

ComSIS is an international journal published by the ComSIS Consortium

ComSIS Consortium:
University of Belgrade:
Faculty of Organizational Science, Belgrade, Serbia
Faculty of Mathematics, Belgrade, Serbia
School of Electrical Engineering, Belgrade, Serbia
Serbian Academy of Science and Art:
Mathematical Institute, Belgrade, Serbia
Union University:
School of Computing, Belgrade, Serbia

University of Novi Sad:
Faculty of Sciences, Novi Sad, Serbia
Faculty of Technical Sciences, Novi Sad, Serbia
Faculty of Economics, Subotica, Serbia
Technical Faculty "Mihajlo Pupin", Zrenjanin, Serbia
University of Montenegro:
Faculty of Economics, Podgorica, Montenegro

EDITORIAL BOARD:
Editor-in-Chief: Mirjana Ivanović, University of Novi Sad
Vice Editor-in-Chief: Ivan Luković, University of Novi Sad
Managing Editors:
 Miloš Radovanović, University of Novi Sad
 Zoran Putnik, University of Novi Sad

Editorial Assistants:
 Vladimir Kurbalija, University of Novi Sad
 Jovana Vidaković, University of Novi Sad
 Ivan Pribela, University of Novi Sad
 Slavica Aleksić, University of Novi Sad
 Srđan Škrbić, University of Novi Sad

Editorial Board:
S. Ambroszkiewicz, Polish Academy of Science, Poland
P. Andreae, Victoria University, New Zealand
Z. Arsovski, University of Kragujevac, Serbia
D. Banković, University of Kragujevac, Serbia
T. Bell, University of Canterbury, New Zealand
D. Bojić, University of Belgrade, Serbia
Z. Bosnić, University of Ljubljana, Slovenia
B. Delibašić, University of Belgrade, Serbia
I. Berković, University of Novi Sad, Serbia
L. Böszörmenyi, University of Clagenfurt, Austria
K. Bothe, Humboldt University of Berlin, Germany
S. Bošnjak, University of Novi Sad, Serbia
D. Letić, University of Novi Sad, Serbia
Z. Budimac, University of Novi Sad, Serbia
H.D. Burkhard, Humboldt University of Berlin, Germany
B. Chandrasekaran, Ohio State University, USA
G. Devedžić, University of Kragujevac, Serbia
V. Devedžić, University of Belgrade, Serbia
V. Ćirić, University of Belgrade, Serbia
D. Domazet, FIT, Belgrade, Serbia
J. Đurković, University of Novi Sad, Serbia
G. Eleftherakis, CITY College Thessaloniki, International
Faculty of the University of Sheffield, Greece
M. Gušev, FINKI, Skopje, FYR Macedonia
S. Guttormsen Schar, ETH Zentrum, Switzerland
P. Hansen, University of Montreal, Canada
M. Ivković, University of Novi Sad, Serbia
L.C. Jain, University of South Australia, Australia
D. Janković, University of Niš, Serbia
V. Jovanović, Georgia Southern University, USA
Z. Jovanović, University of Belgrade, Serbia
L. Kalinichenko, Russian Academy of Scence, Russia

Lj. Kašćelan, University of Montenegro, Montenegro
Z. Konjović, University of Novi Sad, Serbia
I. Koskosas, University of Western Macedonia, Greece
W. Lamersdorf, University of Hamburg, Germany
T.C. Lethbridge, University of Ottawa, Canada
A. Lojpur, University of Montenegro, Montenegro
M. Maleković, University of Zagreb, Croatia
Y. Manolopoulos, Aristotle University, Greece
A. Mishra, Atilim University, Turkey
S. Misra, Atilim University, Turkey
N. Mitić, University of Belgrade, Serbia
A. Mitrović, University of Canterbury, New Zealand
N. Mladenović, Serbian Academy of Science, Serbia
S. Mrdalj, Eastern Michigan University, USA
G. Nenadić, University of Manchester, UK
D. Urošević, Serbian Academy of Science, Serbia
A. Pakstas, London Metropolitan University, UK
P. Pardalos, University of Florida, USA
J. Protić, University of Belgrade, Serbia
M. Racković, University of Novi Sad, Serbia
B. Radulović, University of Novi Sad, Serbia
D. Simpson, University of Brighton, UK
M. Stanković, University of Niš, Serbia
D. Starčević, University of Belgrade, Serbia
D. Surla, University of Novi Sad, Serbia
D. Tošić, University of Belgrade, Serbia
J. Trninić, University of Novi Sad, Serbia
M. Tuba, University of Belgrade, Serbia
L. Šereš, University of Novi Sad, Serbia
J. Woodcock, University of York, UK
P. Zarate, IRIT-INPT, Toulouse, France
K. Zdravkova, FINKI, Skopje, FYR Macedonia

ComSIS Editorial Office:
University of Novi Sad, Faculty of Sciences,
Department of Mathematics and Informatics

Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
Phone: +381 21 458 888; Fax: +381 21 6350 458

www.comsis.org; Email: comsis@uns.ac.rs

Volume 10, Number 4, 2013
Novi Sad

Computer Science and Information Systems

Special Issue on Advances in Model Driven Engineering,
Languages and Agents

ISSN: 1820-0214

ComSIS Journal is sponsored by:

Ministry of Education, Science and Technological Development of Republic of Serbia -

http://www.mpn.gov.rs/

Polskie Towarzystwo Informatyczne - PTI (Polish Information Processing Society) -
http://www.pti.gda.pl/

http://www.mpn.gov.rs/

Computer Science and
Information Systems

AIMS AND SCOPE

Computer Science and Information Systems (ComSIS) is an international refereed journal, pub-
lished in Serbia. The objective of ComSIS is to communicate important research and development
results in the areas of computer science, software engineering, and information systems.

We publish original papers of lasting value covering both theoretical foundations of computer
science and commercial, industrial, or educational aspects that provide new insights into design
and implementation of software and information systems. ComSIS also welcomes survey papers
that contribute to the understanding of emerging and important fields of computer science. In
addition to wide-scope regular issues, ComSIS also includes special issues covering specific topics
in all areas of computer science and information systems.

ComSIS publishes invited and regular papers in English. Papers that pass a strict reviewing
procedure are accepted for publishing. ComSIS is published semiannually.

Indexing Information

ComSIS is covered or selected for coverage in the following:

۰ Science Citation Index (also known as SciSearch) and Journal Citation Reports / Science

Edition by Thomson Reuters, with 2012 two-year impact factor 0.549,

۰ Computer Science Bibliography, University of Trier (DBLP),

۰ EMBASE (Elsevier),

۰ Scopus (Elsevier),

۰ Summon (Serials Solutions),

۰ EBSCO bibliographic databases,

۰ IET bibliographic database Inspec,

۰ FIZ Karlsruhe bibliographic database io-port,

۰ Index of Information Systems Journals (Deakin University, Australia),

۰ Directory of Open Access Journals (DOAJ),

۰ Google Scholar,

۰ Journal Bibliometric Report of the Center for Evaluation in Education and Science (CEON/CEES)

in cooperation with the National Library of Serbia, for the Serbian Ministry of Education and
Science,

۰ Serbian Citation Index (SCIndeks),

۰ doiSerbia.

Information for Contributors

The Editors will be pleased to receive contributions from all parts of the world. An electronic
version (MS Word or LaTeX), or three hard-copies of the manuscript written in English, intended
for publication and prepared as described in "Manuscript Requirements" (which may be
downloaded from http://www.comsis.org), along with a cover letter containing the corresponding
author's details should be sent to official Journal e-mail.

Criteria for Acceptance

Criteria for acceptance will be appropriateness to the field of Journal, as described in the Aims
and Scope, taking into account the merit of the content and presentation. The number of pages
of submitted articles is limited to 25 (using the appropriate Word or LaTeX template).

Manuscripts will be refereed in the manner customary with scientific journals before being
accepted for publication.

Copyright and Use Agreement

All authors are requested to sign the "Transfer of Copyright" agreement before the paper may be
published. The copyright transfer covers the exclusive rights to reproduce and distribute the
paper, including reprints, photographic reproductions, microform, electronic form, or any other
reproductions of similar nature and translations. Authors are responsible for obtaining from the
copyright holder permission to reproduce the paper or any part of it, for which copyright exists.

Computer Science and Information Systems

Volume 10, Number 4, Special Issue, October 2013

CONTENTS

Editorial

Papers

1499 Requirements-Level Language and Tools for Capturing

Software System Essence

Wiktor Nowakowski, Michał Śmiałek, Albert Ambroziewicz, Tomasz
Straszak

1525 A DSL for the Development of Software Agents working
within a Semantic Web Environment

Sebla Demirkol, Moharram Challenger, Sinem Getir, Tomaž Kosar,
Geylani Kardas, Marjan Mernik

1557 Using Reverse Engineering to Construct the Platform

Independent Model of a Web Application for Student
Information Systems

Igor Rožanc, Boštjan Slivnik
1585 Model Execution: An Approach based on extending Domain-

Specific Modeling with Action Reports

Verislav Djukić, Ivan Luković, Aleksandar Popović, Vladimir Ivančević
1621 Possible Realizations of Multiplicity Constraints

Zdeněk Rybola, Karel Richta
1647 Testing framework for embedded languages

Dániel Leskó, Máté Tejfel

1661 Extending Programming Language to Support Object
Orientation in Legacy Systems

Hemang Mehta, S J Balaji, Dharanipragada Janakiram
1673 Context Parsing (Not Only) of the Object-File-Format

Description Language
Jakub Křoustek and Dušan Kolář

1703 An evaluation of keyword, string similarity and very shallow

syntactic matching for a university admissions processing
infobot

Peter Hancox, Nikolaos Polatidis
1727 Using proximity to compute semantic relatedness in RDF

graphs

José Paulo Leal

1747 Managing experiments on cognitive processes in writing with

HandSpy

Carlos Monteiro, José Paulo Leal
1775 Batched Evaluation of Linear Tabled Logic Programs

Miguel Areias, Ricardo Rocha
1799 Multi-Agent Systems’ Asset for Smart Grid Applications

Gregor Rohbogner, Ulf J.J. Hahnel, Pascal Benoit, Simon Fey
1823 Model-based Integration of Constrained Search Spaces into

Distributed Planning of Active Power Provision

Jörg Bremer, Michael Sonnenschein

ComSIS Vol. 10, No. 4, Special Issue, October 2013 i

EDITORIAL

Keeping to our tradition of publishing two additional special issues, apart from
two regular ones per year, this special issue is titled Advances in Model
Driven Engineering, Languages and Agents.

Editors of this issue were inspired by several events they organized during
2012

in the following, somehow closely related domains: Advances in Model

Driven Engineering; Programming Languages; Computer Languages,
Implementations and Tools; and Multi-Agent Systems and Smart Grid
Applications. These events included: (i) Workshop on Model Driven
Approaches in System Development (MDASD) and International Workshop
on Smart Energy Networks & Multi-Agent Systems (SEN-MAS), both
organized within the scope of the Federated Conference on Computer
Science and Information Systems (FedCSIS) in Wroclaw, Poland; (ii)
Symposium on Computer Languages, Implementations and Tools (SCLIT)
organized within the scope of the International Conference of Numerical
Analysis and Applied Mathematics (ICNAAM) in Kos, Greece; and (iii)
Symposium on Languages, Applications and Technologies (SLATE) in Braga,
Portugal. After an open call to the prospective authors to submit their papers,
and a rigorous reviewing procedure, the same as for regularly submitted
papers, we finally accepted 14 papers presenting both theoretical and
practical contributions in the field of Advances in Model Driven Engineering,
Languages and Agents.

In the first paper, Requirements-Level Language and Tools for Capturing
Software System Essence, Wiktor Nowakowski, Michał Smiałek, Albert
Ambroziewicz, and Tomasz Straszak propose a model-based language for
comprehensive treatment of domain knowledge, expressed through
constrained natural language phrases that are grouped by nouns and include
verbs, adjectives and prepositions. They also present an advanced tooling
framework to capture application logic specifications making them available
for automated transformations down to code. The tools were validated
through a controlled experiment.

Sebla Demirkol, Moharram Challenger, Sinem Getir, Tomaž Kosar, Geylani
Kardas, and Marjan Mernik in their paper A DSL for the Development of
Software Agents working within a Semantic Web Environment, introduce a
new DSL for Semantic Web enabled Multi-agent Systems. This new DSL is

ComSIS Vol. 10, No. 4, Special Issue, October 2013 ii

called Semantic web Enabled Agent Language (SEA_L). Both the SEA_L
user-aspects and the way of implementing SEA_L are discussed in the paper.
The practical use of SEA_L is also demonstrated using a case study which
considers the modeling of a multi-agent based e-barter system.

Igor Rožanc and Boštjan Slivnik in their paper Using Reverse Engineering to
Construct the Platform Independent Model of a Web Application for Student
Information Systems present a methodology for extracting the domain
knowledge from an existing three-tier web application and subsequent
formulation of the platform independent model (PIM). As the paper is primarily
aimed at practitioners, a case study illustrating the application of the
presented method is also included.

Verislav Djukić, Ivan Luković, Aleksandar Popović, and Vladimir Ivančević, in
the paper Model Execution: An Approach based on extending Domain-
Specific Modeling with Action Reports present an approach to development
and application of domain-specific modeling (DSM) tools in the model-based
management of business processes. The level of Model-to-Text
transformations in a typical DSM architecture is extended with action reports,
which allow synchronization between models, generated code, and target
interpreters. The applicability of action reports is demonstrated by examples
from document engineering, and measurement and control systems.

In their paper Possible Realizations of Multiplicity Constraints, Zdeněk Rybola
and Karel Richta summarize the process of the transformation of a binary
association from a PIM into a PSM for relational databases. They suggest
several possible realizations of the source class optionality constraint to
encourage the automatically transformation and discuss their advantages and
disadvantages. They also provide experimental comparison of the proposed
realizations to the common realization where this constraint is omitted.

In their paper Testing framework for embedded languages, Dániel Leskó and
Máté Tejfel describe a new advantage of embedding a new programming
language into an existing one for purpose of software testing. Idea is to
introduce a tool support for embedded languages by reusing existing tools for
original languages and extend them with the interface to embedded language.
Facing with non-extensibility of existing tools authors provide extendable and
modular model of a testing framework. Main characteristics the framework
ere: straightforward creation, test data generation, addressing the oracle
problem, and the customizability of the whole testing phase.

Hemang Mehta, S J Balaji, and Dharanipragada Janakiram in their paper
Extending Programming Language to Support Object Orientation in Legacy
Systems propose an extension of a programming language such is C++ to
support object orientation in legacy systems instead of completely redesigning
them. They report major issues in providing the compile and runtime support
for C++ in legacy systems, and provide a solution to these issues. This is

ComSIS Vol. 10, No. 4, Special Issue, October 2013 iii

demonstrated on a case study of Linux kernel. Authors provide a technique
for converting a large C based software into C++ and experimentally test the
results of the approach.

Jakub Křoustek and Dušan Kolář propose in the paper Context Parsing (Not
Only) of the Object-File-Format Description Language a formal language that
can be used for object file formats (OFF) description. They also present the
design of a context parser for this language based on formal model. They
highlight an ability to describe context-sensitive properties on the level of the
language itself as important advantage of this approach. Furthermore they
propose a possible usage in existing project.

“Infobots” are small-scale natural language question answering systems
drawing inspiration from ELIZA-type systems. Their key distinguishing feature
is the extraction of meaning from users’ queries without the use of syntactic or
semantic representations. Peter Hancox and Nikolaos Polatidis in their paper
An evaluation of keyword, string similarity and very shallow syntactic matching
for a university admissions processing infobot analyze three approaches to
identifying the users’ intended meanings: keyword based systems, Jaro-
based string similarity algorithms and matching based on very shallow
syntactic analysis. These were measured against a corpus of queries
contributed by users of a WWW-hosted infobot for responding to questions
about applications to MSc courses.

José Paulo Leal in the paper Using proximity to compute semantic
relatedness in RDF graphs presents an approach for computing the semantic
relatedness of terns in RDF graphs based on the notion of proximity. It is
proposed a formal definition of proximity in terms of the set paths connecting
two concept nodes, and an algorithm for finding this set and computing
proximity with a given error margin.

In the paper Manage experiments on cognitive processes in writing with
HandSpy, Carlos Monteiro and José Paulo Leal present a development of
HandSpy, a collaborative environment for managing experiments in the
cognitive processes in writing. The environment was designed to cover all the
stages of the experiment, from the definition of tasks to be performed by
participants, to the synthesis of results. Despite being a system independent
from a specific collecting device, for the system validation, a framework for
data collection was created.

In their previous work, the authors of the paper Batched Evaluation of Linear
Tabled Logic Programs, Miguel Areias and Ricardo Rocha have developed a
framework, on top of the Yap Prolog system, that supports the combination of
different linear tabling strategies for local scheduling. In this paper, they
propose an extension of their framework to support batched scheduling. In
particular, they consider the two most successful linear tabling strategies, the
DRA and DRE strategies. Their experimental results show that the

ComSIS Vol. 10, No. 4, Special Issue, October 2013 iv

combination of the DRA and DRE strategies can effectively reduce the
execution time for batched evaluation.

Gregor Rohbogner, Ulf J. J. Hahnel, Pascal Benoit, and Simon Fey in the
paper Multi-Agent Systems’ Asset for Smart Grid Applications, recognize that
although multi-agent systems are being increasingly employed within smart
grid environments, there is a lack of practical understanding of the term
“agent” in these scenarios. The authors first discuss why agents are much
more than just controllers, optimizers, or learning systems, and then take a
critical stance towards existing approaches that employ “multi-agent systems”
in smart grids. Finally, they show that, if understood and applied correctly,
agents can add significant value to distributed dynamic environments, such as
smart grids.

In the paper Model-based Integration of Constrained Search Spaces into
Distributed Planning of Active Power Provision, Jörg Bremer and Michael
Sonnenschein deal with the electricity sector’s need for new approaches
regarding distributed planning, control and optimization of energy sources
within smart grids. The core issue is that the grids are often decentralized and
consist of large numbers of individually configured devices. Their proposed
solution combines two new methodologies. Support vector-based black-box
models are used for handling constraints in distributed optimization scenarios.
Then, a distributed greedy approach is employed in order to find an optimal
partition of the requested schedule for different distributed energy resources.

On behalf of the ComSIS Consortium and Editorial Board, let us express our
great thanks to the reviewers and all the authors for their high-quality work
and extraordinary enthusiasm.

Ivan Luković,
Alberto Simões,
Zoran Budimac, and
Mirjana Ivanović,
Editors of the special issue

DOI: 10.2298/CSIS121210062N

Requirements-Level Language and Tools
for Capturing Software System Essence

Wiktor Nowakowski1, Michał Śmiałek1, Albert Ambroziewicz12, and Tomasz
Straszak1

1 Warsaw University of Technology
pl. Politechniki 1, 00-661 Warsaw, Poland

{nowakoww, smialek, ambrozia, straszat}@iem.pw.edu.pl
2 Infovide-Matrix S.A.

ul. Gottlieba Daimlera 2, 02-460 Warsaw, Poland

Abstract. Creation of an unambiguous requirements specification with
precise domain vocabulary is crucial for capturing the essence of any
software system, either when developing a new system or when recov-
ering knowledge from a legacy one. Software specifications usually main-
tain noun notions and include them in central vocabularies. Verb or ad-
jective phrases are easily forgotten and their definitions buried inside im-
precise paragraphs of text. This paper proposes a model-based language
for comprehensive treatment of domain knowledge, expressed through
constrained natural language phrases that are grouped by nouns and in-
clude verbs, adjectives and prepositions. In this language, vocabularies
can be formulated to describe behavioural characteristics of a given prob-
lem domain. What is important, these characteristics can be linked from
within other specifications similarly to a wiki. The application logic can be
formulated through sequences of imperative subject-predicate sentences
containing only links to the phrases in the vocabulary. The paper presents
an advanced tooling framework to capture application logic specifications
making them available for automated transformations down to code. The
tools were validated through a controlled experiment.

Keywords: requirements engineering, use cases, domain engineering,
model-driven software development, model transformation, application logic,
metamodel, formal languages.

1. Introduction and Related Work

As pointed out by Brooks back in the eighties [6], software systems possess
essential (inherent) and accidental (technological) complexity. The essential
complexity cannot be removed without reducing the problem at hand. In or-
der to understand any software system we thus need to “extract” this essential
complexity and make it clearly visible. This is especially important when mod-
ernising the existing systems. We normally would like to remove all the code,
related to the old technology and retain just the problem-related essence. Then,

Wiktor Nowakowski et al.

we could transfer this essence (after possible improvement and extension) into
a new technology.

An important attempt to enable capturing essential knowledge about soft-
ware systems is the Knowledge Discovery Metamodel (KDM), as explained by
Pérez-Castillo et al. [29]. Unfortunately, KDM operates mainly at quite low levels
of abstraction, concentrating e.g. on defining a metamodel for abstract syntax
trees capturing the code structure of the system. It also contains structures to
represent conceptual-level artifacts but this part of the standard is very roughly
defined. Moreover, it can be argued that capturing the detailed internal structure
does not reduce the accidental complexity associated with the “twisted” inter-
nals of a legacy system. We need means to capture the essence of the system’s
logic and not e.g. the detailed code breakdown structure as implemented in the
legacy system.

An innovative method for improving software application comprehension in
order to simplify its maintenance was proposed by Vagač and Kollár in [38] and
[24]. In this approach a legacy system, composed of well-known classes and
standard libraries, is analysed and a metamodel for the selected features repre-
senting functional aspects of the system is automatically created. This provides
feature-specific visualization which is closer to the application domain level than
to implementation level. The main difficulty in this approach is associated with
the construction of a knowledge base – for each recognized feature there must
be aspects defined to trace feature implementation and algorithms to model
traced implementation details in metamodel.

A very comprehensive approach to capturing essential knowledge (Domain
Driven Development - DDD) was proposed by Evans [10]. He postulates organ-
ising software development around rigorously defined domain models. These
models capture the domain logic of the system at a high level of abstraction. At
the same time, the domain logic is the foundational basis to specify the appli-
cation logic describing the observable interaction of the users with the system
(called “workflow logic” by Fowler [13]). This approach was even strengthened
in rigour by Bjôrner [4] who advocates mathematical precision in domain engi-
neering. He identifies serious flaws in system specification whenever domain
specifications are treated without enough care.

Domain engineering is thus argued as an important element in capturing
the essential complexity. Unfortunately, it is normally treated as a second-class
citizen in specifying systems. It is equated with a more-or-less complete list of
noun-related domain elements with their definitions, placed somewhere close
to the end of the overall specification (be it requirements, design or business
description) and soon forgotten. Worse still, in many cases the vocabulary is in
fact buried in text throughout the whole specification. All the definitions of do-
main notions are scattered everywhere leading in many places to contradictions
(e.g. different definitions of the same term). This all calls for a tooling framework
where the various domain notions could be used consistently through referring
to a central vocabulary, as postulated by Śmiałek et al. [36].

1500 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

The tooling for DDD has been developed in the context of the Romulus
project (see work by Iglesias et al. [16]). However, the domain models in Ro-
mulus are at the level of design models rather than pure domain descriptions.
A domain-driven approach was also taken by the creators of the Requirements
Specification Language (RSL, see section 2 for an overview of the language
basic constructs) within the ReDSeeDS project (www.redseeds.eu). The do-
main models in this language rely heavily on verbs used within requirements
specifications. This is also similar to knowledge engineering approaches like
the one described by Chan [7] and also pure ontology languages like RDF [1].
In effect, we result with a constrained language with embedded semantics, ca-
pable of representing domains along the proposition by Evermann and Wand
[11]. Moreover, the language introduces a very strict relation between the do-
main logic (expressed through verbs associated with nouns) and the application
logic.

In the current work we use RSL to enable capturing the essential complex-
ity at the level of application logic of either existing or new systems (see sec-
tion 2 for more details on this subject). This kind of “essential complexity” is
meant as sequences of user-system, system-system and system-user interac-
tions defining the observable system behavior. We propose to capture it through
constrained-natural-language sentences that refer (hyperlink) directly to a do-
main model based on nouns, verbs and other parts of speech. Similar usage of
hyperlinks was proposed by Kaindl [20], but such a comprehensive treatment
with an extensive tooling environment is not found in the literature according to
our best knowledge. What is more, we propose a method for capturing and mi-
grating the essence from legacy systems. It is unique in generating application
logic scripts from UI/GUI-ripping results. The users record their activity in the
legacy system and this is transferred to the application logic (essential) specifi-
cation. Due to precision of such specifications, this can be brought to the level
of code in an MDA-style transformation process [22].

This paper constitutes a significant extension to a paper published at the
Model-Driven Approaches in System Development workshop at the FedCSIS
conference [35]. It provides details on the slightly improved RSL metamodel
and gives more examples. It also presents an advanced version of the tools
both for recovery and transformation of application logic to code. There are
also presented in detail the results of a controlled experiment to validate the
presented approach and tools.

2. Basic RSL Constructs for Specifying System Essence

The Requirements Specification Language (RSL) is a formal language for spec-
ifying software requirements. An important idea in the RSL approach is sepa-
ration of concerns in regard to descriptions of the system’s behaviour and de-
scriptions of the system’s domain. The behaviour in RSL is specified through
use cases and their textual scenarios consisting of sentences in constrained

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1501

Wiktor Nowakowski et al.

Show

course list

Add new

course

course list

button

course list

page

«invoke»

Course

manager

course list

1. Course manager selects course list button

2. System fetches course list

4. System shows course list page

==> invoke: Add new course

1. Course manager selects course list button

2. System fetches course list

3. System shows course list page

=> invoke: Add new course

course

U
se

ca
se

s
a

n
d

 s
ce

n
a

ri
o

s
D

o
m

a
in

sp
e

ci
fi

ca
ti

o
n

Fig. 1. Example RSL specification – use case scenarios linking to a domain vocabulary

natural language. Words and phrases used in scenario sentences are linked to
elements of a separate domain model, as presented in Figure 1.

Such notation, with a centrally defined vocabulary, is easily understandable
by different audiences – analysts, developers, architects and end-users. The
aim is to facilitate communication during the software development process.
The main focus of this communication is usually the outlining of the application
logic. The application logic of an IT system defines sequences of interactions
between the user and the system in relation to the domain logic within which
this system operates. That is the exact information that is captured at the level
of requirements through the use of RSL (more on capturing the application logic
can be found in section 2.6).

In addition to being human-readable, the RSL notation is also very precise.
All the language constructs are defined in a formal way through a grammar ex-
pressed as a MOF [27] metamodel. This allows automatic processing of speci-
fications written in RSL (like, for example, MDA-style transformations [26]).

In sections below we describe basic RSL constructs in a bottom-up manner.
Due to the extensiveness of the language, the description is limited only to the
constructs that are used directly for capturing the software “essence” at the level
of application logic. For the extended overview of the RSL language please refer
to [34] and to [19] for the complete formal language definition.

2.1. Phrases – Basic Building Blocks for Specifications

In order to describe a domain, people normally use certain natural language
phrases. Any entity in a given domain is expressed through a phrase contain-
ing prominently a noun. In sentences, nouns are normally used in the role of
subjects or objects. Noun phrases are obviously not satisfactory to express the
domain logic – its dynamics. We need verbs that can be composed of many
words (e.g. phrasal verbs or aggregates of the Dixon’s primary and secondary
type verbs [8]). In a sentence, a verb occurs as a part of its predicate. It is

1502 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

enroll selected student for course

Noun phrase Noun phrase

Simple verb phrase

Complex verb phrase

Verb Modifier Noun Preposition Noun

enroll selected student for course

Fig. 2. Phrase structure example

strongly relevant to the noun: it describes behaviours, functions and events of
the entity represented by that noun. These are important elements of domain
descriptions as defined by Bjôrner [3]. One noun can have any number of be-
haviours, functions or events associated (“read book”, “write book”, “buy book”).
Sometimes there is a need to enrich nouns with modifiers (“single book”, “old
book”).

To capture the application logic we will thus define a language capable of
expressing noun-based phrases. This is illustrated in Figure 2. A noun phrase
contains just a noun (“course”) possibly preceded by a modifier (“selected stu-
dent”). A modifier is most often an adjective or an adverb. A simple verb phrase
consists of a noun phrase preceded by a verb (“enroll selected student”). A
complex verb phrase supplements a simple verb phrase with an additional noun
phrase. These phrases are conjoined with a preposition, thus making a com-
plex verb phrase capable of expressing constructs with a direct object and an
indirect object (“enroll selected student for course”).

The above can be seen as a constrained language and we can define a
grammar for it. We want the language to be used for automatic transformations
and thus we will use a metamodel to define it (work by Kleppe [23] can be used
as a good introduction on this). This is shown in Figure 3.

All phrases are represented by an abstract metaclass Phrase, which has two
subtypes: NounPhrase and VerbPhrase. A NounPhrase consists of exactly one
NounLink that points to a specific Noun. A NounPhrase can also contain at most
one ModifierLink pointing to a Modifier. Such NounPhrases are satisfactory for
representing entity names (eg. “course”, “selected student”). A VerbPhrase, in
turn, describes some behaviour that can be performed in association with an
entity represented by a NounPhrase. In the metamodel, VerbPhrase is an abstract
subtype of Phrase and it exists in two concrete variants: SimpleVerbPhrase and
ComplexVerbPhrase. The SimpleVerbPhrase is the basic structure for expressing
the entity behaviour. It contains a NounPhrase in the role of its object (inher-
ited from VerbPhrase), but it also includes a VerbLink pointing to a Verb (eg.
“enroll selected student”). A ComplexVerbPhrase describes behavioural relation
between two entities. It contains its own (inherited) NounPhrase which plays the
role of the indirect object, but also contains a SimpleVerbPhrase possessing an-
other NounPhrase – the direct object (eg. “enroll selected student to course”).

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1503

Wiktor Nowakowski et al.

VerbPhraseNounPhrase

ComplexVerbPhrase SimpleVerbPhrase

Phrase

complexVerbPhrase

0..1 simpleVerbPhrase

1

object

1

verbPhrase

0..1

source

1

source

1

source 1source 1

TermHyperlink

NounLink

TermHyperlink

VerbLink

Term

Noun

Term

Verb

Term

Modifier

Term

Preposition

TermHyperlink

ModifierLink

TermHyperlink

PrepositionLink

target 1

*

target 1

* *

target 1

*

target 1

modifier 0..1 noun 1 verb 1preposition 1

Fig. 3. Phrase metamodel

It is worth noting that the phrases constitute sequences of hyperlinks (sub-
classes of TermHyperlink) pointing at external terms (subclasses of Term – see
Figure 4). These terms (with their forms, which depend on the context) can
be stored in an external, global structure (Terminology). This structure defines
the semantics of the terms through giving relations between them, and can
be based on existing dictionaries/ontologies (e.g. WordNet [12]). This way, the
phrases can be subject to semantic-based matching, as described by Wolter et
al. [40].

