log to the local disk and
sends it over the network to followers. Upon receiving the log, the followers also write the
log to disk and send a confirmation back to the leader. Once the majority of nodes have
confirmed a log write, the transaction state is successfully updated. The more nodes there
are in a cluster, the longer this process takes. However, having a larger cluster increases
availability, as a cluster will continue to operate as long as the majority of nodes are
online. Larger clusters also offer improved read parallelism, due to the higher number of
followers that can serve reads. This trade-off between write performance and availability
plus read parallelism can be tuned by adjusting the size of the cluster.

In Fig. 4, we depict a scenario in which the results of a write operation served by
the leader are replicated to followers to be provided to readers. Dashed lines are used
to denote replication via consensus protocol, while solid lines are used to denote direct
communication from transaction participants. After the green writer creates a new DO
version, it is replicated to both followers. The green reader can then read the new value
without accessing the leader.

Fed-agent has two distinct modes of operations: single-node and multi-node. In multi-
node mode, fed-agent creates a Raft consensus group with a single leader and multiple
followers. All write operations are handled by the leader since they can affect fed-agent’s
state by modifying a transaction’s status and the DO version store. Physical timestamps
are used to order these updates and are only generated by the leader, which eliminates the
risk of clock skew at the expense of write throughput. Operations are sent out to followers,
which then execute them in the ascending timestamp order to construct the global state. In
contrast, read operations do not generate any further network communication as they do

An Approach for Supporting Transparent ACID Transactions... 185

Leader

ID Val Status

1 222 COMPLETED

1 333

Start

3 NULL

STARTED 5 NULL

End

Follower

ID Val Status

1 222 COMPLETED

1 333

Start

3 NULL

STARTED 5 NULL

End

Follower

ID Val Status

1 222 COMPLETED

1 333

Start

3 NULL

STARTED 5 NULL

End

Writer

ReaderReader

Fig. 4. A fed-agent cluster consisting of a leader serving writes and followers serving
reads

not modify the state of fed-agent. Single-node mode avoids all consensus-related modules
and directly writes updates to the local storage for persistence.

Fed-agent mostly operates in-memory to minimize its overhead. We believe that the
in-memory storage architecture is well-suited for this case, as the memory footprint of ac-
tive transaction data is usually small enough to fit even into the memory of programmable
network switches [51]. DOs from active transactions are stored in a DO version store in
the memory of the fed-agent process, which offers SNAPSHOT isolation level [1]. The
minimum information necessary for crash recovery is stored within logs on the persistent
storage on each transaction operation. These logs can be replayed to restore the pre-crash
state of fed-agent. Periodic snapshots of the state are also stored to reduce the number of
logs that need to be replayed during recovery.

5. Evaluation

In this section, we evaluate SPTM by comparing fed-agent to 2PC and Saga as main rep-
resentatives of their categories, due to how ubiquitous they are in MSA applications. For
both comparisons, we used mostly identical setups, with only a message queue compo-
nent added in for Saga. Transactions used in the benchmarks are implemented to result
in the same state in both synchronous and asynchronous versions, used by 2PC and Saga
comparisons respectively.

186 Lazar Nikolić et al.

5.1. Setup

We ran benchmarks on an e-commerce system for an online video game. In this system, a
user can buy appearances for their in-game characters, called skins. There are four services
involved in buying a skin: store-service, payment-service, game-service, and gateway-
service. The responsibilities of services are as follows: store-service keeps track of user
credits and skin prices, payment-service manages payments, game-service stores a list of
skins available to a user, and gateway-service coordinates transactions made by a user.
Each service is a REST service implemented in Go that uses PostgreSQL 13 [22] as the
underlying database in a database-per-service fashion. Only the standard Go libraries and
low-level database drivers are used for the implementation.

We define BuySkin transaction offered by gateway-service. The workflow is shown in
Fig. 5:

1. GetUserBuyInfo: Sends a request to the store-service to check if the user has the credit
to buy the skin.

2. MakePayment: Create a payment with a value equal to the skin’s price and send it to
payment-service.

3. AddUserSkin: Make the skin available to the user by updating the user profile in
game-service.

4. UpdateUserCredit: Redact price from user credits and send an update to store-service.

gateway-service

BuySkin

store-service

canUserBuy

GetUserBuyInfo(userId, skinId)

payment-service game-service

MakePayment(userId, skinId)

success

AddUserSkin(userId, skinId)

success

UpdateUserCredit(userId, skinId)

success

Fig. 5. Sequence diagram of BuySkin transaction

The setup was deployed on the Amazon EC2 service with each service, database,
and client deployed on a separate t3.2xlarge instance (8vCPU, 32GB RAM) [15]. The
isolation level of PostgreSQL transactions was set to REPEATABLE READ so that 2PC
matches the isolation level of fed-agent.

Benchmarks are executed by starting an HTTP client calling the BuySkin endpoint
with a random skin ID. Since transactions can abort due to a conflict, the client retries the

An Approach for Supporting Transparent ACID Transactions... 187

transaction until it succeeds with a two-minute timeout. Time until transaction success is
measured and referred to as execution time. We also track the number of aborted transac-
tions to help understand the execution time better. We compare execution time for 2PC,
Saga, and fed-agent on the following dimensions:

– Concurrency: number of parallel clients, i.e., threads calling the BuySkin endpoint.
– Contention: number of concurrent clients attempting to modify the same DO, con-

trolled via distribution. Distribution defines the probability for a DO to be accessed
by a transaction. It can be uniform, hotspot, or Zipfian. Uniform distribution chooses
a DO uniformly at random, while Zipfian chooses a DO according to the Zipfian dis-
tribution, resulting in a small number of popular DOs. Hotspot distribution defines
two parameters: the fraction of operations accessing “hot” DOs and the size of the
“hot” dataset. Uniform and Zipfian distributions are the most common distributions
in web services [12], while hotspot gives us better control over contention scaling.

We formulate the following scenarios for benchmarks:

– Scenario 1 — Uniform distribution: the number of parallel clients is scaled from
0 to 200 using a uniform distribution. The purpose is to examine the behavior of
systems under high concurrency and low-medium contention.

– Scenario 2 — Zipfian / extreme contention: The number of parallel clients is scaled
from 0 to 60 using Zipfian distribution. The purpose is to examine the behavior of the
systems under extreme contention.

– Scenario 3 — ”Hot” dataset: The number of parallel clients is 100 using hotspot
distribution. We define a ”hot” dataset of DOs as 2.5% to 10% of the total dataset,
which is accessed by 20% of all operations. The purpose is to examine the impact of
scaling contention level on the behavior of the systems.

Each run of each scenario executes 30,000 transactions on the dataset of 1,000 skins
and one user. Since a user-skin reference is considered a standalone object, having exactly
one user is sufficient to test concurrency and contention. It also allows us to better control
those two parameters by keeping the user fixed and changing the distribution of skins.

5.2. Comparison with 2PC

In this subsection, we compare fed-agent with a 2PC implementation by comparing the
transaction execution times of both. A 2PC implementation is close to the fed-agent: a
distributed transaction is a sequence of HTTP requests. This makes direct comparison
with 2PC implementation rather straightforward.

We only compare a single-node fed-agent cluster to 2PC for one main reason. During
our testing, we noticed that having multiple 2PC coordinators does not improve trans-
action execution time. This is because the main work is done by databases, not the co-
ordinators. The coordinators only facilitate the transactions by opening and maintaining
connections to databases that have a finite connection pool. Multiple coordinators enable
the system to open connections faster, practically letting the system exhaust the connec-
tion pool earlier. Since the goal of this benchmark is to measure transaction execution
time, developing a highly complex, multi-node 2PC implementation will not meaning-
fully contribute to the comparison.

