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Abstract. This paper introduces a novel multi-class support vector classification
and regression (MSVCR) algorithm with multiple kernel learning (MK-MSVCR).
We present a new MK-MSVCR algorithm based on two-stage learning (MK-MSVCR-
TSL). The two-stage learning aims to make classification algorithms better when
dealing with complex data by using the first stage of learning to generate ”repre-
sentative” or ”important” samples. We first establish the fast learning rate of MK-
MSVCR algorithm for multi-class classification with independent and identically
distributed (i.i.d.) samples amd uniformly ergodic Markov chain (u.e.M.c.) smaples,
and prove that MK-MSVCR algorithm is consistent. We show the numerical inves-
tigation on the learning performance of MK-MSVCR-TSL algorithm. The exper-
imental studies indicate that the proposed MK-MSVCR-TSL algorithm has better
learning performance in terms of prediction accuracy, sampling and training total
time than other multi-class classification algorithms.

Keywords: multi-class classification, multiple kernel learning, learning rate, sup-
port vector classification and regression.

1. Introduction

Support vector machine (SVM) is an effective and famous algorithm with good general-
ization ability for classification. In practical problems, there are many multi-classification
problems such as fault diagnosis problems, disease classification and so on. Many SVM-
based methods are used to handle multi-class classification problems [2,27,18,32]. For
multi-class SVM, there are two main frameworks: “all-together” method [27,18,9] and
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“decomposition-reconstruction” method [3,10,15]. For the “all-together” method, we usu-
ally obtain a discrimination function by solving a single majorization problem such as
AIO method [27,18,11,9]. For the “decomposition-reconstruction” method, the discrimi-
nation function is obtained by handling a series of binary classification problems, which
consist of two classical approaches, “one-versus-rest” (OVR) method [3,10] and “one-
versus-one” (OVO) method [15]. The disadvantage of OVR method is that almost all the
binary problems are unbalanced and the shortcoming of OAO method is that for each
binary category, the information of the remaining categories is neglected. Thus a new
method, support vector classification and regression for multi-class classification prob-
lem, is proposed by Angulo et al. [1]. The information of all samples is used to classify
by MSVCR algorithm. MSVCR has been regarded as a very important method to conquer
the disadvantages of tradition multi-class classifications algorithms [1,8,7].

SVM solves nonlinear classification problems by introducing kernel functions, called
kernel methods. Although the kernel method can be used to solve some complex prob-
lems, it brings many interdisciplinary challenges in statistics, optimization theory and
applications [1]. Choosing the optimal kernel and its parameters often has to be decided
by a human user with prior knowledge of the data. In other words, the classical classifier
is based on a single kernel, while in practice, the ideal classifier is usually based on the
combination of multiple kernels, i.e. multiple kernel learning.

Therefore, multiple kernel learning has been widely concerned and studied. For exam-
ple, Lanckriet et al. [16] introduced the method which learns the kernel matrix with semi-
definite programming to search the optimal of unrestricted kernel combination weights
and showed that multiple kernel learning is comparable with the best soft margin SVM
for radial basis function (RBF) kernel. Luo et al. [20] introduced a theoretically moti-
vated and efficient online learning algorithm for the multiple kernel learning problem. In
recent years, the multiple kernel learning method of iteratively updating kernel weights to
obtain the optimal kernel combination has been successfully applied in many fields. For
example, Chavaltada et al. [5] proposed a method of automated product categorisation
by using multiple kernel learning to improve feature combination in e-commerce. Wil-
son et al. [28] applied multiple kernel learning to genomic data mining and prediction.
Lauriola et al. [17] enhanced deep neural networks via multiple kernel learning, and the
method proposed in [17] gave an effective way to design the output computation in deep
networks. Wang et al. [26] propose a novel depth-width-scaling multiple kernel learning
(DWS-MKL) algorithm that can adapt to data of different dimensions and sizes. In addi-
tion, machine learning algorithms are used in various fields, such as weather forecasting
and smart city construction [4,33].

However, when the sample size is large, the complexity of the multi-core learning
algorithm is very high. This means that although multiple kernel learning methods have
good learning performance, and multiple kernel learning methods are usually very time-
consuming and difficult to achieve even when the training sample size is large. Then a
problem is posed:
How to reduce the algorithmic complexity of the multiple kernel learning method while
maintaining the better classification accuracy?

To solve this problem, we present the idea of two-stage learning for multiple kernel al-
gorithm in this paper. The reasons of introducing two-stage learning are as follows: First,
the capacity of data is growing rapidly and the scale of data is getting larger and larger, so
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the classical multiple kernel learning methods usually time-consuming and even difficult
to implement in the case of a large training sample size. Second, the larger the amount of
data, the lower the value density of data will be, which means that there are many noise
samples in big data. A large number of machine learning experiments indicate that the
noise samples will not only lead to the increase of storage space, but also affect the ac-
curacy and efficiency of learning. By the statistical learning theory in [25], the samples
that are closer (or the closest) to the interface of different classes datasets are “impor-
tant” samples for classification problem. Thus, the two-stage learning aim to generate the
“representative” or “important” samples by using the first stage learning. To our knowl-
edge, this is the first algorithm of multiple kernel learning method to deal with multi-class
classification non-i.i.d. samples. Therefore, in this paper we analyse the generalization of
MK-MSVCR method for u.e.M.c. samples and i.i.d. observations, respectively. The main
innovations of this paper can be stated as follows.

• The generalization bound of MK-MSVCR based on u.e.M.c. samples is obtained
and the optimal learning rate is established.

• A new MK-MSVCR algorithm, MK-MSVCR-TSL is proposed. The numerical ex-
periments show that the proposed algorithm has competitive performance.

The rest of this article is arranged as follows. Section 2 formulates the classical
MSVCR with multiple kernel learning. Section 3 introduces a new MK-MSVCR algo-
rithm based on two-stage learning (MK-MSVCR-TSL) and analyzes algorithmic com-
plexity. The main theoretical results of the proposed MK-MSVCR with u.e.M.c. and i.i.d.
samples are given in Section 4. The numerical experimental studies are presented in Sec-
tion 5. Finally, we conclude this paper in Section 6.

2. MK-MSVCR learning machine

We assume that the training set z = {(xi, yi)}mi=1 are drawn from an unknown probability
distribution ρ defined on the space Z = X × Y , where X is the input space and Y is
the corresponding output space. For multi-class problems, we usually assume that yi ∈
{1, . . . , k}, where k is the number of class.

The classifier of MSVCR algorithm depends on the reproducing kernel Hilbert space
(RKHS) HK . Furthermore, for the given training set z, a decision function ϕ(x) is found
with outputs {−1, 0,+1}:

ϕ(xj) =

+1, j = 1, . . . ,m1

−1, j = m1 + 1, . . . ,m1 +m2

0, j = m1 +m2 + 1, . . . ,m.

Without loss of generality, m12 = m1 +m2 patterns corresponds the case of two classes
to be separated, and m3 = m−m12 patterns corresponds the case of rest classes, which
will be labeled 0. The multi-class classification framework of MSVCR can be stated as
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follows:

fz =arg min
f∈HK

λ∥f∥2K +
1

m12

m12∑
j=1

ξj +
1

m3

m∑
j=m12+1

(φ+
j + φ−

j )

s.t. yj(

m∑
i=1

αiK(xj , xi)) ≥ 1− ξj , j = 1, . . . ,m12,

− ε− φ−
j ≤

m∑
i=1

αiK(xj , xi) ≤ ε+ φ+
j , j = m12 + 1,m12 + 2, . . . ,m,

ξj , φ
+
j , φ

−
j ≥ 0, 0 ≤ ε < 1.