2.2. Domain Specification – Phrases Grouped within Notions

To organise the phrases we will group them by the nouns defining the described
domain entities. We will call such group a “notion”. The appropriate metamodel
for this part of the presented language is shown in Figure 5. Every Notion can
include any number of DomainStatements referring to the same noun (eg. “save
course”, “enroll student for course”). Each DomainStatement contains exactly
one Phrase – its name. It can also have a textual description of behavioural fea-
tures of the related nouns. For example, “validate course” has a different mean-
ing than “save course”. The common Noun pointed by all the phrases grouped
within the Notion as its statements is used as the name of that notion (see the
relevant NounPhrase). Moreover, a notion can contain textual description that
defines the notion in the context of the current domain.

1504 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

Termionology

PrepositionModifierNounVe rb

Term

- na me :String
*1

Fig. 4. Terminology metamodel

DomainElement

NounPhrase

Notion

DomainElementRelationship

sourceMultipl icity :String

targetMultiplicity :String

directed :Boolean

toSource

*

target

1

toTarget

*

source

1

domainElement

name

1notion0..1

DomainStatement Phrase

NotionAttribute

typeName :DataTypes

«enumeration»

DataTypes

Text

Number

Boolean

Date

name

1statement

1statements

*1

attribute *

Fig. 5. Notion metamodel

To complete the domain structure, we need to define relationships between
notions. This is done through DomainElementRelationships which denote rela-
tionships between two DomainElements. Both the source and the target of Do-
mainElementRelationship can have constrained multiplicity described respectively
by the sourceMultiplicity and the targetMultiplicity property. The directed property
indicates whether a relationship is directed (from source to target) or is bidirec-
tional.

In addition to domain statements and relationships, notions can also have
attributes which characterize domain entities. Attributes are represented by No-
tionAttribute metaclass. The type of an attribute is specified by one of the val-
ues from the DataTypes enumeration. For example, the “student” can have such
attributes as “name” or “index number” of primitive type Text and Number re-
spectively.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1505

Wiktor Nowakowski et al.

Course

Atomic unit of learning and marking for the

[n:students] at the Faculty. The [n:courses] are

taught by [n:academic teachers] to the [n:students].

The [n:courses] result in [n:marks]. Every course can

have different [n:classes].

[v:enroll n:student p:for n:course]

[v:validate n:course]

[v:save n:course][v:save n:course]

[v:add n:class p:to n:course]

Fig. 6. Example of textual notation for notions

course list page

show course list page

course list

fetch course list

*

1

course list button

select course list button1 1

1 1

* *

course

validate course

student
index number

* * *

save course

validate course

enroll student for course

save student

delet student name

Fig. 7. Example of graphical notation for notions

The above abstract syntax calls for appropriate concrete syntactic elements.
Our metamodel introduces a special kind of structural domain representation
that explicitly focuses on domain elements. It can be seen as possessing some
of the key object-oriented principles: domain elements can be connected through
domain element associations adorned with multiplicities. We could thus simply
use UML class model notation. However, where a graphical notation is nec-
essary, we propose a notation clearly distinguishing domain elements from
classes. This is to stress its domain modelling (cf. ontological modelling) pur-
pose. This is illustrated in Figures 6 and 7. The first Figure presents a textual
description of the notion “course” with several phrases. It can be noted that
the notion description contains phrases (represented by hyperlinks in the de-
scription). In Figure 7 we can see a graphical notation that includes the same
notion. The phrases have a notation that clearly distinguishes them from e.g.
class operations.

2.3. Hyperlinking Phrases to Build Sentences

The metamodel we have presented allows to organise the domain definition in
the form of a dictionary of phrases. We have already shown that the phrases
can be hypelinked from within the domain element descriptions (see Fig. 6).
However, this can be easily extended to any textual specification. For instance,

1506 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

SVOSentence

PhraseHyperlink

Subject

PhraseHyperlink

Predicate

Phrase

NounPhrase

Phrase

VerbPhrase

HyperlinkedSentence

ConstrainedLanguageSentence

target

1

predicate

*

object 1

verbPhrase 0..1

target

1

subject

*

predicate

1

1

subject

1

1

Fig. 8. Constrained language sentence metamodel

we could organise this way the functional requirements. Through consistent
use of hyperlinks we could significantly raise precision and unambiguity of such
specifications. For this purpose we will thus extend the presented language to
allow formulating full sentences constructed out of hyperlinks.

We have already seen that all the elements used in phrases link to Terms
in the terminology. In fact, phrases consist only of hyperlinks to specific Terms
through the TermHyperlink construct. This idea is extended to use phrases as
targets of hypelinking and to construct specifications as sequences of hyper-
links to phrases. Now, instead of copying the same phrase in many places, we
just point to its definition placed in a central domain specification. This provides
consistency as every hyperlink may point at exactly one element. This is in line
with the findings by Kaindl [18] which indicate that hyperlinks applied in require-
ments specifications are basic facilitators of coherence. However, the approach
is beneficial only with strong tool support, which we will discuss in Section 3.

The precision of system specifications is assured by using hyperlinks that
link interaction flow descriptions with definitions of phrases. In textual specifica-
tions, this leads to the idea of a wiki-like language. Hyperlinks can be inserted
into free-form text using the notation presented in the previous section (see Fig-
ure 6). They can consist of linked term names preceded by a letter with a colon
(“:”) indicating the term type (“n:” for a noun (NounLink), “m:” for a ModifierLink,
“v:” for a VerbLink, “p:” for a PrepositionLink. Each hyperlink text is surrounded
by a pair of square brackets.

Unfortunately, free (although hypelinked) text used in specifications has se-
rious limitations. Namely, it is not suitable for automatic processing (e.g. transla-
tion into design or code, comparison, structured editing, semantic operations),
and it can be formulated still in an unreadable way. To cater for these two prob-
lems we would need to introduce much more rigour and limit the language used.
We will now present such a limited language with SVO sentences. They will use
phrases (or rather: hyperlinks to phrases) as their atomic “lexemes”.

The overall structure of an SVO sentence is shown in Figure 8. It consist of
a Subject that points to a regular (noun-only) Phrase and a Predicate that points
to one of the concrete subtypes of VerbPhrase.

In the simplest case, the Predicate points to a SimpleVerbPhrase. This results
in a grammar that follows the Subject – Verb – Object (SVO) scheme, as pro-

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1507

Wiktor Nowakowski et al.

SVO sentence

System shows course list page

Subject Predicate

Noun phrase Simple verb phrase

Noun Verb Noun

Subject Predicate

Fig. 9. Example of SVO sentence with simple verb phrase

posed by Graham [15]. An example of such a sentence structure is illustrated
in Figure 9. It can be seen that the Predicate of this sentence is a hyperlink to
a SimpleVerbPhrase, and the Subject hyperlinks to a NounPhrase. These phrases
are further hyperlinked to appropriate terms in the terminology.

In a more complex case, the Predicate points to a ComplexVerbPhrase. In
such situation, the sentence is extended by an additional indirect object (SVOO)
allowing to express more complex behaviour involving more than one noun
phrase (eg. “System adds class to course”).

2.4. Use Case Scenario – Sequence of Sentences

It can be argued that most of the observable behaviour of a software system
(its application logic) can be described at the level of requirements with sen-
tences presented in the previous section. For the purpose of defining system’s
behaviour, RSL employs use cases as units of system’s functionality. Each use
case can be detailed with one or more textual scenarios consisting of sentences
in constrained natural language that links to elements of the domain model. RSL
defines only one type of relationship between use cases – the �invoke� rela-
tionship. This relationship denotes the situation where scenarios of a use case
can be invoked from within another (invoking) use case. A detailed example of
notation for use cases and scenarios is shown in Figure 10.

Figure 11 shows a fragment of the RSL metamodel that deals with use case
scenarios. Every RSLUseCase contains at least one ConstrainedLanguageSce-
nario. Scenarios, in turn, are composed of ordered set of scenarioSteps form-
ing paths of scenario execution. Every such step is a subtype of an abstract
ConstrainedLanguageSentence: an SVOSentence, InvocationSentence or Condition-
Sentence. The two latter sentences are special types of ControlSentence.

As it was explained above, the predicate of an SVO sentence in a scenario
describes an operation that can be performed in association with some entity
(eg. “fetch course list”, “save course”). The subject, in turn, indicates who per-
forms the action (eg. “course manager” or “system”).

Every such action can be performed under a certain condition. Condition in
a scenario can be expressed with a ConditionSentence. It is a point where the
scenario flow is determined: a scenario step that follows the ConditionSentence

1508 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

1. Course manager selects course list button

2. System fetches course list

3. System shows course list page

⇒ invoke Add new course

1. Course manager selects add course button

2. System shows add new course page

3. Course manager enters course

4. Course manager selects save course button

5. System validates course

⇒ cond: course valid

6. System saves course

Course Manager

Show course

list

Add new

course

«invoke»

6. System saves course

Fig. 10. Concrete syntax for use case scenarios

HyperlinkedSentence

ConstrainedLanguageSentence

SVOSentence

ContrainedLanguageScenario

RSLUseCase ControlSentence

ConditionSentenceInvocationSentenceInvocationRelationship

scenarioStep

* {ordered}

scenario

0..1

scenarios 1..*

1

invoke *

source 1

invoked*

target1

0..*1 0..*1

Fig. 11. Use case and scenario metamodel

can be executed only if the condition is met. ConditionSentences always exist in
sets of at least two such sentences causing alternative scenarios. The concrete
notation for this type of sentence comprises the “cond” keyword followed by a
single free-text word, as illustrated in Figure 10.

The �invoke� relationship has simple abstract syntax reflected through
the InvokeRelationship metaclass. What is important, every invocation relation-
ship can have several related InvocationSentences within the invoking use case
scenarios. In concrete syntax, such sentences are denoted with the “invoke”
keyword, followed by the name of the invoked use case, as illustrated in Figure
10.

The presented simple constructs are satisfactory for capturing even complex
application logic expressed through related use case scenarios. By the fact that
the RSL grammar is precisely defined through a metamodel, such logic can be

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1509

Wiktor Nowakowski et al.

Re quire mentsSpe cific ation DomainSpecification

DomainElementRe quire mentsPac kage Requirement

RSLUse Case

DomainElements Pack age

Notion

req uirem entsPackages
*

1

1

do main Specificat ion

1

ne stedPacka ge

* 0..1

*

*

1

*

ne stedPacka ge

*
0..1

Fig. 12. Requirements specification metamodel

R
e

q
ir

e
m

e
n

ts
sp

e
ci

fi
ca

ti
o

n ALU
Start

(User) wants to browse

offers

(System) shows offers

browser

(User) uses offers browser

(User) selects offer

End

D
o

m
a

in
X

v
o

ca
b

u
la

ry

D
o

m
a

in
Y

v
o

ca
b

u
la

ry

Application Logic Unit

Domain

vocabulary

Use case model and

interaction description

Y

v
o

ca
b

u
la

ry

Fig. 13. Levels of application logic management

automatically transformed into design-level models and fully operational code
as well.

2.5. Requirements Specification – Container for Requirements and
Notions

All the use cases and their scenarios along with linked notions are contained
within a requirements specification (see RequirementsSpecification metaclass
in Figure 12). It consists of RequirementsPackages that groups Requirements –
RSLUseCases in particular. RequirementSpecification also includes a vocabulary
of notions used in use case scenarios. These notions are grouped in DomainEle-
mentPackages within DomainSpecification. The example structure of requirements
specification in the form of a project tree is shown in Figure 14.

2.6. Application Logic Extension to RSL

To fully facilitate creating solution-independent application logic descriptions,
core RSL was extended with elements enabling efficient management of the

1510 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

application logic building blocks. This extension (called RSL-AL) builds upon
RSL concepts – mainly the separation of system’s dynamics description and
the domain it pertains to (see Figure 13). This gives the possibility of utilizing
patterns of behaviour, to apply the application logic elements at different levels
of abstraction: at the level of individual interactions (described as a scenario),
at the level of functional units (through use cases) and at the level of application
logic units (groups of use cases). The separation between the dynamics and the
domain description facilitates using similar interaction flows in different business
domains, which leads to defining patterns. As core RSL is sufficient to capture
requirements and basic application logic structures, further explanation of RLS-
AL concepts is out of scope of this paper; for more details on the subject please
refer to Ambroziewicz and Śmiałek [2].

3. Process and Tools

In order to evaluate the presented approach, a tooling framework was con-
structed. The intent was to enable processing the models according to the no-
tation and metamodel presented in the previous sections. This included sup-
port for automatic transformations to design-level artifacts and the process of
recovery and migration of the legacy systems to a new architectures. In the
paragraphs below we explain the tooling framework based on these objectives.

3.1. Model-driven Development with ReDSeeDS

The central part of the tool chain is the ReDSeeDS tool, that implements the
RSL metamodel (see sections 1 and 2). The tool offers a set of editors dedi-
cated to different types of domain elements (see Figure 14, bottom-right). The
central point of the tool is the use case scenario editor (as illustrated in Figure
14, top-right). It allows for writing use case scenarios in RSL. The sentences are
referencing domain specification elements and marked with colours according
to hyperlink types. The tool allows to manage the domain specification elements
directly from the use case editor or using a typical tree-like browser (see Figure
14, left).

The process from requirements to code using the ReDSeeDS tool is shown
in Figure 15. The first step is to produce the RSL model from the user require-
ments using the RSL Editor. The second step is to execute a transformation us-
ing a transformation engine that produces target models and code. The engine
developed within this work uses transformation programs written in MOLA [21]
that is a graphical language with an activity-diagram-like notation. Any transfor-
mation expressed in MOLA consists of the meta-models for the transformation
source and target models, together with one or more transition procedures. The
MOLA meta-modelling language is close in its specification to that of EMOF
(Essential MOF [27]). MOLA procedures form the executable part of the MOLA
transformation.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1511

Wiktor Nowakowski et al.

S
ce

n
a

rio
e

d
ito

r
N

o
tio

n
 e

d
ito

r

Project browser

Fig. 14. Editors and browsers of the ReDSeeDS tool

The structure and notation of the target model depends on the chosen trans-
formation profile as shown in Figure 16. Currently “RSL to UML” and “RSL to
Java” transformation profiles are ready to use and “RSL to SoaML” is planned.
The “RSL to UML” transformation profile (see work by Śmiałek [34]) implements
the MDA concepts (according to [9]) with the requirements specification as the
CIM (Computation Independent Model), 4-layer solution architecture as the PIM
(Platform Independent Model) and detailed design based on abstract factory in
Java as the PSM (Platform Specific Model) [5]. The target models also contains
sequence diagrams describing the behaviour based on use case scenarios. All
messages exchanged in sequence diagrams are generated as operations in the
corresponding interfaces thus keeping the target model coherent.

The “RSL to Code” transformation generates full structure of the system
following the MVP architectural pattern (see [30] for the pattern definition), in-
cluding complete method contents for the application logic (Presenter) and pre-
sentation (View) layers. It also provides a code skeleton for the domain logic
(Model) layer. This is presented in Figure 17, that has been generated from the
model in Figure 10. According to one of the transformation rules, each use case
is transformed into an application logic class. The realisation of this simple rule
is the generation of classes CAddNewCourse and CShowCourseList in Figure 17.
We can even go further and generate important parts of dynamic code, as it
was shown recently by Šimko et al. [39] and Śmiałek [33]. For instance, Figure

1512 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

ReDSeeDS Framework

MOLA transformation

engine

RSL

model

User

requirements

RSL Editor

Target models

+ code

1

2
3

Fig. 15. Model-driven forward engineering with ReDSeeDS

RSL to

Java

Component

architecture

model in UML

Design model

based on

Abstract

Factory pattern

Java application

specific design

model in UML

Runnable

application

code

in Java

Code skeleton

in an object-

oriented

language

RSL to

UML

RSL

model
model in UML

in Java

SOA model

in SoaML

Specific cloud

platform model
RSL to

SOA

Fig. 16. Transforming RSL-AL model into different target models

18 presents a small fragment of application logic code generated automatically
from the model in Figure 10. As it can be seen, all the “user” sentences (1, 3
and 5) were transformed into operations in the presenter classes. Furthermore,
the “system” sentences (2, 4 and 6) were transformed into operation calls to
appropriate “view” (denoted by “v”) or “model” (denoted by “m”) objects. The re-
sulting code can be fully operational in regard to the application logic, i.e. it can
fully control all the flows of user-system interaction. What is important, the code
can also contain decisions (“if” statements) that control the interaction flow de-
pending on the user decisions or the current system state. Such decisions can
be generated on the basis of alternative scenarios, but a detailed discussion
is out of scope of this paper. A more detailed description of use case scenario
translational semantics can be found in [37].

The planned “RSL to SoaML” transformation, similarly to the “RSL to UML”
transformation, will implement the MDA concepts. The Service oriented archi-
tecture Modeling Language (SoaML) is a new specification from the Object
Management Group (OMG) that provides a metamodel and a UML profile sup-
porting different service modelling scenarios [28]: single service description,
service-oriented architecture modelling, or service contract definition. Due to
the fact that SoaML and UML have the common metamodel, transformations

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1513

Wiktor Nowakowski et al.

CAddNewCourse

_SelectsAddNewCourseOption() : void

_SelectsAddNewCourseOption(invokingUC :IInvoke) : void

SelectsOK(pCourse :XCourse) : void

SelectsOK_2() : void

CShowOwnedCourseList

_SelectsShowCourseListOption() : void

SelectsOK() : void

invokeAddCourse() : void

invokeEditCourse() : void

returnInvokeResult(res :int) : void

JFrame

VCourseForm

displays(aCourse :XCourse) : void

JFrame

VCourseListForm

shows(aCourseList :XCourseList) : void

JFrame

VErrorMessage

shows() : void

vCourseForm

cAddNewCourse cAddNewCourse

vErrorMessage

cShowOwnedCourseList

vCourseListForm

P
r
e
s
e
n
te
r

V
ie
w

MCourse

fetches(aCourse :XCourse) : void

getResult() : int

saves(aCourse :XCourse) : void

validates(aCourse :XCourse) : void

MCourseList

builds(aCourseList :XCourseList, aTeacher :XTeacher) : void

getResult() : int

returnInvokeResult(res :int) : void
cAddNewCourse

mCourse

cAddNewCourse

cShowOwnedCourseList

cShowOwnedCourseList

mCourseList

M
o
d
e
l

Fig. 17. Fragment of the Java application design model generated with the RSL to Java
transformation

into SoaML UML are expected to be similar. The output model of both groups
of transformations is an UML-based logical system design at different levels
of abstraction, relevant to the structure of the source requirements specifica-
tion (use cases, notions and packages). The “RSL to SoaML” transformation is
expected to generate the structured model of services constructed with stereo-
typed packages, components, interfaces and classes.

3.2. Recovery and Migration of Legacy System Essence with TALE

The recovery and migration process outline, supported by the tool-chain, is pre-
sented in the Figure 19. The main objectives of the process are recovery of the
system essence and migration of application logic information from the existing
systems, with an intermediate step of storing the application logic information
using the RSL metamodel and its RSL-AL extension.

The recovery phase encompasses the idea of semi-automatic reverse en-
gineering while the migration phase is based on model-driven forward engi-
neering techniques described in the previous section. In the process we first
analyse the legacy system’s UI by using a GUI-ripping tool (see a discussion
on this notion by Memon et al. [25]). While performing this step, the GUI-ripping
tool records the interactions representing the system’s application logic. This
includes the user inputs (buttons clicked, data entered, widget focus gained,
etc.) and respective system responses (windows displayed, messages shown
to the user or even textual console behaviour). An example of such “recorded”

1514 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

class VCourseForm {

...

JButton btnSaveCourse = new JButton(„Save course");

btnSaveCourse.addActionListener (new ActionListener() {

public void actionPerformed(ActionEvent evt) {

...

cAddCourseList.SelectsSaveCourseButton(course);

}

});

...

}

class CAddNewCourse {

...

public void SelectSaveCourseButton(XCourse course) {

int res = 0;

res = mCourse.validates(course);

if (res == 0 /*course valid*/) {

mCourse.saves(course);

} else if (res == 1 /*course invalid*/) {

vErrorMessage = new VErrorMessage();

vErrorMessage.shows();

}

}

...

Fig. 18. Fragment of the code generated automatically from Java application design
model

Legacy

system

GUI-ripping

tool

ReDSeeDS Framework

R
e
co
v
e
ry

1

2

MOLA transformation

engine

Refined

RSL model

Recovered

RSL model

RSL Editor

TALE

XML

scripts

R
e
co
v
e
ry

M
ig
ra
ti
o
n

2

3

4

Target models

+ code

5

Fig. 19. Overview of the recovery and migration process and tools

interaction is illustrated in Figure 20a. This flow of event concerns functionality
of searching a client (in Polish: Wyszukiwanie klienta) in our case study legacy
banking system. During this, the GUI-ripping tool records the flows of interaction
representing the system’s application logic.

In our evaluation, for GUI-ripping we have used a commercial test manage-
ment tool (Rational Functional Tester, www.ibm.com/software/awdtools/
tester/functional/). However, any tool allowing for interaction recording
to some form of structured text files can be integrated with our software. The
tool we used, records sequences of interactions into XML-based scripts (see 2
in the process outline in Figure 19).

The next step of the recovery process is to transform scripts obtained from
the GUI-ripping tool into an RSL model (see 3 in Figure 19). This is done with
the TALE – Tool for Application Logic Extraction. This novel tool automatically
extracts sequences of user-system interactions producing scenarios with SVO

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1515

Wiktor Nowakowski et al.

a

b

c

Fig. 20. An example of GUI interaction (a), the automatically recovered RSL-AL model
(b) and the manually refined final model (c)

sentences. Figure 20b shows an automatically extracted scenario representing
the interaction illustrated in Figure 20a. All the extracted scenarios are attached
to use cases, which are grouped within the “Functional Requirements” package
forming the recovered model (see the project tree in Figure 20b).

Furthermore, the TALE tool also re-creates the domain vocabulary contain-
ing domain notions (created mainly based on data passed to and from the user)
and UI elements (windows, buttons, input fields, etc.) used in the recovered in-
teraction description. All this elements are stored in the “Domain Specification”
package. The important capability of the tool is ability to extract information
about the composition of specific notions. For example, when there is a form

1516 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

displayed to enter personal data (such as first name, last name, PESEL num-
ber, etc. – see the “Osoba fizyczna” tab in Figure 20a), a composite notion for
“Osoba fizyczna data” is created. Such notion contains attributes for every field
filled on the form, instead of a number of unrelated notions coresponding to
these fields. This reduces the unnecessary complexity of the recovered model
by minimizing the amount of simple notions created from the GUI recordings.

The recovered initial model, thanks to the characteristics of the RSL lan-
guage, is easily understandable to people (even those barely knowledgeable
of the original system internals) thus giving the possibility of its easy exten-
sion and modification. This can be made in the ReDSeeDS tool. First of all,
some modifications are needed because not all of the application logic infor-
mation can be automatically retrieved from the recording scripts. This includes
sentences that control flow of scenario execution (conditions and �invoke�
sentences) and sentences expressing internal system operations (eg. calls to
business logic operations), such as “System verifies data”, “System stores in-
formation”, “System deletes item from item list” etc. Also the domain vocabu-
lary usually needs renaming some of the automatically recovered notions. The
generated use case specification can also be subject to manual modifications
and additions. Changes can be done to cater the migrated system for new or
changed functionality or just to optimize some scenario flows, eg. by applying
standard application logic patterns [2]. Also, we need to reorganise the model
according to the needs of the selected transformation rules. Figure 20c shows
the recovered model after refinements.

The refined model (see 4 in the process outline in Figure 19) contains both
the still relevant “legacy” specifications and the “new” ones. This constitutes
the “essence” of the application logic. We can now use this essence to migrate
to a new system design. The migration phase is realised as described in the
previous section (as denoted in Figure 19).

4. Evaluation

By using the presented tooling environment several studies are currently un-
dertaken. First, there is performed a larger case study based on a legacy credit
management system, used by several banks in Poland (see examples in the
previous section). This study is performed in cooperation with Infovide-Matrix
S.A. (large Polish software consultancy/provider). The system’s observable ap-
plication logic has been already recovered into RSL models. The current work
focuses on improving existing transformation programs in order to enable mi-
gration of the legacy system to the new system architecture fulfilling specific re-
quirements. The current results show very promising levels of application logic
that can be recovered from a legacy system. What is important, this recovery
is to large extent automatic. Furthermore, the recovered logic is brought to the
level of requirements understandable to the users. It was already shown by
Jedlitschka et al. [17] that such structured specifications with precisely defined
domain vocabularies are well accepted as simply being a better way of express-

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1517

Wiktor Nowakowski et al.

ing requirements. While working within such a “discover notions – write struc-
tured sentences” framework, the analysts are encouraged to be acquainted with
software system’s environment and are stimulated to write precise, clearly for-
mulated requirements statements.

Further studies, in order to validate the ReDSeeDS model-driven software
development approach, were performed with students attending the “Model
Driven Software Engineering” course at the Warsaw University of Technology.
The students were instructed on RSL constructs and had previously gained
knowledge about constructing Model-View-Controler/Presenter style systems,
using UML and Java. During the classes, they were formed into 8 groups con-
sisting of 3-4 students each. All the groups were assigned a ready use case
model of a Campus Management System, containing 12 use cases with invoke
relationships. The first assignment consisted in writing scenarios for the use
cases. Four groups wrote the scenarios using the ReDSeeDS tool, while four
other groups used a structured use case editor built into Enterprise Architect
(EA). The EA editor did not enforce any syntax for the story sentences, although
allowed for almost identical structure of scenarios with conditions and notation
for alternatives. Moreover, it allowed for hyperlinking of sentence parts to other
model elements and the students were asked to introduce links to classes that
represented concepts.

The students had 4 hours (2 lab sessions) to write their scenarios and were
asked to write them only during the classes. All the groups managed to write
good quality scenarios for all the assigned use cases. There were no signif-
icant differences between the groups using EA and ReDSeeDS. The groups
produced from 121 to 159 scenario sentences (more than 10 sentences per
use case) of all types. The average values are illustrated in Figure 21. Based
on this, the groups were asked to implement their systems in Java having 10
hours (5 lab sessions). Each scenario sentence was treated as complete if the
system managed to pass appropriate data between layers and output “debug”
messages. Two of the groups used the RSL to Java transformation, two groups
used the standard RSL to UML transformation. The remaining four groups per-
formed manual translation into UML and then code generation within the EA.
The first two groups of students managed to implement almost half of the func-
tionality, where on average 68 out of 141 sentences were implemented. It has to
be noted that these two groups had extended acceptance criteria where the “de-
bug” messages for the presentation layer were substituted with Swing-style GUI
forms. The last four groups of students managed to implement 21 sentences on
average. The groups that used the standard RSL to UML transformation per-
formed somewhat better with the average of 28 sentences. A visual comparison
is given in Figure 21.

The above simple experiment shows significant improvement in productivity
when using fully automatic transformation from RSL to code. However, it needs
to be pointed out that it has certain threats to validity. First, the groups could be
composed of students with imbalanced qualifications. This was reduced by se-
lecting eight team leaders that performed best during previous classes. These

1518 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

0 20 40 60 80 100 120 140 160

ReDSeeDS RSL to Java

(2 groups)

ReDSeeDS RSL to UML

Average sentences

written
ReDSeeDS RSL to UML

(2 groups)

Enterprise Architect

(4 groups)

Average sentences

implemented

Fig. 21. Student group performance during the evaluation experiment

team leaders chose their group members during a “draft” session thus balanc-
ing qualifications between teams. Second, the results could be influenced by
lack of necessary proficiency in software design by the groups not using the
fully automatic translation. This threat is to some extent reduced by the fact that
all the students had previous experience in designing non-trivial three-tier de-
sign models during a “Software Design” course. Third, the tooling environment
could influence the students’ performance. The EA system was stable and no
problems were reported, but the ReDSeeDS system caused some issues due
to its prototypical characteristics. In order to assess the last two threats, certain
additional (“anecdotal”) information from the students was collected. This con-
firms that the students from the “EA” and “RSL to UML” groups had problems
in designing the systems (or implementing the application logic code within the
generated design) by hand and this took most of their implementation time.
The automatically generated code gave significant guidance thus improving the
performance of the respective groups. The students using ReDSeeDS have re-
ported several problems with using the system, although this did not interfere
significantly with their flow of work.

5. Conclusion and Future Work

The presented language aims at capturing the essence of the system’s function-
ality. It can be noted that the specifications are written at the level of detailed
functional requirements. What is important, these requirements are written in
near-natural language thus making it accessible to the end-users (see relevant
work by Śmiałek [32]). At the same time, specifications are based very coher-
ently on the domain definition by pointing to centrally defined domain state-
ments (phrases). To define the application logic, the specifications can contain
only pointers (hyperlinks) to centrally defined noun and verb phrases. A se-
quence of such hyperlinks forms a scenario describing the user-system inter-
actions. Our experience shows that such application logic scenarios are easy

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1519

Wiktor Nowakowski et al.

to write by inexperienced developers (analysts) and even the end-users. This
can be done using any tool that allows for hyperlink management. This promi-
nently includes wiki systems, but also some CASE tools enable this (see e.g.
the scenario editor of Enterprise Architect, www.sparxsystems.com).

Writing scenarios hyperlinked to a central vocabulary gives important ele-
ment of coherence to specifications. However, in order to be able to perform
automatic transformations or semantic-based matching [40], we need a tool
that implements the presented (or analogous) metamodel. In the current work
we have shown that it is also possible to use such a tool as a repository for es-
sential application logic recovered from legacy systems. This repository gives
an additional advantage of generating code directly from high-level scenarios.
This includes not only the code structure (classes, method signatures) but also
the dynamics (method bodies) for the application logic layer.

It can be noted that the presented results can be extended in the direction
of creating a more expressive language at the “essential” level. It has to be
stressed that the language is not meant for data processing. Thus, it will not
possess typical data-processing constructs like loops or variables. Instead, it
concentrates on capturing application logic, where loops are implicit through
repeated system-user interaction. The currently ongoing work focuses on im-
proving utilization of application logic patterns as proposed by Ambroziewicz
[2]. The presented language can be used as a pattern language where the noun
and verb phrases can be abstracted from a particular problem domain. The pat-
terns can operate on a generalised domain and then can be instantiated for a
specific domain.