188 Lazar Nikolić et al.

This comparison employs two separate BuySkin versions in gateway-service: one us-
ing 2PC (BuySkin2PC) and one using fed-agent (BuySkinFedAgent). Both versions bring
minor tweaks to the original BuySkin transaction. For BuySkin2PC, gateway-service gene-
rates and sends a Txn-Id header containing a transaction ID with each request. Services
correlate this value to a local database transaction that is active until the global transac-
tion finishes. For BuySkinFedAgent, gateway-service generates and sends a Txn-Id header
containing a transaction ID with each request. Fed-agent takes care of the transaction
management with no additional changes to services.

It should be noted that each run had to be split into 15 iterations of 2,000 transactions
due to 2PC implementation blocking indefinitely after a certain time under high loads.
Fed-agent was more resilient in this regard and would continue working, but would block
for almost a minute before continuing due to high IO activity on the fed-agent node. We
attribute this to benchmarks hitting the Amazon AWS I/O throughput limit for the instance
types used [15].

Fig. 6a and Fig. 6b contain benchmark results for low contention (under 20% aborts)
and increasing concurrency. Fed-agent is slightly slower than 2PC when the number of
concurrent users is low. Fed-agent’s overhead is relatively constant compared to execution
time, making it more noticeable at low loads. As the load increases, fed-agent execution
becomes almost twice as fast as that of 2PC. Fed-agent exhibits a 20% aborted transaction
rate which, while twice as high as that of 2PC, is still low enough that it does not lead to
performance degradation.

5.42 6.56

51.47

114.39

8.54
9.65

32.74

63.39

1 10 100 200
0

20

40

60

80

100

120
variable

2pc

fed-agent

threads

E
xe

cu
tio

n
tim

e
(m

s)

(a) Median execution time for scenario 1

0.68

6

10.06

0.77

7.81

20.52

1 10 100 200
0

5

10

15

20 variable
2pc

fed-agent

threads

%
 a

bo
rt

s

(b) Aborts for scenario 1

Fig. 6. The effects of the number of concurrent clients for scenario 1 (uniform
distribution)

Fig. 7a and Fig. 7b contain benchmark results for extreme contention and moderate
concurrency (scenario 2). The results show that 2PC and fed-agent behave comparably
for abort rates up to 90%. Beyond that point, fed-agent starts to fall behind. We attribute
this primarily to fed-agent’s usage of MVOCC, which is inherently worse for high abort
rates than MV2PL used by the combination of PostgreSQL and 2PC.

We have observed that roughly 10% of 2PC transactions were dropped and never
completed in the timeout period for 40 and 60 thread benchmarks. That likely happened
because services maintain open database connections throughout the execution of a trans-

An Approach for Supporting Transparent ACID Transactions... 189

action, exhausting the I/O resources of the EC2 instance [15]. Fed-agent did not have this
problem because database connections are short-lived in this case. We believe that this is
an indication of the bottleneck of 2PC that prevents it from scaling.

6.31 33.98

82.28

175.62

9.9

40.57

101.14

265.31

1 10 40 60
0

50

100

150

200

250 variable
2pc

fed-agent

threads

E
xe

cu
tio

n
tim

e
(m

s)

(a) Median execution time for scenario 2

87.39

90.11

93.2

0.21

85.76

93.1

95.08

1 10 40 60
0

20

40

60

80

100
variable

2pc

fed-agent

threads

ab

or
ts

(b) Aborts for scenario 2

Fig. 7. The effects of the number of concurrent clients for scenario 2 (Zipfian / extreme
contention)

Fig. 8a and Fig. 8b show the effects of contention on execution time (scenario 3).
Contention is scaled by keeping the number of concurrent users at 100, while scaling the
“hot” dataset from 20% to 2.5% of the entire dataset. Each operation has a 20% chance
of accessing a DO from the “hot” dataset in all runs. We see that fed-agent performs
slightly better than 2PC until roughly 60% abort rate. Fed-agent starts to quickly fall
behind beyond 70% abort rate for 100 concurrent users.

Scenario 2 and scenario 3 benchmarks reveal that rollbacks have the highest impact
on Fed-agent’s performance. Fig. 9a and Fig 9b show the total number of transaction at-
tempts during the execution of scenario 2 and scenario 3 respectively. Despite a similar
abort percentage, the total number of requests is disproportionately higher for fed-agent.
For example, for 60 concurrent users using Zipfian distribution, for a 2% difference in
abort rate, there is a 30% difference in total attempts. We suspect this discrepancy was
caused by two things. The first is the first-write-wins conflict resolution of the fed-agent:
once a transaction has written a new value for a DO, all transactions attempting to update
the same DO are aborted. The second is fed-agent’s eager conflict detection: transaction
conflict detection is done on each transaction status update, not just before committing.
This is an implementational choice not imposed by the SPTM approach. Both properties
can lead to a high number of short-lived aborted transactions, which is potentially detri-
mental to performance for high abort rates. Future research will focus on lowering the
number of aborts or sending fewer compensating messages whenever possible.

In conclusion, fed-agent performs better than 2PC in high concurrency, low-medium
contention scenarios while offering similar isolation and consistency levels. 2PC outper-
forms fed-agent in scenarios with high abort rates. It should be noted that fed-agent roll-
back mechanism always sends compensating operations when a transaction fails. 2PC is
not safe from this either: if a database transaction fails to commit in the commit phase,
other database transactions within the distributed transaction need to be compensated. The

190 Lazar Nikolić et al.

42.79

45.68

66.43

106.38

35.81

43.67

82.59

169.2

0.2 0.1 0.05 0.025
0

20

40

60

80

100

120

140

160 variable
2pc

fed-agent

% of hot dataset

E
xe

cu
tio

n
tim

e
(m

s)

(a) Median execution time for scenario 3

24.34

40.67

58.39

72.34

29.55

46.43

63.03

76.62

0.2 0.1 0.05 0.025
0

10

20

30

40

50

60

70

80
variable

2pc

fed-agent

% of hot dataset

%
 a

bo
rt

s

(b) Aborts for scenario 3)

Fig. 8. The effects of contention for scenario 3 (”hot” dataset)

30k

79.213k

302.264k

412.267k

26.227k

157.551k

434.97k 341.123k

1 10 40 60
0

50k

100k

150k

200k

250k

300k

350k

400k

450k
variable

2pc

fed-agent

threads

of

 r
eq

ue
st

s

(a) Total attempts for scenario 2

39.65k

50.561k

72.106k

108.45k

42.581k

55.998k

81.142k

128.294k

0.2 0.1 0.05 0.025
0

20k

40k

60k

80k

100k

120k variable
2pc

fed-agent

% of hot dataset

of

 r
eq

ue
st

s

(b) Total attempts for scenario 3

Fig. 9. Total number of requests scenario 2 (Zipfian / extreme contention) and scenario 3
(”hot” dataset)

2PC implementation used in benchmarks does not support this. The absence of rollback
messages could have a noticeable impact on the performance for high contention and
bring 2PC execution time closer to that of fed-agent. The biggest caveat to using a 2PC is
the fact that it is only applicable if all underlying databases are transactional. Fed-agent
does not have this requirement. Furthermore, 2PC was observed to stop accepting trans-
actions after hitting a certain amount of requests, most likely caused by the connection
pool exhaustion and locking. The benchmarks on fed-agent show that an implementa-
tion of SPTM can offer high consistency while being scalable and non-intrusive to the
application code.