In practice, an ideal classifier is usually based on a combination of multiple kernels.
Thus we also present the MSVCR algorithm based on multiple kernels learning as fol-
lows. We assume that there are n positive definite kernels K1, . . . ,Kn, each RKHS Hp is
associated with a Mercer kernel Kp : X ×X → R, 1 ≤ p ≤ n. By the reproducing prop-
erty of Hp, we have ⟨Kp,x, g⟩Kp

= g(x),∀x ∈ X,∀g ∈ Hp. Let C(X) be the space of
continuous functions with the norm ∥fp∥∞ = supx∈X |fp| and κ = supx∈X

√
Kp(x, x).

It follows that ∥fp∥∞ ≤ κ∥fp∥Kp
,∀fp ∈ Hp, 1 ≤ p ≤ n. We finally use the multiple

kernel space H̄K = HK1
× · · · × HKn

. H̄K is an RKHS with the kernel K̄(·, x), which
has following form:

K̄(·, x) =
n∑

p=1

dpKp(·, x),

where
∑n

p=1 dp = 1, dp ≥ 0. Therefore, any f ∈ H̄K has the form f =
∑n

p=1 dpfp, fp ∈
Hp. The MK-MSVCR algorithm depends on RKHS H̄K , which is defined as

fz =arg min
f∈H̄K

λ

n∑
p=1

dp∥fp∥2Kp
+

1

m12

m12∑
j=1

ξj +
1

m3

m∑
j=m12+1

(φ+
j + φ−

j ) (1)

s.t. yj(

m∑
i=1

αiK̄(xj , xi)) ≥ 1− ξj , j = 1, . . . ,m12,

− ε− φ−
j ≤

m∑
i=1

αiK̄(xj , xi) ≤ ε+ φ+
j , j = m12 + 1,m12 + 2, . . . ,m,

ξj , φ
+
j , φ

−
j ≥ 0, 0 ≤ ε < 1,

n∑
p=1

dp = 1, dp ≥ 0.

Here, λ controls the complexity of the function in the multiple kernel space. For sim-
plicity, we take dp = 1/n in this paper. The corresponding decision function ϕz(x) of
MK-MSVCR algorithm (1) is defined as

ϕz(x) =

+1, if fz(x) ≥ ε0
−1, if fz(x) ≤ −ε0
0, otherwise,

(2)
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where ε0 is a threshold value.
Define loss function V (yj , f(xj)) = C1(1−yjf(xj))+ ·1{yj ̸=0}+C2(yj−f(xj))

2 ·
1{yj=0}, where C1, C2 are two positive constants. The MK-MSVCR algorithm (1) can be
written as

fz = arg min
f∈H̄K

{ 1

m

m∑
i=1

V (yj , f(xj)) + λ∥f∥2K
}
, (3)

where ∥f∥2K = 1
n

∑n
p=1 ∥fp∥2Kp

is regularization term and λ > 0 is a regularization
parameter. The empirical risk and the corresponding generalization error are defined as
Ez(f) = 1

m

∑m
i=1 V (yi, f(xi)), E(f) = E[V (y, f(x))] =

∫
Z
V (y, f(x))dρ, then the

MK-MSVCR algorithm (3) can be rewritten as fz = argminf∈H̄K

{
Ez(f) + λ∥f∥2K

}
.

3. Algorithm and Algorithmic complexity

In this section, we present the MK-MSVCR algorithm with two-stage learning (MK-
MSVCR-TSL) and then we analyze the algorithmic complexity of the MK-MSVCR-TSL
algorithm.

3.1. MK-MSVCR-TSL algorithm

Inspired by the works in [22,21,13,34], We combine the MK-MSVCR algorithm that
the multiple kernel multi-class classification algorithm for processing more complex data
with two-stage learning (MK-MSVCR-TSL) to improve the classification rate without
reducing the classification accuracy. Now the proposed MK-MSVCR-TSL algorithm can
be stated as follows.

For simplicity, all the experimental results of this paper are based on q = 1. In the
preprocessing step, all data are normalized to avoid the influence of numerical range on
characteristic attributes and make numerical calculation easier [14,19]. We use a random
process to divide each data sets into two different parts, where four quarters is divided
into the training set Dtrain, one quarter is divided into the test set Dtest. Let k be the
number of classed, m be the total number of training samples. For MK-MSVCR algorithm
based on randomly independent samples, we sample m training samples that are drawn
randomly from the given training set Dtrain and denote it as z. Training the sample set
z by algorithm (3) and obtain a classifier ϕz. We test ϕz on the given testing set, and
calculate the corresponding misclassification rate. For MK-MSVCR-TSL algorithm, we
state the algorithm as follows: (i) for the first stage, we sample randomly N = m/2
training samples that are drawn randomly from the given training set Dtrain and denote it
as z0. Training z0 by algorithm (3) and obtain a classifier ϕz0 . (ii) for the second stage, we
use ϕz0 to define the acceptance probabilities and generate the Markovian chain samples
z1, which consist of N samples. Training the sample set z1 by algorithm (3) and obtain
a classifier ϕz1 . (iii) We test ϕz1 on the given testing set, and calculate the corresponding
misclassification rate.

Remark 1. To have a better understanding of Algorithm 1, we give the following remarks.
Since we only have the training set Dtrain, to define the transition probabilities of Marko-
vian resampling, we first draw randomly a training set z0 with N training samples, and
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Algorithm 1: MK-MSVCR-TSL
Input: Dtrain, m,N .
Output: ϕz(x).
For each sample z ∈ Dtrain, compartmentalize the training set into three parts: zero class,

positive class, negative class;
(the first stage) generate randomly N samples z0 := {zt}Nt=1 from Dtrain;
get a model fz0 by algorithm (3) with z0 and its corresponding classifier ϕz0 ;
(the second stage)
generate randomly a sample za from Dtrain; zi+1 ← {za};
countya ← countya + 1;
repeat

generate another random sample zb from Dtrain;
P = e−ℓ(ϕ

zi
,zb)/e−ℓ(ϕ

zi
,za);

if P = 1 and ya = yb and countyb < N/k then
add zb to zi+1; countyb ← countyb + 1;

else if (P = 1 and ya ̸= yb and countyb < N/k) or (P < 1 and countyb < N/k)
then

add zb to zi+1; countyb ← countyb + 1;
end
If ℓ candidate samples zb can not be accepted continually, then accepting zb; za ← zb;

until size(zi+1) ≥ N ;
get the model with zi+1, and obtain the decision function ϕzi+1 by equation (2);
return ϕz = ϕzq ;

obtain a preliminary learning classifier ϕz0 . Then we use the information of ϕz0 to de-
fine the transition probabilities P (or P1,P2,P3 defined in Algorithm 1). Since these
acceptance probabilities P,P1,P2,P3 are positive, we can obtain an u.e.M.c sequence
z1. Specially, if the acceptance probabilities P,P1,P2,P3 are equal to 1, which is the
case of random resampling. This reflects that the classical MSVCR algorithm based on
i.i.d. samples can be regarded as the special case of Algorithm 1 with q = 0, N = m,
and the acceptance probabilities P,P1,P2,P3 are equal to 1. This implies Algorithm 1
extended the classical MSVCR algorithm introduced in [1] from i.i.d. samples to non-
i.i.d. samples. In addition, since as the value e−ℓ(ϕzi ) of the current sample za is smaller,
the acceptance probabilities will be smaller, which implies that the candidate sample zb
will be accepted with a smaller probability, which means that generating the Markovian
samples zj(1 ≤ j ≤ q) will be time-consuming. To quickly draw the Markovian samples
z1, we use the technical parameters ℓ = 30 in the following all the experimental results.