Future work will also include extending the TALE tool to be able to recover
scenarios combined into use cases on the basis of analysis of GUI-ripping re-
sults. It will also consist in extending the language into a language fully capable
of performing “programming” at the level of essential application logic. The goal
is to move much of such programming activity to a significantly higher level of
abstraction than currently. This way, the application logic programming can be-
come accessible even to the end-users. It has to be noted that this language
would not yet capture all the essence of a software system functionality. The
domain logic will not be expressed in any way. The domain statements would
indicate the necessary domain functionality (data processing algorithms etc.),
but not define this functionality.

modifier

noun

verb

modifier

noun

preposition

modifier

noun

Fig. 22. SVO sentence grammar state machine

1520 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

Finally, it has to be noted that the SVO grammar is a kind of controlled
language with formal grammar as presented in Figure 22 (see also e.g. work by
Fuchs et al. [14] or Sleator and Temperley [31]). In this grammar, subclasses
of Term metaclass in Figure 3 are terminal symbols. We can thus use a simple
analyzer based on a finite state machine to parse SVO sentences.

The grammar as such does have some difficulties with reflecting different
natural languages. Some heavily inflected languages, like Polish, need suffixes
and prefixes for words, even in sentences with similar structure and meaning.
Another problem is that some languages (e.g. German, Turkish) allow for differ-
ent order of words in a sentence. This can be solved by adding, for example,
attributes to sentence classes, indicating word order or language used for this
sentence. Nonetheless handling of multi-language specifications is a very inter-
esting challenge for future research and should be investigated further.

Acknowledgments. This research has been carried out in the REMICS project (http:
//www.remics.eu) and partially funded by the EU (ICT-257793 under the 7th Frame-
work Programme).

References

1. Resource Description Framework (RDF), http://www.w3.org/RDF/
2. Ambroziewicz, A., Śmiałek, M.: Application logic patterns – reusable elements of

user-system interaction. In: Model Driven Engineering Languages and Systems,
Lecture Notes in Computer Science, vol. 6394, pp. 241–255 (2010)

3. Bjôrner, D.: Software Engineering 3: Domains, Requirements, and Software Design.
Texts in Theoretical Computer Science. An EATCS Series, Springer (2006)

4. Bjôrner, D.: Rôle of domain engineering in software development. why current re-
quirements engineering is flawed! Lecture Notes in Computer Science 5947, 2–34
(2010), PSI 2009

5. Bojarski, J., Straszak, T., Ambroziewicz, A., Nowakowski, W.: Transition from pre-
cisely defined requirements into draft architecture as an MDA realisation. In:
Smiałek, M., Mukasa, K., Nick, M., Falb, J. (eds.) Model Reuse Strategies Work-
shop, Beijing. pp. 35–42 (2008)

6. Brooks, F.P.: No silver bullet: Essence and accidents of software engineering. IEEE
Computer 20(4), 10–19 (April 1987)

7. Chan, C.W.: Knowledge and software modeling using UML. Software and Systems
Modeling 3(4), 294–302 (2004)

8. Dixon, R.M.: A new approach to English Grammar, on semantic principles. Oxford
University Press (1991)

9. Elvesaeter, B., Berre, A.J., Sadovykh, A.: Specifying services using the service
oriented architecture modeling language (SoaML) - a baseline for specification of
cloud-based services. In: Leymann, F., Ivanov, I., van Sinderen, M., Shishkov, B.
(eds.) CLOSER. pp. 276–285. SciTePress (2011)

10. Evans, E.: Domain Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley (2004)

11. Evermann, J., Wand, Y.: Toward formalizing domain modeling semantics in lan-
guage syntax. IEEE Transactions on Software Engineering 31(1), 21–37 (January
2005)

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1521

Wiktor Nowakowski et al.

12. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press (1998)
13. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA (2002)
14. Fuchs, N.E., Höfler, S., Kaljurand, K., Rinaldi, F., Schneider, G.: Attempto controlled

english: A knowledge representation language readable by humans and machines.
Lecture Notes in Computer Science 3564, 213–250 (2005)

15. Graham, I.M.: Task scripts, use cases and scenarios in object-oriented analysis.
Object-Oriented Systems 3(3), 123–142 (1996)

16. Iglesias, C.A., Fernández-Villamor, J.I., Pozo, D., Garulli, L., Garcı́a, B.: Combining
domain-driven design and mashups for service development. In: Dustdar, S., Li, F.
(eds.) Service Engineering, pp. 171–200. Springer Vienna (2011)

17. Jedlitschka, A., Mukasa, K.S., Weber, S.: Case reuse verification and validation
report. Project Deliverable D6.2, ReDSeeDS Project (2009), www.redseeds.eu

18. Kaindl, H.: Using hypertext for semiformal representation in requirements engineer-
ing practice. The New Review of Hypermedia and Multimedia 2, 149–173 (1996)

19. Kaindl, H., Śmiałek, M., , Wagner, P., et al.: Requirements specification language
definition. Project Deliverable D2.4.2, ReDSeeDS Project (2009), www.redseeds.eu

20. Kaindl, H., Snaprud, M.: Hypertext and structured object representation: A unify-
ing view. In: Proceedings of the Third ACM Conference on Hypertext. pp. 345–358
(1991)

21. Kalnins, A., Barzdins, J., Celms, E.: Model transformation language MOLA. Lecture
Notes in Computer Science 3599, 14–28 (2004), MDAFA’04

22. Kleppe, A.G., Warmer, J.B., W, B.: MDA Explained, The Model Driven Architecture:
Practice and Promise. Addison-Wesley (2003)

23. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Addison-Wesley Professional, 1 edn. (2008)

24. Kollár, J., Vagač, M.: Aspect-oriented approach to metamodel abstraction. COM-
PUTING AND INFORMATICS 31(5), 983–1002 (2012), http://www.cai.sk/
ojs/index.php/cai/article/view/1184

25. Memon, A.M., Banerjee, I., Nagarajan, A.: GUI ripping: Reverse engineering of
graphical user interfaces for testing. In: Proceedings of the 10th Working Confer-
ence on Reverse Engineering. pp. 260–269 (2003)

26. Miller, J., Mukerji, J. (eds.): MDA Guide Version 1.0.1, omg/03-06-01. Object Man-
agement Group (2003)

27. Object Management Group: Meta Object Facility Core Specification, version 2.0,
formal/2006-01-01 (2006)

28. Object Management Group: Service Oriented Architecture Modeling Language
(SoaML) Specification, version 1.0, formal/2012-03-01 (2012)

29. Pérez-Castillo, R., de Guzmán, I.G.R., Piattini, M.: Knowledge Discovery
Metamodel-ISO/IEC 19506: A standard to modernize legacy systems. Comput.
Stand. Interfaces 33(6), 519–532 (2011)

30. Potel, M.: MVP: Model-View-Presenter the taligent programming model for C++ and
Java. Taligent Inc (1996)

31. Sleator, D.D.K., Temperley, D.: Parsing english with a link grammar. Tech. Rep.
CMU-CS-91-196, Department of Computer Science, Carnegie Mellon University
(1991)

32. Śmiałek, M.: Accommodating informality with necessary precision in use case sce-
narios. Journal of Object Technology 4(6), 59–67 (2005)

33. Śmiałek, M.: Requirements-level programming for rapid software evolution. In:
Barzdins, J., Kirikova, M. (eds.) Databases and Information Systems VI, chap. 3,
pp. 37–51. IOS Press (2011)

1522 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

34. Śmiałek, M., Ambroziewicz, A., Bojarski, J., Nowakowski, W., Straszak, T.: Introduc-
ing a unified requirements specification language. In: Proc. CEE-SET’2007, Soft-
ware Engineering in Progress. pp. 172–183. Nakom (2007)

35. Smialek, M., Ambroziewicz, A., Nowakowski, W., Straszak, T., Bojarski, J.: Using
structured grammar domain models to capture software system essence. In: FedC-
SIS. pp. 1349–1356 (2012)

36. Śmiałek, M., Bojarski, J., Nowakowski, W., Straszak, T.: Writing coherent user sto-
ries with tool support. Lecture Notes in Computer Science 3556, 247–250 (2005),
XP’05

37. Smialek, M., Jarzebowski, N., Nowakowski, W.: Runtime semantics of use case
stories. In: VL/HCC. pp. 159–162 (2012)

38. Vagač, M., Kollár, J.: Improving program comprehension by automatic metamodel
abstraction. Computer Science and Information Systems 9(1), 235–247 (2012)

39. Šimko, V., Hnětynka, P., Bureš, T.: From textual use-cases to component-based ap-
plications. Studies in Computational Intelligence 295, 23–37 (2010)

40. Wolter, K., Śmiałek, M., Hotz, L., Knab, S., Bojarski, J., Nowakowski, W.: Map-
ping MOF-based requirements representations to ontologies for software reuse. In:
CEUR Workshop Proceedings (TWOMDE’09). vol. 531 (2009)

Wiktor Nowakowski is currently pursuing his PhD at the Institute of Theory
of Electrical Engineering, Measurement and Information Systems at the War-
saw University of Technology. His main area of research interest is in Require-
ments Engineering, Model-Driven Software Development, metamodeling and
Software Language Engineering. He is also engaged in teaching in these areas.
Wiktor has an extensive experience working on small- to large-scale projects in
roles covering all stages of the software development life cycle.

Michał Śmiałek is a Professor of Computer Science at the Warsaw University
of Technology. He lectures mainly in the area of Model-Driven Software Devel-
opment both in the academia and for software professionals. Prof. Śmiałek has
also over 20 years of experience in software development as a programmer,
analyst, process engineer and project manager. He has published over 70 peer
reviewed papers and a popular book on UML. Michał Śmiałek leads the SMoG
research group that is involved in research and international projects in the area
of Model-Driven Requirements Engineering.

Albert Ambroziewicz is professionally engaged in software engineering, mostly
in topics related to modeling and metamodeling. He is interested in practical im-
plementations of solutions connected with Model Driven Architecture issues, as
well as CASE tools support for industrial usage of UML. Currently he partici-
pates in the REMICS project. In the past he took part in several commercial
projects, mostly in the fields of enterprise architecture, analysis, R&D and pro-
totyping.

Tomasz Straszak is a researcher interested in software modeling, require-
ments engineering and test engineering. He is an active member of the Soft-

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1523

Wiktor Nowakowski et al.

ware Modeling Group at the Warsaw Unieversity of Technology. He gained pro-
fessional experience in telco and banking sectors working as a system/business
analyst, software and solution architect and programmer.

Received: December 10, 2012; Accepted: July 3, 2013.

1524 ComSIS Vol. 10, No. 4, Special Issue, October 2013

DOI:10.2298/CSIS121105044D

A DSL for the Development of Software Agents

working within a Semantic Web Environment

Sebla Demirkol
1
, Moharram Challenger

1
, Sinem Getir

1
, Tomaž Kosar

2
,

Geylani Kardas
1*, and Marjan Mernik

2

1
 International Computer Institute, Ege University, Bornova, 35100 Izmir, Turkey

sebla.demirkol@ege.edu.tr, moharram.challenger@mail.ege.edu.tr,
sinem.getir@ege.edu.tr, geylani.kardas@ege.edu.tr

2
 Faculty of Electrical Engineering and Computer Science, University of Maribor,

Smetanova 17, 2000 Maribor, Slovenia
tomaz.kosar@uni-mb.si, marjan.mernik@uni-mb.si

Abstract. Software agents became popular in the development of
complex software systems, especially those requiring autonomous and
proactive behavior. Agents interact with each other within a Multi-agent
System (MAS), in order to perform certain defined tasks in a
collaborative and/or selfish manner. However, the autonomous,
proactive and interactive structure of MAS causes difficulties when
developing such software systems. It is within this context, that the use
of a Domain-specific Language (DSL) may support easier and quicker
MAS development methodology. The impact of such DSL usage could
be clearer when considering the development of MASs, especially
those working on new challenging environments like the Semantic
Web. Hence, this paper introduces a new DSL for Semantic Web
enabled MASs. This new DSL is called Semantic web Enabled Agent
Language (SEA_L). Both the SEA_L user-aspects and the way of
implementing SEA_L are discussed in the paper. The practical use of
SEA_L is also demonstrated using a case study which considers the
modeling of a multi-agent based e-barter system. When considering
the language implementation, we first discuss the syntax of SEA_L and
we show how the specifications of SEA_L can be utilized during the
code generation of real MAS implementations. The syntax of SEA_L is
supported by textual modeling toolkits developed with Xtext. Code
generation for the instance models are supplied with the Xpand tool.

Keywords: Domain-specific Language, Metamodel, Multi-agent
System, Semantic Web.

* Corresponding author. Tel:+90-232-3113223 Fax: +90-232-3887230

Sebla Demirkol et al.

1526 ComSIS Vol. 10, No. 4, Special Issue, October 2013

1. Introduction

Software agents [1] [2] are autonomous software components which are able
to act on behalf of their users in order to perform a group of defined tasks.
Many intelligent software agents interact with each other within a system
called Multi-agent System (MAS). Their interactions can be either
cooperative or selfish [45]. Software agents and MASs are recognized as
both useful abstractions and effective technologies for the modeling and
building of complex distributed systems. The implementation of these
autonomous, responsive, and proactive systems is naturally a complex task.

Additionally, the Semantic Web improves the World Wide Web such that
the web pages’ contents can be interpreted using ontologies [46]. Therefore,
this new-generation web helps machines to understand web content. It is
apparent that the interpretation in question will be realized by autonomous
computational entities (i.e. agents) in order to handle the semantic content on
behalf of their users. Surely, a Semantic Web environment has specific
architectural entities, and thus a different semantics needs to be considered
for modeling a MAS within its environment. Thus, the Semantic Web
evolution has spawned a new vision regarding agent research. Software
agents are planned for collecting Web content from diverse sources,
processing the information, and exchanging the results. Autonomous agents
can also evaluate semantic data and collaborate with semantically defined
entities of the Semantic Web like semantic web services, by using content
languages. However, considering agent interactions with Semantic Web
elements adds more complexity for designing and implementing these
systems.

On the other hand, the Model Driven Development (MDD) is also one of
the important software development approaches, moving software
development from code to models [43], which increases productivity [26] and
reduces development costs [47]. The design and implementation of a MAS
may become more complex when new requirements and interactions for new
agent environments like Semantic Web are considered. MDD can provide an
infrastructure that simplifies the development of such MASs. Being able to
work at a higher abstraction level is of critical importance for the
development of MASs since it is almost impossible to observe the code level
details of the MASs due to their internal complexity, distributedness and
openness. Hence, such an MDD application can increase the abstraction
level during MAS development. MDD uses different approaches for realizing
its goals. One of these methods is Domain-specific Language (DSL)
development [8, 14, 29, 32, 48]. DSLs are languages which are comprised of
a domain’s concepts and terminologies in order to supply the requirements of
the domain. A DSL allows end-user programmers (domain experts) to
describe the essence of a problem using abstractions related to a domain
specific problem space.

We present a new DSL for designing and implementing MASs working
within a Semantic Web environment, by motivating from the expressive
powers of DSLs and MDD. We call this new DSL as Semantic web Enabled

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1527

Agent Language (SEA_L). An abstract syntax and a concrete syntax for
SEA_L are discussed in the paper, that originated from the domain-specific
metamodel, which is first introduced in [4]. Furthermore, transformations
required for code generation from the specifications of SEA_L are defined in
order to realize the implementation of modeled MAS in various agent
execution platforms.

This paper is an extended version of the paper [6]. It differs from the latter
by including a discussion of all viewpoints, the full specification of two crucial
viewpoints of the proposed DSL, and a detailed discussion regarding the
practical usage of the language within the scope of a case study. The case
study covers the design and real implementation of an agent-based e-barter
system. Again different from the paper [6], discussion of the agent-based e-
barter business domain is elaborated as well as modeling and code
generation for agent internals have been added in this paper. Moreover, in
this paper the user and implementation aspects of the proposed DSL are
discussed separately. Firstly, we present an overview of the SEA_L
language, together with a case study. Then the implementation details are
stated.

The remainder of the paper is organized as follows: An overview of the
new language is given in Section 2 along with an example. The abstract
syntax, the textual concrete syntax, and the code generation mechanism for
new DSL are discussed in Section 3. In Section 4, the related work is
presented. Finally, Section 5 concludes the paper, and states the future work.

2. The SEA_L Domain-Specific Language

In order to separate the 'user' aspects of the SEA_L from its implementation
details, in this section we present SEA_L concepts and how to use them,
along with a case study and in the next section a discussion on the
implementation details of SEA_L.

Since SEA_L is designed for developers of MASs working within the
Semantic Web environments, the language’s main concepts consist of both
MAS and Semantic Web terminologies.

In a Semantic Web enabled MAS, software agents can gather Web
contents from various resources, process the information, exchange the
results, and negotiate with other agents. Within the context of these MASs,
autonomous agents can evaluate semantic information and work together
with semantically defined entities, like Semantic Web Services, using a
content language.

SEA_L is divided into eight viewpoints in order to provide clear
understanding and efficient usage. These viewpoints are:

1. Agent Internal Viewpoint: This viewpoint is related to the internal
structures of semantic web agents (SWA) and defines those entities and their
relations required for the construction of agents. It covers both reactive and
Belief-Desire-Intention (BDI) [41] agent architectures.

Sebla Demirkol et al.

1528 ComSIS Vol. 10, No. 4, Special Issue, October 2013

2. Interaction Viewpoint: This aspect of the language expresses the
interactions and communications in a MAS by taking messages and message
sequences into account.

3. MAS Viewpoint: This viewpoint solely deals with the construction of a
MAS as a whole. It includes those main blocks of which the complex system
is composed as an organization.

4. Role Viewpoint: This perspective delves into the complex controlling
structure of the agents. All role types such as Ontology Mediator Role or
Registration Role are modeled in this viewpoint.

5. Environmental Viewpoint: Agents may need to access some resources
(e.g. services and knowledge-bases (considering the facts about the
surroundings)) within their environments. The usage of resources and the
interactions of agents with their surroundings are covered in this viewpoint.

6. Plan Viewpoint: This viewpoint deals particularly with Plans’ internal
structures. Plans are composed of some Tasks and atomic elements such as
Actions.

7. Ontology Viewpoint: SWAs know various ontologies as they work with
Semantic Web Services (SWS) and also some ontological concepts which
constitute agents’ knowledge-bases (such as belief and fact).

8. Agent-SWS Interaction Viewpoint: This is probably the most important
viewpoint of SEA_L. The interactions of agents with SWSs are described
within this viewpoint. Entities and relations are defined for service discovery,
agreement, and execution. The internal structures of SWSs are also
modeled.

SemanticWebAgent (SWA) in SEA_L stands for each agent within the

Semantic Web enabled MAS. A SemanticWebAgent is an autonomous entity
which is capable of interaction with both other agents and
SemanticWebServices (SWS) within the environment. SemanticWebAgents
can be associated with more than one Role at any time (multiple
classifications), and can change roles over time (dynamic classification). An
agent can play roles within various environments, have a state (Agent State),
and own a type (Agent Type) during its execution.

A SemanticWebAgent can interact with various services including
SemanticWebServices. A SemanticWebService represents a service (except
for an agent service), its capabilities, and its interactions, semantically. A
SemanticWebService is composed of one or more Web Service entities. The
corresponding services must have a semantic interface that is going to be
used by platforms’ agents.

A SemanticWebAgent applies Plans to perform their Tasks. 'Semantic
Service Register Plan' (SS_RegisterPlan), 'Semantic Service Finder Plan'
(SS_FinderPlan), 'Semantic Service Agreement Plan' (SS_AgreementPlan)
and 'Semantic Service Executor Plan' (SS_ExecutorPlan) are extensions of
the Plan. Agents use the SS_RegisterPlan for communication with a service
registry to discover service capabilities. Other Plans are used to discover
SemanticWebServices dynamically, call the services, obtain agreement with

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1529

them and execute them, respectively. Finally, a SSMatchmakerAgent can
play a RegistrationRole to advertise a SemanticWebService.

SEA_L also covers the already expected and traditional MAS entities (in
addition to above mentioned items) such as Capabilities, Goal, Belief, and so
on. SEA_L also defines various relations for these entities such as
appliesPlan, includesBelief, usesGoal, postCondition, realized_by, and so on.
When considering SWSs and their use within MASs, there are entities like
Grounding, Process, Interface, SSMatchmakerAgent, RegistrationRole, and
different types of plans. When taking into account the relations regarding
agents and SWS interactions, SEA_L contains relations like appliesPlan,
playsRole, executes, uses, interactsWith, describes, presents, and supports.
Using these relations, a developer can model a high-level program for MASs
working within Semantic Web environments.

2.1. Case Study: E-Barter System

SEA_L can be used in many instances for facilitating the design and
development of agent-based systems for various domains such as agent-
based business evaluation [30], stock exchange [24], document management
[40] and the e-barter system [7]. In order to exhibit the use of the introduced
DSL, the modeling of a simple multi-agent based e-barter system is
considered during this study. A barter system is an alternative commercial
approach where customers meet at a marketplace in order to exchange their
goods or services without currency. In barter marketplaces, purchased goods
or services are exchanged for manufactured goods or offered services [7].

An agent-based e-barter system consists of agents that the exchange
goods or services of owners according to their preferences. In this
application, the base scenario is achieved by the Customer, 'Barter Manager'
and Cargo agents. Interested readers may refer to [7] for a detailed
discussion of barter proposals and the tracking of the bargaining process
between Customer agents. After the finalization of bargaining, Customer
agents send engagement message to the 'Barter Manager' agent. The 'Barter
Manager' agent notifies the Cargo agent for transporting barter products
between Customer agents. This scenario is completed by the acceptances of
all participating agents.

For instance, two Customer Agents (one from the automotive industry and
another from the healthcare sector) may need to exchange their offered
goods and services such that: the car manufacturer offers to sell car spare-
parts to a health insurance company (e.g., for the health company’s service
cars), and wants to procure health insurance for its employees. Let us
consider that the intention of the health insurance company is vice-versa.
During bargaining between the agents of the car manufacturer and the health
insurance company, our Barter Manager agent uses a semantic web service
called 'Barter Service'. In order to invoke this service, the 'Barter Manager'
first needs to discover the proper semantic web service. Then, it interacts

Sebla Demirkol et al.

1530 ComSIS Vol. 10, No. 4, Special Issue, October 2013

with the candidate service(s) and after an agreement the exact execution of
the semantic web service is realized [25]. Figure 1 portrays the partial
instance model of an E-Barter system (conforming to the SEA_L’s
metamodel, as elaborated in Section 3.1).

In the following, we provide a description of the instances and constraint
controls for this case study using SEA_L specifications.

Listing 1 shows the textual instance model for the Agent Internal viewpoint
of the E-barter system. The instance model includes those variables and
relations defined for the E-barter domain. Also, according to the syntax of
SEA_L’s Agent Internal viewpoint (which is discussed in subsection 3.2),
there should be at least one instance of SemanticWebAgent and Capabilities
within the system. Therefore, initially, a SemanticWebAgent and Capabilities
have been defined for this example.

Figure 1. Overview of the E-Barter system as a SEA_L instance [25]

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1531

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

AgentInternalViewPoint e_barter {

 SemanticWebAgent barterManager
 "Barter Manager Agent" // Agent Description
 "Properties" // Agent Properties
 "Active" // Agent State
 "CustomerAgent"; // Agent Type

 Capabilities barterCap
 "Barter Manager Capability";

 Role barterRole;

 Goal bestMatching
 "Doing best matching" 1; // Recur = 1

 Belief barterKnowledge
 "System facts" 2; // Dynamic = 2

 Plan financialPlan
 "Cyclic Plan" 1; // Priority = 1
 barterManager{

 includes barterCap;

 plays barterRole;
 }
 barterCap{

 appliesPlan financialPlan;

 includesBelief barterKnowledge;

 usesGoal bestMatching;
 }

 barterKnowledge{ precondition bestMatching; }
 bestMatching{

 postcondition barterKnowledge;

 realized_by financialPlan;
 }
}

Listing 1. Textual modeling for Agent Internal viewpoint of a multi-agent e-barter
system in SEA_L

Listing 2 shows the use of SEA_L in textual modeling of Agent-SWS

Interaction viewpoint of the multi-agent e-barter system in question. In order
to infer about the semantic closeness between offered and purchased items
based on the defined ontologies, a SemanticWebAgent is defined which can
use a SemanticWebService called barterService.

Sebla Demirkol et al.

1532 ComSIS Vol. 10, No. 4, Special Issue, October 2013

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

SWSInteractionViewPoint e_barter_Interaction{

 SemanticWebAgent barterManager
 "Barter Manager Agent" // Agent Description
 "Properties"; // Agent Properties

 SWS barterService;

 SSMatchmakerAgent barterMatchAgent
 "E-Barter Matchmaker Agent"
 "Properties";

 Grounding barterServiceGrounding;

 Process barterServiceProcess;

 Interface barterServiceInterface;

 SS_RegisterPlan serviceRegistration;

 SS_FinderPlan discoverBarterService;

 SS_AgreementPlan negotiating;

 SS_ExecutorPlan invokeBarterService;

 Role barterRole;

 RegistrationRole matchRole;
 barterManager{

 appliesPlan discoverBarterService;

 appliesPlan negotiating;

 appliesPlan invokeBarterService;

 playsRole barterRole;
 }
 barterMatchAgent{

 appliesPlan serviceRegistration;

 playsRole matchRole;
 }
 invokeBarterService{

 executes barterServiceProcess;

 uses barterServiceGrounding;
 }

 discoverBarterService { interactsWith barterMatchAgent; }

 barterRole { interactswith barterService; }

 barterServiceProcess {describes barterService;}

 barterServiceInterface { presents barterService;}

 barterServiceGrounding { supports barterService;}
}

Listing 2. Textual modeling for Agent-SWS Interaction viewpoint of a multi-agent e-
barter system in SEA_L

barterManager is an instance of the SemanticWebAgent, which has an
important role named barterRole within the system, and applies the
discoverBarterService plan, which is an instance of the SS_FinderPlan for
finding the desired services. In addition, the agent applies a 'negotiating' plan,
which is an SS_AgreementPlan for negotiating with the discovered services.
It also applies the invokeBarterService plan that is an instance of the
SS_ExecutorPlan for executing the agreed service. discoverBarterService

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1533

discovers the barterServiceInterface which presents a barterService.
Moreover, invokeBarterService uses barterServiceGrounding for knowing
about the execution protocol of the service, and executes
barterServiceProcess which declares the internal process of the service.

barterService is an instance of the SemanticWebService, and is described
by the barterServiceProcess. This system also has an SS_Matchmaker Agent
called the barterMatchAgent, which applies serviceRegistration as an
SS_RegistrationPlan for realizing the registration of Interfaces for
SemanticWebServices.

In order to provide more readability for Agent-SWS interaction within the
code, defining plans, SS_RegisterPlan, SS_FinderPlan, SS_AgreementPlan
and SS_ExecutorPlan must be in order, as shown in Listing 2. Otherwise, the
SEA_L editor will indicate an error.

As it is restricted in textual concrete syntax, each instance model must
have at least one SemanticWebAgent and one SemanticWebService (see
Listing 2). After the declarations, the barterManager, being a
SemanticWebAgent, applies the discoverBarterService plan for finding
candidate services, the 'negotiating' plan for making an agreement with one
of them, and the invokeBarterService for executing the agreed service. It also
plays a barterRole for accomplishing these interactions. The
discoverBarterService plan interacts with the barterMatchAgent and the
Matchmaker Agent, in order to find the candidate services. After this
interaction, the result is discovering a set of barterServiceInterfaces.

At the end of the SS_FinderPlan, the SS_ExecutorPlan starts which
executes the Process and uses Grounding. Moreover, the Role interacts with
the SemanticWebService which is presented by the Interface, describes the
Process and is supported by the Grounding. Finally, the
SemanticWebService depends on at least one 'Service Ontology'.

As will be elaborated in subsection 3.3 of this paper, by applying the rules
written in Xpand [50], the SEA_L’s code generation feature enables agent
developers to automatically obtain 1) agent software codes conforming to the
JADEX [23] BDI platform which is one of the popular APIs for developing
software agents, 2) Ontology files in OWL [36] format, and 3) OWL-S [37]
representations of the modeled SWSs. Therefore, after running the code
generation of SEA_L for the case study, a JADEX ADF file for the
barterManager agent and a plan file for each Plan element are generated.
The generated ADF file can be used inside a JADEX platform in order to
initialize the designed barterManager agent and this agent then executes the
generated Java plan code in order to do its tasks. An excerpt from the
generated plan named the financialPlan for the Barter Manager agent is given
in Listing 3. This given code is automatically generated as a result of applying
the generation rules (as discussed in section 3.3). Based on the
transformation, the modeled agents’ behavior is implemented as a JADEX
Plan class that owns the 'body' method to cover the required codes for the
agent tasks.

Part of the generated ADF file is shown in Listing 4. In this file, all of the
keywords and their attributes correspond with the related tags. For example,

Sebla Demirkol et al.

1534 ComSIS Vol. 10, No. 4, Special Issue, October 2013

the required descriptions for agent capabilities (Lines 14-19), plans to be
applied (Lines 20-27), beliefs pertaining to the agent (Lines 28 -32), and the
goal of the Barter Manager agent (Lines 33-46) modeled in SEA_L can now
be included within a JADEX ADF.

With applying code generations of SEA_L, two ADF files, four plan files,
four OWL-S files (Service, Service Process, Service Profile, and Service
Grounding), and one WSDL file are generated for SEA_L's Agent-SWS
Interaction viewpoint. The ADF and plan files are similar to the ones
generated for Agent Internal viewpoint. Therefore, only one part of the
generated OWL-S file for 'Barter Service' is given as an example in Listing 5.
Lines from 1 to 9 contain boilerplate text inserted directly from a template (as
discussed in subsection 3.3). The barterService, barterServiceInterface,
barterServiceProcess and barterServiceGrounding names in lines 24, 27, 30
and 33 of Listing 5 are supplied from the declarations in Listing 2. As
previously discussed, a 'Barter Manager' agent needs a 'Barter Service' SWS
during the bargaining process. Hence, the OWL-S documents referred to in
Listing 5 for service interface (in Line 26), service process (Line 29), and
finally grounding (Line 32) are used by the agent in order to find, process,
and finally invoke the required service.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20

import java.util.*;
import jadex.runtime.*;
import java.util.StringTokenizer;
public class financialPlan extends Plan {
 // Plan attributes.
 ...
 // static block or constructor
 ...
 // Constructor code.
 public financialPlan() {
 ...
 }
 // Plan main code.
 public void body() {
 // Send request
 ...
 // Wait for reply
 …
 }
}

Listing 3. Generated plan file for financialPlan

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1535

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

<agent
 xmlns = "http://jadex.sourceforge.net/jadex"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://jadex.sourceforge.net/jadex
 http://jadex.sourceforge.net/jadex-2.0.xsd"
 name = "barterManager"
 description = "Barter Manager Agent"
 properties = "Properties"
 package=”jadex.examples.myProjects”
>
 <imports>
 <import>jadex.adapter.fipa.*</import>
 </imports>
 <capabilities>
 <capability>
 name = "barterCap" file=""
 description = "Barter Manager Capability"
 </capability>
 </capabilities>
 <plans>
 <plan name = "financialPlan"
 description = "Cyclic Plan"
 priority="1" />
 <plan name = "discoverBarterService" />
 <plan name = "negotiating" />
 <plan name = "invokeBarterService" />
 </plans>
 <beliefs>
 <belief name="barterKnowledge"
 description="system facts"
 dynamic="1" />
 </beliefs>
 <goals>
 <achievegoal name="bestMatching"
 recur = 1
 exclude = "when_tried"
 recalculate = "true" retry="true"
 exported = "false"
 posttoall = "false" recurdelay = "0"
 randomselection = "false"
 retrydelay = "0">
 <creationcondition>
 <!-- Write Creation Condition -->
 </creationcondition>
 </achievegoal>
 </goals>
</agent>

Listing 4. Part of generated ADF file from Agent Internal viewpoint of barterManager
in E-Barter System case study

Sebla Demirkol et al.