5.3. Comparison with Saga

In this subsection, we compare fed-agent with a Saga implementation by comparing the
total execution time of all transactions, rather than individual execution times. We take
both finished and compensated transactions into account.

The Saga implementation uses RabbitMQ [24] to pass transaction messages between
participants. We only compare a single-node fed-agent cluster to a single-node RabbitMQ

An Approach for Supporting Transparent ACID Transactions... 191

cluster with default configuration and durable message queues. The RabbitMQ instance is
hosted on a separate machine. RabbitMQ clients utilize a connection-per-thread approach
instead of a channel-per-thread approach to maximize throughput. The number of open
connections is equal to the number of client threads used in the benchmark.

This comparison employs two separate BuySkin versions in gateway-service: one for
Saga (BuySkinSaga) and one for fed-agent (BuySkinFedAgent). BuySkinFedAgent is iden-
tical to the one used in comparison with 2PC. BuySkinSaga is a choreographed Saga
implementation of BuySkin that uses RabbitMQ messages. We choose the choreographed
approach to avoid additional message passing between participants and the coordinator
that would negatively affect the performance. Each subtransaction of BuySkinSaga has a
compensatory transaction that undoes its effects, while BuySkinFedAgent does not need
them. Each subtransaction also sends an acknowledgment back to the RabbitMQ clus-
ter once a message is successfully processed, or a negative acknowledgment if it fails.
Both BuySkin variants are started by the gateway-service, with BuySkinFedAgent syn-
chronously returning a response once the transaction finishes and BuySkinSaga being
asynchronous, returning a success when a transaction is accepted. In both cases, a trans-
action is started by an HTTP request from the test client. We also modify benchmarks so
that Saga executions can detect conflicts by adding a unique constraint on the relationship
between user and weapon skins.

Fig. 10a contains benchmark results for low contention (under 20% aborts) and in-
creasing concurrency, and Fig. 10b contains benchmark results for extreme contention
and moderate concurrency (scenario 2). Both benchmarks reveal that Saga vastly outper-
forms fed-agent when the number of threads is less than 20 due to the disparity of syn-
chronous and asynchronous message processing in the test setup. The test client works by
sending HTTP requests sequentially in the specified number of threads. Since fed-agent
transactions appear to be synchronous to the clients, the system’s resources will remain
underutilized as transactions are started one by one in a low number of threads. On the
other hand, starting a Saga transaction is much faster because the gateway-service only
needs to send a RabbitMQ message and return a positive response. As a result, the test
client starts all of its transactions much faster in the lower thread range, allowing the sys-
tem to better utilize its resources. This difference is gone as soon as the system becomes
saturated with more concurrent client threads (>20). Fed-agent has identical execution
times across all of the scenarios as Saga when the number of threads is over 20, while
also offering higher consistency.

Fig. 10c show the effects of a small ”hot” dataset on execution time (scenario 3). Fed-
agent has no need for compensations, leading to a 50–60% faster execution than Saga.
Saga degraded in performance in this scenario but not in scenario 2 because scenario 2
did not reach the concurrency level needed to cause a high number of compensations.

In conclusion, our benchmarks show that Saga vastly outperforms fed-agent in scenar-
ios under 20 concurrent users. This happens because transactions are started much faster
asynchronously by the test client when the system is not saturated. Both perform equally
in low-to-moderate contention scenarios, with fed-agent offering high-consistency and
ACID properties. In high-contention scenarios, fed-agent outperforms Saga by a wide
margin, due to Saga needing to compensate failed transactions, whereas fed-agent does
not. We also report that the implementation of a choreographed Saga is more challenging

192 Lazar Nikolić et al.

37.73518

24.851

25.415

28.304

33.78

63.9

29.1 24.1

28

32.6

10 60 100 200 300
0

10

20

30

40

50

60 variable
saga
fed-agent

threads

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

(a) Total execution time for scenario 1

35.41006

28.18802

25.63744

25.5463

70.9

28.4

24.7

22.5

10 20 40 60
0

10

20

30

40

50

60

70 variable
saga
fed-agent

threads

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

(b) Total execution time for scenario 2

42.63

46.18

47.61 42.6

25.2

27.6

29.9 25.4

0.2 0.1 0.05 0.025
0

10

20

30

40

50
variable

saga
fed-agent

% of hot dataset

E
xe

cu
tio

n
tim

e
(m

s)

(c) Total execution time for scenario 3

Fig. 10. Execution times of fed-agent and Saga across all scenarios

than that of fed-agent because the developer needs to take care of message acknowledg-
ment, compensations, retries, and tracking of decentralized transaction execution.

5.4. Overhead Characteristics

In this subsection, we measure the overhead of fed-agent as the difference between the
execution time of direct microservice calls and calls via fed-agent. We consider the impact
of cluster size and payload size on read and write overheads. We run all benchmarks in
a single thread to better isolate the overhead from other factors, such as concurrency and
contention.

In Fig. 11 we show that a single-node fed-agent cluster adds 0.5ms to reads and 2ms
to writes. Moving to a multi-node cluster shifts fed-agent into another operation node,
causing a large increase in overhead. Read and write overhead increase to 3ms and 10ms,
respectively. Each node beyond the second adds roughly 0.5–1ms overhead for both reads
and writes. The number of messages to reach consensus increases with cluster size, in-
creasing the overhead.

The main component of write overhead is the persistence of transaction logs. A single-
node fed-agent cluster persists logs to the local disk only and does not need to send them
via the network for consensus, leading to a much lower overhead.

The main component of read overhead is transaction conflict detection. Reading trans-
action status in a single-node cluster is done by directly accessing the local storage. How-

An Approach for Supporting Transparent ACID Transactions... 193

2 4 6 8 10
1

2

3

4

5

6

7 variable
direct
fed-agent

nodes

E
xe

cu
tio

n
tim

e
(m

s)

(a) Write overhead, increasing cluster size

2 4 6 8 10
1

2

3

4

5

6

7 variable
direct
fed-agent

nodes

E
xe

cu
tio

n
tim

e
(m

s)

(b) Read overhead, increasing cluster size

Fig. 11. The effect of cluster size on write and read overhead

ever, reads in multi-cluster deployment need to be linearizable [69] to ensure that the
previously made changes are applied first. This is necessary to provide high consistency,
but it adds an overhead that increases with cluster size. We believe that a weaker consis-
tency level could suffice and would noticeably lower the overhead.

In Fig. 12 we show the effects of payload scaling on write operations. Network com-
munication is needed to reach a consensus on the new transaction state. Transaction status
update message contains the original payload, hence the potential impact of payload size
on performance. Reads do not update the transaction state, so they are left out of the
benchmarks. Payload is scaled to 2kB because most HTTP REST JSON API implemen-
tations appear to have payload sizes of 1–2kB, with the median of around 1500B [62].

In both single-node and three-node clusters scenarios, we show the trendline due to the
stochastic nature of network latency. For a single-node cluster, write overhead increases
by 0.7ms. The increase is attributed to proxying a larger request and the extra time needed
to store the payload in the local storage. There is no additional network communication
in the single-node cluster, hence a low overhead. The three-node cluster needs to reach a
consensus for each write, adding up to 3ms of additional overhead.

0 500 1000 1500 2000

3

3.2

3.4

3.6

3.8

4

Payload size (bytes)

O
ve

rh
ea

d
(m

s)

(a) Write overhead in a single-node cluster

0 500 1000 1500 2000
8.5

9

9.5

10

10.5

11

11.5

12

Payload size (bytes)

O
ve

rh
ea

d
(m

s)

(b) Write overhead in a three-node cluster

Fig. 12. The effect of payload size on write overhead

194 Lazar Nikolić et al.

In conclusion, the overhead of a single-node fed-agent cluster for a typical MSA appli-
cation is expected to be 0.5ms for reads and 2ms for writes. We believe that the overhead
can be negligible in an application with usual response times of tens of milliseconds. A
multi-node cluster offers higher availability and read parallelism, but increases the over-
head to 3ms for reads and 10ms for writes.