3.2. Explanations of algorithm

(i) Comparing Algorithm 1 with algorithm introduced in [7]
Dong et al. aim to extend the case of i.i.d. samples to non-i.i.d. samples, and study

the theory and algorithm of non-i.i.d. multi-classification methods in [7]. However, we
are now working to extend single kernel learning to multiple kernels learning, studying
the theory and algorithm of non-i.i.d. multiple kernels multi-classification methods. SVM
can solve nonlinear classification problem by kernel method. Choosing the optimal ker-
nel from a set of candidates and its parameters is a central choice, which usually must be
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made by a human user using the prior knowledge of data. In other words, the classical
kernel-based classifiers are based on a single kernel. With the advent of the big data era,
the data is diversified and the data characteristics are complicated. In practice, an ideal
classifier is usually based on a combination of multiple kernels. For complex big data
samples, we hope to use multiple kernels learning to improve classification efficiency
without increasing classification time. Dong et al. pointed out in [7,9] that a proper q
value can reduce the sampling and training total time of the algorithm without reducing
the accuracy for Markovian resampling. If the total time is a concern, we should choose
a smaller q value. Multiple kernels learning can effectively reduce the misclassification
rates. However, because the combined kernel learning takes time, in order to effectively
reduce the total time, we choose a smaller q value, let q=1 in this paper. So we propose
MK-MSVCR-TSL method. The effectiveness of our method is also proved in the follow-
ing experimental comparison.
(ii) Comparing Algorithm 1 with algorithm introduced in [1]

Comparing Algorithm 1 with algorithm introduced in [1], we can find that the differ-
ences are obvious: First, Algorithm 1 is a multiple kernels algorithm while the algorithm
presented in [1] is a single kernel learning. This implies that Algorithm 1 extended the
algorithm presented in [1] from a single kernel to the case of multiple kernels. In other
words, the algorithm of [1] is a special case of Algorithm 1 proposed in this paper. Second,
the algorithm presented in [1] is for the case that the samples are random and independent.
However, our proposed Algorithm 1 is designed for not random and independent samples.
This implies that Algorithm 1 improve algorithm of [1].
(iii) Comparing Algorithm 1 with algorithm of [31]

we can find that although Algorithm 1 has many steps similar to that of [31] and the
two same technical parameters are adopted, the differences are obvious: First, Algorithm
1 is a multiple kernels algorithm while the algorithm presented in [31] is a SVM algorithm
with a single kernel. Second, Algorithm 1 is a multi-class classification algorithm while
[31] is a two-class classification algorithm. This implies that algorithm of [31] can be
regarded as the special case of Algorithm 1 with k = 2 and N = m/2. Third, the total size
of training samples for [31] is 2m, which is double times of the size m for the classical
algorithm. This implies that compared to the classical SVM, algorithm of [31] is time-
consuming. While the learning process of Algorithm 1 can be seen as 2 times “batch
learning”, and the total size of training samples is m = 2N , which is same as the classical
SVM.

3.3. Algorithmic complexity

There are m samples. Here k is the number of class. In Algorithm 1, the complexity of
a single kernel MSVCR is O(K(K−1)

2 m3). In this paper, we choose the mean weights as
the kernel weights of MK-MSVCR. Therefore, the complexity of MK-MSVCR algorithm
is about O(K(K−1)

2 m3). But in Algorithm 1, we divided m training samples into q + 1

pieces, thus, the complexity of Algorithm 1 is about O(K(K−1)
2 ( m

q+1 )
3). If we assume

(q + 1) ≈ mγ for any γ > 0, it is obvious that the complexity of our proposed MK-
MSVCR-TSL algorithm in this paper is lower than that of the classical MK-MSVCR.
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4. Estimating the Generalization Bounds

In this section, our target is to bound the generalization of MK-MSVCR-TSL algorithm.
In this paper we first consider the case of uniformly ergodic Markov chain (u.e.M.c.)
observations. As the special case of u.e.M.c., we also consider i.i.d. samples.

By the definitions of the acceptance probabilities in Algorithm 1, we can find that the
acceptance probabilities are positive. In addition, the size m of training samples is finite.
By the theory of Markov chain [24], we can conclude that the samples generated in Algo-
rithm 1 is uniformly ergodic Markov chains (u.e.M.c.). Then we present the definition of
u.e.M.c. as follows: Let (Z,A) be a measurable space, and {Zt}t≥1 be a Markov chain
with transition probability measures Pn(S|zj), S ∈ A, zj ∈ Z . Pn(S|zj) is defined as
Pn(S|zj) = P{zj+n ∈ S|Zi, i < j, Zj = zj}.

For any S ∈ A, zj ∈ Z , if the transition probability Pn(S|zj) satisfies Pn(S|zj) =
P{zj+n ∈ S|Zj = zj}, which is the so called the Markov property of {Zt}t≥1. This
property indicates that given the current state zj , the past state zi, i < j is independent
of the future state zn+j . By these notations, the definition of u.e.M.c. is given as follows
[23].

Definition 1. A Markov chain {Zt}t≥1 is uniformly ergodic, if for some β < 1, φ <
∞, ||Pn(·|z) − ϖ(·)||TV ≤ φβn, for all n = 1 , 2 , . . . , where ϖ(·) is the stationary
distribution of {Zt}t≥1, || · ||TV is the total variation distance, which is defined as ||µ1 −
µ2||TV = supS∈A |µ1(S)−µ2(S)| for two measures µ1, µ2 defined on the space (Z,A).

To measure the generalization ability of MK-MSVCR-TSL algorithm, we should
bound the excess generalization error E(fz)−E(fB), where fB is the minimizer of E(f)
for all measurable function f . The corresponding best classifier ϕB is the Bayes rule,
ϕB := argminj∈Y

∑
y∈Y Py(x) · 1{y ̸=j}, x ∈ X . To estimate E(fz) − E(fB), we also

present the following some definitions and assumptions.

Definition 2. [29] We call the function fB is approximated if there exists a constant Cq

with an exponent 0 < q ≤ 1 such that D(λ) satisfies D(λ) ≤ Cqλ
q for any λ > 0.

For simplicity, we take Cq = 1 in this paper. Since the minimization (3) is taken for
the discrete quantity E(f), bound the excess generalization error involves the capacity of
H̄K . In this paper the capacity of function set is managed by the covering number.

Definition 3. For a subset F of a metric space and ϵ > 0, the covering number N (F , ϵ)
is the minimal n1 ∈ N such that there exist n1 disks with radius ϵ covering F .

For R > 0, BR = {f ∈ H̄K : ||f ||K ≤ R}. It is a subset of C(X) and the covering
number is well defined [31,29,35]. For any ϵ > 0, N (ϵ) = N (B1, ϵ) is expressed as the
covering number of B1.

Definition 4. [29] The RKHS H̄K is said to have a polynomial complexity exponent s >
0 if there is some constant Cs > 0 such that lnN (ϵ) ≤ Cs(1/ϵ)

s,∀ϵ ≥ 0.

Assumption 1 For {Hp}np=1, Hp is separable with respect to the norm RKHS, and we
set κ = supx∈X

√
Kp(x, x) ≤ 1. In this paper, we assume that there exists a constant

M ≥ 0, we have fB ≤ M [12], and C = max{C1, C2} = 1.
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Our main results on the generalization of MK-MSVCR-TSL algorithm are stated as
follows.

Theorem 1. Assume z = {zi}mi=1 ∈ Zm is an u.e.M.c. sample. For any 0 < δ < 1, with
probability at least 1− δ, inequality

E(fz)− E(fB) ≤3D(λ) +
224(

√
D(λ)/λ+R)2∥Γ0∥2 ln( 2δ )

m

+ 2
(448∥Γ0∥2CsR

s+2

m

) 1
s+1

is valid provided that m ≥ 448R∥Γ0∥2 ln(2/δ)(ln(2/δ)/Cs)
1/s.

Corollary 1. Let z = {zi}mi=1 ∈ Zm be an u.e.M.c. sample. Taking λ = ( 1
m )

1
1+s , we

have that for any 0 < δ < 1, the following inequality is valid with probability at least
1− δ,

E(fz)− E(fB) ≤ C(
1

m
)

1
1+s ,

where C = 896∥Γ0∥2R2(4Cs
1

s+1 + 4 ln(2/δ) + 3).