1536 ComSIS Vol. 10, No. 4, Special Issue, October 2013

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

<?xml version="1.0" encoding = ‘ISO-8859-1’?>
<!DOCTYPE ruidef[
 <!ENTITY barterService_profile
 “http://mas.ube.ege.edu.tr/ barterServiceProfile.owl”>
 <!ENTITY barterService_process
 “http://mas.ube.ege.edu.tr/ barterServiceProcess.owl”>
 <!ENTITY barterService_grounding
 “http://mas.ube.ege.edu.tr/ barterServiceGrounding.owl”>
]>
<rdf:RDF xmlns:rdf= "&rdf;#" xmlns:rdfs="&rdfs;#"
 xmlns:owl = "&owl;#" xmlns:service= "&service;#"
 …
 xml:base="&DEFAULT;" >
 <owl:ontology rdf:about="">
 <owl:versionInfo>
 $Id: barterService.owl,v 1.14 2012/10/08 15:27:40 $
 </owl:versionInfo>
 <rdfs:comment> "This ontology represents the OWL-S
 service description for the barterService service example."
 </rdfs:comment>
 <owl:imports rdf:resource="&service;" />
 …
 </owl:Ontology>
 <service:Service rdf:ID= "barterService">
 <!-- Reference to the Profile -->
 <service:presents rdf:resource="&barterService_profile;
 #barterServiceInterface"/>
 <!-- Reference to the Process Model -->
 <service:describedBy rdf:resource="&barterService_process;
 #barterServiceProcess"/>
 <!-- Reference to the Grounding -->
 <service:supports rdf:resource="&barterService_grounding;
 #barterServiceGrounding"/>
 </service:Service>
 <profile:Profile rdf:about=&
 "barterService_profile;#barterServiceInterface">
 <service:presents rdf:resource=#"barterService"/>
 </profile:Profile>
 <process:AtomicProcess rdf:about=&
 "barterService_process;# barterServiceProcess">
 <service:describedBy rdf:resource=#"barterService"/>
 </process:AtomicProcess>
 <grounding:WsdlGrounding rdf:about=&
 "barterService_grounding;# barterServiceGrounding">
 <service:supports rdf:resource=#"barterService"/>
 </grounding:WsdlGrounding>
 </rdf:RDF>

Listing 5. Part of generated OWL-S Service file

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1537

3. SEA_L Implementation

In this section, the implementation details of SEA_L language are provided
including abstract syntax as a metamodel divided into several viewpoints, its
textual concrete syntax, and the required code generation for presenting the
operational semantics of the language.

3.1. Abstract Syntax

The abstract syntax of a DSL describes the concepts and their relations
without any consideration of meaning. In terms of MDD, the abstract syntax is
described by a metamodel that defines what the models should look like.

The Platform Independent Metamodel (PIMM) which represents the
abstract syntax of SEA_L is divided according to the eight viewpoints which
were previously given in section 2.

We discuss the metamodel over its Agent Internal viewpoint as well as
Agent-SWS Interaction viewpoint throughout this paper due to the vital
importance of these viewpoints. In addition, critical entities from other
viewpoints are already considered during the following discussion. The
related viewpoints are shown in Figures 2 and 3, respectively. In these
Figures, the elements filled-in with light gray come from other viewpoints
which are shown on the top or bottom of the element using '<<' and '>>'. In
other words, these elements are common elements amongst the viewpoints,
and tailor them to each other.

The Agent Internal viewpoint is related to the internal structures of the
semantic web agents and defines the entities and their relations required for
the construction of agents. A partial metamodel which represents this
viewpoint, is given in Figure 2.

SEA_L’s metamodel (hence abstract syntax) supports both reactive and
Belief-Desire-Intention (BDI) agent architectures. BDI was first proposed by
Bratman [3] and is used within many agent systems. In a BDI architecture, an
agent decides about which Goals to achieve and how to achieve them.
Beliefs represent the information an agent has about its surroundings, while
Desires correspond to the things that an agent would like to have achieved.
Intentions, which are the deliberative attitudes of agents, include the agent
planning mechanism in order to achieve the goals. Taking concrete BDI
agent frameworks (such as JADEX [23] and JACK [21]) into consideration, we
propose an entity called Capabilities which includes each agent’s Goals,
Plans and Beliefs about the surroundings.

The Agent-SWS Interaction viewpoint focuses on the internal structure of
the SemanticWebServices and the interaction of any SemanticWebAgent
with SemanticWebServices within a MAS organization. Concepts and their
relations for appropriate service discovery, agreement with the selected
service, and execution of the service are all defined within this viewpoint. A

Sebla Demirkol et al.

1538 ComSIS Vol. 10, No. 4, Special Issue, October 2013

partial metamodel of SEA_L which represents this viewpoint is shown in
Figure 3.

Figure 2. Agent Internal viewpoint

Figure 3. Agent-SWS Interaction viewpoint.

Semantic Web Service (SWS) modeling approaches (i.e. OWL-S [37])
generally define a service with three documents: 'Service Interface', 'Process

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1539

Model', and 'Physical Grounding'. 'Service Interface' is the capability
representation of the service in which service inputs, outputs, and any other
necessary service descriptions are listed. The 'Process Model' defines a
service’s internal combinations and service execution dynamics. Finally,
'Physical Grounding' defines the service’s execution protocol. These meta-
entities are shown in Figure 3 with Interface, Process, and Grounding entities,
respectively. These components can use Input, Output, Precondition, and
Effect which are extensions of the Web Ontology Language (OWL [36]) class
from Object Management Group’s (OMG) Ontology Definition Metamodel
(ODM) [35].

On the other hand, agents need to communicate with a service registry
element in order to discover service capabilities. Hence, the metamodel
includes a specialized agent entity, called the SSMatchmaker Agent. This
entity represents those matchmaker agents which store the capability
advertisements of SemanticWebServices within a MAS, and match those
capabilities with service requirements sent by the other platform agents.

When considering the other viewpoints of SEA_L, the MAS viewpoint
solely deals with the construction of a MAS as an overall aspect of the
metamodel. Plan viewpoint defines a Plan’s internal structure. When an
Agent applies a Plan, it executes its Tasks. In addition, message transaction
is considered within this viewpoint. The Role viewpoint shows distinct types of
roles. Agents can use several roles at any time and can alter these roles over
time. The Interaction viewpoint focuses on agent communications and
interactions in a MAS, and defines entities and relations such as Interaction,
Message, and MessageSequence. The Environment viewpoint focuses on
the relations between agents and to what they access. Environment contains
all non-Agent Resources, Facts, and Services. The Ontology viewpoint brings
all ontology sets and ontological concepts together. ODM OWL [36] Ontology
from OMG is a standard for all of our ontology sets such as Role,
Organization, and ServiceOntologies.

3.2. Textual Concrete Syntax

The textual concrete syntax of SEA_L is provided with Xtext [52]. Xtext is a
language development framework for developing textual modeling
languages. It can be used for creating a sophisticated Eclipse-based
development environment. Xtext is based on EBNF (Extended Backus–Naur
Form) [20] rules.

If the metamodel which represents the abstract syntax for SEA_L is
considered as an analysis phase of the concrete syntax of SEA_L, the design
phase will be the part describing the EBNF rules. One of the main
advantages of DSLs is for validating domain-specific constraints. The
constraints of the language can be implemented within the 'Validation
Package' in Xtext, which provides a dedicated hook for validation rules. Also,
other features of SEA_L’s textual concrete syntax are created using both

Sebla Demirkol et al.

1540 ComSIS Vol. 10, No. 4, Special Issue, October 2013

manually-written code and Xtext features. When using Xtext features, the
textual concrete syntax supplies auto completion, syntax coloring, rename
refactoring, bracket matching, auto edit, an outline view that shows the
semantic structure of the model and code formatting for properly indenting
the documents. The above discussed constraints of SEA_L’s metamodel, are
realized by defining the EBNF rules. With these capabilities, the new DSL
possesses both the structural and static semantics of the MAS domain. The
structure is defined by the method signatures and the static semantics are
defined by the constraint code.

During textual modeling with Xtext, the controls over the instance models
can be realized via controlling packages. These packages include formatting,
scoping, and validation.

The formatting package (Pretty Printing [12]) simply controls and applies
the editorial rules for an instance model. In this package, by accessing the
language grammar, we can define additional editorial controls (formatting
configuration) in order to modify the written program automatically, which
help the instance model to be more readable. For example, spaces for
keywords, line-wrap rules, etc can be considered in an instance model of the
DSL.

Using the scoping application programming interface (API), it is possible to
define which elements are referable by a certain variable reference [12]. In
other words, it can be controlled that from which parts of the program, a
variable in a scope (a block of code), can be accessed.

One of the interesting aspects of developing a DSL is static analysis or
validation of the written program. Validation package plays this role within the
Xtext tool. The goal is that the users of the language obtain informative
feedback as they type the program [12]. Some of the validations are
performed automatically, e.g. syntactical and crosslink validations using
parser and linker, respectively; although they can also be customized by the
user. This type of validation is done with the help of grammar and scoping.
However, in addition to the automatic validations, we can specify additional
constraints specific for our Ecore model, called custom validation. For
example, it is possible to control the number of specific elements. Although
some of the constraints could be fulfilled by grammar terminal rules in Xtext
(e.g. controlling the format of the defined variables), we implemented them
using the validation package to ease providing desired messages (warning or
error), and to provide the possibility for fixing the error or warning. In the
remainder of this subsection, we discuss how the textual concrete syntax of
SEA_L's major viewpoints is provided with Xtext.

3.3. Textual Concrete Syntax of Agent Internal Viewpoint

An Xtext grammar is structured with rules which are identified by the text to
the left of a colon. There is at least one rule for each meta-element within the
textual concrete syntax. EBNF rules are defined for Agent Internal viewpoint
according to the constraints in the metamodel. The first constraint is that all

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1541

of the instance model’s elements must be in AgentInternalViewpoint tag.
Also, the instance model must start and end with curly brackets. An example
of another constraint is that each instance model must have at least one
SemanticWebAgent and one Capabilities, in any order. These constraints are
supplied within AgentInternalViewpoint, rule which is given in Listing 6.
According to Xtext syntax, the assignment operator, '=', denotes a single
valued feature, the '+=' operator denotes a multi-valued feature, and the
asterisk operator, '*', denotes a cardinality of 0..n. Also, within each rule,
referring to predefined parser rules is possible using ‘[’ and ‘]’ characters
(called 'cross referencing'), as shown in Listing 7 Line 3.

01
02
03
04
05
06

AgentInternalViewpoint:
 'AgentInternalViewPoint' '{'
 semanticwebagent+=SemanticWebAgent &
 capabilities+=Capabilities
 …
 '}';

Listing 6. A part of AgentInternalViewpoint rule.

01
02
03
04
05
06
07

Capabilities:
 'Capabilities' name = ID description = STRING';' |
 cap = [Capabilities] '{'
 ('includes' belief = [Belief]';' |
 'uses' goal = [Goal]';' |
 'applies' plan = [Plan] ';')*
 '}';

Listing 7. Capabilities rule

SEA_L’s metamodel conforms to BDI [41] architecture. Therefore, a group
of meta-elements exists for supplying the BDI structure. When considering
this structure, a Capabilities meta-element consists of Belief, Goal, and Plan
meta-elements. The user can define numerous relations by considering the
Agent Internal viewpoint. This structure is defined within the Capabilities rule,
which is shown in Listing 7. The developer can define the Belief, Goal, and
Plan meta-elements as often as needed and in any order, regarding lines 4 to
7 of Listing 7.

The agent state and type definitions are considered as string-terminals
within the Agent Internal viewpoint, although they could be implemented as
hard-coded enumerations or references to their definitions. This is because
we believe that agents can conceptually have any user-defined state and
type (not limited to specific states or types). Also, in order to have agent
definition integration within a single line, we do not use references to agent
type and state definitions.

Fewer constraints are defined within the Agent Internal viewpoint in
comparison with the Agent-SWS Interaction viewpoint, since the elements

Sebla Demirkol et al.

1542 ComSIS Vol. 10, No. 4, Special Issue, October 2013

are generally used arbitrarily, and most of the relations are independent
within the Agent Internal viewpoint.

The user can assign a keyword to the name of an instance of any meta-
element inadvertently. All of the keywords within the textual concrete syntax
start with a lower-case letter. Therefore, a prevention mechanism is provided
for preventing the users from defining a name starting with a lower-case for
names which will not cause inconsistency between keywords and names.
Validation Packages of Xtext are overridden for controlling user’s variable
definition. As illustrated in Listing 8, the editor will show an error if the
developer defines a capability name starting with an upper-case. The
corresponding code is written in the 'Validation Package' in Xtext and some
extra code is added to this package. These constraint controls are realized
within the validation package (instead of grammar terminal rules) for
enhancing the provision of customized error and warning messages, and also
the possibility of fixing these errors and warnings. Similar controls are
provided for other entities like Plan, SemanticWebAgent,
SemanticWebService, etc.

01
02
03
04
05
06
07
08

@Check
public void CapabilitiesStartWithLowerCase(
 Capabilities cap) {
 if (! Character.isLowerCase(cap.getName().charAt(0))) {
 error("Name must start with lower case",
 AgentInternalDSLPackage. CAPABILITIES__NAME);
 }
}

Listing 8. Validation Package code for preventing the definition of an upper-case
name within the Semantic Web Agent Internal viewpoint

Additional Xtext features are used to limit the user whilst creating instance
models, for example, another control supplied with the Validation Package
code which prevents the user entering an empty string to an attribute. The
code block in Listing 9 provides an error in the editor, if the user gives an
empty string to the 'type' attribute of a Behavior. Within the Xtext validation
package, '@Check' is a java annotation for defining a validation rule.

01
02
03
04
05
06
07
08

@Check
public void checkTypeIsNotEmpty (Behavior beh)
{
 if (beh.getType().isEmpty()) {
 error("Behavior type is empty",
 AgentInternalDSLPackage.BEHAVIOR__TYPE);
 }
}

Listing 9. Validation Package code to prevent defining an empty string

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1543

01
02
03
04
05
06

public void checkNegativeElement (Plan plan)
{
 If (plan.getPriority () < 0)
 error ("Negative value is not accepted",
 MyDslPackage.PLAN__DESCRIPTION);
}

Listing 10. Validation Package code to check the negative values for plan priority

In some part of the language, validity for a variable’s value is examined
using an overridden Xtext validation package. For example, as shown in
Listing 10, the value of the priority for the plan element is checked, and
negative values are not accepted.

3.4. Textual Concrete Syntax of Agent-Semantic Web Service

Interaction Viewpoint

When considering Agent-SWS Interaction viewpoint, instances of related
meta-elements and their relations must be defined inside a
SWSInteractionViewpoint code-block as part of the instance model. Similar to
the Agent Internal viewpoint, in this viewpoint, the left-hand bracket must be
at the beginning of the model and the right-hand bracket at the end of it.
Every instance model must have at least one SemanticWebAgent and one
SemanticWebService, and every command or declaration must end with a
semicolon. Otherwise, an error will occur in the editor. According to Figure 3,
a SemanticWebService must have relations with Grounding, Process, and
Interface. Each instance model must contain these elements and the
relations between them. Part of the Xtext code for supplying these relations is
given in Listing 11. Line 4 forces the user to use the 'describes' relation. Lines
10, 11, and 16 have similar meanings.

Some rules are written in order to provide a specific sequence of code,
while another group of rules allows them to be independent of a sequence
within the textual instance model, where it is required. For example, Lines 10
and 11 are written to supply the independency within the sequence of
relations in Listing 11. The user can define the 'supports SWS' relation before
or after a 'calls WebService' relation. In addition, the user can define the 'calls
WebService' relation as often as necessary, whereas it is restricted to
defining only one 'supports SWS' relation.

According to the Agent-SWS Interaction viewpoint, each instance model
should have at least one SemanticWebAgent and one SemanticWebService
supplied with the 'Validation Package'. Listing 12 shows the implementation
of the checkAtLeastOneSWS constraint.

In Listing 12, Lines 4 to 8 capture the SemanticWebServices from the
AgentSWSInteractionViewpoint and place them on a list (swslist). In Line 9,
the size of the 'swslist' is controlled. If there is no element within the list, the
editor will show an error.

Sebla Demirkol et al.

1544 ComSIS Vol. 10, No. 4, Special Issue, October 2013

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

Process:
 'Process' name=ID';'|
 process=[Process] '{'
 'describes' sws=[SWS] ';'
 …
 '}';
Grounding:
 'Grounding' name = ID';' |
 grounding = [Grounding] '{'
 ('supports' sws=[SWS] ';') &
 ('calls' service += [WebService] ';')*
 '}';
Interface:
 'Interface' name = ID ';' |
 interface=[Interface] '{'
 'presents' sws=[SWS] ';'
 …
 '}';

Listing 11. Parts of Process, Grounding, and Interface rules

In regard to the constraints when creating plans, we can consider plan
types in Agent-SWS Interaction viewpoint. According to SEA_L, textual
concrete syntax, Semantic Service Plans (SS_RegisterPlan, SS_FinderPlan,
SS_AgreementPlan and SS_ExecutorPlan), and their relations, must be in a
specific order within the instance models. This order helps increasing
readability of the program. These sequence restrictions are supplied with
EBNF rules in Listing 13.

01

02

03

04

05

06

07

08

09

10

11

12

13

@Check

public void checkAtLeastOneSWS(
 AgentSWSInteractionViewpoint sws) {
 SWSInteractionViewpoint agent =

 EcoreUtil2.getContainerOfType(sws,

 SWSInteractionViewpoint.class);
 List<SWS> swslist =

 EcoreUtil2.getAllContentsOfType(agent, SWS.class);

 if((swslist.size()<1))
 error("There must be at least one
 SWS", AgentSWSInteractionPackage.Literals.

 SWS_INTERACTION_VIEWPOINT__NAME);
}

Listing 12. Validation Package code for supplying at least one SWS constraint

According to Lines 2 and 3, any general Plan or Semantic Service Plan
can be defined within the instance model. A Plan can be defined with or
without its 'type', 'description' and 'priority' attributes. The ‘?’ character at the
end of each statement makes it optional. If Semantic Service Plans are
considered, the order should be as defined in Lines 5 to 8. In Line 11, it is

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1545

stated that one or more ‘advertises interface’ relation can exist. Similar rules
are defined for other plan types in Lines 15-16, 20, and 24-25.

The Xtext can generate EBNF rules from a given metamodel. It can also
generate a metamodel from the EBNF rules. However, we preferred to define
EBNF rules manually in order to supply some syntactical restrictions and
constraints such as defining relations in a specific order (Xtext cannot extract
the order from the metamodel because the metamodel has not such an
attribute by itself). It is worth noting that when starting from the already-
existing metamodel and defining EBNF rules manually, one should be careful
to properly match the metamodel with the grammar.

In this study, as mentioned previously, some controls are also used with a
formatting package in addition to using some controls with a validation
package. For example, some rules are defined for modifying the written
program in order to rearrange the format of the code to gain more readability.
Moreover, some other Xtext facilities are used, e.g. Wizard sample code,
Highlighting (for keywords, comments, variables, etc), and Quick-fixing for
errors.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Plan returns Plan:
 ('Plan' name = ID (type=STRING)?
 (description = STRING)?(priority=INT)? ';') | PlanSequence;

PlanSequence returns Plan:
 reg = SS_RegisterPlanDef
 find = SS_FinderPlanDef
 agree = SS_AgreementPlanDef
 exe = SS_ExecutorPlanDef ;
SS_RegisterPlan:
 plan=[SS_RegisterPlanDef] '{'
 ('advertises' interface+=[Interface] ';')+
 '}';
SS_FinderPlan:
 plan=[SS_FinderPlanDef] '{'
 'interactsWith' matchmaker=[SSMatchmakerAgent]';'
 ('discovers' interface+=[Interface]';')*
 '}';
SS_AgreementPlan:
 plan=[SS_AgreementPlanDef] '{'
 ‘negotiates' interface=[Interface] ';'
 '}';
SS_ExecutorPlan:
 plan=[SS_ExecutorPlanDef] '{'
 'executes' process=[Process] ';'
 'uses' grounding=[Grounding] ';'
 '}';

Listing 13. Sample Plan rules

Sebla Demirkol et al.

1546 ComSIS Vol. 10, No. 4, Special Issue, October 2013

3.5. Code Generation

It is not sufficient to complete the DSL definition only by specifying the
notions and their representations. A complete definition requires that one
provides the semantics of language concepts in terms of other concepts, the
meanings of which are already established. Therefore the syntax of the
SEA_L is mapped into the metamodels of existing agent platforms that have
well-defined, understood, and executable semantics. This mapping is
provided through model transformations [5, 9, 31, 44]. Model to code
transformations follow these model transformations and, finally, an
executable software code is achieved for exact MAS.

In our study, code generation for the instance models is supplied with the
Xpand tool [50]. Many of model driven engineering approaches accomplish
code generation by writing strings to the text files. Xpand is a template engine
which is used to make this process easier. It allows for creating textual output
using EMF [10] models. The text output can be coded within any
programming language. Xpand requires an EMF metamodel and one or more
templates for translating the model into text. Once the requirements are
provided, code generation can be provided by first defining an EMF model
and running the generator. Xpand supplies traverse the abstract tree of the
provided model and generate the code along the way [51].

In this study, Xpand is used for the generation of JADEX [23] code, along
with OWL [36] and OWL-S [37] files from SEA_L specifications, and
corresponding instance models. The code generation of JADEX agents from
the SEA_L's Agent Internal viewpoint, and the generation of OWL-S SWS
documents from SEA_L's Agent-SWS Interaction viewpoint, are exemplified
in this paper.

JADEX is one of the popular APIs for developing software agents. JADEX
code is composed of two files: the Agent Definition File (ADF), in which an
agent’s Beliefs, Goals, and Plans are defined using XML code, and the
JADEX Plan File, in which Agent plans are defined using Java code.
According to the JADEX platform, each agent has an ADF file. Therefore, in
our study, an ADF file is generated for each SemanticWebAgent of a SEA_L
instance model. The Beliefs, Goals, Plans, Behaviors, and Capabilities of
SemanticWebAgents are defined within ADF with corresponding tags, but the
JADEX Plan files include pure Java code for defining corresponding tasks.

In the generated code for SEA_L models, SEA_L ontological entities such
as agent knowledge-bases are coded in OWL. Moreover, SWSs modeled in
SEA_L instances are implemented according to OWL-S specifications. Both
OWL and OWL-S are perhaps the most popular and in-use technologies for
describing ontologies and SWS definitions.

An instance model, which conforms to the SEA_L metamodel, is in fact a
platform independent model. In order to achieve its platform specific
counterparts (e.g. its JADEX counterpart), mappings are needed between the
SEA_L metamodel and metamodels of agent development frameworks (e.g.,
JADEX, JADE [22]). Since we focus on the JADEX platform in this study, we
need to provide entity mappings between SEA_L and JADEX metamodels.

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1547

These mappings pave the way for transforming the source model (SEA_L)
into the target model (JADEX). The mappings are illustrated in Table 1.

As discussed in subsection 3.1, the Agent Internal viewpoint focuses on the
internal structure of every Agent within a MAS organization. Hence, in order
to generate JADEX code, Agent Internal viewpoint is mapped to a JADEX
metamodel. On the other hand, the Agent-SWS Interaction viewpoint
represents the interaction between SemanticWebAgents and
SemanticWebServices. Thus, it is mapped to both JADEX and OWL-S
metamodels (see Table 1). The generated ontology files for Agent-SWS
Interaction viewpoint are provided together with the ADF and Plan files for
the Agent Internal viewpoint. Since the generations of ADF and Plan files for
the Agent-SWS Interaction viewpoint are very similar to those for the Agent
Internal viewpoint, it is not repeated here.

It is worth noting that both the mappings between SEA_L and JADEX and
SEA_L and OWL-S take place simultaneously. In fact the SEA_L instance
elements pertaining to agent and MAS viewpoints are transformed into
JADEX instances while remaining elements of the same SEA_L instance
model, which are used to model semantic web services, are transformed into
OWL-S instances.

Table 1. Mapping between SEA_L, JADEX and OWL-S Metamodels

SEA_L JADEX OWL-S

SemanticWebAgent Agent

SSMatchmakerAgent Agent

Plan Plan

Behavior Plan

Capabilities Capability

Goal AchieveGoal

Goal QueryGoal

Goal PerformGoal

SS_AgreementPlan Plan

SS_ExecutorPlan Plan

SS_FinderPlan Plan

SS_RegisterPlan Plan

SemanticWebService Service

Interface ServiceProfile

Process ServiceModel

Grounding ServiceGrounding

Input Input

Output Output

Precondition Condition

Effect ResultVar

For code generation, a metamodel namespace is initially imported in order

to make the meta-types known to the editor, as shown in Line 1 of Listing 14.
Next, the main template is created. Each template is defined by a rule
starting with the DEFINE keyword (see Line 2 of Listing 14). Xpand’s

Sebla Demirkol et al.

1548 ComSIS Vol. 10, No. 4, Special Issue, October 2013

keywords and meta-type references are always enclosed in '«' and '»'
characters.

01
02
03
04
05
06
07
08
09

«IMPORT org::xtext::example::mydsl::myDsl»
«DEFINE main FOR SWSInteractionViewpoint»
…
«EXPAND owlservice FOREACH service»
«EXPAND owlsprofile FOREACH service»
«EXPAND owlsmodel FOREACH service»
«EXPAND owlgrounding FOREACH service»
«EXPAND wsdl FOREACH service»
«ENDDEFINE»

Listing 14. Defining main elements and invoking templates

Each template consists of a template name and meta-type on which the
template can be called. In this way a template is rather like a sub-routine,
parameterized by a meta-type and other optional parameters [27]. So, in our
study, model transformations are supplied in a built-in way between the
SEA_L, JADEX, and OWL-S metamodels. For example, a
SemanticWebAgent element in an instance model of SEA_L is transformed
into a JADEX Agent element while generating the code. These
transformations are supplied regarding the mappings in Table 1.

In Listing 14, for each Service, 'owlservice', 'owlsprofile', 'owlsmodel',
'owlsgrounding', and 'wsdl' (Web Service Definition Language) templates are
invoked between lines 4 to 8. Each SemanticWebService is represented in a
'Service.owl' file. For example, for an 'Electronic Barter Service', an
'EBarterService.owl' file will be produced. 'Service Profile', 'Service Process'
and 'Service Grounding' are described within the 'profile.owl', 'process.owl'
and 'grounding.owl' files, respectively.

According to the second line of Listing 15, a 'Service.owl' file is created.
The other lines of the code are added to the end of this file. The bold
keywords (int, pro and gro) are the predefined variables representing the
Interface, Process, and Grounding, respectively. Lines 4, 7 and 11 are the
point references for the Profile, ProcessModel and Grounding, respectively.
Also, the related service name will be written in generated code by using
'«this.name»' in Lines 3, 5, 9, and 13.

Nested templates are defined for invoking input, output, precondition, and
effect where they are needed. In the Agent Internal viewpoint, an ADF file is
needed for each SemanticWebAgent, and a Plan file is needed for each
Plan. Therefore, the Plans and SemanticWebAgent templates are invoked
within the main template, as represented in Listing 16.

Listing 17 shows the Xpand code for creating Plan files. Lines 3 to 22 are
all boilerplate texts for inserting into the plan file.

The code-block given in Listing 18 represents the belief definitions, as a
sample element, within the generated ADF file. Beliefs are defined in
<beliefs> tags. The attributes of a belief meta-entity are generated using
Lines 3-5 of Listing 18.

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1549

Code generations for other parts of ADF (e.g. Goal and Capability) are
realized in a similar manner.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

«DEFINE owlservice FOR Service»
«FILE this.name + "Service.owl"»
<service:Service rdf:ID= "«this.name»">
 <!-- Reference to the Profile -->
 <service:presents rdf:resource="&«this.name»_profile;#

 «int.name»"/>
 <!-- Reference to the Process Model -->
 <service:describedBy
 rdf:resource="&«this.name»_process;#

 «pro.name»"/>
 <!-- Reference to the Grounding -->
 <service:supports
 rdf:resource="&«this.name»_grounding;#

 «gro.name»"/>
</service:Service>

Listing 15. A part of the Xpand code for defining the OWL-S Service File

01
02
03
04
05

«IMPORT org::xtext::example::agentinternal::agentInternal»
«DEFINE main FOR AgentInternalViewpoint»
«EXPAND plans FOREACH plan»
«EXPAND semanticwebagents FOREACH semanticwebagent»
«ENDDEFINE»

Listing 16. Sample template for invoking plans and semanticwebagents templates

Code generation for other viewpoints including the Environment, Role,
Plan, and Interaction viewpoints are provided similarly. The required code
generated from these viewpoints extend the agents’ files, ADFs and plans, in
the same way as Agent Internal and Agent-SWS Interaction viewpoints do.

As an expected result of applying MDD techniques, SEA_L simplifies the
process of software development for MASs working within a semantic web
environment. When considering the traditional approach for developing this
type of software, a programmer should develop an ADF file (XML format) for
each agent and a plan file (a Java file) for each plan of the agent, and then
interconnect them. Also, the programmer should provide service, profile,
grounding, process model, and WSDL documents for each semantic web
service as required in the OWL-S standard. Meanwhile, the developer should
consider the relation between these documents as well as the interaction
between both the intra agents and agents with semantic web services.
Therefore, the process is quite complex. However, in order to develop this
type of software in SEA_L, the developer only needs to provide a program at
the higher level (abstracting from the target platform constraints), which can
help to produce all the above-mentioned documents and their
interconnections, automatically.