5.5. Isolation Level

Fed-agent implements the MVOCC scheme as specified by the SPTM approach. Proper
implementation of said scheme should lead to the SNAPSHOT isolation. As we are not
aware of any tool for formal validation of isolation levels, we implement a test suite
attempting to cause isolation anomalies [6]. If anomalies do not occur, we consider the
system to be operating at the corresponding isolation level. Read Skew and Write Skew
anomalies are not considered because fed-agent supports a limited set of predicate-based
operations. Phantom Read is the exception and could still occur, as shown in the tests.
Cursor Lost Update is not considered because fed-agent has no notion of cursors. The
tests are defined as follows:

– P0 Dirty Write: this phenomenon occurs when a transaction overwrites a value writ-
ten by another active transaction. The test attempts to manifest the anomaly by start-
ing transactions T1 and T2 simultaneously, each updating the same user with a dif-
ferent value. T1 commits before T2, which leads to T2 getting aborted to maintain
consistency.

– P1 Dirty Read: this phenomenon occurs when a transaction reads a value written
by another active transaction. The test attempts to manifest the anomaly by starting
transactions T1 and T2 simultaneously, each updating the same user with a different
value. Both T1 and T2 update the user before reading the new value. Both T1 and T2
only see the value they modified, meaning that Dirty Read did not occur.

– P2 Non-Repeatable Read: consider a transaction T that reads a value before and
after it is modified by another transaction. If T reads a different result both times,
Non-Repeatable Read has occurred. The test attempts to manifest the anomaly by
starting transactions T1 and T2 simultaneously. T1 reads the value of a user before
and after T2 updates it. Since both reads yielded the same result, Non-Repeatable
Read did not occur.

– P3 Phantom Read: consider a scenario in which a transaction does a predicate-based
read, and another transaction does a write that adds a DO to the result set. If the
predicate-based read is repeated and it captures the new value, Phantom Read has
occurred. The test attempts to manifest the anomaly by starting transactions T1 and
T2 simultaneously. T1 reads all skins for a user, which is a predicate-based search. T2
then updates values for one of the skins and adds a new skin to the set. T1 then repeats
the original read. Since the result stayed the same, Phantom Read did not occur.

– P4 Lost Update: this phenomenon occurs if active transactions read and modify the
same value. The test attempts to manifest the anomaly by starting transactions T1 and
T2 simultaneously. Both T1 and T2 read user credit and increase it by a fixed value.
T1 commits before T2, which leads to T2 getting aborted to maintain consistency.

We ensure that the tests are deterministic by artificially pausing a transaction execu-
tion when a state in which an isolation anomaly can happen is reached. Then, another

An Approach for Supporting Transparent ACID Transactions... 195

transaction that attempts to cause a data anomaly executes and the state is checked. We
also define tests with invariants that would be violated if data anomalies happened. For
example, the total sum of funds across all bank accounts should stay constant before and
after the test run, or state of a product must not be a negative number.

5.6. Threats to validity

In this subsection, we briefly discuss the threats to the validity of the results of our re-
search. The biggest threats are those related to the implementation of SPTM, 2PC, and
Saga in the Evaluation section. We identify the following:

– 2PC and Saga implementations were specifically built for the purpose of evaluation of
fed-agent. While it was built with great care, there could be another way to implement
2PC or Saga which would lead to a different evaluation outcome.

– The choice of messaging technology is an important one when implementing Saga.
We chose RabbitMQ as it is, in our judgment, a good representative of how a Saga
would be implemented in practice due to its popularity. Other message queue tech-
nologies, such as ZeroMQ [25], could lead to a lower execution time. However, we
believe that the characteristics of Saga, such as a high number of compensations un-
der heavy contention, ultimately have a bigger impact the benchmark results than a
choice of technology within the same family.

– The evaluation was made on a specific use case: an e-commerce application. We ac-
knowledge that there are different use cases that have different performance profiles,
and thus universal claims cannot be extrapolated from a single comparison.

– The evaluation was not made on a real production system, but on a system built to
simulate one. Production systems can be expected to be much more complex, and
evaluations within them could lead to different outcomes.

– The evaluation was done on a public cloud provider, namely Amazon Web Services
(AWS). This takes away control from us over variables such as network availability
and resource contention.

6. Limitations and Future Work

SPTM relies on messages containing enough information to keep track of DO values
throughout transaction execution. To our knowledge, there is no rule enforcing the mes-
sage schema in any API style. What can be defined are the levels of information availabil-
ity:

1. Level 1 — Messages contain neither DO nor any other identifying information. For
example, ”count recently added items”.

2. Level 2 — Messages do not contain DO but contain identifying information. For
example, an increment endpoint for a product stock that returns an empty response.

3. Level 3 — Messages contain partial or convertible DO. For example, an update end-
point that takes or returns partial DO information, or a search endpoint that returns a
modified DO.

4. Level 4 — Messages contain the full DO. Single DO format is used for all endpoints
handling a type.

196 Lazar Nikolić et al.

SPTM can handle level 1 endpoints if they behave as materialized views. These end-
points can, in some cases, provide enough additional information and auxiliary endpoints
for SPTM to estimate the state. Consider a “top 10 selling products” endpoint. A service
can provide the count for 10+N products, where N is the buffer in case one of the items
of lower placement enters the top 10. Additionally, the service provides a rule to incre-
ment the appropriate top 10 record on the ”buy” endpoint hit. For more complex rules,
snapshotting of endpoints on each DO modification is necessary. This means that in the
previous example, the ”buy” endpoint would cause SPTM to re-fetch DOs from ”top 10
selling products”.

Handling level 2 endpoints is possible if a corresponding read endpoint is provided.
In that case, SPTM can track reads on DOs and add them to the version chain. Detected
DOs can be used to allow subsequent reads to see a consistent state. If no DO version is
known, it is pre-fetched before proceeding with the transaction.

This approach can also be applied to level 3. Alternatively, a conversion algorithm is
provided to SPTM, either via a Domain Specific Language (DSL) or a plug-in system.
Level 4 endpoints are fully compatible with SPTM and require no modifications.

We expect level 3 and level 4 endpoints to be the most common for OLTP workloads,
as it is characterized by short-lived operations on clearly identifiable DOs. Level 1 end-
points serve to connect OLTP results with OLAP data stores, so they are also expected
to appear quite commonly. We conjecture that level 2 endpoints could be considered bad
practice, as they do not align with any of the major API styles, such as REST. Therefore,
we believe that supporting level 1 and level 3 endpoints should be prioritized in the future
work before adding support for level 2 endpoints.

In this article, we present an implementation that only considers Option 1 from Section
3.4 for distributed state management. Furthermore, it can only scale reads horizontally,
and not writes. In the future, we intend to explore Options 2 and 3 and see how writes can
be scaled horizontally within SPTM. We intend to do so by using Conflict-free Replicated
Data Types (CRDT) [64] and the MVOCC approach of private transaction workspaces
[49]. Transactions are assigned to an SPTM node with a hashing function at the start,
which will execute all transaction-related operations in-memory. Messages are sent over
the network only once a transaction is finished, minimizing the total number of messages.