Theorem 2. Assume z = {zi}mi=1 ∈ Zm is an i.i.d. sample. For any 0 < δ < 1, with
probability at least 1− δ, the inequality

E(fz)− E(fB) ≤D(λ)
(
2 +

14 ln(2δ )

mλ

)
+

14R2 ln( 2δ )

m

+
ln( 2δ )

m
+ 2

(300R2Cs(4R)s

m

) 1
s+1

is valid provided that m ≥ 74R ln(2/δ)(ln(2/δ)/Cs)
1/s.

Corollary 2. Assume z = {zi}mi=1 ∈ Zm is an i.i.d. sample. Let λ = ( 1
m )

1
1+s . For any

0 < δ < 1, we have that the inequality

E(fz)− E(fB ≤ Ĉ(
1

m
)

1
1+s

is valid with probability at least 1−δ, where Ĉ = 600R2(4Cs
1

s+1 +ln(2/δ)) is a constant.

Theorems 1-2 and Corollaries 1-2 will be proved in Appendix B. Besides, in order to
have better showing these theoretical results above, we give the following remarks.

Remark 2. By Corollaries 1-2, we have that E(fz)− E(fB) → 0, as m → ∞. This
means that the MK-MSVCR algorithm based u.e.M.c. (or i.i.d.) samples is consistent. To
our knowledge, all these results above are the first works on this topic.
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5. Numerical Studies

In this section, We compare Algorithm 1 with the support vector classification regression
machine for multi-class classification (MSVCR) [1], the MSVCR algorithm with multi-
ple kernel learning (MK-MSVCR), the mean weighted multiple kernel SVM [13] with
OVO method (MKSVM-OVO), the mean weighted multiple kernel SVM [13] with OVA
method (MKSVM-OVA). MKSVM-OVO is a algorithm that the mean weighted multi-
ple kernel support vector machine is combined with one-versus-one strategy to handle
multi-class classification, and MKSVM-OVA is a algorithm that the mean weighted mul-
tiple kernel support vector machine is combined with one-versus-rest strategy to handle
multi-class classification.

5.1. Datasets and experimental setup

We use 9 public datasets from UCI5 datasets: Connect4, Postures, Swarm, Twitter, Pavia,
TV News, Mnist, Proyecto, Kegg. For each dataset, we first divide randomly each data
sets into the training set Dtrain and the test set Dtest. The information of these datasets
is summarized in Table 1. All experiments were run on Intel 2.80GHz E5-1603 v4 CPU
with MATLAB 2018a.

Table 1. 9 Public Datasets

Dataset ♯Dtrain ♯Dtest ♯Input Dimension ♯Class

Connect4 50668 16889 126 3
Postures 58571 19524 36 5
Swarm 54036 18012 200 6
Twitter 169850 56616 77 9
Pavia 120000 28152 102 9
TV News 97263 32422 132 10
Mnist 45000 15000 780 10
Proyecto 47010 15670 7 21
Kegg 49152 16384 25 25

All the experimental results are based on 50 times repeated experiments and the fol-
lowing 8 kernels: a linear kernel K(a, b) = a′b, three polynomial kernels K(a, b) =
(1 + a′b)d with d = {2, 3, 4} and four RBF kernels K(a, b) = exp(−∥a − b∥2/2σ),
where σ is chosen from the set {0.001, 0.01, 1, 10}. The other parameters of algorithms
are also obtained through 10-fold cross-validation from [10−3, 10−2, . . . , 103]. For ex-
perimental results of classical MSVCR algorithm with single kernel, we choose the best
results between among 8 kernels.

Now, we state our experimental process as follows: (i) Train z and obtain a classifier
ϕz by Algorithm 1. (ii) Test the classifier on the given testing set and calculate the cor-
responding misclassification rates. (iii) Do process (i)-(ii) above under the same samples
z by the above 4 multi-class classification algorithms, respectively. (iv) Repeat process

5 http://archive.ics.uci.edu/ml/datasets.html
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(ii)-(iii) above for 50 times and calculate the average misclassification rates of 5 algo-
rithms, respectively. In this paper, we use “MSVCR”, “MK-MSVCR” , “MK-OVO” and
“MK-OVA” to refer the experimental results of MSVCR, MK-MSVCR, MKSVM-OVO
and MKSVM-OVA algorithms based on randomly independent samples, respectively.

5.2. Comparison of misclassification rates

We show the average misclassification rates of 5 algorithms in Tables 2-3.

Table 2. Average misclassification rates (%) with m = 9000

Dataset MK-MSVCR-TSL MK-MSVCR MSVCR MK-OVO MK-OVA
Connect4 30.04±0.39 30.90±0.42 33.59±0.40 32.39±0.42 33.59±0.48
Postures 21.59±0.32 23.49±0.35 28.02±0.36 24.07±0.39 26.49±0.39
Swarm 35.13±0.36 36.93±0.38 39.15±0.41 38.45±0.47 39.48±0.49
Twitter 11.73±0.29 15.17±0.31 20.21±0.35 17.18±0.37 16.50±0.40
Pavia 20.97±1.09 22.78±1.61 29.18±1.61 27.36±1.01 26.52±1.40
TV News 30.43±0.31 33.96±0.30 35.23±0.35 33.42±0.31 33.50±0.31
Mnist 11.02±0.32 13.96±0.41 16.66±0.35 16.06±0.51 15.54±0.42
Proyecto 33.44±0.31 34.93±0.35 36.13±0.29 35.43±0.39 35.45±0.45
Kegg 33.95±0.34 35.11±0.30 38.11±0.38 36.30±0.53 36.89±0.47

Table 3. Average misclassification rates (%) with m = 25000

Dataset MK-MSVCR-TSL MK-MSVCR MSVCR MK-OVO MK-OVA
Connect4 28.01±0.33 29.91±0.35 31.62±0.35 31.49±0.50 31.85±0.45
Postures 18.90±0.34 25.27±0.33 28.87±0.39 27.51±0.41 29.40±0.40
Swarm 33.11±0.32 35.92±0.34 38.16±0.41 36.51±0.51 36.53±0.34
Twitter 10.01±0.25 16.37±0.31 21.21±0.36 20.40±0.33 17.94±0.40
Pavia 19.90±1.01 26.15±1.55 30.01±1.44 32.58±0.84 32.61±1.50
TV News 28.43±0.32 31.92±0.35 34.25±0.34 31.45±0.39 32.49±0.32
Mnist 10.98±0.34 13.86±0.37 16.06±0.39 14.58±0.34 15.47±0.36
Proyecto 31.50±0.34 34.92±0.35 35.15±0.30 34.38±0.43 34.36±0.45
Kegg 31.44±0.29 33.90±0.35 35.24±0.36 34.44±0.42 34.53±0.43

By Tables 2-3, we can find that for m = 9000 (or m = 25000), the means of mis-
classification rates of the proposed MK-MSVCR-TSL algorithm are less than that of other
multi-class classification algorithms, and the standard deviations of misclassification rates
for the proposed MK-MSVCR-TSL algorithm are also less than that of other multi-class
classification algorithms. In detail, according to the experimental results of MSVCR and
MK-MSVCR algorithms with randomly independent samples, we can find that the means
of misclassification rates of the proposed MK-MSVCR algorithm are less than that of
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MSVCR algorithms, it is imply that for more complex and larger multi-classification data,
multiple kernel learning can effectively improve the classification accuracy.

Table 4. Wilcoxon tests of average misclassification rates for 5 algorithms

Comparison R+ R− Hypothesis(α = 0.05) Selected
MK-MSVCR-TSL vs. MK-MSVCR 0 45 Rejected MK-MSVCR-TSL
MK-MSVCR-TSL vs. MSVCR 0 45 Rejected MK-MSVCR-TSL
MK-MSVCR-TSL vs. MK-OVO 0 45 Rejected MK-MSVCR-TSL
MK-MSVCR-TSL vs. MK-OVA 0 45 Rejected MK-MSVCR-TSL

In Table 4, we apply the Wilcoxon signed-rank test (α = 0.05)[?] to verify whether
there exist statistical significance between the proposed MK-MSVCR-TSL algorithm and
other 4 algorithms by using the mean of misclassification rates presented in Table 3. By
Table 4, we can find that the proposed MK-MSVCR-TSL has better performance com-
pared to other 4 multi-classification algorithms.