Sebla Demirkol et al.

1550 ComSIS Vol. 10, No. 4, Special Issue, October 2013

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

«DEFINE plans FOR Plan»
«FILE name + ".java"»
import java.util.*;
import jadex.runtime.*;
import java.util.StringTokenizer;
public class «this.name» extends Plan {
 // Plan attributes.
 ...
 // static block or constructor
 ...
 // Constructor code.
 public «this.name»() {
 ...
 }
 // Plan main code.
 public void body() {
 // Send request
 ...
 // Wait for reply
 …
 }
}
«ENDFILE»
«ENDDEFINE»

Listing 17. Xpand code to generate JADEX Plan files

01
02
03
04
05
06
07

«DEFINE beliefs FOR Belief»
<beliefs
 Name = «this.name»
 Description = «this.description»
 dynamic = «this.dynamic»
/>
 «ENDDEFINE»

Listing 18. Sample Xpand code for defining beliefs in ADF

4. Related Work

Studies on DSLs and Domain-specific Modeling Languages (DSML) for
agents have recently emerged, and these very few studies are still at their
preliminary stages. For instance, a DSL called Agent-DSL is introduced in
[28]. Agent-DSL is used to specify those agency properties that an agent
should have in order to accomplish its tasks. However, the proposed DSL is
only presented with its metamodel and just provides visual modeling of the
agent systems according to agent features, such as knowledge, interaction,
adaptation, autonomy, and collaboration. Likewise in [42], the authors
introduced two dedicated modeling languages and call these languages

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1551

DSMLs. These languages are described by metamodels which can be seen
as representations of the main concepts and the relations identified for each
of the particular domains, again introduced in [42]. However, this study
obviously included just the abstract syntax of the related DSMLs and does
not give the concrete syntax or semantics of the DSMLs. In fact, the study
only defines the generic agent metamodels for the MDD of MASs.

In [17], the author introduces a DSML for MAS. The abstract syntax of the
DSML is derived from a platform independent metamodel, which is structured
into several aspects each focusing on a specific viewpoint of a MAS. This
approach is similar to our study. In order to provide the concrete syntax, the
appropriate notations for the concepts and relations are defined in [49]. The
semantics of the language is also given in [18]. These studies are noteworthy
because they seem to provide the first complete DSML for agents, with all of
its specifications. However it supports neither the agents on the Semantic
Web nor the interaction of Semantic Web enabled agents with other
environment members, such as semantic web services. Our study contributes
to the aforementioned efforts by also specializing in the Semantic Web
support of the MASs.

In [19], the authors introduce their approach on integrating agents with
Semantic Web Services (SWSs) on a platform independent level. In addition
to the MAS metamodel described in [17], a new platform independent
metamodel is proposed for SWS. A relation between these two metamodels
is established in a way that the MAS metamodel is extended with new meta-
entities in order to support SWS interoperability and it also inherits some
meta-entities from the metamodel proposed for SWS. Instead of using two
separate metamodels, SEA_L has a built-in support for the modeling of agent
and SWS interactions by including a special viewpoint. Moreover, semantic
knowledge-base and agent internals can also be modeled in SEA_L.

Likewise, a new DSML is provided for MASs in [16]. The abstract syntax is
presented using Meta-object Facility (MOF) [33] architecture. The concrete
syntax and its tool are provided within a Graphical Modeling Framework
(GMF) [11], and finally the code generation for the JACK agent platform [21]
is realized by model transformations using JET [13]. However, the developed
modeling language is not generic since it is only based on the metamodel of
one of the specific MAS methodologies called Prometheus [38]. A similar
study has been realized in [15] which proposes a technique for the definition
of agent-oriented engineering process models and can be used for defining
processes for creating both hardware and software agents. This study also
offers the related MDD tool using Software & System Process Metamodel
(SPEM) [34] and based on INGENIAS methodology [39] for MAS
development. Nevertheless, similar to the DSML introduced in [17], neither
[16] nor [15] cover software agents within the Semantic Web.

By considering our previous studies, in [25], we show how domain specific
engineering can provide easy and rapid construction of Semantic Web
enabled MASs. Ideas have been discussed for abstract syntax, concrete
syntax, and formal semantics. Furthermore, a metamodel, which in fact
constitutes the preliminary version of the abstract syntax of SEA_L, is

Sebla Demirkol et al.

1552 ComSIS Vol. 10, No. 4, Special Issue, October 2013

introduced in [4]. Based on these building blocks, in this paper we have
discussed SEA_L by including its syntax and semantics definitions, and
shown how the language and its tools can be used during the development of
real MASs.

5. Conclusion

This paper discussed the textual concrete syntax of a new DSL, called
SEA_L, for Semantic Web enabled MASs. Additionally, we showed how the
specifications of SEA_L can be used during the development of real MASs.
Hence, agent software developers can first design their MASs by only taking
care of the MAS domain specifications and abstracting from the target
platform constraints. Following this domain specific design, the automatic
application of predefined transformations enables developers to achieve
executable code for the agent system that is intended for implementation in
target platforms such as JADEX. Apart from its unique support for the
Semantic Web, the use of SEA_L also brings an easier way of MAS
development compared to merely programming with JADEX or any other
specific MAS development framework.

For the concrete syntax, meta-elements are mapped to textual notations in
Xtext, textual constraints are provided, and verification of these constraints
was shown within the instance models. In this way, we have provided an
interpreter mechanism and created an automatic code generation for users of
the domain using Xtext and Xpand tools. Transformations from SEA_L to the
other MAS platforms, e.g. JADE and JACK, are aimed in the next step.
Hence, our Xpand-based interpreter for SEA_L presented in this paper can
also be used for the implementation of SEA_L instances in other MAS
platforms in addition to the JADEX.

As future work, we aim to evaluate SEA_L by providing two groups of MAS
programmers with the same programming ability and then give them a real
problem which can be solved by agents working within a semantic web
environment. The first group would apply the classical approach of agent
programming within the JADEX platform and semantic web programming in
OWL-S. The second group would use SEA_L language to develop the
solution and later they would add a complementary code (in JADEX and
OWL-S) to the generated code by SEA_L. Based on their results, we would
compare the development time, the amount of errors occurring for both
groups, and the quality of the final code, again for both groups. In addition,
we would compare the ratio of generated code with the full final code for the
performance evaluation of SEA_L.

Acknowledgment. This study is funded as a bilateral project by the Scientific and
Technological Research Council of Turkey (TUBITAK) under grant 109E125, and the
Slovenian Research Agency (ARRS) under grant BI-TR/10-12-004. Also, we
gratefully acknowledge the helpful comments from anonymous referees.

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1553

References

1. Badica, C., Budimac, Z., Burkhard, H. D., and Ivanovic, M.: Software agents:
Languages, tools, platforms. Computer Science and Information Systems, Vol. 8,
No. 2, 255-298. (2011)

2. Bradshaw, J. M.: Software Agents. MIT Press Cambridge, MA, USA. (1997)
3. Bratman, M. E.: Intention, Plans, and Practical Reason. Harvard University

Press, Cambridge, Massachusetts. (1987)
4. Challenger, M., Getir, S., Demirkol, S., and Kardas, G.: A Domain Specific

Metamodel for Semantic Web enabled Multi-agent Systems. Lecture Notes in
Business Information Processing, Vol. 83, 177-186. (2011)

5. Czarnecki, K., and Helsen, S.: Feature-Based Survey of Model Transformation
Approaches. IBM Systems Journal - Model-driven software development, Vol. 45,
Issue 3, 621-645. (2006)

6. Demirkol S., Challenger M., Getir S., Kosar, T., Kardas G. and Mernik, M.:
SEA_L: A Domain-specific Language for Semantic Web enabled Multi-agent
Systems. Second Workshop on Model Driven Approaches in System
Development (MDASD 2012), held at Federated Conference on Computer
Science and Information Systems (FedCSIS 2012), Wrocław-Poland, 9-12
September, 1373-1380. (2012)

7. Demirkol, S., Getir, S., Challenger M., and Kardas, G.: Development of an Agent
based E-barter System. In International Symposium on Innovations in Intelligent
Systems and Applications (INISTA), IEEE Computer Society, 193-198. (2011)

8. van Deursen, A., Klint, P., and Visser, J.: Domain-specific Languages: an
annotated bibliography. ACM SIGPLAN Notices, Vol. 35, No. 6, 26-36. (2000)

9. Duddy, K., Gerber A., Lawley, M., Raymond, K. and Steel, J.: Model
Transformation: A Declarative, Reusable Patterns Approach. In Azada, D. (Ed.)
proceedings of Seventh IEEE International Enterprise Distributed Object
Computing Conference (EDOC’03), IEEE Computer Society, Brisbane, Australia,
174-185. (2003)

10. Eclipse EMF: [Online] Available: http://www.eclipse.org/modeling/emf (Last
access: March 2013)

11. Eclipse GMF: [Online] Available: http:// www.eclipse.org/modeling/gmp/ (Last
access: March 2013)

12. Eclipse Help for Xtext: [Online] Available: http://help.eclipse.org/helios/index.jsp
(Last access: March 2013)

13. Eclipse JET: [Online] Available:
http://www.eclipse.org/modeling/m2t/?project=jet (Last access: March 2013)

14. Fowler, M.: Domain-specific Languages. Addison Wesley. (2011)
15. Fuentes-Fernandez, R., Garcia-Magarino, I., Gomez-Rodriguez, A. M., and

Gonzalez-Moreno, J. C.: A Technique for Defining Agent-Oriented Engineering
Processes with Tool Support. Engineering Applications of Artificial Intelligence,
Vol. 23, Issue 3, 432–444. (2010)

16. Gascuena J. M., Navarro, E., and Caballero, A. F.: Model-Driven Engineering
Techniques for the Development of Multi-agent Systems. Engineering
Applications of Artificial Intelligence, Vol. 25, 159–173. (2012)

17. Hahn, C.: A Domain Specific Modeling Language for Multi-agent Systems. In
Seventh International Conference on Autonomous Agents and Multi-agent
Systems (AAMAS’08), ACM Press, 233-240. (2008)

Sebla Demirkol et al.

1554 ComSIS Vol. 10, No. 4, Special Issue, October 2013

18. Hahn C., and Fischer K.: The Formal Semantics of the Domain Specific Modeling
Language for Multi-agent Systems. Lecture Notes in Computer Science, Vol.
5386, 145-158. (2009)

19. Hahn, C., Nesbigall, S., Warwas, S., Zinnikus, I., Fischer, K., and Klusch, M.:
Integration of Multi-agent Systems and Semantic Web Services on a Platform
Independent Level. In IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology, 200-206. (2008)

20. ISO/IEC 14977:1996 Standard, Information technology, Syntactic meta language
- Extended BNF.

21. JACK: [Online] Available: http://aosgrp.com/products/jack/ (Last access:
March 2013)

22. JADE: Java Agent DEvelopment Framework. [Online] Available:
http://jade.tilab.com/ (Last access: March 2013)

23. JADEX: [Online] Available: http://jadex-agents.informatik.uni-
hamburg.de/xwiki/bin/view/About/Overview (Last access: March 2013)

24. Kardas G., Challenger M., Yildirim S., and Yamuc A.: Design and
Implementation of a Multi-agent Stock Trading System. Software: Practice and
Experience, Vol. 42, Issue 10, 1247–1273. (2012)

25. Kardas, G., Demirezen, Z., and Challenger, M.: Towards a DSML for Semantic
Web enabled Multi-agent Systems. In International Workshop on Formalization
of Modeling Languages, held in conjunction with the Twenty fourth European
Conference on Object-Oriented Programming (ECOOP2010), ACM Press, 1-5.
(2010)

26. Kos, T., Kosar, T., Knez J., and Mernik, M.: From DCOM interfaces to domain-
specific modeling language: A case study on the Sequencer. Computer Science
and Information Systems, Vol. 8, No. 2, 361-378. (2011)

27. Koster, V.: Implementation and Integration of a Domain Specific Language with
oAW and Xtext. Technical Report. (2007)

28. Kulesza, U., Garcia, A., Lucena C., and Alencar, P.: A Generative Approach for
Multi-agent System Development. Lecture Notes in Computer Science, Vol.
3390, 52-69. (2005)

29. Liu, S-H., Cardenas, A., Mernik, M., Bryant, B. R., Gray, J., and Xiong, X.:
Introducing Domain-specific Language Implementation Using Web-Service
Oriented Technologies. Multiagent and Grid Systems, Vol. 8, 19-44. (2012)

30. Macikenas, E., and Makunaite, R.: Applying Agent in Business Evaluation
Systems. Information Technology and Control, Vol. 37, No. 2, 101 – 105. (2008)

31. Mens, T., and Van Grop, P.: A Taxonomy of Model Transformation. Electronic
Notes in Theoretical Computer Science, Vol. 152, 125-142. (2005)

32. Mernik, M., Heering, J., and Sloane, A.: When and how to develop domain-
specific languages. ACM Computing Surveys, Vol. 37, No. 4, 316-344. (2005)

33. Object Management Group, Meta Object Facility (MOF) 2.0 Core Specification.
[Online] Available: www.omg.org/spec/MOF/2.0/ (Last access: March 2013)

34. Object Management Group, Software & System Process Engineering Metamodel
Specification Version 2.0, formal/2008-04-01, 2008. [Online] available at:
http://www.omg.org/spec/SPEM/2.0/ (Last access: March 2013)

35. OMG ODM: [Online] Available: http://www.omg.org/spec/ODM/1.0/ (Last access:
March 2013)

36. OWL: [Online] Available: http://www.w3.org/TR/owl-features (Last access: March
2013)

37. OWL-S: [Online] Available: http://www.w3.org/Submission/OWL-S/ (Last access:
March 2013)

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1555

38. Padgham, L., and Winikoff, M.: Developing Intelligent Agent Systems: A
Practical Guide. John Wiley & Sons, Ltd Publications. (2004)

39. Pavon, J., Gomez-Sanz, J. J., and Fuentes, R.: The INGENIAS Methodology and
Tools. In Henderson-Sellers, B., Giorgini, P. (Eds.), Agent-Oriented
Methodologies, Article IX. Idea Group Publishing, 236–276. (2005)

40. Pešović D., Vidaković M., Ivanović M., Budimac Z. and Vidaković J.: Usage of
Agents in Document Management. Computer Science and Information Systems,
Vol. 8, No. 1, 193-210. (2011)

41. Rao, A., and Georgeff, M.: BDI Agents: From Theory to Practice. In Proceedings
of the First International Conference on Multi-Agent Systems (ICMAS-95), 312-
319, San Francisco. (1995)

42. Rougemaille, S., Migeon, F., Maurel, C., and Gleizes, M-P.: Model Driven
Engineering for Designing Adaptive Multi-agent Systems. Lecture Notes in
Artificial Intelligence, Vol. 4995, 318-33. (2007)

43. Schmidt, D. C.: Guest Editor's Introduction: Model-Driven Engineering. IEEE
Computer, Vol. 39, No. 2, 25-31. (2006)

44. Sendall, S., and Kozaczynski, W.: Model Transformation: the Heart and Soul of
Model-Driven Software Development. IEEE Software, Vol. 20, Issue 5, 42-45.
(2003)

45. Shadbolt, N., Hall, W., and Berners-Lee, T.: The Semantic Web Revisited. IEEE
IEEE Intelligent, Vol. 21, Issue. 3, 96-101. (2006)

46. Sycara, K.: Multi-agent Systems. AI Magazine, Vol. 19, 79-92. (1998)
47. Vallecillo, A.: A Journey through the Secret Life of Models. In Perspectives

Workshop: Model Engineering of Complex Systems (MECS), 08331 in Dagstuhl
Seminar Proceedings, Germany. (2008)

48. Varanda-Pereira, M. J., Mernik, M., Da Cruz, D., and Henriques, P. R.: Program
Comprehension for Domain-specific Languages. Computer Science and
Information Systems, Vol. 5, No. 2, 1-17, (2008)

49. Warwas S., and Hahn, C.: The Concrete Syntax of the Platform Independent
Modeling Language for Multi-agent Systems. In Agent-based technologies and
applications for enterprise interoperability, held in conjunction with the Seventh
International Conference on Autonomous Agents and MASs, AAMAS. (2008)

50. Xpand: [Online] Available: http://wiki.eclipse.org/Xpand (Last access: March
2013)

51. Xpand documentation: [Online] Available:
http://ditec.um.es/ssdd/xpand_reference.pdf (Last access: March 2013)

52. Xtext: [Online] Available: http://www.eclipse.org/Xtext/ (Last access: March 2013)

Sebla Demirkol received her B.Sc in Mathematics (Computer Science
division) and M.Sc in Information Technologies from Ege University in 2009
and 2012 respectively. She is currently working as an Assistant Project
Manager in Veripark Software Company. Her main research interests are
model-driven development, multi agent systems and domain-specific
languages.

Moharram Challenger received his B.Sc., and M.Sc. degrees in computer
engineering from IAU-Shabestar and IAU-Arak Universities (Iran) in 2001 and
2005 respectively. Since 2006, he has been a tenure-track faculty member,
as a lecturer, at computer engineering department, IAU-Shabestar University.

Sebla Demirkol et al.

1556 ComSIS Vol. 10, No. 4, Special Issue, October 2013

He is currently a Ph.D. candidate at Ege University, International Computer
Institute with expected graduation of 2013. His research interests include
domain-specific (modeling) languages, multi-agent and distributed systems
with a current focus on the semantics of DSMLs. Moharram is also a student
member of the IEEE and ACM.

Sinem Getir received her B.Sc in Mathematics (Computer Science division)
and M.Sc in Information Technologies from Ege University in 2009 and 2012
respectively. She is currently a research assistant and a Ph.D. candidate in
the University of Stuttgart. Her main research interests are model-driven
development, formal semantics, model checking, and run-time verification.
Other research interests are multi-agent systems and self-adaptive systems.

Tomaž Kosar received the Ph.D. degree in computer science at the
University of Maribor, Slovenia in 2007. His research is mainly concerned
with design and implementation of domain-specific languages. Other
research interest in computer science include also domain-specific modelling
languages, empirical software engineering, software security, generative
programming, compiler construction, object oriented programming, object-
oriented design, refactoring, and unit testing. He is currently a teaching
assistant at the University of Maribor, Faculty of Electrical Engineering and
Computer Science.

Geylani Kardas received his B.Sc. in computer engineering and both M.Sc.,
and Ph.D. degrees in information technologies from Ege University in 2001,
2003 and 2008 respectively. He is currently an assistant professor at Ege
University, International Computer Institute. His research interests include
model-driven software development, domain-specific (modeling) languages,
agent-oriented software engineering and the Semantic Web. He is a member
of the ACM.

Marjan Mernik received his M.Sc., and Ph.D. degrees in computer science
from the University of Maribor in 1994 and 1998 respectively. He is currently
a professor at the University of Maribor, Faculty of Electrical Engineering and
Computer Science. He is also a visiting professor at the University of
Alabama in Birmingham, Department of Computer and Information Sciences,
and at the University of Novi Sad, Faculty of Technical Sciences. His
research interests include programming languages, compilers, domain-
specific (modeling) languages, grammar-based systems, grammatical
inference, and evolutionary computations. He is a member of the IEEE, ACM
and EAPLS.

Received: November 5, 2012; Accepted: April 29, 2013

DOI: 10.2298/CSIS121218068R

Using Reverse Engineering to Construct the
Platform Independent Model of a Web Application

for Student Information Systems

Igor Rožanc and Boštjan Slivnik

University of Ljubljana
Faculty of Computer and Information Science

Tržaška cesta 25, 1000 Ljubljana, Slovenia
{igor.rozanc,bostjan.slivnik}@fri.uni-lj.si

Abstract. A methodology for extracting the domain knowledge from an
existing three-tier web application and subsequent formulation of the plat-
form independent model (PIM) is described. As it was devised during a re-
verse engineering process of an existing web application which needed to
be reimplemented on a new platform using new technology, it focuses on
the domain knowledge and business functions. It produces the business
model and the hypertext model leaving the presentation model aside. The
methodology is semi-automated — the generation of the activity diagrams
and parts of the hypertext model must be in part performed by an analyst,
preferably the one with some domain knowledge. As the paper is primar-
ily aimed at practitioners, a case study illustrating the application of the
presented method is included.

Keywords: reverse engineering, web application, platform independent
model, PL/SQL

1. Introduction

Reverse engineering of an existing software application can be aimed at differ-
ent goals. One is to gain the insight into a competitors’ product to learn how to
replicate its design, the other is to discover possible patent infringements. Often
it is performed to produce various kinds of documentation [5] as the documen-
tation might be either outdated or even nonexistent. The final result of reverse
engineering is a description of the application at a higher level of abstraction, but
this may be understood differently by different people. If only the documentation
has to be obtained, reverse engineering can result in a formal text description.
However, if the result is to be used further on, i.e., for upgrading, modification
or even reimplementation of the existing application, diverse design models are
needed.

Although a software technical specification can be either missing or out-
dated simply because of a professional misconduct, the deficient software spec-
ification can result from a particular software development model used to pro-
duce the application. For instance, if the agile software development methodol-
ogy is used [29], it is quite possible that no detailed software specification will

Igor Rožanc and Boštjan Slivnik

ever be produced since one of the main principles of the “Manifesto for Agile
Software Development” explicitly values working software over comprehensive
documentation [3]. Furthermore, the agile methodology concentrates more on
management rather than on technical aspect and documentation [25].

Later on the agile approach to software development can become an ob-
stacle for the maintenance of the application for many reasons. First, porting
an application from the existing platform to a new one might be difficult (even if
the new platform is only a major new version of the existing platform). Second,
business processes might change and since they are hard coded, a significant
amount of the code must be changed. Third, in time people initially working on
the application get replaced by new people with less insight into the application.

Hence, at certain point in the application’s life cycle the existence of a model
at a higher level of abstraction is an advantage for both managers and pro-
grammers [37]. Furthermore, it can also reduce maintenance costs [18]. The
appropriate model can be produced even if no domain knowledge nor the appli-
cation’s architecture is known but even a limited amount of domain knowledge
and insight into the application’s architecture proves to be highly beneficial.

As the model-driven development (MDD) promotes a definition of the soft-
ware development through a hierarchy of defined models at different levels of
abstraction, it seems a natural choice for the formulation of the results obtained
by reverse engineering [20, 30, 42]. These models are defined by the model-
driven architecture (MDA) which implements the MDD. An important character-
istic of MDA is promotion of the automatic generation of the lower level descrip-
tion models - the application code in the selected technology. Additionally, MDD
promotes the use UML notation which became a standard modeling approach
supported by various efficient tools. Thus by selecting the platform independent
model (PIM) as defined in MDA for the final result of reverse engineering we
gain a clear definition and an important advantage for the subsequent reimple-
mentation of the application.

This paper describes a methodology of reverse engineering for producing
the platform independent model (PIM) in order to modernize the application. In

Fig. 1. The idea of reimplementation of an existing application using model-driven ap-
proach.

1558 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

the ideal situation it would be used by the Architecture-Driven Modernization
approach [41] as shown in Fig. 1. The methodology is especially targeted for
situations where the team producing the PIM includes at least some members
of the development team. Unlike some other papers [35], the paper includes
an in-depth case study on how the methodology has been applied to a real
world application. Initially the methodology advocated the generation of busi-
ness model only [36]. As described here, it has been extended to include the
generation of the hypertext model as well (leaving the presentation model aside
as it is not needed if the application is reengineered). The generated class di-
agrams are now fully object oriented and by far the most critical part, i.e., the
generation of the activity diagrams, has been improved significantly with (a) a
new step of dead code elimination and (b) semi-automatic code simplification.
Furthermore, the latest experiences with the described method are included as
well.

Nowadays a large number of different languages, technologies and tools for
the development of web applications is available. Hence, a completely general
description of reverse engineering is almost impossible to formulate: either it is
too general to be valuable as no concrete actions and procedures can be de-
scribed or in trying to be comprehensive it becomes too large and imprecise.
To ensure the paper has a practical value, the approach is given for the Oracle
DB and Oracle Portal1 as the selected case study is based on this technology.
It is believed the Oracle technology is a good choice for presenting the new ap-
proach as it is (1) wide spread, (2) suitable for implementing the most complex
web applications, and (3) a market leader and model for others. However, as
PL/SQL is not object oriented (OO), reverse engineering of an existing PL/SQL
application and generation of the PIM involve the shift to the OO-design.

The rest of the paper starts with Section 2 which contains an overview of the
application used as a case study. Section 3 gives a short introduction into what
the PIM of a web application should consist of. Section 4 describes elimination
of unused parts of the application. Sections 5 and 6, the core of the paper,
describe how the PIM can be extracted from an existing web application. The
next two sections present the practical experience gained while producing the
PIM for the actual real-world web application, and the discussion. The paper is
concluded with a section on related work and conclusion. For the purpose of
this paper, figures obtained from the generated diagrams have been manually
translated to English.

2. A student information system as a case study
As the procedure presented in this paper sprang from practice, a case-study
based on a web student information system named e-Študent (developed and
initially deployed at the Faculty of Computer and Information Science of the
University of Ljubljana, Slovenia) is to be introduced first [26, 27].

1 The company, product and service names used in this paper are for identification
purposes only — all trademarks and registered trademarks are the property of their
respective holders.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1559

Igor Rožanc and Boštjan Slivnik

e-Študent is a student information system developed and used at the Uni-
versity of Ljubljana, Slovenia. It is a three-tier web application built using the
Oracle DB and Oracle Portal technology and written primarily in PL/SQL with
some JavaScript. It consists of almost 800 different programming objects (dy-
namic pages, stored procedures and functions) with over 220.000 lines of code
in total; its database contains almost 120 tables. The developer team consisted
of people who were themselves developers and users at the same time, and
hence the agile methodology seemed a natural choice [3, 29].

The development of e-Študent started in 2001 and by 2003 the initial release
has been used by most faculties of the University of Ljubljana. Its main functions
are providing electronic support for student enrollment, management of exami-
nation records and grades, and keeping the alumni records. All together it has
been used by approximately 20.000 users (students, professors and staff). In
2008 the University of Ljubljana decided to replace e-Študent with at that time
yet nonexistent successor. The reasons were many. First, the existing e-Študent
was designed to be used by a single faculty and therefore different faculties
were running their own instances instead of a single inter-faculty instance de-
sired by the University. Second, as the number of elective courses increased
dramatically by the introduction of the imminent new Bologna study programs
(compared with the old pre-Bologna programs), the structure of the study pro-
grams was modified significantly and, sometimes even within the same faculty,
in different directions.

The new system built after 2008 did not meet the expectations as it was
focused more on implementing additional functionalities and less on suitable
implementation of the existing, i.e., essential, ones. After the new system was
made and evaluated it has been realized that during the development and main-
tenance of the original e-Študent a huge amount of the domain knowledge had
been accumulated. In fact, due to the turbulent times of the Bologna reform,
the source code of e-Študent is most likely the most comprehensive and the
most formal specification of the student examination process. It is precisely this
domain knowledge that should be extracted during reverse engineering, and it
should be extracted as a model suitable for the development of e-Študent’s suc-
cessor after the first attempt, i.e., without eŠtudent domain knowledge, failed.

3. Platform independent model of a web application

Model-driven development is based on a notion of automatic transformations
between different models describing an application on different levels. In the
ideal situation, a developer would produce a platform independent model (PIM),
add some platform specifications to reach the platform specific model (PSM),
and finally generate the application [24]. Apart from this, the PIM provides a
standard way to model an application in a technology independent way, i.e., by
using UML diagrams. This approach is supported by a number of tools [42].

For web applications it has been advised [32] that the PIM should consist of

– a business model,

1560 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

– a hypertext model, and
– a presentation model.

Apart from the (usual) business model describing the business processes, the
hypertext model describes how web pages are built and linked while the presen-
tation model contains details of the graphic appearance of a web application.
The three-model web application description is a prevalent approach supported
by most methods, however other model names, i.e., content, navigation and
behavior model, may be used instead [7, 42].

It has been shown that by using the appropriate MD methodology, namely
URDAD [39], out of 13 different kinds of UML diagrams only the following 4
kinds of diagrams are sufficient to produce the business model:

– class diagram,
– use case diagram,
– activity diagram, and
– sequence diagram.

The first three types are usually produced during the analysis phase (which
is not an issue in reverse engineering) while all four types are needed during
the design phase. Class diagrams are used for the service contract and for the
collaboration context, use case diagrams are used for the responsibility identi-
fication and allocation, activity diagrams specify the full business process while
sequence diagrams denote the user work flow and the success scenario [39].

The hypertext model is an abstract description of the composition and navi-
gation between web application pages, page elements, and fragments of page
elements [32]. This model is especially important in case of dynamic web ap-
plications with their distributed integration, user directed flow of execution and
dynamic creation of HTML forms [33].

In most cases the PIM of an existing application is needed when the ap-
plication must be reimplemented using the new platform. Hence, the focus is
on the business model and the hypertext model; the presentation model is less
important as it is to be replaced by a new one suitable for the new platform.

4. Elimination of the dead code and the dead data

During the development and especially during the maintenance developers pro-
duce a number of redundant code and data objects which are not used by the
application anymore. Some of these objects might contain older or alternate
solutions, some are temporary data collections, etc. Most of them are obsolete
or even invalid.

The technique for dead code and dead data elimination is pretty straight-
forward: all objects not identified as live are considered dead. Live objects are
identified using the following two steps:

1. Determining live root objects: In general, this step depends highly on the
technology the application is made in. For the application that has been
designed using the Oracle Portal and Oracle DB, the application’s start page

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1561

Igor Rožanc and Boštjan Slivnik

User pages Dyn. pages Procedures Functions Tables Triggers
All objects 288 253 523 291 382 65
Live objects 236 186 388 207 117 58
Percentage 81.94 73.52 74.19 71.13 30.63 89.23

Table 1. The summary of dead code and dead data elimination.

and start pages of Portal user groups are retrieved from the Portal’s Data
Catalog.

2. Computing all live objects: Once the root objects are known, all objects
reachable from the root objects must be identified. In other words, a tran-
sitive closure of the set containing the root objects must be computed. The
connections among objects can be obtained by (a combination of) the fol-
lowing two methods:

– by inspecting the metadata contained in the Portal’s Data Catalog;
– by parsing every object and extracting all links to other objects.

Inspecting the metadata can most often produce perfectly adequate results.
However, if nonstandard techniques have been used, the second method
must be used also — it requires more effort since a parser for every pro-
gramming language used within the application must be produced.