Because SPTM operates at the service communication layer, it does not prevent ser-
vices from accessing uncommitted DO values by directly accessing a data store. We see
three potential solutions:

– Service endpoints can be defined as microtransactions: each endpoint can read or
write only DOs identifiable from the request or the response. A static analysis tool
examining the source code and suggesting changes to fit this criteria can be imple-
mented and provided to developers. However, we recognize that this can be quite
restrictive for some systems.

– A service can explicitly ask SPTM what DOs are visible to a transaction. This adds
additional overhead and has the potential to violate non-invasiveness property of
SPTM.

– Libraries for multiple languages can be developed that inject active values into the
persistence layer of a service. This approach should be the least invasive out of the
three if properly implemented. The main drawback is that libraries need to be imple-
mented for multiple target languages.

An Approach for Supporting Transparent ACID Transactions... 197

Having a low-to-no impact on existing systems is an important goal of SPTM. In the
future, we will be looking into reducing the usage overhead by generating configuration
files from existing code or documentation. The first step in this direction would be gen-
erating configuration files from language-agnostic documentation specifications, namely
Swagger and OpenAPI. Implementing language-specific support for a choice of popular
programming languages would come after that.

7. Conclusion

In this article, we introduce the SPTM, a transaction handling approach that supports
ACID transactions for OLTP workloads in MSA. A transaction manager implemented in
the SPTM approach is easy to use and has a very low impact on code or architecture.

We compare an implementation of SPTM, called fed-agent, to 2PC and Saga imple-
mentations in a lab-grown e-commerce system. The results show that fed-agent outper-
forms the 2PC implementation by a factor of two for low-medium contention levels. It
falls short only in extremely high contention scenarios. As the contention increased in our
benchmarks, the 2PC implementation ran into locking bottlenecks that stopped the system
from accepting new transactions. Fed-agent did not run into this issue and would continue
to work beyond the bottleneck point of 2PC. The comparison with Saga shows that fed-
agent achieves similar performance, while providing high consistency. We also measure
the overhead of fed-agent and show that it can be negligible for MSA applications with
typical response times of tens of milliseconds.

We provide empirical evidence showing that fed-agent supports ACID transactions at
the SNAPSHOT ISOLATION level, which is on par with 2PC using a typical relational
database. We believe that having transparent ACID transactions improves the develop-
ment of MSA in two major ways. First, developers do not need in-depth knowledge of
how distributed transactions work to effectively implement them. Second, having ACID
transactions for both synchronous and asynchronous message processing helps with data
consistency, primarily by reducing the amount of data issues caused by concurrent execu-
tion.

References

1. Adya, A., Liskov, B., O’Neil, P.: Generalized isolation level definitions. In: Proceedings of 16th
International Conference on Data Engineering (Cat. No.00CB37073). pp. 67–78. IEEE Com-
put. Soc, San Diego, CA, USA (2000), http://ieeexplore.ieee.org/document/
839388/

2. Akkoorath, D.D., Tomsic, A.Z., Bravo, M., Li, Z., Crain, T., Bieniusa, A., Preguica, N.,
Shapiro, M.: Cure: Strong Semantics Meets High Availability and Low Latency. In: 2016
IEEE 36th International Conference on Distributed Computing Systems (ICDCS). pp. 405–
414. IEEE, Nara, Japan (Jun 2016), http://ieeexplore.ieee.org/document/
7536539/

3. Arora, V., Nawab, F., Agrawal, D., Abbadi, A.E.: Typhon: Consistency Semantics for Multi-
Representation Data Processing. In: 2017 IEEE 10th International Conference on Cloud
Computing (CLOUD). pp. 648–655. IEEE, Honolulu, CA, USA (June 2017), http://
ieeexplore.ieee.org/document/8030645/

http://ieeexplore.ieee.org/document/839388/
http://ieeexplore.ieee.org/document/839388/
http://ieeexplore.ieee.org/document/7536539/
http://ieeexplore.ieee.org/document/7536539/
http://ieeexplore.ieee.org/document/8030645/
http://ieeexplore.ieee.org/document/8030645/

198 Lazar Nikolić et al.

4. Bailis, P., Davidson, A., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Highly avail-
able transactions: virtues and limitations. Proceedings of the VLDB Endowment 7(3), 181–192
(November 2013), https://dl.acm.org/doi/10.14778/2732232.2732237

5. Bailis, P., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Bolt-on causal consistency. In: Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data. pp. 761–772.
ACM, New York New York USA (June 2013), https://dl.acm.org/doi/10.1145/
2463676.2465279

6. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique of ANSI
SQL isolation levels. In: Proceedings of the 1995 ACM SIGMOD international conference on
Management of data - SIGMOD ’95. pp. 1–10. ACM Press, San Jose, California, United States
(1995), http://portal.acm.org/citation.cfm?doid=223784.223785

7. Bernstein, P.A., Goodman, N.: Multiversion concurrency control—theory and algorithms.
ACM Transactions on Database Systems 8(4), 465–483 (December 1983), https://dl.
acm.org/doi/10.1145/319996.319998

8. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency control and recovery in database
systems. Addison-Wesley Pub. Co, Reading, Mass (1987)

9. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Microservices in Industry: Insights
into Technologies, Characteristics, and Software Quality. In: 2019 IEEE International Confer-
ence on Software Architecture Companion (ICSA-C). pp. 187–195. IEEE, Hamburg, Germany
(March 2019), https://ieeexplore.ieee.org/document/8712375/

10. Braubach, L., Jander, K., Pokahr, A.: A novel distributed registry approach for efficient and re-
silient service discovery in megascale distributed systems. Computer Science and Information
Systems 15(3), 751–774 (2018), http://www.doiserbia.nb.rs/Article.aspx?
ID=1820-02141800030B

11. Conrad, S., Eaglestone, B., Hasselbring, W., Roantree, M., Schöhoff, M., Strässler, M., Ver-
meer, M., Saltor, F.: Research issues in federated database systems: report of EFDBS ’97 work-
shop. ACM SIGMOD Record 26(4), 54–56 (December 1997), https://dl.acm.org/
doi/10.1145/271074.271089

12. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud serv-
ing systems with YCSB. In: Proceedings of the 1st ACM symposium on Cloud computing.
pp. 143–154. ACM, Indianapolis Indiana USA (June 2010), https://dl.acm.org/doi/
10.1145/1807128.1807152

13. Cowling, J., Liskov, B.: Granola: Low-Overhead Distributed Transaction Coordination. In:
2012 USENIX Annual Technical Conference (USENIX ATC 12). pp. 223–235. USENIX Asso-
ciation, Boston, MA (June 2012), https://www.usenix.org/conference/atc12/
technical-sessions/presentation/cowling

14. Dey, A., Fekete, A., Rohm, U.: Scalable distributed transactions across heterogeneous stores.
In: 2015 IEEE 31st International Conference on Data Engineering. pp. 125–136. IEEE, Seoul,
South Korea (April 2015), http://ieeexplore.ieee.org/document/7113278/

15. Docs: Amazon ec2 instance types. https://aws.amazon.com/ec2/
instance-types/t3/, accessed: 2022-05-09

16. Docs: Cassandra documentation. https://cassandra.apache.org/doc/latest/,
accessed: 2022-05-09

17. Docs: Elasticsearch documentation. https://www.elastic.co/guide/en/
elasticsearch/reference/current/index.html, accessed: 2022-05-09