In order to have a better showing the learning performance of the proposed MK-
MSVCR-TSL algorithm more clearer, we present Figures 1-6 to compare 50 times mis-
classification rates of MK-MSVCR-TSL algorithm with that of other algorithms. Here,
we use “red cross”, “blue square”, “green circle” and “magenta asterisk” to denote the
misclassification rates of MSVCR, MK-MSVCR, MKSVM-OVO and MKSVM-OVA al-
gorithms based on randomly independent samples, respectively. Here m is the size of
training sample, and the number of repeat experiments and the misclassification rates are
represented on the horizontal axis and the vertical axis, respectively.
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Fig. 1. 50 times experimental misclassification rates for m = 10000: (a) Connect4; (b)
Postures; (c) Swarm

By Figures 1-6, we can find that for the same size (m = 10000 or m = 20000) of
training sample, all the 50 times misclassification rates of MK-MSVCR-TSL are generally
smaller than that of other multi-class classification algorithms. This means that in terms
of classification accuracy, our algorithm has obvious advantages. And we can find that as
the sample size increases, the advantages of our proposed algorithm are more obvious.
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(c)

Fig. 2. 50 times experimental misclassification rates for m = 10000: (a) Twitter; (b)
Pavia; (c) TV News.
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(c)

Fig. 3. 50 times experimental misclassification rates for m = 10000: (a) Mnist; (b)
Proyecto; (c) Kegg
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(c)

Fig. 4. 50 times experimental misclassification rates for m = 20000: (a) Connect4; (b)
Postures; (c) Swarm

5.3. Comparison of total time

We show the sampling and training total time of 5 algorithms in Tables 5-6.
By Tables 5-6, we can find that for m = 9000 (or m = 25000), the sampling and

training total time of the proposed MK-MSVCR-TSL is shorter than that of other 4
multi-classification algorithms. Combined with Tables 2-3, for the experimental results
of MK-MSVCR-TSL and MK-MSVCR algorithms, we can find that the sampling and
training total time of the proposed MK-MSVCR-TSL algorithm is shorter than that of
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(b) (c)

Fig. 5. 50 times experimental misclassification rates for m = 20000: (a) Twitter; (b)
Pavia; (c) TV News
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Fig. 6. 50 times experimental misclassification rates for m = 20000: (a) Mnist; (b)
Proyecto; (c) Kegg

Table 5. Sampling and training total time (s) for m = 9000

Dataset MK-MSVCR-TSL MK-MSVCR MSVCR MK-OVO MK-OVA
Connect4 3834.00 8270.45 5264.87 9930.60 7305.26
Postures 8053.02 23431.51 8914.51 18711.38 15302.13
Swarm 3809.33 9610.83 4088.25 10514.35 8484.36
Twitter 1543.39 5027.24 2532.39 4739.51 4243.14
Pavia 3163.18 9340.25 5231.44 8631.60 8369.17
TV News 2038.28 5349.02 2454.38 4936.21 3696.07
Mnist 913.72 5381.88 1865.35 5691.39 8170.49
Proyecto 2935.07 8138.91 3519.49 9287.14 8036.25
Kegg 3836.14 13796.48 5103.23 12364.96 13505.16
Sum of Time 30126.14 88346.59 38973.91 84807.14 77112.03

MK-MSVCR algorithms, it is imply that for more complex and larger multi-classification
data, our algorithm has obvious advantages in terms of sampling and training total time
while ensuring certain classification accuracy.

In Table 7, we apply the Wilcoxon signed-rank test (α = 0.05)[?] to verify whether
there exist statistical significance between the proposed MK-MSVCR-TSL algorithm and
other 4 algorithms by using the sampling and training total time presented in Table ??.
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Table 6. Sampling and training total time (s) for m = 25000

Dataset MK-MSVCR-TSL MK-MSVCR MSVCR MK-OVO MK-OVA
Connect4 5009.91 10303.13 7041.91 12343.38 11069.20
Postures 11819.79 43427.13 13434.19 40741.38 36957.31
Swarm 9153.73 23429.15 13007.13 31245.58 29894.29
Twitter 3968.61 15353.13 7872.34 10013.18 8943.33
Pavia 8468.84 20311.17 12935.34 38031.12 35085.71
TV News 2351.95 7360.40 5340.13 7671.83 7052.36
Mnist 2368.15 8689.35 3399.91 9400.62 10261.12
Proyecto 6054.01 12437.59 8695.15 14343.83 12118.36
Kegg 9846.13 30971.74 19678.04 35083.51 29836.58
Sum of Time 59041.13 172282.79 91404.15 198874.44 181218.27

By Table 7, we can find that the proposed MK-MSVCR-TSL has better performance
compared to other 4 multi-classification algorithms.

Table 7. Wilcoxon tests of sampling and training total time for 5 algorithms

Comparison R+ R− Hypothesis(α = 0.05) Selected
MK-MSVCR-TSL vs. MK-MSVCR 0 55 Rejected MK-MSVCR-TSL
MK-MSVCR-TSL vs. MSVCR 0 55 Rejected MK-MSVCR-TSL
MK-MSVCR-TSL vs. MK-OVO 0 55 Rejected MK-MSVCR-TSL
MK-MSVCR-TSL vs. MK-OVA 0 55 Rejected MK-MSVCR-TSL

6. Conclusions

In this paper we firstly considered the generalization bounds of MSVCR algorithm with
multiple kernels based on u.e.M.c. samples. As its application, we also established the
generalization bounds of MK-MSVCR algorithm for the case of i.i.d. samples and ob-
tained the fast learning rate of MK-MSVCR algorithm for u.e.M.c. and i.i.d. samples,
respectively. In addition, we also introduced a new algorithm, the MK-MSVCR-TSL, and
showed that the experimental results of the proposed algorithm for public datasets. The
experimental results shown that the means of misclassification rates of the MK-MSVCR-
TSL and MK-MSVCR are smaller than the classical MSVCR introduced in [1], which
implies that the proposed multiple kernel learning can obviously improve the learning
performance of the classical MSVCR for large sample size. The experimental results also
shown that not only the means of misclassification rates of the MK-MSVCR-TSL are
smaller than other multi-class classification algorithms, but also the sampling and train-
ing total time of the MK-MSVCR is less than that of other multi-class classification al-
gorithms, which implies that the proposed MK-MSVCR-TSL have obvious competitive
strength for learning performance. In other words, the two-stage learning from the given
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datasets is a new strategy of improving the learning performance of the classical MSVCR
algorithm. Moreover, the experiments display that the proposed algorithm is valid and
competitive compared to other multiple kernels multi-class classification methods.

Based on the existing work, there are still several open issues worth further research.
For example, applying our method to deep neural networks, using the idea of distributed or
parallel to accelerate our method. These problems mentioned above are under our current
investigation.

Appendix A

In this section, we give the proof of the main results.

Proposition 1. Let fλ = argminf∈H̄K

{
λ∥f∥2K + E(f)

}
, D(λ) = E(fλ) − E(fB) +

λ∥fλ∥2K . For any z ∈ Zm, λ∥fz∥2K ≥ 0, we have that inequality

E(fz)− E(fB) ≤ {T1 + T2}+D(λ),

is valid, where

T1 :=E(fz)− Ez(fz)− E(fB) + Ez(fB),
T2 :=Ez(fλ)− E(fλ)− Ez(fB) + E(fB).