Note that the dead code elimination works on entire objects: if an object, i.e.,
a dynamic page, stored procedure or function, is found to be used, its entire
contents is considered as live — dead code elimination within each particular
code object is performed during the construction of activity diagrams.

Case study: e-Študent is an application made in Oracle Portal using Oracle DB.
By inspecting the application’s metadata in Oracle Portal the application’s start
page, five user groups and start pages for each user group were identified.

The core of the entry point for each user group is designed as a menu imple-
mented in JavaScript (see also the description of use case diagrams below). By
parsing JavaScript implementations of menus for all user groups the initial list of
live user pages was obtained. Using Portal’s Data Catalog all other live objects
of the application were determined; apart from the user pages the list of live
objects includes dynamic pages, stored procedures and functions, database
tables and triggers.

The results of the dead code and dead data elimination are presented in
Table 1. Note that more than 25 % of all code implementing the business logic,
i.e., dynamic pages, stored procedures and functions, are not used. This is
mainly due to the changes introduced during the Bologna reform. Likewise,
almost 70 % of all tables are not used: many tables were introduced for live
testing but later not removed for safety reasons.

1562 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

5. Producing the business model

5.1. Class diagrams

Class diagrams represent the static structure of software systems in a graphical
way [31]. Hence, it describes the structure of data and the structure of business
processes.

In reverse engineering of a non-OO application based on the relational
database the structure of data is obtained from the entity relationship model
(ERM). The ERM might not exist or might be outdated, but it can be generated
by inspecting the database using standard database tools. Once the relevant
ERM is obtained, it is first transformed automatically into the conceptual class
diagram, i.e., a class diagram without methods. This transformation encom-
passes the following rules [40]:

– Class definition: each entity is transformed into a separate class without any
methods.

– Attribute definition: all table fields are transformed into attributes of appro-
priate classes.

– Associations definition: relations are transformed into associations and ag-
gregations.

The names of classes and attributes are the same as the names of the cor-
responding entities and fields; classes corresponding to composite types get
synthetic names.

The list of different tools that can carry out this transformation (at least to
some degree if not entirely) includes tools like ‘PowerDesigner’ by SAP Sy-
base [4], ‘UML Modeler for SQL’ by Entrionics [2], and ‘Altova UMODEL 2012’
by Altova [1].

Although conceptional class diagram can be considered adequate [40], the
proper way is to augment its classes with methods so that the resulting class
diagram includes the description of behavior. During reverse engineering, the
behavior is extracted from the stored procedures and functions of an existing
application. To enhance the class diagram with methods, each stored procedure
and function should be mapped into a method of a certain class. In cases where
a stored procedure or function is associated with one table only, it is automati-
cally transformed into a method of a class representing that table. Otherwise, a
skilled analyst should manually determine the appropriate class.

Case study: The class diagram of e-Študent was made in two steps. In the first
step, the ERM of e-Študent was automatically generated and transformed into
the conceptional class diagram using PowerDesigner. The entire conceptional
class diagram of e-Študent is shown in Fig. 2 which illustrates the overall struc-
ture of the original ER diagram and of the resulting (conceptual) class diagram
at the same time.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1563

Igor Rožanc and Boštjan Slivnik

12/8/12 4:32 PM

Page 1 of 1file:///Users/sliva/Downloads/s3c.svg

0..*
PRED_ASIS_DEL_A_FK

0..*
PRED_ASIS_DEL_FK

0..*
PO_IZJ_FK

0..*
PO_PRE_FK

0..*
PP1_IZJ_FK

0..*
PP1_PRE_FK

0..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1 0..*

1..1

0..*

1..1

0..*

1..1
0..*

1..1

0..*

1..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

0..1

0..*

1..1
0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

0..1

0..*

1..1

0..*

0..1

0..*0..1 0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*
0..1

0..*

0..1

0..*

1..1

0..*

0..1

0..*

0..1 0..*0..1 0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1
0..*0..1
0..*

1..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

1..1

0..*

1..1
0..*

1..1

0..*

0..1
0..*

1..1

0..*

1..1

0..*

1..10..*

1..1

0..*

1..1

0..*

1..1

0..*
1..1

0..*

1..1

0..*

1..1

0..*

1..10..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

1..1

0..*
1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1
0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

0..1

0..* 1..1
0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*
0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1
0..*

0..1

0..*
0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

1..1

0..*

1..1

0..*
1..1

0..*

1..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

1..1

0..*

0..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..10..*

1..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

0..*
EKV_PRE_B_FK

0..*
EKV_PRE_FK

0..*
PD_PRE_FK

0..*
PD_VSI_FK

ABSOLVENT
+
+
+
+
+
+
+
+

ZAP_ST
ABS_STAZ
USR_INS
TS_INS
IP_INS
IP_UPD
TS_UPD
USR_UPD

: double
: Date
: String
: Date
: String
: String
: Date
: String

APP
+
+
+
+
+
+
+
+

STUD_LETO
ZG_MEJA
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: String
: String
: String
: String
: String
: Date
: Date

BIVANJE
+
+

BIVANJE
POMEN_BIV

: String
: String

CENIK
+
+
+
+
+
+
+
+
+
+
+
+

SIFRA_STORITVE
OPIS_STORITVE
CENA
MERSKA_ENOTA
KONTO1
KONTO2
KONTO3
KONTO4
STROSKOVNO_MESTO
STROSKOVNI_NOSILEC
VIR_FINANCIRANJA
STOPNJA_DDV

: double
: String
: double
: String
: String
: String
: String
: String
: String
: String
: String
: double

CENTRI
+
+
+

VRSTA_STUD
IME_CENTRA
ULICA_CENT

: String
: String
: String

DAT DVIG
+
+
+
+

MESEC_DV
DAN_DV
MESEC_ODD
DAN_ODD

: double
: double
: double
: double

DELAVEC
+
+
+
+
+
+
+
+
+
+
+
+

DELAVEC
PRIIMEK_D
IME_D
EMAIL
GESLO
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
IND_VELJ

: String
: String
: String
: String
: String
: String
: String
: String
: String
: Date
: Date
: double

DELNA_OC
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

LETNIK
LETO_UN
DELEZ_I
DELEZ_V
URE1_SL
URE2_SL
URE3_SL
URE4_SL
NADALJ
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
KRED_TOCKE
IND_ZAKLJUC

: double
: double
: double
: double
: double
: double
: double
: double
: double
: String
: String
: String
: String
: Date
: Date
: double
: double

DINAMICNA_TABELA
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

ID_SESSION
ID_REPORT
ZAP_ST
DATUM
COL1
COL2
COL3
COL4
COL5
COL6
COL7
COL8
COL9
COL10
COL11
COL12
COL13
COL14
COL15
COL16
COL17
COL18
COL19
COL20

: double
: String
: double
: Date
: String
: String
: String
: String
: String
: String
: String
: String
: String
: String
: String
: String
: String
: String
: String
: String
: String
: String
: String
: String

DIPLOMA
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

DATUM_DV
ROK_ODD
DATUM_ODD
DATUM_POD
PO_IZP
PO_VAJ
DPO_IV
PRVI_TU
SL_ABS
ST_DIPL
OCENA_DN
OCENA_ZG
DATUM_Z
OCENA_ZS
PRILOGA_DIPL
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
PRILOGA_DIPL_ANG

: Date
: Date
: Date
: Date
: double
: double
: double
: Date
: double
: String
: double
: double
: Date
: double
: String
: String
: String
: String
: String
: Date
: Date
: String

DOD_IZP
+
+

DOD_IZP
POMEN_DI

: String
: String

DRUZ_RAZ
+
+

DRUZ_RAZ
OPIS_DR

: String
: String

DRZAVA
+
+

DRZAVA
IME_DRZ

: String
: String

EKVIVAL
+
+
+
+
+
+

IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: Date
: Date

FREKVENCA
+
+
+
+
+
+
+
+
+
+

STUD_LETO
LETNIK
DATUM_FREKV
FREKVENCA
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: double
: Date
: String
: String
: String
: String
: String
: Date
: Date

GESLO
+
+
+
+
+
+

GESLO_I
MAIL_ADDRESS
USERNAME
GESLO_M
GESLO_CIT
GESLO_EDU

: String
: String
: String
: String
: String
: String

IZBIRNI
+
+
+
+
+
+

IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: Date
: Date

IZBIRNI3
+
+
+
+
+
+

IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: Date
: Date

IZJEME
+
+
+
+
+
+
+
+
+
+

LETNIK
LETO_UN
SKUPINA
D_VELJAV
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: double
: String
: Date
: String
: String
: String
: String
: Date
: Date

IZPIT
+
+
+
+
+
+
+
+
+
+
+
+
+

DATUM_OC
ST_POL
OCENA_I
OCENA_V
ST_POL1
VPIS_ST
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
VELJAVEN

: Date
: double
: String
: String
: double
: String
: String
: String
: String
: String
: Date
: Date
: double

IZPRASEVALEC
+
+
+
+
+
+
+
+

IZPR
OPIS_IZPR
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: String
: String
: Date
: Date

JEZIK
+
+

JEZIK
IME_JEZ

: String
: String

KANDIDAT
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

KANDIDAT
PRIIMEK
IME
SPOL
EMSO
ULICA_S
ULICA_S1
DRZAVLJAN
LETO_SS
MLAD_ODR
LETO_D
STOPNJA_D
DEL_DOBA
USPEH_3
USPEH_4
USPEH_ZI
USPEH_VS
OCENA_DIP
ST_1_MEST
ST_2_MEST
ST_3_MEST
ZE_VPISAN
ZSS
IZJAVA
PDRZAVLJ
KRAJ
ZELJA
LETNIK
MORA_DIF
MORA_DIF1
MORA_PR
MORA_PR1
MATICNA_PR
TEST
TELEFON
GSM
E_MAIL
MATURA
TOCKE

: String
: String
: String
: double
: String
: String
: String
: String
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: String
: String
: String
: String
: double
: double
: double
: double
: double
: double
: double
: String
: String
: String
: String
: String
: double

KLASIUS_SRV
+
+
+
+
+

SIFRA
OPIS
OPIS_ORG
NACIN_ZAK_SOL_ZN_NASLOV
RAVEN

: String
: String
: String
: String
: String

KOMISIJA
+ SKUPINA : String

MATURA
+
+

MATURA
POMEN_MAT

: String
: String

NACIN
+
+

NACIN
NAZIV_NAC

: String
: String

NAC_IZV
+
+

NAC_IZV
OPIS_NAC_IZV

: String
: String

NAC_OC
+
+

NAC_OC
POMEN_NOC

: String
: String

NAMEN_PL
+
+

NAMEN_PL
OPIS

: String
: String

NAMERA_Z
+
+

NAMERA_Z
OPIS_NZ

: String
: String

NAPAKA_IZPIT
+
+
+
+
+

TS
KODA
SPOROCILO
VPIS_ST
ID_ROK

: Date
: double
: String
: String
: double

NAROD
+
+

NAROD
IME_NAROD

: String
: String

OBCINA
+
+
+
+
+
+
+
+

OBCINA
IME_OBC
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: String
: String
: Date
: Date

OBVESTILA
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

LETNIK
STUD_LETO
NASLOV_OBV
OPRAVIL
TEKST_OBV
LETO_PRED
DATUM
ST_OBVESTILA
IP_UPD
IP_INS
USR_INS
USR_UPD
TS_INS
TS_UPD
KOLOKVIJ

: double
: double
: String
: String
: String
: double
: Date
: double
: String
: String
: String
: String
: Date
: Date
: String

OBV_PRED
+
+
+
+
+
+

VSI
SKUPINA
LETNIK
OZN_SKUP
VRSTA_OC
STATUS

: String
: String
: double
: double
: String
: String

OBV_SKUP
+
+
+
+
+

LETNIK
OZN_SKUP
NAP_PON
GLAVA
ST_OPR

: double
: double
: String
: String
: double

OBV_STATUS
+
+

STATUS
OPIS_STATUSA

: String
: String

PAGE_ID
+
+
+
+
+
+

MENU_ID
PAGE_ID
PAGE_NAME
PAGE_ID_PIS
PAGE_ID_SKRB
IND_DOSTOP

: double
: String
: String
: String
: String
: String

PARAMETER
+
+
+
+
+
+
+
+
+

PARAMETER
OPIS
VREDNOST
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: String
: String
: String
: Date
: Date

PLACNIK
+
+

PLACNIK
POMEN_PL

: String
: String

POKLIC
+
+
+
+

POKLIC
IME_POK
POKLIC_MSS
POKLIC_ST

: String
: String
: double
: double

POKLIC_S
+
+

POKLIC_S
IME_POK_S

: String
: String

POLOZAJ
+
+

POLOZAJ
IME_POL

: String
: String

POS_POTREBA
+
+

POS_POTREBA
POMEN_POS_POTREBA

: String
: String

POSTAVKA_DOBROPISA
+
+
+
+
+
+
+

VEZA
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: String
: String
: String
: String
: Date
: Date

POSTAVKA_RACUNA
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

ID_POSTAVKE_R
OPIS_STORITVE
DATUM_STORITVE
KOLICINA
ZNESEK
STOPNJA_DDV
RACUN_ST
DATUM_STORNACIJE_POSTAVKE
STORNIRAL
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: String
: Date
: double
: double
: double
: String
: Date
: String
: String
: String
: String
: String
: Date
: Date

POSTE
+
+
+
+
+
+
+
+

POSTA
IME_POSTE
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: String
: String
: String
: String
: String
: Date
: Date

POTRDILO
+
+
+
+
+
+
+

ST_POTRDILA
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: String
: String
: String
: String
: Date
: Date

PP
+
+
+
+
+
+
+

STUD_LETO
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: String
: String
: String
: String
: Date
: Date

PRAZNIK
+
+

DATUM
IME_PRAZ

: Date
: String

PRED_AT
+
+
+
+
+
+
+
+
+
+
+
+
+

LETO_UN
URE1_SK
URE2_SK
URE3_SK
URE4_SK
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
KVOTA
PROSTI

: double
: double
: double
: double
: double
: String
: String
: String
: String
: Date
: Date
: double
: double

PRED_DIF
+
+
+
+
+
+

IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: Date
: Date

PRED_IZB
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

LETNIK
SEMESTER
IZBIRNI
NADALJ
STROKOVNI
URE1_SL
URE1_T
URE1_T1
URE2_SL
URE2_T
URE2_T1
URE3_SL
URE3_T
URE3_T1
URE4_SL
URE4_T
URE4_T1
LETO_UN
IP_UPD
IP_INS
USR_INS
USR_UPD
TS_INS
TS_UPD
KRED_TOCKE
KRED_TOCKE_PRAVE
NABOR

: double
: String
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: String
: String
: String
: String
: Date
: Date
: double
: double
: String

PREDMET
+
+
+
+
+
+
+
+
+
+
+
+
+
+

PREDMET
IME_PRED
DOD_OBV
MAX_ST_TOCK
MEJA_POZITIVNO
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
ROK_ZA_SKUPINO
DOLGO_IME
DOLGO_IME_ANG

: String
: String
: double
: double
: double
: String
: String
: String
: String
: Date
: Date
: String
: String
: String

PREDMET_KOL
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

STUD_LETO
ST_KOL
MEJA_OPR
DATUM_PK
URA_PK
MIN_POVPRECJE
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
STEVILKA_KOL
MAX_TOCK
VSI_STUDENTI

: double
: double
: double
: Date
: String
: double
: String
: String
: String
: String
: Date
: Date
: double
: double
: double

PRED_OBC
+
+
+
+
+
+

IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: Date
: Date

PREDPOG
+
+
+
+
+
+
+

IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
LETO_UVELJ

: String
: String
: String
: String
: Date
: Date
: double

PRED_PR
+
+
+
+
+
+

IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: Date
: Date

PREHRANA
+
+

PREHRANA
POMEN_PREH

: String
: String

PRE_PRE
+
+
+
+
+
+

IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: Date
: Date

PRIJAVA
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

DATUM_ODJ
DATUM_PRIJ
DATUM_ZP
ST_POL
ST_POL1
ST_POL2
SL_POS
KOLOK
LETNIK
PLACA_IZP
ST_TOCK_OST
ST_TOCK_PISNI
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
OPOMBE
SKUPINA

: Date
: Date
: Date
: double
: double
: double
: double
: double
: double
: double
: double
: double
: String
: String
: String
: String
: Date
: Date
: String
: String

PRIJAVA_KOL
+
+
+
+
+
+
+
+
+

STUD_LETO
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
TREN_POVPRECJE
OCENA_ZE_VPISANA

: double
: String
: String
: String
: String
: Date
: Date
: double
: double

PRIJAVA_U
+
+
+
+
+
+
+
+
+

DATUM_ODJ
IP_INS
DATUM_PRIJAVE
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
URA_IZPITA

: Date
: String
: Date
: String
: String
: String
: Date
: Date
: String

PRILOGA_DIPLOME
+
+
+
+

DOKUMENT
OPIS
TEMPLATE
TEMPLATE_ANG

: String
: String
: String
: String

PRISPEVEK
+
+

PRISPEVEK
POMEN_PR

: String
: String

RACUN
+
+
+
+
+
+
+
+
+
+
+

RACUN_ST
DATUM_IZDAJE_RACUNA
DATUM_STORITVE
ROK_PLACILA
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
SKLIC

: String
: Date
: Date
: Date
: String
: String
: String
: String
: Date
: Date
: String

RANGIRANJE
+
+
+

ID
ZAP_ST
RANG

: double
: double
: double

REZULTAT_KOL
+
+
+
+
+
+
+
+

ZAP_ST_KOL
ST_TOCK
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: double
: String
: String
: String
: String
: Date
: Date

ROK
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

DEJ_STEV
ID_ROK
MAX_STEV
DATUM_IZP
PROSTOR
URA
MEJA
SKPN_ST_TC
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
STEV_KOMIS

: double
: double
: double
: Date
: String
: String
: String
: String
: String
: String
: String
: String
: Date
: Date
: double

ROK_U
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

DATUM_UST
PROSTOR
URA
MAX_STEV
DEJ_STEV
ID_ROK_U
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
STEV_KOMIS
DOLZINA_INTERVALA
STEVILO_NA_INTERVAL

: Date
: String
: String
: double
: double
: double
: String
: String
: String
: String
: Date
: Date
: double
: String
: double

SALDO
+
+
+

SALDO
RACUN_ST
ROK_PLACILA

: double
: String
: Date

SIFRANT_DATA
+
+
+
+
+
+
+
+

ID_TABLE
F_OD
F_DO
TABLE_NAME
SORT_COLUMN
FROM_PART
WHERE_PART
TABLE_DESC

: String
: double
: double
: String
: String
: String
: String
: String

SIFR_LOOKUP_DATA
+
+
+
+
+

SIFR_TABLE
SIFR_COLUMN
LOOK_TABLE
LOOK_COLUMN
LOOK_CAPT_COLUMN

: String
: String
: String
: String
: String

SKLEPI
+
+
+
+
+
+
+
+
+
+

ST_SKLEPA
ORGAN
DATUM_S
VSEBINA_S
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: String
: Date
: String
: String
: String
: String
: String
: Date
: Date

SKPOBV
+ SKPOBV : String

SKPP
+
+
+
+
+
+
+
+
+

STUD_LETO
VIP_SMER
ZG_MEJA
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: String
: String
: String
: String
: String
: String
: Date
: Date

SKUPINA
+
+
+
+
+
+
+
+

SKUPINA
IME_SK
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: String
: String
: Date
: Date

SLED_IZDELAVE_RACUNOV
+
+
+
+
+
+
+

DATUM_IZDELAVE
ZAP_ST
ZACETEK_POSTOPKA
KONEC_POSTOPKA
PRVI_RACUN
ZADNJI_RACUN
NACIN_IZDELAVE

: Date
: double
: Date
: Date
: String
: String
: String

SMER
+
+
+
+
+
+
+
+
+
+
+
+
+

SMER
IME_SMERI
IME_SMERI_K
VELJA_OD
VELJA_DO
VRSTA_PROG
STAT_89
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: double
: double
: String
: double
: String
: String
: String
: String
: Date
: Date

SPP
+
+
+
+
+
+
+
+
+

STUD_LETO
VIP_SMER
ZG_MEJA
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: String
: String
: String
: String
: String
: String
: Date
: Date

SREDSOLA
+
+
+
+
+
+
+
+
+

SREDSOLA
DO_LETA
IME_SS1
IME_SS2
IME_SS3
ULICA
SRED_MSS
OD_LETA
IME_K

: String
: double
: String
: String
: String
: String
: double
: double
: String

STANJE
+
+
+
+
+
+
+
+

STUD_LETO
LETNIK
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: double
: String
: String
: String
: String
: Date
: Date

STAT_POS
+
+

STAT_POS
POMEN

: String
: String

STAT_PR
+
+

STAT_PR
POMEN_SP

: String
: String

STATUS_POSTAVKE
+
+

STATUS_POSTAVKE
POMEN

: String
: String

STOP_IZ
+
+

STOP_IZ
POMEN_SI

: String
: String

STOPNJA
+
+
+
+

STOPNJA
IME_STOP
IND_VELJ
IND_VPIS

: String
: String
: String
: String

STUD
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

ULICA_Z
VRSTA_ST
PRVI_TU
PRVI_STUD
SPOL
DATUM_R
LETO_SS
USPEH_SS
USPEH_MA
TOCKE_MA
TOCKE_PZ
TOCKE_SK
UVRSTITEV
VOZNJA
STIP
ZNESEK
DRUZ_POK
LETO_VS
LETO_VIS
OCENA_VIS
ZAP_ST
DO_ZAP
DEL_DOBA
PLACANO
DATUM_PL
IME_OM
VROCANJE_S
VROCANJE_Z
PRVI_TU_LETNIK
SOGLASJE1
SOGLASJE2
SLOVBREZDRZ
OCENA_VS

: String
: String
: double
: double
: double
: Date
: double
: double
: double
: double
: double
: double
: double
: String
: String
: double
: double
: double
: double
: double
: String
: String
: double
: double
: Date
: String
: String
: String
: double
: String
: String
: String
: double

STUDENT
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

PRIIMEK
IME
DATUM_ROJSTVA
EMSO
GESLO
ULICA_S
ULICA_S1
ULICA_P
ULICA_P1
VPIS_ST
KRAJ_ROJSTVA
BLOKADA
GSM
EMAIL
STATUS
PRIJAVA
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
STU_PRIJAVA
ST_OBVESTIL
DNI_OBVESTILA
TELEFON
PRIIMEK_DEKLISKI
DAVCNA_ST

: String
: String
: Date
: String
: String
: String
: String
: String
: String
: String
: String
: double
: String
: String
: String
: double
: String
: String
: String
: String
: Date
: Date
: double
: double
: double
: String
: String
: String

SUM_OCEN_LETNIK_VSI
+
+
+
+
+
+
+
+
+
+

ID
ZAP_ST
VSI
LETNIK
AVG_POLAGANJA_IZPIT
AVG_POLAGANJA_VAJE
AVG_OCENA_IZPIT
AVG_OCENA_VAJE
AVG_OCENA_IZPIT_POZ
AVG_OCENA_VAJE_POZ

: double
: double
: String
: double
: double
: double
: double
: double
: double
: double

TEMA
+
+
+
+
+
+
+
+
+
+
+

ST_TEME
NASLOV_TEME
ST_DVIGOV
KRATEK_OPIS
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
NASLOV_TEME_ANG

: String
: String
: double
: String
: String
: String
: String
: String
: Date
: Date
: String

TMPPRIDNIH5
+
+
+
+
+
+
+
+
+
+
+

VPIS_ST
EMSO
PRIIMEK
IME
POVPRECJE
ST_IZPITOV
ST_VAJ
ST_OPR_IZPITOV
ST_LET
VSI
LETNIK

: String
: String
: String
: String
: double
: double
: double
: double
: double
: String
: double

TOE
+
+

TOE
NAZIV

: String
: String

USMERJANJE
+
+
+
+
+
+

ID
URE
URE_PRVI
SKUPINA
RANG
PONAVLJANJE

: double
: double
: double
: double
: double
: double

VAJE
+
+
+
+
+
+
+
+
+
+
+
+

ST_POL1
OCENA
ST_POL
DATUM_OC
VPIS_ST
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
VELJAVEN

: double
: String
: double
: Date
: String
: String
: String
: String
: String
: Date
: Date
: double

VIP
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

USMERITEV
VIP
IME_VIP
IME_VIP_K
STOPNJA
VELJA_OD
VELJA_DO
STAT_567
ST_SEM
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: String
: double
: double
: double
: double
: String
: String
: String
: String
: Date
: Date

VIP_F
+
+
+

PARAMETER
VREDNOST
OPIS

: String
: String
: String

VLOGA
+
+

VPIS_ST
DATUM

: String
: Date

VPIS
+
+
+
+
+
+
+
+
+
+
+
+
+
+

PLACANO
DATUM_PL
DATUM_ZAJ
LETO_UN
STUD_LETO
LETNIK
KRAJ
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
DALJAVA

: double
: Date
: Date
: double
: double
: double
: String
: String
: String
: String
: String
: Date
: Date
: double

VPIS_DRUG
+
+

VPIS_DRUG
OPIS_VD

: String
: String

VPIS_INT
+
+
+
+
+
+
+
+
+
+
+
+

ZAP_ST
IZB_SK
LETNIK
STEVILKA_PARA
UPORABLJENO
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
IZBIRNI

: double
: String
: double
: double
: double
: String
: String
: String
: String
: Date
: Date
: double

VPLACILO
+
+
+
+
+

ZAP_ST
DATUM
ZNESEK
KREDIT
TRANSAKCIJA

: double
: Date
: double
: double
: String

VRSTA
+
+
+
+

VRSTA
IME_V
IND_VPIS
IND_VELJ

: String
: String
: String
: double

VRSTA_DOKUMENTA
+
+

VRSTA_DOKUMENTA
POMEN

: String
: String

VRSTA_IZJEME
+
+

VRSTA_IZJ
IME_IZJEME

: String
: String

VRSTA_OC
+
+
+

VRSTA_OC
POMEN_VOC1
POMEN_VOC2

: String
: String
: String

VRSTA_POT
+
+
+

VRSTA_POT
NAZIV_VRSTE_POT
OPIS

: double
: String
: String

VSI
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

VSI
IME_VSI
K_IME_VSI
D_IME_VSI
POKLIC
PREIZKUS
VELJA_OD
VELJA_DO
IME_IS
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: String
: String
: double
: double
: String
: String
: String
: String
: String
: Date
: Date

VSI_F
+
+
+

PARAMETER
VREDNOST
OPIS

: String
: String
: String

ZACPOI
+
+
+
+
+
+
+
+
+
+
+
+
+

SESSION_ID
DATUM
ZAP_ST
VPIS_ST
PREDMET
LETNIK
DATUM_IZP
OCENA_IZP
TIP
MORA
OPRAVIL
VSI
KT

: double
: Date
: double
: String
: String
: String
: Date
: String
: double
: double
: double
: String
: double

ZAHF
+
+
+
+
+
+

ID
NUM
ST_ZAHTEVA
ST_POTRDILA
VPIS_ST
VSI

: double
: double
: double
: double
: String
: String

ZAH_IZVOZ
+
+
+
+

SESSION_ID
VRSTA
USER_ID
DATOTEKA

: String
: String
: String
: String

ZAHTEVA
+
+
+
+
+
+
+
+
+
+
+
+
+

ST_POTRDIL
ST_ZAHTEVE
DATUM_ZAH
DATUM_IZD
ULICA_P
ULICA_P1
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
IZBRANO

: double
: double
: Date
: Date
: String
: String
: String
: String
: String
: String
: Date
: Date
: String

ZAVOD
+
+
+
+
+
+
+
+
+
+

ZAVOD
IME_ZAV
ULICA
STAT_1234
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: double
: String
: String
: String
: String
: Date
: Date

Fig. 2. The conceptual class diagram of e-Študent.

In the second step, the conceptual class diagram was transformed into the
proper OO class diagram. The associations, i.e., the mapping of stored pro-
cedures and functions to tables, were first determined using the information
available in Oracle DB Data Catalog and by subsequent parsing of stored pro-
cedures and functions source code2. In cases where a single stored procedure
or function is associated with multiple tables, a heuristic was used to determi-
ne the list of most probable tables a stored procedure or function belongs to:
tables with a higher number of inter table associations are placed higher on
the candidate list. For each such stored procedure and function its sorted list
of table candidates was presented to the analyst. He first selected the right

2 The parser was made using the ANTLR v3.5-based PL/SQL parser by Patrick Higgins,
http://www.antlr3.org/grammar/list.html.

1564 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS
6/18/13 12:03 PM

Page 1 of 2file:///Volumes/NO%20NAME/__COMSIS/class_diagram_1.svg

EXAM_REG
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

STUD_ID
EXAM_ID
REGISTRATION_DATE
CANCELATION_DATE
LAST_REG_DATE
REG_NUM
REG_NUM1
REG_NUM2
ACADEMIC_YEAR
MIDTERM
YEAR
PAYMENT_REQUIRED
POINTS_ON_EXAM
POINTS_LAB_WORK
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
REMARKS
GROUP

: String
: String
: Date
: Date
: Date
: int
: int
: int
: int
: int
: int
: boolean
: int
: int
: String
: String
: String
: String
: Date
: Date
: String
: String

+
+
+
+
+
+
+
+
+
+

FUN_EXAM_REGISTRATION ()
FUN_EXAM_CANCELATION ()
FUN_UPDATE_REMARKS ()
FUN_SAVE_EXAM_RESULTS ()
PROC_WRITTEN_EXAM_REG_LIST ()
PROC_ORAL_EXAM_REG_LIST ()
PROC_OPEN_EXAM_REG_LIST ()
PROC_WRITTEN_EXAM_REGISTRATION ()
PROC_ORAL_EXAM_REGISTRATION ()
PROC_UPDATE_REGISTRATION ()
...

: boolean
: boolean
: int
: int
: void
: void
: void
: void
: void
: void

PERSON
-
-
-
-
-
-
-
-
-
-
-

PERSON_ID
SURNAME
NAME
PASSWORD
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
IND_VALID

: String
: String
: String
: String
: String
: String
: String
: String
: Date
: Date
: int

+
+
+
+
+
+
+
+
+
+
+
+

FUN_PERSON_NAME ()
FUN_ADD_PERSON ()
FUN_NAME_SURNAME ()
FUN_STAFF_PERSON ()
FUN_USER_IN_GROUP_STAFF ()
FUN_USER_IN_GROUP_PROF ()
PROC_PERSON ()
PROC_PERSON_SUBJECT ()
PROC_SELECT_PERSON ()
PROC_TRUSTEE ()
PROC_MENTOR ()
FUN_SAVE_PERFORMERS ()
...