18. Docs: The go programming language. https://go.dev/doc/, accessed: 2022-05-09
19. Docs: Graphql documentation. https://graphql.org/, accessed: 2022-05-09
20. Docs: grpc documentation. https://grpc.io/, accessed: 2022-05-09
21. Docs: Open api specification. https://spec.openapis.org/oas/latest.html,

accessed: 2022-05-09
22. Docs: Postgresql 13. https://www.postgresql.org/docs/13/index.html, ac-

cessed: 2022-05-09

https://dl.acm.org/doi/10.14778/2732232.2732237
https://dl.acm.org/doi/10.1145/2463676.2465279
https://dl.acm.org/doi/10.1145/2463676.2465279
http://portal.acm.org/citation.cfm?doid=223784.223785
https://dl.acm.org/doi/10.1145/319996.319998
https://dl.acm.org/doi/10.1145/319996.319998
https://ieeexplore.ieee.org/document/8712375/
http://www.doiserbia.nb.rs/Article.aspx?ID=1820-02141800030B
http://www.doiserbia.nb.rs/Article.aspx?ID=1820-02141800030B
https://dl.acm.org/doi/10.1145/271074.271089
https://dl.acm.org/doi/10.1145/271074.271089
https://dl.acm.org/doi/10.1145/1807128.1807152
https://dl.acm.org/doi/10.1145/1807128.1807152
https://www.usenix.org/conference/atc12/technical-sessions/presentation/cowling
https://www.usenix.org/conference/atc12/technical-sessions/presentation/cowling
http://ieeexplore.ieee.org/document/7113278/
 https://aws.amazon.com/ec2/instance-types/t3/
 https://aws.amazon.com/ec2/instance-types/t3/
 https://cassandra.apache.org/doc/latest/
 https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
 https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
 https://go.dev/doc/
 https://graphql.org/
 https://grpc.io/
 https://spec.openapis.org/oas/latest.html
 https://www.postgresql.org/docs/13/index.html

An Approach for Supporting Transparent ACID Transactions... 199

23. Docs: Protocol buffers specification. https://developers.google.com/
protocol-buffers/docs/overview, accessed: 2022-05-09

24. Docs: Rabbitmq. https://www.rabbitmq.com/, accessed: 2022-04-16
25. Docs: Zeromq. https://zeromq.org/, accessed: 2022-04-16
26. Dürr, K., Lichtenthäler, R., Wirtz, G.: An Evaluation of Saga Pattern Implementation Technolo-

gies. In: CEUR workshop proceedings. pp. 74–82 (2021), https://fis.uni-bamberg.
de/handle/uniba/49721, iSSN: 1613-0073 Issue: 2839

27. Fan, G., Chen, L., Yu, H., Qi, W.: Multi-objective optimization of container-based
microservice scheduling in edge computing. Computer Science and Information Sys-
tems 18(1), 23–42 (2021), http://www.doiserbia.nb.rs/Article.aspx?ID=
1820-02142000041F

28. Fan, P., Liu, J., Yin, W., Wang, H., Chen, X., Sun, H.: 2PC*: a distributed transaction concur-
rency control protocol of multi-microservice based on cloud computing platform. Journal of
Cloud Computing 9(1), 40 (December 2020), https://journalofcloudcomputing.
springeropen.com/articles/10.1186/s13677-020-00183-w

29. Fielding, R.T.: Architectural Styles and the Design of Network-Based Software Architectures.
PhD Thesis, University of California, Irvine (2000), iSBN: 0599871180

30. Fowler, M.: Polyglot persistence. M. Fowler website, [Online]. Available: https://www.
martinfowler.com/bliki/PolyglotPersistence.html (accessed May 2022)

31. Gadepally, V., Chen, P., Duggan, J., Elmore, A., Haynes, B., Kepner, J., Madden, S., Mattson,
T., Stonebraker, M.: The BigDAWG polystore system and architecture. In: 2016 IEEE High
Performance Extreme Computing Conference (HPEC). pp. 1–6. IEEE, Waltham, MA, USA
(September 2016), http://ieeexplore.ieee.org/document/7761636/

32. Github: eshoponcontainers github repository. https://github.com/
dotnet-architecture/eShopOnContainers, accessed: 2022-05-09

33. Github: Event stream processing microservices github repository. https://github.com/
kbastani/event-stream-processing-microservices, accessed: 2022-05-09

34. Github: Ftgo github repository. https://github.com/microservices-patterns/
ftgo-application, accessed: 2022-05-09

35. Github: Lakeside mutual github repository. https://github.com/
Microservice-API-Patterns/LakesideMutual, accessed: 2022-05-09

36. Github: Sentilo platform github repository. https://github.com/sentilo/
sentilo, accessed: 2022-05-09

37. Github: Sock shop microservices demo repository. https://github.com/
microservices-demo/microservices-demo, accessed: 2022-05-09

38. Github: Spring petclinic github repository. https://github.com/
spring-petclinic/spring-petclinic-microservices, accessed: 2022-05-09

39. Github: Vert.x blueprint project. https://github.com/sczyh30/
vertx-blueprint-microservice, accessed: 2022-05-09

40. Hasselbring, W., Steinacker, G.: Microservice Architectures for Scalability, Agility and Re-
liability in E-Commerce. In: 2017 IEEE International Conference on Software Architec-
ture Workshops (ICSAW). pp. 243–246. IEEE, Gothenburg, Sweden (April 2017), http:
//ieeexplore.ieee.org/document/7958496/

41. Helland, P.: Life beyond distributed transactions. Communications of the ACM 60(2), 46–54
(January 2017), https://dl.acm.org/doi/10.1145/3009826

42. Helland, P.: Data on the outside versus data on the inside. Communications of the ACM 63(11),
111–118 (October 2020), https://dl.acm.org/doi/10.1145/3410623

43. Junqueira, F., Reed, B., Yabandeh, M.: Lock-free transactional support for large-scale stor-
age systems. In: 2011 IEEE/IFIP 41st International Conference on Dependable Systems and
Networks Workshops (DSN-W). pp. 176–181. IEEE, Hong Kong, China (June 2011), http:
//ieeexplore.ieee.org/document/5958809/

 https://developers.google.com/protocol-buffers/docs/overview
 https://developers.google.com/protocol-buffers/docs/overview
 https://www.rabbitmq.com/
 https://zeromq.org/
https://fis.uni-bamberg.de/handle/uniba/49721
https://fis.uni-bamberg.de/handle/uniba/49721
http://www.doiserbia.nb.rs/Article.aspx?ID=1820-02142000041F
http://www.doiserbia.nb.rs/Article.aspx?ID=1820-02142000041F
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-020-00183-w
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-020-00183-w
https://www.martinfowler.com/bliki/PolyglotPersistence.html
https://www.martinfowler.com/bliki/PolyglotPersistence.html
http://ieeexplore.ieee.org/document/7761636/
 https://github.com/dotnet-architecture/eShopOnContainers
 https://github.com/dotnet-architecture/eShopOnContainers
 https://github.com/kbastani/event-stream-processing-microservices
 https://github.com/kbastani/event-stream-processing-microservices
 https://github.com/microservices-patterns/ftgo-application
 https://github.com/microservices-patterns/ftgo-application
 https://github.com/Microservice-API-Patterns/LakesideMutual
 https://github.com/Microservice-API-Patterns/LakesideMutual
 https://github.com/sentilo/sentilo
 https://github.com/sentilo/sentilo
 https://github.com/microservices-demo/microservices-demo
 https://github.com/microservices-demo/microservices-demo
 https://github.com/spring-petclinic/spring-petclinic-microservices
 https://github.com/spring-petclinic/spring-petclinic-microservices
 https://github.com/sczyh30/vertx-blueprint-microservice
 https://github.com/sczyh30/vertx-blueprint-microservice
http://ieeexplore.ieee.org/document/7958496/
http://ieeexplore.ieee.org/document/7958496/
https://dl.acm.org/doi/10.1145/3009826
https://dl.acm.org/doi/10.1145/3410623
http://ieeexplore.ieee.org/document/5958809/
http://ieeexplore.ieee.org/document/5958809/