Proof: Since for any z ∈ Zm, λ∥fz∥2K ≥ 0, we have the following error decomposition
inspired by idea from [30],

E(fz)− E(fB) ≤E(fz)− E(fB) + λ∥fz∥2K
={E(fz)− Ez(fz) + Ez(fz)− E(fB) + Ez(fB)− Ez(fB)
+ Ez(fλ)− Ez(fλ)− E(fλ) + E(fλ) + E(fB)− E(fB)}
+ {λ∥fz∥2K − λ∥fλ∥2K + λ∥fλ∥2K}

={E(fz)− Ez(fz)− E(fB) + Ez(fB)}
+ {Ez(fλ)− E(fλ)− Ez(fB) + E(fB)}
+ {Ez(fz)− Ez(fλ) + λ∥fz∥2K − λ∥fλ∥2K}
+ {E(fλ)− E(fB) + λ∥fλ∥2K}

=T1 + T2 + T3 +D(λ) ≤ T1 + T2 +D(λ)

The last inequality above is follows from the fact that T3 ≤ 0 since by the definiton fz, we
have Ez(fz)+λ||fz||2K ≤ Ez(fλ)+λ||fλ||2K . D(λ) is called the regularizing error, which
is independent of the sample z, but is dependent of the space HK . Then we complete the
proof of Proposition 1.

To prove our results presented in Section 3, our main tools are as follows.

Lemma 1. [29] Let ξ be a random variable on a probability space Z with mean E(ξ),
variance σ2(ξ) = σ2, and satisfying |ξ(z)− E(ξ)| ≤ Mξ for almost all z ∈ Z. Then for
all ε > 0,

P
{ 1

m

m∑
i=1

ξ(zi)− E(ξ) ≥ ε
}
≤ exp

{
− mε2

2(σ2 + 1
3Mξε)

}
.
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Lemma 2. [29] Let G be a set of functions on Z such that for some cρ ≥ 0, |g−E(g)| ≤
B almost everywhere and E(g2) ≤ cρE(g) for each g ∈ G. Then for every ε > 0 and
0 < α ≤ 1,

P
{
sup
g∈G

E(g)− 1
m

∑m
i=1 g(zi)√

E(g) + ε
≥ 4α

√
ε
}
≤ N (G, αε) exp

{
− α2mε

2cρ +
2
3B

}
.

Lemma 3. [31] Let G be a countable class of bounded measurable functions, and Z be a
u.e.M.c. sample set. Assume that 0 ≤ g(z) ≤ CG for any g ∈ G and for any z ∈ Z. Then
for any ε > 0, we have

P
{ 1

m

∑m
i=1 g(zi)− E(g)√
E(g) + ε

≥
√
ε
}
≤ exp

{ −mε

56CG∥Γ0∥2
}
,

where ||Γ0|| =
√
2/(1− β

1/2n1

1 ), and β1, n1 are two positive constants independent of
m.

Lemma 4. With all notations as that in Lemma 3, then for ∀ε > 0, we have

P
{
sup
g∈G

1
m

∑m
i=1 g(zi)− E(g)√
E(g) + ε

≥ 4
√
ε
}
≤ expN (G, ε)

{ −mε

56CG∥Γ0∥2
}
.

Lemma 5. [6] Let c1, c2 > 0, and p1 > p2 > 0. Then, the equation xp1 −c1x
p2 −c2 = 0

has a unique positive zero x∗. In addition, we have x∗ ≤ max{(2c1)1/(p1−p2), (2c2)
1/p1}.

Proposition 2. Assume z = {zi}mi=1 ∈ Zm is an u.e.M.c. sample. For any 0 < δ < 1,
the following inequality is valid with confidence at least 1− δ/2,

T1 ≤ 1

2
[E(fz)− E(fB)] + ε∗(m, δ/2),

where ε∗(m, δ
2 ) = max

{
448∥Γ0∥2R2 ln( 2

δ )

m , ( 448∥Γ0∥2CsR
s+2

m )
1

s+1

}
.

Proof: Set ξ1 = V (y, f)− V (y, fB). It is clear that ξ1 varies among a set of functions in
accordance with the varying sample z. Let GR =

{
g|g(z) := V (y, f) − V (y, fB), f ∈

BR

}
. We have

E(g) =E(f)− E(fB) ≥ 0,
1

m

m∑
i=1

g(zi) = Ez(f)− Ez(fB),

g(z) =C1[(1− yf(x))+ − (1− yfB(x))+] · 1{y ̸=0}

+ C2[(f(x)− fB(x))(f(x) + fB(x))] · 1{y=0}.

Since ∥f∥∞ ≤ ∥f∥K ≤ R and |fB(x)| ≤ M almost everywhere, by the restriction
M ≤ R and C = max{C1, C2} = 1, we have

|g(z)| ≤ C1(R+M) + C2(R+M)(R+M) ≤ 4R2.
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It follows that |g(z)− E(g)| ≤ 8R2 almost everywhere, and

g2 =[C1((1− yf(x))+ − (1− yfB(x))+) · 1{y ̸=0}

+ C2(f
2(x)− f2

B(x)) · 1{y=0}]
2

=C2
1 [(1− yf(x))+ − (1− yfB(x))+]

2 · 1{y ̸=0}

+ C2
2 [f

2(x)− f2
B(x)]

2 · 1{y=0}

≤CC1[(1− yf(x))+ − (1− yfB(x))+](R+M) · 1{y ̸=0}

+ CC2[f
2(x)− f2

B(x)](R
2 +M2) · 1{y=0}

≤2R2 · [C1((1− yf(x))+ − (1− yfB(x))+) · 1{y ̸=0}

+ C2(f
2(x)− f2

B(x)) · 1{y=0}].

Thus E(g2) ≤ 2R2E(g), and

sup
f∈BR

E(f)− E(fB)− (Ez(f)− Ez(fB))√
E(f)− E(fB) + ε

= sup
g∈GR

E(g)− 1
m

∑m
i=1 g(zi)√

E(g) + ε
.

Applying Lemma 4 to the function set GR, we have that inequality

sup
f∈BR

E(f)− E(fB)− (Ez(f)− Ez(fB))√
E(f)− E(fB) + ε

= sup
g∈GR

E(g)− 1
m

∑m
i=1 g(zi)√

E(g) + ε
≤

√
ε

holds with probability at least 1−N (GR, ε) exp
{
− mε

56·4R2·∥Γ0∥2

}
.

By Definition 4, we have

P
{

sup
f∈BR

E(f)− E(fB)− (Ez(f)− Ez(fB))√
E(f)− E(fB) + ε

≥
√
ε
}

≤N (GR, ε) exp
{
− mε

224R2∥Γ0∥2
}

≤ exp
{
Cs(

R

ε
)s − mε

224R2∥Γ0∥2
}
.

Let δ = exp
{
Cs(

R
ε )

s − mε
224R2∥Γ0∥2

}
. Solving this equation with respect to ε, by

Lemma 5, we have

ε = ε∗(m, δ) = max
{448R2∥Γ0∥2 ln( 1δ )

m
, (
448∥Γ0∥2CsR

s+2

m
)

1
s+1

}
.

It follows that the following inequality holds with the probability at least 1− δ

E(f)− E(fB)− (Ez(f)− Ez(fB)) ≤
1

2
[E(f)− E(fB)] + ε∗(m, δ).

Replacing f by fz, we have that the following inequality

T1 = E(fz)− E(fB)− (Ez(fz)− Ez(fB)) ≤
1

2
[E(fz)− E(fB)] + ε∗(m, δ/2)

is valid with probability at least 1 − δ
2 . Therefore, we complete the proof of Proposition

2.
By making use of the similar proof method as that in Proposition 2, and Lemma 2, we

have
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Proposition 3. Assume z = {zi}mi=1 ∈ Zm is an i.i.d. sample. For any 0 < δ < 1, we
have that the following inequality holds with confidence at least 1− δ/2,

T1 ≤ 1

2
[E(fz)− E(fB)] + ε̄(m, δ/2),

where ε̄(m, 2/δ) = max
{

300R2 ln(2/δ)
m , ( 300R

2Cs(4R)s

m )
1

s+1

}
.