: String
: boolean
: String
: String
: boolean
: boolean
: void
: void
: void
: void
: void
: boolean

PARAMETER
-
-
-
-
-
-
-
-
-

PARAMETER_ID
DESCRIPTION
VALUE
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: String
: String
: String
: Date
: Date

+
+
+
+
+
+
+
+
+
+
+
+
+

FUN_PAR ()
FUN_PARN ()
FUN_TRS ()
FUN_ACADEMIC_YEAR ()
FUN_STAFF_NAME ()
FUN_ADMIN_NAME ()
FUN_NEW_STUD_ID ()
PROC_BANNER ()
PROC_EXCEPTION_PRINT ()
PROC_FORM_FOOTER ()
PROC_DATE_SELECTION ()
PROC_STATUS_REP ()
PROC_REPORT_START ()

: String
: int
: String
: int
: String
: String
: String
: void
: void
: void
: void
: void
: void

PGID
-
-
-
-
-
-

MENU_ID
PAGE_ID
PAGE_NAME
PAGE_ID_STAFF
PAGE_ID_ADMIN
IND_ACCESS

: int
: int
: int
: int
: int
: int

+
+

FUN_PGID ()
FUN_ACCESS ()

: int
: boolean

Fig. 3. Four classes of e-Študent class diagram.

table (usually the first table from the candidate list), and then, using Power De-
signer, declared the method (corresponding to the stored procedure or function
in question) in the class based on the selected table. Four classes of the final
class diagram are shown in Fig. 3. Unfortunately, the entire class diagram with
all details (some methods have 20 parameters!) exceeds the available space.
Method names are the same as names of the stored procedures and functions
the methods are based (prefixes PROC and FUN are inherited from the exist-

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1565

Igor Rožanc and Boštjan Slivnik

ing eŠtudent code, not added). Keeping the same names simplifies the analysts
transition from the old application to the new model.

5.2. Use case diagrams

A use case diagram represents system functionality by exhibiting the interac-
tions between system’s users and the transactions that provide value to users.
They display relationship between actors and use cases [31]. In reverse engi-
neering they are important as they offer unrivaled top-down insight of the sys-
tem’s functionality.

In most web applications, a use case diagram specifies a set of actions that
can be performed by a certain user. In fact, as each user may play different
roles, each use case diagram specifies main operations that can be performed
by a particular user group. Hence a list of user groups must be retrieved from
the system using one of the following two methods:

– by checking the list of user groups stored in the Portal;
– by inspecting the system from the user’s point-of-view (in most cases, user

roles can be determined by inspecting how each user logs into the applica-
tion).

Once the list of user roles is established, one use case diagram per each
user group should be produced. The generation of the use case diagram de-
pends heavily on the technology and tools the web application is made with,
and therefore no list of procedures applicable to all and every tool can be given
here — for the Oracle DB/Portal case, see the case study below.

Users performing different user roles might be allowed to perform operations
common to many different roles. Although a clear sign of an incautious design,
two situations can nevertheless arise in practice:

– One particular function is found in different use case diagrams, either under
the same name or under different names.

– Two functions found in two different use case diagrams share the same
name but denote two substantially different actions.

Using the static analysis of the code it is possible to check whether two functions
are carried out by the same code. However, if they are not, the resolution must
be made manually by a developer/analyst.

Case study: Initially, the five user roles of e-Študent have been determined
using the domain knowledge but the list of user roles kept by the Oracle Portal
has been checked for verification.

The use case diagrams for e-Študent were obtained from the e-Študent
menu files. The menu files were generated by HVMenu 5.413, a public-domain

3 http://www.dynamicdrive.com/dynamicindex1/hvmenu; the latest version
of HVMenu, i.e., 5.5, dates back in 2003.

1566 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

Alumni Menu

Thesis Topics

Thesis Assignments

Thesis Defense

All Thesis Data

Certificate

Thesis Appendix

Book of Alumni Records

List of Alumni Records

Number of Alumni Records

Alumni Analysis

Exit

New / Update

List

Printout

New / Update

Printout

Slovene version

English version

High School

High School Ratings

Overview

Fig. 4. The use case diagram for theses and alumni records: internal nodes represent
(sub)-menus, leaves represent the main operations.

tool for producing Javascript code implementing menus to be used within web
pages. Since generated, these files have a very indicative structure (one call of
Array constructor per menu option) that allowed the entire structure of menus,
submenus and options to be obtained by simple parsing. Hence, under the
assumption (supported by the domain knowledge) that a single menu option re-
flect a single main operation a user can perform, the generation of use case
diagrams was thus reduced to parsing Javascript menu files and producing

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1567

Igor Rožanc and Boštjan Slivnik

the diagrams using the dot tool of GraphViz package by simply ranking graph
nodes from left to right (rankdir=LR). Due to their size, only one of the re-
sulting seven diagrams is shown; see Fig. 4. There are seven diagrams instead
of five because the menu of one particular user group is split into three menus
(one main menu and two submenus).

5.3. Activity diagrams

Activity diagrams are the most important artifacts in terms of the future reimple-
mentation of the existing application as they denote the operational semantics
of business processes [31].

At first glance, the activity diagrams can be produced automatically from the
existing code. Certain tools are available, each specialized for a particular plat-
form. However, no tool seems to be capable of generating activity diagrams for
a real world application that would be suitable for reengineering the application.
In most cases the generated activity diagrams are simply distilled code shown
in a different form and thus they should not be used in the subsequent MDD for
the following two reasons:

– The generated diagrams face granularity problem: understanding of the di-
agrams is obstructed as too many unnecessary details are included while
sometimes some important details are systematically omitted [23, 43, 44].

– The generated diagrams may include some bad design elements which
should not be propagated to the next versions of the application [23].

Hence, producing adequate activity diagrams cannot be fully automated but
it can be machine supported. Namely, before the PL/SQL code is given to an
analyst to retrieve the business logic, the code should be significantly simplified
by automatically removing as much implementation details as possible. The
heuristics used for code simplification is based on the classification of code
fragments into the following categories:

– object structure items;
– control structures (declare, begin, end, if, for, etc.);
– SQL blocks (cursor, select, update, fetch, etc.);
– data presentation (htp. commands for data output);
– data retrieval (textbox, submit, button, checklist, etc.);
– stored procedure and functions calls;
– other PL/SQL code;
– comments;
– other code.

Each fragment containing an SQL block, data presentation or data retrieval
is replaced by a single line. SQL block is replaced by the first SQL command
augmented with the table used; the data presentation fragment and the data re-
trieval fragment are replaced by print <data> and input <data>, respec-
tively, where <data> denotes the data either presented or read. The fragments
of the last kind (other code) are removed.

1568 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

The simplification introduces a risk some important details are removed.
The analyst must be aware of this and when in doubt the original code of each
simplified fragment must be checked.

The described method of code simplification is derived from the method
used for producing workflows in IBM WebSphere Business Integration Work-
bench [43, 44], but it has been modified for the PL/SQL code in the Oracle
platform — the list of categories has been compiled on the basis of authors’
experience.

The code simplified in this way is raised to a higher level of abstraction
and enhances the productivity of the analyst. Once the analyst performs the
transformation of the PL/SQL code, the activity diagram can be generated from
the simplified PL/SQL code automatically.

Case study: To actually produce the activity diagrams for e-Študent, the follow-
ing sources needed to be reverse engineered:

– dynamic pages (HTML + PL/SQL),
– stored procedures and functions (PL/SQL),
– reports (SQL),
– triggers (PL/SQL), and
– JavaScript code.

A naive approach of using a tool to generate activity diagrams, e.g., ‘UML
Modeler for SQL’ as

PL/SQL code: DynPages,procedures,functions

↓ UML Modeler for SQL

Activity Diagrams,

failed exactly for the reasons outlined above. For a single stored procedure the
number of elements within the activity diagram produced automatically using
some tool is proportional to the number of lines of codes, and such a diagram
is not readable even in case of moderate size procedures [36].

Illustrating the processing of a complete dynamic page exceeds the avail-
able space and thus only an excerpt is shown in Fig. 5. The first step consists of
automatic PL/SQL code simplification. Classification of source code constructs
and their subsequent removal or transformation in accordance with the rules
specified above was implemented atop of another PL/SQL parser (also based
on Patrick Higgins’s ANTLR v3-based PL/SQL parser, see Subsection 5.1). Af-
ter manual inspection and further simplification the activity diagram was gener-
ated using the reverse engineering options of ‘UML Modeler for SQL’.

The entire set of activity diagrams includes 781 diagrams — one for every
live dynamic page (186), stored procedure (388) and function (207). Manually

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1569

Igor Rožanc and Boštjan Slivnik

. . .
IF v assistant = a THEN
htp.p(’<tr><td width="30%" align="right">’);
PROC SELECT PERSON(0);
htp.p(’</td><td width="70%"> ’);
PROC SELECT PERSON(1);
htp.p(’</td></tr>’);
t person id := FUN STAFF PERSON;

ELSE
t person id := portal30.wwctx api.get user;

END IF;
htp.p(’<td width="12%" align="right" height="30">*<font class=
"label text">Date from:</td><td width="88%" valign="middle"> ’);

htp.formText(cname => ’f from’, cvalue => v from aux, csize => ’10’, cmaxlength => ’10’, cattributes =>
’class="input field" onChange="checkNull("f from","f from");isValidDate("f from","f from")"’);

PROC DATE SELECTION(’OpenExamRegs form’, ’f from’);
htp.p(’(dd.mm.llll)</td>’);
htp.p(’</tr><tr>’);
htp.p(’<td width="30%" align="right" height="30">*<font class=
"label text">Date from:</td>’);

htp.p(’<td width="70%" valign="middle"> ’);
htp.formText(cname => ’f to’, cvalue => v to aux, csize => ’10’, cmaxlength => ’10’, cattributes =>
’class="input field" onChange="checkNull("f to","f to");isValidDate("f to","f to")"’);

PROC DATE SELECTION(’OpenExamRegs form’, ’f to’);
. . .

. . .
IF v assistant = 1 THEN
PROC SELECT PERSON(0);
PROC SELECT PERSON(1);
t person id := FUN STAFF PERSON;

ELSE
t person id := portal30.wwctx api.get user;

END IF;
INPUT v from aux;
PROC DATE SELECTION(’OpenExamRegs form’, ’f from’);
INPUT v do pom;
PROC DATE SELECTION(’OpenExamRegs form’, ’f to’);

. . .

. . .
IF USER=ASSISTANT THEN
PROFESSOR SELECTION;

ELSE
SET USER STAFF;

END IF;
INPUT DATE1;
CHECK DATE1;
INPUT DATE2;
CHECK DATE2;

. . .

⇓ PL/SQL simplification parser

⇓ manually

UML Modeler for SQL =⇒

Fig. 5. Generating an activity diagram (due to its size only an excerpt is shown): the
source code (top) is simplified twice (first automatically, then by an analyst) to be later
transformed into to the activity diagram.

1570 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

processing all this code objects is a tremendous task, but it is significantly re-
duced using the automatic code simplification and automatic generation of ac-
tivity diagrams using UML Modeler for SQL. In many cases, e.q., maintenance
or consulting, not all activity diagrams should be produced.

In e-Študent, the complexity of reports (generated using Oracle Report Buil-
der), triggers and Javascript sources is not an issue. Therefore, they are con-
sidered as an appendix to the business model.

5.4. Sequence diagrams

Sequence diagrams express interactions and data flow between different ob-
jects within an application and thus describe a dynamic component of business
processes. They may be used at different levels of abstraction to present differ-
ent views of the application: usage scenarios (a description of a potential way
the application is used), the logic of methods (explore the logic of a complex
operation, function, or procedure) or the logic of services (a high-level method,
often invoked by clients).

To generate sequence diagrams, a sequence of calls performed by every
programming object must be obtained first. In PL/SQL code the programming
object are dynamic pages (representing user’s main operations) and stored pro-
cedures and functions (transformed to class methods).

Next, for each object a direct call tree is constructed: the root node contains
the artifact itself and the leaves contain, from left to right, the artifacts called.
Thus, the direct call tree is an ordered tree of height 1 if there are some calls
from the programming object in the root node or 0 otherwise.

A direct call tree is transformed into a complete call tree by repetitive re-
placement of leaves with their direct call trees: a leaf is replaced if its direct call
tree is of height 1 and no internal node on the path from the root to the leaf does
not contain the programming object in the leaf. The transformation is completed
once no leaf can be replaced any more.

Finally, the generated sequence diagram contains user’s main operations
(found in the use case diagrams) and classes (found in the class diagram) in
the head sections while transitions are obtained by a preorder traversal of the
complete call tree.

In this manner, a complete sequence diagram is obtained statically (disre-
garding PL/SQL control structures). There are at least two ways of producing
the sequence diagram dynamically during reverse engineering. The first one is
based on the reconstruction of clickstreams from the data obtained in the ap-
plication’s log files accumulated over many years [34]. The other way is to con-
struct and apply a comprehensive set of test cases [9]. Using the dynamic ap-
proach, a number of sequence diagrams are obtained for each user’s main op-
erations while using the static method outlined above one complete sequence
diagram per user’s main operation, although bigger, is generated.

Case study: For all dynamic pages, stored procedures and functions of eŠtud-
ent, sequences of inter-method calls were retrieved by a simple scanner of the

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1571

Igor Rožanc and Boštjan Slivnik

source code additionally relying on information stored in Portal’s Data Catalog.
By another custom tool these sequences were transformed using the method
described above into a GraphViz format and finally produced by dot.

An example of a sequence diagram is shown in Fig. 6. Due to the size of
direct/complete call trees and the size of sequence diagrams, only a small ex-
cerpt of a single sequence diagram can be presented.

6. Producing the hypertext model

A suitable model is needed to adequately present the complex navigation of a
dynamic web application. Several formal descriptions like FSM [10] and WebML
[15] more or less meet this criterion, but the Atomic Section Model (ASM) [33]
was chosen as it is capable of representing complex web applications with sim-
ple graphs. Furthermore, it can be produced using the static analysis.

ASM is a well known model primarily developed for testing web applications.
Each HTML page is represented by a Component Interaction Model (CIM);
CIMs of all HTML pages are combined together into an Application Transition
Graph (ATG) representing ASM. Thus, the ATG of a web application is the for-
mal representation of the hypertext model.

The CIM of a single HTML page is a quadruple CIM = 〈S,A,CE,T〉 with

– a set of start pages S from which the page is referenced,
– a set of atomic sections A the page is made of,
– a component expression CE describing the page structure, and
– a set of transitions T pointing from and to (other) HTML pages.

An atomic section (AS) is a basic block of PL/SQL code producing the HTML
page contents send to a client. The component expression is a regular ex-
pression denoting all possible sequences, selections and iterations of diverse
ASs when dynamically constructing HTML page. All sets are fixed; in reverse
engineering they can be retrieved by parsing HTML code or objects which dy-
namically create HTML pages, and by some manual processing by an analyst.

Originally the first component of a CIM is a single start page [33]. However,
to produce the adequate hypertext model the first component of a CIM must be
a set of all pages pointing to a page the CIM is made for. This is important for
the construction of the ATG.

The ATG of an application is a quadruple ATG = 〈Γ,Θ,Σ, α〉 with

– a set Γ of software components (CIMs),
– a set Θ containing all transitions of all CIMs,
– a set Σ of variables defining possible states of the presentation layer, and
– a set α of of all diverse starting pages (usually one).

The ATG is usually presented as a directed graph with a set of vertices Γ and
a set of edges Θ.

1572 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

PA
RA

M
ET

ER
.P

RO
C_

ST
AT

U
S_

RE
P

PG
ID

.F
U

N
_P

G
ID

PG
ID

.F
U

N
_P

G
ID

PG
ID

.F
U

N
_P

G
ID

PA
RA

M
ET

ER
.F

U
N

_A
D

M
IN

_N
A

M
E

PA
RA

M
ET

ER
.F

U
N

_S
TA

FF
_N

A
M

E

PA
RA

M
ET

ER
.F

U
N

_S
TA

FF
_N

A
M

E

PA
RA

M
ET

ER
.F

U
N

_S
TA

FF
_N

A
M

E

PA
RA

M
ET

ER
.P

RO
C_

ST
AT

U
S_

RE
P

PG
ID

.F
U

N
_P

G
ID

PG
ID

.F
U

N
_P

G
ID

PA
RA

M
ET

ER
.F

U
N

_A
D

M
IN

_N
A

M
E

PA
RA

M
ET

ER
.F

U
N

_S
TA

FF
_N

A
M

E
PA

RA
M

ET
ER

.F
U

N
_A

D
M

IN
_N

A
M

E
PA

RA
M

ET
ER

.F
U

N
_S

TA
FF

_N
A

M
E

PA
RA

M
ET

ER
.F

U
N

_S
TA

FF
_N

A
M

E
PA

RA
M

ET
ER

.F
U

N
_S

TA
FF

_N
A

M
E

DYN_OPEN_
EXAM_REGS PARAMETER PGID PERSON EXAM_REG

FUN_PAR

PROC_STATUS_REP

FUN_PAR

FUN_STAFF_NAME

FUN_PGID

FUN_STAFF_PERSON

PROC_OPEN_EXAM_REG_LIST

FUN_PGID

FUN_PGID

FUN_ADMIN_NAME

FUN_STAFF_NAME

FUN_ADMIN_NAME

FUN_STAFF_NAME

FUN_ADMIN_NAME

FUN_STAFF_NAME

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

PROC_OBROBA

FUN_PREDMET_SKUPINAH

PROC_OBROBA

PROC_OBROBA

PROC_OBROBA

PROC_OBROBA

Fig. 6. An example of a sequence diagram generation (only cca 15 % is shown). The
transitions corresponding to the call of PARAMETER.PROC STATUS REP from dynamic
page DYN OPEN EXAM REGS is based on the complete call graph (center) produced from
the three direct call graphs (left).

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1573

Igor Rožanc and Boštjan Slivnik

A CIM is extracted from a dynamic page or a stored procedure using a
method similar to extracting an activity diagram: it consists of (1) code sim-
plification, (2) manual extraction of CIM structure and generation of graphical
representation of CIM.

Code simplification is performed by the parser used for generation of ac-
tivity diagrams except that the code fragments are classified into the following
categories:

– presentation elements (code fragments which are copied to HTML page or
produce the contents that is copied to HTML page);

– links (links to other HTML pages, SUBMIT parameter definitions, etc.);
– control structures;
– procedure and function calls;
– other code (SQL blocks, declarations, etc.).

All fragments classified as ’other code’ are eliminated. Note that this code sim-
plification concentrates on code fragments that were mostly left out by the code
simplification used for producing activity diagrams.

Once the code is simplified, the CIM is produced manually by an analyst
defining atomic sections and the control flow among them, and the transitions
to and from other dynamic pages. Each atomic section represent a description
of a group of presentation elements, stored procedure and function calls at a
higher level of abstraction. The ATG is constructed simply by connecting CIMs
using the transitions among them.

Case study: For instance, the CIM of a dynamic page for open exam regis-
trations is shown in Fig. 7. It contains 15 atomic sections (labeled P1 . . .P15)
connected as described by the regular expression

P1((P2|ε)P3((P4(P5|P6)(P7|ε)P8)|(P9(P10|ε)P11(P12|ε)P13)|ε)P15)|P14

where P1 is “HeadSectionAndTitle”, P2 is “StatusMissingURL”, etc. Futhermore,
it contains 4 transitions, namely

MenuProfessor −→ DYN OPEN EXAM REGS[POST(⊥,⊥,⊥,⊥)]

MenuStaff −→ DYN OPEN EXAM REGS[POST(⊥,⊥,⊥,⊥)]

DYN OPEN EXAM REGS.PrintReport −→ GetReport[POST(id)]

DYN OPEN EXAM REGS.EndOfBodySection−→
DYN OPEN EXAM REGS[POST(f from, f to, f button, f print)]

The first two transitions specify where is this dynamic page reachable from
while the third one specifies which dynamic page is used after the main oper-
ation performed by this dynamic page has been finished. The fourth transition
specifies a return to the same dynamic page once the parameters have been
refined using HTML form elements contained within the page.

To produce CIMs for eŠtudent, the source code of a dynamic page was
simplified by the same parser as used for activity diagrams but using the code

1574 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

OPEN_EXAM_REGS

HeadSectionAndTitle

StatusMissingURL

BeginBodySection

OpenFormForInput OpenFormForOutput

EndOfBodySection

ErrorReport

ProfessorSelection

InsertDatesAndSubmit

OutputScreenStaffOutputScreenProf POST,(f_from,f_to,f_button,f_print)

PrintReport

SubmitAndFormCloseStatusIncorrectData

FormClose

GetReport

POST,(id)

MenuProfessor

POST,(NULL,NULL,NULL,NULL)

MenuStaff

POST,(NULL,NULL,NULL,NULL)

Fig. 7. The CIM for the dynamic page for processing open exam registrations.

classification as described above. Once the analyst produced the CIM descrip-
tion, the graphical presentation of CIMs was generated using the dot tool from
the GraphViz package.

Apart from the four pages used during the login process, e-Študent contains
five entry points, one for each user group. After a quick check it was established
that one CIM must be produced for each of 186 dynamic pages 349 of 388
stored procedures and 65 of 207 stored functions. Thus, the hypertext model
of e-Študent consists of almost 600 CIMs. To produce the ATG, each transition
is augmented with a link to a dot file containing a CIM of a dynamic page
reachable by the transition.

7. Lessons from the case study

Since the start of the reverse engineering of eŠtudent in 2012 [36], the focus of
the reverse engineering has changed. Namely, in autumn 2012 the initial goal
of producing the PIM suitable for fully automatic reengineering of eŠtudent has
been replaced by producing the PIM suitable for maintenance and consulting.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1575

Igor Rožanc and Boštjan Slivnik

The change of the goal was due to the decision of the new development team
not to implement the new eŠtudent from the described models because of the
complexity of the application, major modifications of the existing requirements
and a number of new requirements.

The initial eŠtudent development team consisted of 9 developers but only
one developer (the first author) actively maintains the application nowadays.
The construction of the models proved to be a great advantage during main-
tenance for a number of reasons. First, it provided the maintainer a consistent
top-down understanding of various aspects of the entire application. Second,
it enabled the maintainer to understand the entire source code even though
most of the past developers are no longer of any help. It turned out that code
modifications (due to an urgent requirement changes) or bug fixes were much
easier to perform once the corresponding activity diagrams were constructed.
Before the diagrams were produced, finding and fixing the part of the code to
be changed and testing the fix demanded significantly more work.

Once the new development team started on the next generation of eŠtudent
in autumn 2012, the models were used intensively for the domain knowledge
transfer during the design phase of the new application. The class diagram
was transferred into the new application and later modified according to new
requirements, and the use case diagrams were user for establishment of the
compulsory tasks.

The consultant (the first author) found the activity diagrams made at a higher
level of abstraction as described in this paper invaluable since the new devel-
opment team needed information on operations at a higher level of granularity.
More precisely, once the main elements of the PIM were available, the con-
sulting became far more comprehensive and compact. The need for consult-
ing services decreased sharply after approximately 3 months during which the
consultant-analyst was producing and conveying the model (especially the ac-
tivity diagrams). Hence, the method proved its importance in practice. When-
ever low-level details were required, the original source code was preferred to
the automatically generated activity diagrams, i.e., as described in [36].

As the construction of models requires a considerable amount of analyst’s
work, the models were constructed to the extent requested by maintenance
needs and consulting work only. Additionally, the construction of the models
was interleaved with the development of the necessary custom tools and thus
no clear separation of time used for each of these two tasks is available.

The construction of class diagram and use case diagrams took 2 man-weeks
to complete. The most of this time was spent for assigning methods based on
stored procedures and functions to classes of the conceptual class diagram.

As expected, the most time consuming part of the reverse engineering pro-
ved to be the construction of activity diagrams. After the initial attempt described
in [36], the dead code elimination and source code simplification were intro-
duced. Now, an analyst roughly familiar with eŠtudent needs approximately 1
hour to produce the activity diagram for a relatively simple dynamic page shown
in Fig. 5. Based on all activity diagrams constructed (51 in total so far) during

1576 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

maintenance and consulting, we estimate that 2 hours per activity diagram are
needed on average and thus for the entire set of 781 activity diagrams 40 man-
weeks suffices.

As the generation of sequence diagrams is fully automated, the time needed
for the generation is not an issue. The CIMs are usually produced by the same
analyst as activity diagrams and thus approximately 60 % less time is needed
as for the activity diagrams (but since less CIMs than activity diagrams has been
produced so far, this estimation is less reliable).

Many papers agree that a large part of the reverse engineering must be per-
formed manually, but the paper by Di Lucca et al. is one of the few that provide
at least some metrics on actual reverse engineering of a web application. Their
conclusions are the same as ours: “the most expensive steps are those requir-
ing human intervention” [17, p. 96] (even though there are some inconsistencies
regarding Table V on the same page).

8. Discussion

An important issue in reverse engineering is to properly define the focus:

1. If the produced model can be used by the MDD tools to generate the new
version of the application, a lot is gained since the automated code genera-
tion is less error prone and can be done quickly for different platforms.
However, to produce the adequate model for automated MDD, the proper
understanding of the existing web application must be gained first. This
understanding usually requires a shift to a higher level of abstraction which,
as all authors agree, cannot be fully automated. Only after the model on
the higher level of abstraction is obtained, the usual forward engineering
involving “understanding→ model→ code” can be applied [32].

2. Otherwise, the produced model can serve as a well formalized documenta-
tion and therefore it enables the switch from agile software development to
other software development methodologies.
Furthermore, a proper formal documentation provides a foundation for effi-
cient maintenance and consulting. Like above, the models must be shifted
on the higher level of abstraction in order to yield an insight rather than
simply machine readable description.

In either case, the shift to a higher level of abstraction involves primarily pro-
cessing of the existing source code to produce proper activity diagrams since
these diagrams represent the main formalization of business logic. The next in
line are CIMs since they specify the navigation aspect. Generation of both kinds
of diagrams requires analyst support.

PL/SQL proved to be far too low-level formalism any automatic transforma-
tion into the PIM could be successful [13]. Even if activity diagrams are gen-
erated automatically, they are too detailed and include too many past design
elements (including bad solutions that should not be propagated to newer ver-
sions).

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1577

Igor Rožanc and Boštjan Slivnik

There are certain tools available that can ease reverse engineering signifi-
cantly (Visual Paradigm, UModel, PowerDesigner, . . .), but for two reasons the
task cannot be fully automated using any of them. First, even if they produce
a formally correct model or a part of it, it is usually too large and too detailed,
and thus inadequate for later use as shown in [36]. Second, obviously no tool
can gain a proper insight into the logic behind the application. This proves to be
the major obstacle in reverse engineering of an application based on the entity
relationship diagrams and PL/SQL code as producing the PIM involves a shift to
the OO design. Hence, a number of custom tools must be made during reverse
engineering to support but not replace the manual construction of the PIM.

As it turns out reverse engineering of PL/SQL code must be done by some-
one who is at least to some degree familiar with the design of the system being
reverse engineered. There are at least three operations that must be human
assisted: transformation of the entity relationship diagrams to class diagrams,
transformation of the PL/SQL code to activity diagrams, and transformation of
the presentation elements of the PL/SQL code into the hypertext model.

Furthermore, a lesson learnt the hard way is that if a reverse engineering
of a PL/SQL-based web application that was produced by agile development is
to be economically viable, reverse engineering must be performed by at least
some members with the domain knowledge who participated in the develop-
ment of the application.

Finally, even though PL/SQL is not a good starting point for a reverse en-
gineering towards the PIM, sometimes it simply must be done. And although it
might encompass a lot of manual processing, the resulting model is worth the
effort [18].

9. Related work

Recently, a number of authors reported a different approaches to reverse engi-
neering of dynamic web or similar applications. Favre described a MDA-based
framework of platform-independent and platform-dependent models that are
to be produced by reverse engineering of object-oriented code [20]. It is “pro-
pose(d) to apply static and dynamic analysis to generate models” [20] but no
actual procedures for the generation of these models are given and no test
based on a real-world application is included.

Di Lucca et al. [17] presented a reverse engineering process for dynamic
web application supported by the WARE tool. Both static and dynamic analysis
were performed to describe business model using class diagrams, use-case di-
agrams and sequence diagrams. Although similar to our work, their approach
does not include activity diagrams — but only activity diagrams enable a com-
prehensive understanding of business logic, i.e., not just what tasks are per-
formed but also how they are actually performed.

Concentrating on the actual procedures of static reverse engineering, Zou
et al. describe how a business model definition can be constructed after un-
documented changes to the source code were made [44, 45]. Like ours their

1578 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

technique involves source code simplification using a heuristic based on cat-
egorizing programming language constructs. However, they only describe the
generation of workflows which roughly correspond to activity diagrams while
our method covers other models of PIM and the hypertext model as well.

Bellucci et al. described the MARIA tool to perform static reverse engineer-
ing of user interfaces of dynamic web applications [12]. The static transforma-
tion from the concrete language (HTML, CSS, Ajax, JavaScript) to the abstract
(platform independent) one is described — again it is based on categorizing
source code constructs. The tool produces the description of the user interface
at two different abstract levels but it cannot be used to generate a complete
business and hypertext model.

The dynamic approach to reverse engineering has also been considered.
Like Zou et al. [44, 45] Di Francescomarino et al. presented a reverse engi-
neering process leading to the web application’s business model only using
the dynamic analysis of GUI-forms [16]. Amalfitano et al. focused on dynamic
analysis of Rich Internet Applications (RIA) user interface to produce a proper
description using Finite State Machines (FSMs) [8]. Similarly, Marcheto et al.
presented a ReAjax tool to perform on Ajax web applications [28]. It is focused
on Ajax specifics and produces GUI-based state model. Alalfi et al. [6] perform
reverse engineering to obtain UML sequence diagrams for PHP web applica-
tions using instrumentation and analysis of execution traces. Likewise, Briand
et al. described reverse engineering of distributed Java applications to produce
sequential diagrams as well [14].

To summarize, certain papers include no or very little concrete procedures
for reverse engineering [19, 20, 35] while we include the generation of these
models as well. Other papers focus on a single aspect, i.e, workflow based
business model [44, 45], reverse engineering of UIs [12, 16, 28], sequence dia-
grams [6, 14], or leave out some important aspect [17]. However, our approach
tends to come as close as possible to the PIM of a web application which should
consist of a business model, a presentation model and a hypertext model as
many authors working on a standard (forward) modeling agree, i.e., UWE [21,
22], WebML [15], OOHDM [38], Netsilon [32], W2000 [11].