200 Lazar Nikolić et al.

44. Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A., Zdonik, S., Jones, E.P., Madden,
S., Stonebraker, M., Zhang, Y., others: H-store: a high-performance, distributed main memory
transaction processing system. Proceedings of the VLDB Endowment 1(2), 1496–1499 (2008),
publisher: VLDB Endowment

45. Knoche, H., Hasselbring, W.: Drivers and Barriers for Microservice Adoption – A Survey
among Professionals in Germany. Enterprise Modelling and Information Systems Architectures
(EMISAJ) pp. 1:1–35 Pages (January 2019), https://emisa-journal.org/emisa/
article/view/164

46. Krylovskiy, A., Jahn, M., Patti, E.: Designing a Smart City Internet of Things Platform with
Microservice Architecture. In: 2015 3rd International Conference on Future Internet of Things
and Cloud. pp. 25–30. IEEE, Rome, Italy (August 2015), https://ieeexplore.ieee.
org/document/7300793/

47. Kulkarni, S.S., Demirbas, M., Madappa, D., Avva, B., Leone, M.: Logical Physical Clocks.
In: Aguilera, M.K., Querzoni, L., Shapiro, M. (eds.) Principles of Distributed Systems, vol.
8878, pp. 17–32. Springer International Publishing, Cham (2014), series Title: Lecture Notes
in Computer Science

48. Laigner, R., Zhou, Y., Salles, M.A.V., Liu, Y., Kalinowski, M.: Data management in mi-
croservices: state of the practice, challenges, and research directions. Proceedings of the
VLDB Endowment 14(13), 3348–3361 (September 2021), https://dl.acm.org/doi/
10.14778/3484224.3484232

49. Larson, P.A., Blanas, S., Diaconu, C., Freedman, C., Patel, J.M., Zwilling, M.: High-
performance concurrency control mechanisms for main-memory databases. Proceedings of the
VLDB Endowment 5(4), 298–309 (December 2011), https://dl.acm.org/doi/10.
14778/2095686.2095689

50. Levandoski, J.J., Lomet, D.B., Mokbel, M.F., Zhao, K.: Deuteronomy: Transaction Support for
Cloud Data. In: Fifth Biennial Conference on Innovative Data Systems Research, CIDR 2011,
Asilomar, CA, USA, January 9-12, 2011, Online Proceedings. pp. 123–133. www.cidrdb.org
(2011), http://cidrdb.org/cidr2011/Papers/CIDR11_Paper14.pdf

51. Li, J., Lu, Y., Zhang, Y., Wang, Q., Cheng, Z., Huang, K., Shu, J.: SwitchTx: scalable
in-network coordination for distributed transaction processing. Proceedings of the VLDB
Endowment 15(11), 2881–2894 (July 2022), https://dl.acm.org/doi/10.14778/
3551793.3551838

52. Limon, X., Guerra-Hernandez, A., Sanchez-Garcia, A.J., Perez Arriaga, J.C.: SagaMAS: A
Software Framework for Distributed Transactions in the Microservice Architecture. In: 2018
6th International Conference in Software Engineering Research and Innovation (CONISOFT).
pp. 50–58. IEEE, San Luis Potosı́, Mexico (October 2018), https://ieeexplore.
ieee.org/document/8645853/

53. Lotz, J., Vogelsang, A., Benderius, O., Berger, C.: Microservice Architectures for Advanced
Driver Assistance Systems: A Case-Study. In: 2019 IEEE International Conference on Soft-
ware Architecture Companion (ICSA-C). pp. 45–52. IEEE, Hamburg, Germany (March 2019),
https://ieeexplore.ieee.org/document/8712376/

54. Lykhenko, T., Soares, R., Rodrigues, L.: FaaSTCC: efficient transactional causal consistency
for serverless computing. In: Proceedings of the 22nd International Middleware Conference.
pp. 159–171. ACM, Québec city Canada (December 2021), https://dl.acm.org/doi/
10.1145/3464298.3493392

55. M. Del Esposte, A., Kon, F., M. Costa, F., Lago, N.: InterSCity: A Scalable Microservice-
based Open Source Platform for Smart Cities:. In: Proceedings of the 6th International
Conference on Smart Cities and Green ICT Systems. pp. 35–46. SCITEPRESS - Science
and Technology Publications, Porto, Portugal (2017), http://www.scitepress.org/
DigitalLibrary/Link.aspx?doi=10.5220/0006306200350046

56. Mattern, F.: Virtual time and global states of distributed systems. Univ., Department of Com-
puter Science (1988)

https://emisa-journal.org/emisa/article/view/164
https://emisa-journal.org/emisa/article/view/164
https://ieeexplore.ieee.org/document/7300793/
https://ieeexplore.ieee.org/document/7300793/
https://dl.acm.org/doi/10.14778/3484224.3484232
https://dl.acm.org/doi/10.14778/3484224.3484232
https://dl.acm.org/doi/10.14778/2095686.2095689
https://dl.acm.org/doi/10.14778/2095686.2095689
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper14.pdf
https://dl.acm.org/doi/10.14778/3551793.3551838
https://dl.acm.org/doi/10.14778/3551793.3551838
https://ieeexplore.ieee.org/document/8645853/
https://ieeexplore.ieee.org/document/8645853/
https://ieeexplore.ieee.org/document/8712376/
https://dl.acm.org/doi/10.1145/3464298.3493392
https://dl.acm.org/doi/10.1145/3464298.3493392
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006306200350046
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006306200350046

An Approach for Supporting Transparent ACID Transactions... 201

57. Mazzara, M., Dragoni, N., Bucchiarone, A., Giaretta, A., Larsen, S.T., Dustdar, S.: Microser-
vices: Migration of a Mission Critical System. IEEE Transactions on Services Computing
14(5), 1464–1477 (September 2021), https://ieeexplore.ieee.org/document/
8585089/

58. Ongaro, D., Ousterhout, J.: In Search of an Understandable Consensus Algorithm. In: 2014
USENIX Annual Technical Conference (USENIX ATC 14). pp. 305–319. USENIX As-
sociation, Philadelphia, PA (June 2014), https://www.usenix.org/conference/
atc14/technical-sessions/presentation/ongaro

59. Patiño-Martinez, M., Jiménez-Peris, R., Kemme, B., Alonso, G.: MIDDLE-R: Consistent
database replication at the middleware level. ACM Transactions on Computer Systems
23(4), 375–423 (November 2005), https://dl.acm.org/doi/10.1145/1113574.
1113576

60. Ports, D.R.K., Grittner, K.: Serializable snapshot isolation in PostgreSQL. Proceedings of the
VLDB Endowment 5(12), 1850–1861 (August 2012), https://dl.acm.org/doi/10.
14778/2367502.2367523

61. Pritchett, D.: BASE: An Acid Alternative: In partitioned databases, trading some consistency
for availability can lead to dramatic improvements in scalability. Queue 6(3), 48–55 (May
2008), https://dl.acm.org/doi/10.1145/1394127.1394128

62. Rodrı́guez, C., Baez, M., Daniel, F., Casati, F., Trabucco, J.C., Canali, L., Percannella, G.:
REST APIs: A Large-Scale Analysis of Compliance with Principles and Best Practices. In:
Bozzon, A., Cudre-Maroux, P., Pautasso, C. (eds.) Web Engineering, vol. 9671, pp. 21–39.
Springer International Publishing, Cham (2016), https://link.springer.com/10.
1007/978-3-319-38791-8_2, series Title: Lecture Notes in Computer Science