Proposition 4. Assume z = {zi}mi=1 ∈ Zm is a u.e.M.c. sample. For any 0 < δ < 1, we
have that the following inequality holds with the probability at least 1− δ/2,

T2 ≤ 1

2
D(λ) +

112(
√
D(λ)/λ+R)2 · ∥Γ0∥2 ln( 2δ )

m
.

Proof: By the definitions of fλ and D(λ), we have λ∥fλ∥2K ≤ E(fλ)−E(fB)+λ∥fλ∥2K =

D(λ). It follows that |fλ∥∞ ≤ ∥fλ∥K ≤
√

D(λ)/λ. Set ξ2 = V (y, fλ)− V (y, fB), we
have

ξ2 =C1(1− yfλ(x))+ · 1{y ̸=0} + C2(y − fλ(x))
2 · 1{y=0}

− C1(1− yfB(x))+ · 1{y ̸=0} − C2(y − fB(x))
2 · 1{y=0}

=C1[(1− yfλ(x))+ − (1− yfB(x))+] · 1{y ̸=0} + C2[f
2
λ(x)− f2

B(x)] · 1{y=0},

then T2 = 1
m

∑m
i=1 ξ2(zi)− E(ξ2). Since |fB | ≤ M ≤ R almost everywhere, we have

|ξ2| ≤|C1[(1− yfλ(x))+ − (1− yfB(x))+] · 1{y ̸=0}

+ C2[(fλ(x)− fB(x))(fλ(x) + fB(x))] · 1{y=0}|

≤C(
√

D(λ)/λ+R) + C(
√

D(λ)/λ+R)(
√

D(λ)/λ+R)

≤2(
√
D(λ)/λ+R)2 := 2b.

Hence |ξ2 − E(ξ2)| ≤ Mξ2 := 4b, |ξ2| ≤ 2(
√
D(λ)/λ+R)2 := 2b. Moreover, we have

E(ξ22) =E[C1((1− yfλ(x))+ − (1− yfB(x))+) · 1{y ̸=0}

+ C2(fλ(x)
2 − fB(x)

2) · 1{y=0}]
2

=E{C1[(1− yfλ(x))+ − (1− yfB(x))+] · 1{y ̸=0}}2

+ E{C2[(fλ(x)− fB(x))(fλ(x) + fB(x))] · 1{y=0}}2

≤C2∥fλ(x)− fB(x)∥2ρ + C2∥fλ(x)− fB(x)∥2ρ(
√
D(λ)/λ+R)2

≤C2(∥fλ(x)− fB(x)∥2ρ + λ∥fλ∥2K) + C2(∥fλ(x)− fB(x)∥2ρ
+ λ∥fλ∥2K)(

√
D(λ)/λ+R)2

≤C2D(λ) + C2D(λ)(
√

D(λ)/λ+R)2

=D(λ)(1 + (
√
D(λ)/λ+R)2) = D(λ)(1 + b).

Applying Lemma 3, we have that for any ε > 0,

P
{ 1

m

∑m
i=1 ξ2(zi)− E(ξ2)√

E(ξ2) + ε
≥

√
ε
}
≤ exp

{ −mε

56 · ∥Γ0∥2 · 2b

}
.
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It follows that for any 0 < δ < 1, with probability at least 1− δ, inequality

1

m

m∑
i=1

ξ2(zi)− E(ξ2) ≤
1

2
D(λ) +

112(
√
D(λ)/λ+R)2 · ∥Γ0∥2 ln( 2δ )

m

is valid. Then we accomplish the proof of Proposition 4.
Similar to the proof of Proposition 4, we obtain the following bound of T2 for i.i.d.

samples.

Proposition 5. Assume z = {zi}mi=1 ∈ Zm is an i.i.d. sample. For any 0 < δ < 1, the
following inequality holds with the probability at least 1− δ/2,

T2 ≤ D(λ)
(
1 +

7 ln( 2δ )

mλ

)
+

7R2 ln( 2δ )

m
+

1
2 ln(

2
δ )

m
.

Proof: Applying Lemma 1, by Proposition 4, we have that for any t > 0, 1
m

∑m
i=1 ξ2(zi)−

E(ξ2) ≤ t, with confidence at least

1− exp
{
− mt2

2(σ2(ξ2) +
1
3Mξ2t)

}
≥1− exp

{
− mt2

2[D(λ)(1 + b) + 1
3 · 4bt]

}
=1− exp

{
− mt2

2D(λ)(1 + b) + 8
3bt

}
.

Select t∗ as the only positive solution of the equation

− mt2

2D(λ)(1 + b) + 8
3bt

= ln δ.

So, 1
m

∑m
i=1 ξ2(zi)− E(ξ2) ≤ t∗ holds with probability 1− δ. Then

t∗ =

4b
3 ln( 1δ ) +

√
( 4b3 ln( 1δ ))

2 + 2D(λ)(1 + b)m ln( 1δ )

m

≤
8b ln( 1δ )

3m
+

√
2D(λ)(1 + b) ln( 1δ )

m

≤
8b ln( 1δ )

3m
+D(λ) +

(1 + b) ln( 1δ )

2m
.

Recall b = (
√
D(λ)/λ+R)2 ≤ 2(D(λ)/λ+R2). It follows that

t∗ ≤ D(λ)
(
1 +

7 ln(1δ )

mλ

)
+

7R2 ln( 1δ )

m
+

1
2 ln(

1
δ )

m
.

Then we accomplish the proof of Proposition 5.
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Appendix B

Proof of Theorem 1: Assume z = {zi}mi=1 ∈ Zm is a u.e.M.c. sample. Similar to the
proof of Theorem 2, we have that for any 0 < δ < 1, with probability at least 1 − δ, the
inequality

E(fz)− E(fB) ≤3D(λ) +
224 · (

√
D(λ)/λ+R)2 · ∥Γ0∥2 ln( 2δ )

m

+ 2
(448∥Γ0∥2CsR

s+2

m

) 1
s+1

is valid provided that m ≥ 448R∥Γ0∥2 ln(2/δ)(ln(2/δ)/Cs)
1/s. Then, we accomplish

the proof of Theorem 1.
Proof of Corollary 1: Assume z = {zi}mi=1 ∈ Zm is a u.e.M.c. sample. According

to Definition 2, D(λ) ≤ λq . Then for any 0 < δ < 1, with probability at least 1 − δ, we
have

E(fz)− E(fB)

≤3D(λ) +
224 · (

√
D(λ)/λ+R)2 · ∥Γ0∥2 ln( 2δ )

m
+ 2ε∗(m, δ/2)

≤3D(λ) +
224 · (

√
D(λ)/λ+R)2 · ∥Γ0∥2 ln( 2δ )

m

+
896∥Γ0∥2R2 ln( 2δ )

m
+ 2(

448∥Γ0∥2CsR
s+2

m
)

1
s+1

≤C
(
λq +

λq−1

m
+

1

m
+

λ(q−1)/2

m
+

1

m
+ (

1

m
)

1
1+s

)
,

where C = 896∥Γ0∥2R2(4Cs
1

s+1 + 4 ln(2/δ) + 3).
Let λ = ( 1

m )
1

1+s and q close to 1, so the inequality

E(fz)− E(fB) ≤ C
(
λq +

λq−1

m
+

1

m
+

λ(q−1)/2

m
+

1

m
+ (

1

m
)

1
1+s

)
≤ C(

1

m
)

1
1+s

is valid with probability at least 1− δ, where C = 896∥Γ0∥2R2(4Cs
1

s+1 +4 ln(2/δ)+3)
is a constant. Then, we finish the proof of Corollary 1.

Proof of Theorem 2: Assume z = {zi}mi=1 ∈ Zm is i.i.d. sample. With the bounds
of T1(Prop.3), T2(Prop.5) and D(λ)(Def.3), we have that with confidence 1− δ,

E(fz)− E(fB) ≤ T1 + T2 +D(λ)

≤1

2
[E(fz)− E(fB)] +D(λ)

(
1 +

7 ln( 2δ )

mλ

)
+

7R2 ln( 2δ )

m
+

1
2 ln(

2
δ )

m
+ ε(m, δ/2).

For ε(m, δ/2), the inequality ( 300R
2Cs(4R)s

m )
1

s+1 ≥ 300R2 ln(2/δ)
m is valid with m ≥

74R ln(2/δ)(ln(2/δ)/Cs)
1/s, we get ε(m, δ/2) = (300R

2Cs(4R)s

m )
1

s+1 . Thus, for any 0 <
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δ < 1, with probability at least 1− δ, we have

E(fz)− E(fB) ≤D(λ)
(
2 +

14 ln(2δ )

mλ

)
+

14R2 ln( 2δ )

m

+
ln( 2δ )

m
+ 2

(300R2Cs(4R)s

m

) 1
s+1

.

Then, we finish the proof of Theorem 2.
Proof of Corollary 2: Assume z = {zi}mi=1 ∈ Zm is i.i.d. sample. According to

Definition 2, D(λ) ≤ λq . Then for any 0 < δ < 1, with probability at least 1−δ, we have

E(fz)− E(fB)

≤D(λ)
(
2 +

14 ln(2δ )

mλ

)
+

14R2 ln( 2δ )

m
+

ln( 2δ )

m
+ 2ε(m, δ/2)

≤λq(2 +
14 ln(2δ )

mλ

)
+

14R2 ln( 2δ )

m
+

ln( 2δ )

m

+
600R2 ln( 2δ )

m
+ 2(

300R2Cs(4R)s

m
)

1
s+1

≤Ĉ
(
λq +

λq

mλ
+

1

m
+

1

m
+

1

m
+ (

1

m
)

1
1+s

)
,

where Ĉ = 600R2(4Cs
1

s+1 +ln(2/δ)). Let λ = ( 1
m )

1
1+s and q close to 1, so the inequality

E(fz)− E(fB) ≤ Ĉ
(
λq +

λq

mλ
+

3

m
+ (

1

m
)

1
1+s

)
≤ Ĉ(

1

m
)

1
1+s

is valid with probability at least 1−δ, where Ĉ = 600R2(4Cs
1

s+1 +ln(2/δ)) is a constant.
Then, we accomplish the proof of Corollary 2.
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11. Duğan, U., Glasmachers, T., Igel, C.: A unified view on multi-class support vector classifica-
tion. Journal of Machine Learning Research 17(45), 1–32 (2016)

12. Feng, Y., Yang, Y., Zhao, Y., Lv, S., Suykens, J.A.: Learning with Kernelized Elastic Net Reg-
ularization. KU Leuven, Leuven, Belgium (2014)

13. Gönen, M., Alpaydin, E.: Multiple kernel learning algorithms. Journal of Machine Learning
Research (12), 2211–2268 (2011)

14. Huang, C.L., Dun, J.F.: A distributed pso¨csvm hybrid system with feature selection and pa-
rameter optimization. Applied Soft Computing 8(4), 1381–1391 (2008)

15. Krebel, U.H.G.: Pairwise classification and support vector machines. Advances in kernel meth-
ods: support vector learning pp. 255–268 (1999)

16. Lanckriet, G.R.G., Cristianini, N., Bartlett, P.L., Ghaoui, L.E., Jordan, M.I.: Learning the kernel
matrix with semi-definite programming. Journal of Machine Learning Research (5), 27–72
(2004)

17. Lauriola, I., Gallicchio, C., Aiolli, F.: Enhancing deep neural networks via multiple kernel
learning. Pattern Recognition (101), 107194 (2020)

18. Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines: Theory and application
to the classification of microarray data and satellite radiance data. Journal of the American
Statistical Association 99(465), 67–81 (2004)

19. Lin, S.W., Ying, K.C., Chen, S.C., Lee, Z.J.: Particle swarm optimization for parameter deter-
mination and feature selection of support vector machines. Expert Systems with Applications
35(4), 1817–1824 (2008)

20. Luo, J., Orabona, F., Fornoni, M., Caputo, B., Cesa-Bianchi, N.: Om-2: An online multi-class
multi-kernel learning algorithm. IEEE Computer Society Conference on Computer Vision and
Pattern Recognition - Workshops pp. 43–50 (2010)

21. Lv, S.G., Zhou, F.Y.: Optimal learning rates of lp-type multiple kernel learning under general
conditions. Information Sciences (294), 255–268 (2015)

22. Lv, S.G., Zhu, J.D.: Error bounds for lp-norm multiple kernel learning with least square loss.
Abstract and Applied Analysis pp. 1–18 (2012)

23. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer Science & Busi-
ness Media (2012)

24. Qian, M., Nie, F., Zhang, C.: Efficient multi-class unlabeled constrained semi-supervised svm.
In: Proceedings of the 18th ACM Conference on Information and Knowledge Management.
pp. 1665–1668 (2009)

25. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)
26. Wang, T., Su, H., Li, J.: Dws-mkl: Depth-width-scaling multiple kernel learning for data clas-

sification. Neurocomputing (411), 455–467 (2020)
27. Weston, J., Watkins, C.: Support vector machines for multi-class pattern recognition. Esann pp.

219–224 (1999)
28. Wilson, C.M., Li, K.Q., Yu, X.Q., Kuan, P.F., Wang, X.F.: Multiple-kernel learning for genomic

data mining and prediction. BMC Bioinformatics 20(1), 1–7 (2019)



166 Zijie Dong et al.

29. Wu, Q., Ying, Y., Zhou, D.X.: Learning rates of least-square regularized regression. Founda-
tions of Computational Mathematics 6(2), 171–192 (2006)

30. Wu, Q., Zhou, D.X.: Svm soft margin classifiers: Linear programming versus quadratic pro-
gramming. Neural Computation 17(5), 1160–1187 (2005)

31. Xu, J., Tang, Y.Y., Zou, B., Xu, Z., Li, L., Lu, Y., Zhang, B.: The generalization ability of svm
classification based on markov sampling. IEEE Transactions on Cybernetics 45(6), 1169–1179
(2015)

32. Yang, Y., Guo, Y., Chang, X.: Angle-based cost-sensitive multicategory classification. Compu-
tational Statistics & Data Analysis (156), 107107 (2021)

33. Yao, B., Liu, S., Wang, L.: Using machine learning approach to construct the people flow
tracking system for smart cities. Computer Science and Information Systems (20), 679–700
(2023)

34. Yi, Z.H., Etemadi, A.H.: Line-to-line fault detection for photovoltaic arrays based on multi-
resolution signal decomposition and two-stage support vector machine. IEEE Transactions on
Industrial Electronics 64(11), 8546–8556 (2017)

35. Zou, B., Li, L., Xu, Z.: The generalization performance of erm algorithm with strongly mixing
observations. Machine Learning 75(3), 275–295 (2009)

Zijie Dong received the Ph.D. degree from the Faculty of Mathematics and Statistics of
Hubei University, China, in 2022. She is currently working at School of Mathematics and
Statistics, Hubei University of Education, Wuhan, 430205, China. Her current research
interests include statistical learning theory, machine learning, and pattern recognition.

Fen Chen received the Ph.D. degree from the Faculty of Mathematics and Statistics of
Hubei University, China, in 2019. She is currently working at School of Finance, Hubei
University of Economics, Wuhan, 430205, China.

Yu Zhang received the Ph.D. degree from the Nanjing University of Aeronautics and As-
tronautics, China, in 2021. He is currently working at School of Mathematics and Statis-
tics, Hubei University of Education, Wuhan, 430205, China.

Received: January 24, 2023; Accepted: December 10, 2023.


	Introduction
	MK-MSVCR learning machine
	Algorithm and Algorithmic complexity
	MK-MSVCR-TSL algorithm
	Explanations of algorithm
	Algorithmic complexity

	Estimating the Generalization Bounds
	Numerical Studies
	Datasets and experimental setup
	Comparison of misclassification rates
	Comparison of total time

	Conclusions