63. Rudrabhatla, C.K.: Comparison of Event Choreography and Orchestration Techniques in Mi-
croservice Architecture. International Journal of Advanced Computer Science and Applica-
tions 9(8) (2018), http://thesai.org/Publications/ViewPaper?Volume=9&
Issue=8&Code=ijacsa&SerialNo=4

64. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-Free Replicated Data Types. In:
Défago, X., Petit, F., Villain, V. (eds.) Stabilization, Safety, and Security of Distributed Sys-
tems, vol. 6976, pp. 386–400. Springer Berlin Heidelberg, Berlin, Heidelberg (2011), http:
//link.springer.com/10.1007/978-3-642-24550-3_29, series Title: Lecture
Notes in Computer Science

65. Sheth, A.P., Larson, J.A.: Federated database systems for managing distributed, heterogeneous,
and autonomous databases. ACM Computing Surveys 22(3), 183–236 (September 1990),
https://dl.acm.org/doi/10.1145/96602.96604

66. Soldani, J., Tamburri, D.A., Van Den Heuvel, W.J.: The pains and gains of microser-
vices: A Systematic grey literature review. Journal of Systems and Software 146, 215–
232 (December 2018), https://linkinghub.elsevier.com/retrieve/pii/
S0164121218302139

67. Thomson, A., Diamond, T., Weng, S.C., Ren, K., Shao, P., Abadi, D.J.: Calvin: fast distributed
transactions for partitioned database systems. In: Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data. pp. 1–12. ACM, Scottsdale Arizona USA
(May 2012), https://dl.acm.org/doi/10.1145/2213836.2213838

68. Viennot, N., Lécuyer, M., Bell, J., Geambasu, R., Nieh, J.: Synapse: a microservices ar-
chitecture for heterogeneous-database web applications. In: Proceedings of the Tenth Eu-
ropean Conference on Computer Systems. pp. 1–16. ACM, Bordeaux France (April 2015),
https://dl.acm.org/doi/10.1145/2741948.2741975

69. Viotti, P., Vukolić, M.: Consistency in Non-Transactional Distributed Storage Systems. ACM
Computing Surveys 49(1), 1–34 (March 2017), https://dl.acm.org/doi/10.1145/
2926965

https://ieeexplore.ieee.org/document/8585089/
https://ieeexplore.ieee.org/document/8585089/
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://dl.acm.org/doi/10.1145/1113574.1113576
https://dl.acm.org/doi/10.1145/1113574.1113576
https://dl.acm.org/doi/10.14778/2367502.2367523
https://dl.acm.org/doi/10.14778/2367502.2367523
https://dl.acm.org/doi/10.1145/1394127.1394128
https://link.springer.com/10.1007/978-3-319-38791-8_2
https://link.springer.com/10.1007/978-3-319-38791-8_2
http://thesai.org/Publications/ViewPaper?Volume=9&Issue=8&Code=ijacsa&SerialNo=4
http://thesai.org/Publications/ViewPaper?Volume=9&Issue=8&Code=ijacsa&SerialNo=4
http://link.springer.com/10.1007/978-3-642-24550-3_29
http://link.springer.com/10.1007/978-3-642-24550-3_29
https://dl.acm.org/doi/10.1145/96602.96604
https://linkinghub.elsevier.com/retrieve/pii/S0164121218302139
https://linkinghub.elsevier.com/retrieve/pii/S0164121218302139
https://dl.acm.org/doi/10.1145/2213836.2213838
https://dl.acm.org/doi/10.1145/2741948.2741975
https://dl.acm.org/doi/10.1145/2926965
https://dl.acm.org/doi/10.1145/2926965

202 Lazar Nikolić et al.

70. Wei, Z., Pierre, G., Chi, C.H.: CloudTPS: Scalable Transactions for Web Applications in
the Cloud. IEEE Transactions on Services Computing 5(4), 525–539 (2012), http://
ieeexplore.ieee.org/document/5740834/

71. Wu, C., Sreekanti, V., Hellerstein, J.M.: Transactional Causal Consistency for Serverless Com-
puting. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. pp. 83–97. ACM, Portland OR USA (June 2020), https://dl.acm.org/doi/
10.1145/3318464.3389710

72. Wu, Y., Arulraj, J., Lin, J., Xian, R., Pavlo, A.: An empirical evaluation of in-memory multi-
version concurrency control. Proceedings of the VLDB Endowment 10(7), 781–792 (March
2017), https://dl.acm.org/doi/10.14778/3067421.3067427

73. Zhang, G., Ren, K., Ahn, J.S., Ben-Romdhane, S.: GRIT: Consistent Distributed Transactions
Across Polyglot Microservices with Multiple Databases. In: 2019 IEEE 35th International
Conference on Data Engineering (ICDE). pp. 2024–2027. IEEE, Macao, Macao (April 2019),
https://ieeexplore.ieee.org/document/8731442/

Lazar Nikolić received his M.Sc degree from the Faculty of Technical Sciences, at the
University of Novi Sad in 2016. In the same year, he enrolled in the Ph.D. program at the
Faculty of Technical Sciences, at the University of Novi Sad. He was a teaching assis-
tant until early 2023 at the Faculty of Technical Sciences, at the University of Novi Sad,
where he participated in several courses in the area of Web Programming and Internet
Networks. He is currently working on his Ph.D. thesis in the area of Distributed Systems,
Microservice Architectures, and Transaction Management Systems.

Vladimir Dimitrieski works as an associate professor at the University of Novi Sad,
Faculty of Technical Sciences, Serbia. There, he went through all the academic education
levels, receiving a Ph.D. in computer science in 2018. Currently, he is a lecturer in seve-
ral courses at the Faculty of Technical Sciences that cover domains of (meta-)modeling,
domain-specific languages, and data engineering. With a strong background in the do-
main of Industry 4.0, (meta-)modeling and data engineering, he has been part of multiple
national, international, and industrial projects in these domains.

Milan Čeliković received his M.Sc. degree from the Faculty of Technical Sciences, at the
University of Novi Sad in 2009. He received his Ph.D. degree in 2018, at the University
of Novi Sad, Faculty of Technical Sciences. Currently, he works as an assistant profes-
sor at the Faculty of Technical Sciences at the University of Novi Sad, where he lectures
several Computer Science and Informatics courses. His main research interests are fo-
cused on: Databases, Database management systems, Information Systems, and Software
Engineering.

Received: December 10, 2022; Accepted: November 22, 2023.

http://ieeexplore.ieee.org/document/5740834/
http://ieeexplore.ieee.org/document/5740834/
https://dl.acm.org/doi/10.1145/3318464.3389710
https://dl.acm.org/doi/10.1145/3318464.3389710
https://dl.acm.org/doi/10.14778/3067421.3067427
https://ieeexplore.ieee.org/document/8731442/

	Introduction
	Motivation
	Contribution
	Article structure

	Related Work
	Service Proxy Transaction Management — SPTM
	Overview of the SPTM Approach
	Message Metadata Retrieval, Message Interception, and Data Object Detection
	Transaction Context, Transaction Lifecycle Management and Data Object Version Control
	Distributed State Management
	Reference Architecture
	Differences to Related Work

	Implementation
	Evaluation
	Setup
	Comparison with 2PC
	Comparison with Saga
	Overhead Characteristics
	Isolation Level
	Threats to validity

	Limitations and Future Work
	Conclusion