10. Conclusion

Instead of yet another paper describing a methodology of a reverse engineering
for producing different models, we concentrated on one particular kind of web
applications, namely those written primarily in PL/SQL and based on Oracle
Portal/DB. Our methodology produces the business and the hypertext model,
both at the level of abstraction suitable for human insight into the application.
In presenting it, we focused on procedures rather than on a tool that might
implement them.

We tried to avoid the approach of (1) some sources [35] which describe what
models are to be made without giving any hints about how this models could be
made, (2) of some sources [44, 45] which do not provide the entire PIM, or (3)

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1579

Igor Rožanc and Boštjan Slivnik

of some sources [17] that leave out the most important components, i.e., the
activity diagrams. We find these approaches inadequate as the problems are
not in the selection of the appropriate models but in gaining the insight into the
existing application and the subsequent applicability of the produced models.

The methodology has been tested on the real-world application intensively
used in practice, i.e., a student information system eŠtudent. The models re-
trieved by reverse engineering have been used successfully for maintenance
and consulting. We believe that the produced models represent a viable start-
ing point for the design of a model suitable for automated MDA.

References

1. Altova UModel 2012, http://www.altova.com/umodel.html (retrieved June 4th, 2013)
2. Entrionics UML modelling for SQL, http://www.entrionics.com (retrieved June 4th,

2013)
3. Manifesto for agile software development, http://agilemanifesto.org (retrieved: June

4th, 2013)
4. SAP Sybase PowerDesigner, http://www.sybase.com/products/modelingdevelopment/power-

designer (retrieved November 5th, 2012)
5. Akkiraju, R., Mitra, T., Thulasiram, U.: Reverse engineering platform independent

models from business software applications. In: Telea, A.C. (ed.) Reverse Engineer-
ing - Recent Advances and Applications, chap. 4, pp. 83–94. InTech Press (2012)

6. Alalfi, M.H., Cordy, J.R., Dean, T.R.: Automated reverse engineering of UML se-
quence diagrams for dynamic web applications. In: Proceedings of the 2nd Inter-
national Conference on Software Testing, Verification and Validation (ICST’09). pp.
287–294. IEEE Computer Society Press, Denver, CO, USA (2009)

7. Alalfi, M.H., Cordy, J.R., Dean, T.R.: Modelling methods for web application verifi-
cation and testing: state of the art. Software Testing, Verification and Reliability 19,
265–296 (2009)

8. Amalfitano, D., Fasolino, R., Tramontana, P.: Experimenting a reverse engineering
technique for modelling the behaviour of rich internet applications. In: Proceddings
of the IEEE International Conference on Software Maintenance (ICSM’09). pp. 571–
574. IEEE Computer Society Press, Edmonton, AL, Canada (2009)

9. Ammann, P., Offut, J.: Introduction to Software Testing. Cambridge University Press,
New York, NY, USA (2008)

10. Andrews, A.A., Offut, J., Alexander, R.T.: Testing web applications by modeling with
fsms. Software & Systems Modeling 4(3), 326–345 (2005)

11. Baresi, L., Garzotto, F., Paolini, P.: Extending UML for modeling web applications.
In: Proceedings of the 34th Annual Hawaii International Conference on System Sci-
ences. pp. 1–10. Honolulu, HI, USA (2001)

12. Bellucci, F., Ghiani, G., Paternò, F., Porta, C.: Automatic reverse engineering of in-
teractive dynamic web applications to support adaptation across platforms. In: Pro-
ceedings of the 2012 ACM International Conference on Intelligent User Interfaces
(IUI’12). pp. 217–226. Lisbon, Portugal (2012)

13. Billig, A., Busse, S., Leicher, A., Süss, J.G.: Platform independent model transforma-
tion based on triple. In: Proceddings of the 5th ACM/IFIP/USENIX International Con-
ference on Middleware (Middleware’04). pp. 493–511. Springer-Verlag, New York,
NY, USA (2004)

1580 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

14. Briand, L.C., Labiche, Y., Leduc, J.: Toward the reverse engineering of UML se-
quence diagrams for distributed Java software. IEEE Transactions on Software En-
gineering 32(9), 642–663 (2006)

15. Ceri, S., Piero, F., Bongio, A.: Web modeling language (WebML): a modeling lan-
guage for designing Web sites. Computer Networks 33(1–6), 137–157 (2000)

16. Di Francescomarino, C., Marchetto, A., Tonella, P.: Reverse engineering of busi-
ness processes exposed as web applications. In: Proceedings of the 13th Euro-
pean Conference on Software Maintenance and Reengineering. pp. 139–148. IEEE
Computer Society Press, Kaiserlautern, Germany (2009)

17. Di Lucca, G.A., Fasolino, A.R., Tramontana, P.: Reverse engineering web applica-
tions: the WARE approach. Journal of Software Maintenance and Evolution: Re-
search and Practice 16(1-2), 71–101 (2004)

18. Dzidek, W.J., Arisholm, E., Briand, L.C.: A realistic empirical evaluation of the costs
and benefits of UML in software maintenance. IEEE Transactions on Software En-
gineering 34(3), 407–432 (2008)

19. Escalona, M.J., Gutiérrez, J.J., Rodrı́guez-Catalán, L., Guevara, A.: Model-driven
in reverse: the practical experience of the AQUA project. In: Proceedings of the
2009 Euro American Conference on Telematics and Information Systems: New Op-
portunities to increase Digital Citizenship (EATIS’09). pp. 17:1–17:6. ACM, Prague,
Czech Republic (2009)

20. Favre, L.: Formalizing MDA-based reverse engineering processes. In: Proceedings
of the 6th International Conference on Software Engineering Research, Manage-
ment and Applications (SERA’08). pp. 153–160. IEEE Computer Society Press,
Prague, Czech Republic (2008)

21. Knapp, A., Koch, N., Zhang, G.: ArgoUWE: A CASE tool for web applications. In:
Proceedings of the 1st International Workshop on Engineering Methods to Support
Information Systems Evolution. Geneva, Switzerland (2003)

22. Koch, N., Kraus, A.: The expressive power of UML-based web engineering. In: Pro-
ceedings of the 2nd International Workshop on Web-Oriented Software Technology
(IWWOST’02). pp. 105–119. Malaga, Spain (2002)

23. Liebarman, B.: UML activity diagrams: Versatile roadmaps for understanding system
behavior. The Rational Edge p. 12 (2001)

24. Luković, I., Varanda Pereira, M.J., Oliveira, N., da Cruz, D., Henriques, P.R.: A DSL
for PIM specifications: Design and attribute grammar based implementation. Com-
puter Science and Information Systems 8(2), 379–403 (2011)

25. Mahnič, V.: A case study on agile estimating and planning using scrum. Electronics
and Electrical Engineering 5(111), 123–128 (2011)

26. Mahnič, V., Drnovšček, S.: Introducing agile methods in the development of univer-
sity information systems. In: Proceedings of the 12th International Conference on
European University Information Systems (EUNIS 2006). pp. 61–68. Tartu, Estonia
(2006)

27. Mahnič, V., Rožanc, I., Poženel, M.: Using e-business technology in a student
records information system. In: Proceedings of the 7th WSEAS International Con-
ference on E-Activities (E-Activities’08). pp. 589–594. Cairo, Egipt (2008)

28. Marchetto, A., Tonello, P., Ricca, F.: Reajax: a reverse engineering tool for ajax web
applications. IET Software 6(1), 33–49 (2012)

29. Martin, R.C.: Agile Software Development, Principles, Patterns, and Practices. Pren-
tice Hall, Englewood Cliffs, NJ, USA (2002)

30. Mellor, S.J., Scott, K., Uhl, A., Weise, D.: MDA distilled - principles of model-driven
architecture. Addison-Wesley, Boston, MA, USA (2004)

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1581

Igor Rožanc and Boštjan Slivnik

31. Miles, R., Hamilton, K.: Learning UML 2.0. O’Reilly Media, Sebastopol, CA, USA
(2006)

32. Muller, P.A., Studer, P., Fondement, F., Bezivin, J.: Platform independent Web appli-
cation modeling and development with Netsilon. Software & System Modeling 4(4),
424–442 (2005)

33. Offutt, J., Wu, Y.: Modeling presentation layers of web applications for testing. Soft-
ware & Systems Modeling 9(2), 257–280 (2010)

34. Poženel, M., Mahnič, V., Kukar, M.: Separation of interleaved web sessions with
heuristic search. In: Proceedings of the IEEE International Conference on Data Min-
ing (ICDM). pp. 411–420. IEEE Computer Society Press (2010)

35. Raghupathi, W., Umar, A.: Exploring a model-driven architecture (MDA) approach
to health care information systems development. International Journal of Medical
Informatics 77(5), 305–314 (2008)

36. Rožanc, I., Slivnik, B.: Producing the platform independent model of an existing web
application. In: Proceedings of the Federated Conference on Computer Science
and Information Systems. pp. 1385–1392. IEEE Computer Society Press, Wroclaw,
Poland (2012)

37. Rugaber, S., Stirewalt, K.: Model-driven reverse engineering. IEEE Software 21(4),
45–53 (2004)

38. Schwabe, D., Rossi, G., Barbosa, S.D.J.: Systematic hypermedia application design
with OOHDM. In: Proceedings of the 7th ACM Conference on Hypertext. pp. 116–
128. ACM, Bethesda, Maryland, USA (1996)

39. Solms, F., Loubser, D.: Generating MDA’s platform independent model using UR-
DAD. Journal of Knowledge-Based Systems 22(3), 174–185 (2009)

40. Sparks, G.: Database modelling in UML. Methods & Tools 9(1), 10–23 (2001)
41. Ulrich, W.M., Newcomb, P.: Information Systems Transformation: Architecture-

Driven Modernization Case Studies. Morgan Kaufmann, Burlington, Mass., USA
(2010)

42. Valderas, P., Pelechano, V.: A survey of requirements specification in model-driven
development of web applications. ACM Transactions on the Web 5(2), article(10)
(2011)

43. Zou, Y., Guo, J., Foo, K.C., Hung, M.: Recovering business processes from busi-
ness applications. Journal of Software Maintenance and Evolution: Research and
Practice 21(5), 315–348 (2009)

44. Zou, Y., Lau, T.C., Kontogiannis, K., Tong, T., McKegney, R.: Model-driven busi-
ness process recovery. In: Proceedings of the 11th Working Conference on Re-
verse Engineering (WCRE’04). pp. 224–233. IEEE Computer Society Press, Delft,
The Netherlands (2004)

45. Zou, Y., Zhang, Q., Zhao, X.: Improving the usability of e-commerce applications us-
ing business processes. IEEE Transactions on Software Engineering 33(12), 837–
855 (2007)

Igor Rožanc received the M.Sc. and Ph.D. degrees in computer science from
the University of Ljubljana in 1995 and 2003, respectively. He is currently at the
University of Ljubljana, Faculty of Computer and Information Science. Through-
out his career he has been actively involved in the design and development of
student information systems. His research interests include distance learning
and programming methodologies.

1582 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

Boštjan Slivnik is an Assistant Professor at the University of Ljubljana, Faculty
of Computer and Information Science where he received the M.Sc. and Ph.D.
degrees in computer science in 1996 and 2003, respectively. His research in-
terests include parsing algorithms, compilers, formal languages, scheduling and
distributed algorithms. He has been a member of the ACM since 1996.

Received: December 18, 2012; Accepted: August 23, 2013.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1583

DOI:10.2298/CSIS121228059D

Model Execution: An Approach based on

extending Domain-Specific Modeling with Action

Reports

Verislav Djukić1, Ivan Luković
2
, Aleksandar Popović3, and

Vladimir Ivančević2

1 Djukić – Software Solutions,
Gärtnerstrasse 17, 90408 Nürnberg, Germany

info@djukic-soft.com
2 University of Novi Sad, Faculty of Technical Sciences,
Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia

{ivan,dragoman}@uns.ac.rs
3 University of Montenegro, Faculty of Natural Sciences and Mathematics,

Džordža Vašingtona bb, 81000 Podgorica, Montenegro
aleksandarp@rc.pmf.ac.me

Abstract. In this paper, we present an approach to development and
application of domain-specific modeling (DSM) tools in the model-
based management of business processes. The level of Model-to-Text
(M2T) transformations in the standard architecture for domain-specific
modeling solutions is extended with action reports, which allow
synchronization between models, generated code, and target
interpreters. The basic idea behind the approach is to use M2T
transformation languages to construct submodels, client application
components, and operations on target interpreters. In this manner, M2T
transformations may be employed to support not only generation of
target platform code from domain-specific graphical language (DSGL)
models but also straightforward use of models and appropriate DSM
tools as client applications. The applicability of action reports is
demonstrated by examples from document engineering, and
measurement and control systems.

Keywords: domain-specific modeling, model-driven development,
model transformations, modeling tools, document engineering

1. Introduction

Over the last few years, there have been increased efforts within the
academic community to improve software engineering through application of
software models [33]. In numerous works, there are remarks that the adoption
of Model Driven Software Development (MDSD) and the Unified Modeling
Language (UML) as its main language has only partially achieved the

Verislav Djukić et al.

1586 ComSIS Vol. 10, No. 4, Special Issue, October 2013

proclaimed goals related to development productivity and software quality
[19], [21]. Some authors consider the unfitness of UML for domain specific
problems to be the main reason for this failure. Expecting that an average
software engineer uses or thinks in domain independent abstractions might
have been unrealistic. Several approaches, including Domain Specific
Modeling (DSM) and MDSD, still focus on software models, which are
sufficiently formal but also understandable to both machines and humans.
One of the important goals in the aforementioned approaches is that models
should not only be part of the specification but also of the implementation of
the corresponding systems.

Software industry experts are more pragmatic in regard to these issues
and not determined to use general purpose modeling languages, such as
UML, at all costs. They are more focused on developing modeling tools that
satisfy requirements for highly specialized production and control systems.
Although the quality and usability of these tools are not being questioned, the
manufacturers are constantly faced with high costs of development and
customization, even for very similar domains. Taking all into consideration,
we expect that the software industry will base its highly specialized tools on
the DSM architecture to a much greater extent. The following two
improvements could be particularly important: (i) better support for the
construction of modeling languages and their syntax, including abstract,
concrete graphical, and concrete textual syntax; and (ii) better
synchronization between meta-models, models, generated code, and target
interpreters or “execution machines”. Our research is oriented toward the
latter improvement, i.e., better synchronization between meta-models,
models, generated code, and target interpreters. The aforementioned
synchronization is closely linked to model debugging and execution.

The topic of our research presented herein is also present in other domains
of application within the field of software engineering. One such domain is
software development based on MDSD and Computer Aided Software
Engineering (CASE) tools. The traditional CASE tools support the creation of
platform independent model (PIM) software specifications, their automatic
transformation into platform specific model (PSM) specifications, and
ultimately the generation of program code. However, it cannot be actually
expected that these tools support incremental interpretation of specifications
and dynamic changes of the applied meta-models. These requirements may
be gradually fulfilled in the evolution of CASE tools into MDSD tools by
insisting on retaining the complete synchronization between the created PIM
models and the generated program code. An example of one such MDSD
tool, which is developed by the authors of this paper, is the Integrated
Information Systems CASE Tool (IIS*Case) [26]. At present, this tool relies
on the PIM model of an information system to generate: (i) implementation
description of a database schema and (ii) prototypes of the applications
supporting operations on that database. In the current version, any
modification within the model requires a new generation of the
implementation description of the database schema, as well as a new
generation of the prototype applications. In this manner, in forward

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1587

engineering, there is support for a one-way synchronization. One of the future
research tasks includes implementing in IIS*Case the automatic two-way
synchronization between the model and the system executing the
applications. As opposed to the existing abovementioned approaches to the
execution of models created using a DSM tool, our approach supports
incremental interpretation of specifications. Each user operation on a model
in the DSM tool is directly interpreted in real time, which may be utilized to
verify the correctness of the specification. Simulation tools have supported
this approach for quite some time, but they set restrictions on the semantics
of simulation languages, i.e., meta-modeling is considerably limited. The
execution of models whose semantics is not known in advance represents a
significantly more complex problem with respect to both the theoretical and
practical issues. The most difficult problems are the definition and automatic
generation of a target interpreter that supports incremental verification of
specifications. Moreover, the goal of our approach, to which we actively
direct our efforts, is to support the two-way synchronization by allowing the
direct execution of changes on a model. This may be achieved by using
operations on the application that represents the result of the incremental
specification. There should be support also for the direct extension of a meta-
model in real time according to the operations executed on the previously
created models.

Our initial application of MDSD, DSM, and model transformation principles
is related to complex problems in document engineering, previously
presented in [7], [11], [14], [22], [24], [26]. Positive experience with the
construction and application of domain specific languages (DSLs), together
with problems related to the development of client applications for
measurement and control systems, indicated that the Model-to-Text (M2T)
transformations in DSM may be significantly improved and utilized in model
debugging and execution. By employing extended M2T transformations,
namely "action reports”, we intend to make possible the use of modeling tools
as client applications. Notwithstanding the fact that current techniques for
code generation from models have great capabilities, we demonstrate herein
the practical value brought by: the introduction of the submodel concept and
appropriate operations; the introduction of the transaction concept in the
context of (sub)models; and the use of action reports (generators) as
synchronization units during the testing of meta-models, models, client
applications, and target interpreters. The practical value of introducing
submodels, transactions, and action reports, is that M2T transformations, in
addition to being employed for the generation of code in a target language,
may also be used for expressing semantics of user actions on a PIM, i.e., on
the graphical interface of a DSM tool.

In order to refer to the activities related to meta-modeling (Me), modeling
(M), interpretation (I), and documenting (D) of model changes and execution
flow, we introduce the term/acronym MeMID activities. Consequently, the
approach to the modeling and development of software systems that includes
all of the aforementioned activities is named the MeMID approach. When
compared to the traditional approach to modeling, the MeMID approach

Verislav Djukić et al.

1588 ComSIS Vol. 10, No. 4, Special Issue, October 2013

includes interaction between all of the components in the DSM architecture,
incremental specification, and visual representation of all changes within a
real system being modeled. We took a pragmatic approach to the issue of
model execution, with the goal of having solutions that may be sufficiently
understood by a wide range of users and quickly applied in various business
domains. The emphasis is placed neither on the definition of syntax of user
semantic actions, nor on meta-modeling, but on the definition of action
semantics, i.e., on the interpretation of user actions in a DSM tool during their
execution and not solely afterwards, during code generation.

Besides the Introduction and Conclusion, the paper contains eight sections.
In Section 2, we describe the state of the art and what is expected from DSM
for model execution. The description of the concept of action reports and how
they differ from code generators may be found in Section 3. In Section 4, we
describe Model-to-Application (M2A), Application-to-Model (A2M), and
Model-to-Document (M2D) transformations with respect to application
generation. In Section 5, we describe usage of submodels and transactions in
the testing of a DSL, model, and target framework or interpreter. This is
illustrated with examples of using DSM tools for modeling documents,
document templates, and modeling systems by documents. In Section 6, we
describe how arbitrary user components may be integrated into DSM tools
with the goal of visually representing abstract language concepts. In Section
7, we give examples of the synchronization between a client application and
modeling tool. Section 8 describes usage of action reports for the purpose of
implementing operations on DSM models, the target interpreter, and user
applications. Chapter 9 contains a survey of related work, and overview of
the current state of technology in the area of model execution.

2. State of the Art and MeMID Activities

There are certain differences between the roles of some elements in the
architecture of DSM and UML tools. These roles originate from different
perspectives on modeling in domain specific (DSM) and general purpose
(UML) tools. On one hand, DSM tools promote unrestricted construction of
domain-specific languages tailored to the needs of users in narrow business
domains. On the other hand, UML tools promote construction and use of
profiles that are tailored to a particular domain but retain basic elements of
the UML syntax, as in the case of SysML [34]. Moreover, DSM tools allow
rapid construction of any language belonging to the UML group, while UML
tools feature a more suitable graphical interface. In DSM tools, a model is
completely separated from the target language, i.e., models are fully platform
independent. In UML tools, there is an early coupling between a model and
the target language. In DSM tools, reverse engineering is regarded as a
methodologically inappropriate procedure, while it is indispensable in UML
tools for the purpose of synchronizing code and model. Nonetheless, these

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1589

observations are fairly general since there are significant differences even
between the tools of the same group.

Further evaluation of the state of the art in the area of model execution is
done with respect to the aspects of traditional and advanced code generation
and execution (Fig. 1). A modeling language is constructed using a dedicated
editor, while models are created using the newly constructed language. In the
DSM architecture, these steps correspond to meta-modeling and modeling
activities. PIMs are transformed into source code in a general purpose
programming language. Transformations are done using patterns or
navigation languages [15], [30]. The generated source code in some
language (e.g., IEC 611.31, C++, Java, and C#) is translated into binary code
using a compiler so that it could be executed on the target platform. This
DSM use case is marked as Traditional Flow in Fig. 1. In some cases, target
platforms are operating systems themselves, but they may often be Run-
Time Systems (RTSs) or Execution Machines, which feature a set of
functions more suited for the concrete purpose when compared to operating
systems. In our opinion, traditional use of DSM tools significantly improves
productivity in the system development, but also has serious drawbacks.

The basic drawbacks of the traditional approach include: (i) weak
synchronization between the generated code, model, and meta-model, which
hinders incremental execution of models; and (ii) growth of specifications. As
the specification is growing, the model should be executed accordingly, first,
as empty, and later as more complex, while for each action on the model
there should be a corresponding interpretation in the target RTS.

Fig. 1. Traditional and advanced usage of DSM tools

Verislav Djukić et al.

1590 ComSIS Vol. 10, No. 4, Special Issue, October 2013

In the traditional approach, which is based on transformations into a
general purpose language, the semantics expressed by a PIM may be
significantly limited by a transformation to a target general purpose language
(GPL). The approach that we propose, which is illustrated herein in Fig. 1 and
with several examples tested in practice, includes:

 direct translation of PIM models to binary code tailored to the
characteristics of the target RTS and hardware;

 dynamic linking of specifications being executed using increments, which
are the result of changes in the model;

 use of action report interpreter within DSM tools, Human-machine interface
(HMI) components, and the RTS for the purpose of their synchronization;

 application of arbitrary user components for the visualization of abstract
DSL concepts; and

 run-time visualization of the interpretation of specifications within the DSM
tool.

As indicated in Fig. 1, at the level of M2T transformations, an extended
abstract syntax tree (AST) is generated. It is an Extensible Markup Language
(XML) structure, from which it is possible to generate code in binary,
assembly, or a general purpose programming language. Depending on the
characteristics of the RTS and target hardware, various protocols for dynamic
linking of binary code to the RTS are employed. These protocols specify how
to exchange data on variables, arrays, user structures, external functions,
and values of object instances. If the modeling language is sufficiently rich,
there is no need for a host language, and, consequently, for a GPL compiler.
We consider this approach especially suitable for target RTSs that support:
incremental updating, dynamic linking of binary code, and execution of
instructions used to communicate with wired logic controllers. The target
system may also be a virtual machine, which executes byte code. We use
the term byte code to denote a set of platform independent assembly
instructions that are primarily intended to be interpreted by virtual machines.
Due to their slow interpretation times, virtual machines are generally not
suitable for systems that should have a prompt and time-determined
response.

The tracking of model changes presents an important research topic of
practical relevance to the Model-Driven Development (MDD) community. In
[29], the authors introduce new features of the MetaEdit+ Workbench [30]
and present various capabilities for visualizing language concepts of a DSL,
including dynamic modification of appearance properties. The MetaEdit+
Workbench is a tool that provides support for various development phases
including meta-modeling, modeling, code generation, and simulation of the
modeled system. In our approach, we borrow two well-established ideas that
are implemented in modern database management systems: transactions
and views.

In [27], the authors report the lack of support for model debugging in DSL
tools. While most GPL Integrated Development Environments (IDEs) support
model debugging because language syntax and semantics are known in
advance (and because there is a compiler), the situation concerning DSLs is

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1591

substantially more complex. The standard debugging scenario is conceptually
restricted by operating systems, target frameworks, and libraries. Therefore,
any pragmatic approach featuring even minor improvements related to
MeMID activities is going to represent a significant contribution to the testing
of domain-specific models.

3. Action Report as an Extended M2T Transformation

An action report is a special M2T transformation formally defined using a
language for specifying code generators that, in addition to the description of
the model-to-text transformation, contains commands and rules for command
invocations during model execution. DSM involves use of reports, also known
as generators, to specify how to utilize information from abstract models and
to generate code in accordance with a particular concrete syntax [3], [14],
[20], [30]. A report is a program whose interpretation yields a textual
representation of the semantics expressed in a model. Since transformation
languages support model filtering by selection of objects and relations
according to a criterion, they should be used to explicitly define a submodel
or model view. The need to introduce submodels arises from the fact that, in
practice, testing is most of the time focused on a single part of the system
and not on the system as a whole.

The purpose of extending report languages and their interpreters is to
improve synchronization between a modeling tool, target interpreter and
client applications that are not generated by the modeling tool. Therefore, an
action report is a report containing synchronization commands. Accordingly,
an action report interpreter is an extended code generator that, in addition to
reading, may change the state of a model, meta-model, client application and
target interpreter. Put in simple terms, an action report features set and get
operations for property values. In such role of action reports, it is assumed
that every participant in the synchronization has an instance of the action
report interpreter.

Relevant characteristics of action reports are divided into three groups: (i)
those that are related to modeling tools; (ii) those that are related to target
interpreters; and (iii) those that are related to user components for visualizing
and documenting actions.

The first group includes the following characteristics: (i) action reports are
defined in the context of a submodel; (ii) action reports allow frequent model
view changes, i.e., frequent submodel redefinitions; (iii) action reports are
executed inside an optimized transaction whose beginning and end are tied
to valid model states; and (iv) action reports may execute operations (and be
referenced) in the context of both concepts forming a meta-model (modeling
language) and objects not part of the meta-model, i.e., any user control.

The second group includes the following characteristics: (i) there are target
environments that support model interpretation during specification time,
which introduces the need for an operation that would calculate specification

Verislav Djukić et al.

1592 ComSIS Vol. 10, No. 4, Special Issue, October 2013

increment between two model states; and (ii) when employing models to
manage business processes, action reports may be used to synchronize
business activities prior to a switch to a new management model, as well as
to incrementally generate documentation and applications that precede the
change of the business model.

The third group includes the following characteristics: (i) all the
communication between modeling tools and external applications is in the
form of textual commands specified in the syntax of a generator language;
(ii) action reports are closely related to target interpreter environments, which
may vary greatly; (iii) action reports may be called both synchronously and
asynchronously, while calling rules define order, frequency, and/or logical
conditions related to the call; and (iv) if the target interpreter does not support
incremental update during interpretation time, the problem is reduced to the
recompilation of the generated code and the use of appropriate debugging
tools, which are often part of IDEs.

The role of action reports is illustrated in Fig. 2. They are primarily an
interface between the modeling tool, user applications, and target interpreter
or debugging environment for the generated code. The interpretation of
action reports is performed by special components that are instances of
action report interpreters, which are labeled AR Int within the little yellow
rectangles featured in Fig. 2. The objective is to allow various user groups
like meta-modelers, modelers, testers, etc., to use an existing DSM tool as a
means of testing the generated code, target interpreter, model and DSL.
Action reports are not intended to be used for the description of dynamic
characteristics of a system. These characteristics may be completely formally
specified through UML state diagrams or equivalent DSLs. Action reports are
employed to allow direct use of the existing DSM graphical interface in
debugging or testing of the generated code.

Fig. 2. Action reports and their interpreters

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1593

When the modeling language is not sufficiently semantically rich,
generators may be temporarily used to describe semantics, i.e., surpass
problems caused by the lack of DSL concepts. This scenario is typical
particularly for the DSL construction phase.

We close the action reports introductory section with a remark that the
importance of action reports as defined herein may significantly differ
depending on the actual context. In some business domains, the feedback
that action reports may provide to modeling tools has no relevance. However,
when DSLs are used in specification of measurement and control processes,
action reports are essential and their use brings numerous advantages [29]. A
modeling tool may be used as an HMI by exploiting the feedback from the
target interpreter. There may also be different visual representations of a
single language concept.

4. M2A , A2M, and М2D Transformations

For the purpose of investigating and verifying practical usability of Model-to-
Application, Application-to-Model, and Model-to-Document transformations,
we implemented the DVRepLang language for specifying these
transformations and a corresponding interpreter [8], [14]. They are part of
DVDocIDE [10], a DSM tool for document modeling. М2А/А2М
transformations are basically М2Т/Text-to-Model (Т2М) transformations
whose purpose has been described in various papers [30], [34]. M2T
transformations have been applied in numerous tools for code generation
from models [2], [14], [15], [20]. The motivation for introducing M2A/A2M
transformations in our research is differentiating in code generation between:
(i) procedures that generate the code for the communication between
modeling tools and a target interpreter and (ii) procedures that generate the
code to be interpreted or executed on the target interpreter. The procedures
that generate the code responsible for the communication are tailored to the
characteristics of communication components, i.e., communication
frameworks. On the other hand, the procedures that generate the code being
interpreted are tailored to the characteristics of the framework and target
system. The semantics expressed by the model is interpreted by this target
system independently from the manner in which the communication is
performed. For example, if both frameworks are inadequate, the
communication procedures may generate TCP/IP commands, while the
procedures responsible for expressing the semantics of the model may
generate code in C++. In this context, the target interpreter is important as a
component that verifies model and gives feedback for the potential
refinement of both the model and DSL. The reason for introducing the notion
of a M2D transformation is a need to extend M2T transformations with
procedures for the generation of documentation about the MeMID activities.

The most important characteristics of М2А/А2М transformations include:

Verislav Djukić et al.

1594 ComSIS Vol. 10, No. 4, Special Issue, October 2013

 target text is a code in a GPL, DSL, or any textual format interpretable by
a modeling tool or a target interpreter;

 target text contains embedded semantic actions like property get and set
operations;

 operations may be performed on models inside a repository or locally on
visual representations of DSL concepts in the graphical interface of a
modeling tool;

 these transformations may include operations on external elements of the
presentation that are not part of the modeling tool (see Fig. 3);

 these transformations do not directly modify the meta-model, but are used
for the semi-automatic inclusion of user controls that graphically represent
language concepts; and

 when there is a discrepancy between the concepts directly supported by
the interpreter and those of the DSL, these transformations provide an
interface for the communication between the relatively incompatible units.

The most important characteristics of М2D transformations include:

 target text is a specification of document instances in a DSL;

 such specification contains identifiers of layout styles that are used for the
document rendering;

 target interpreter, which features an instance of the action report
interpreter, utilizes action report definitions as a basis for the identification
of rules and conditions for initiating document rendering; and

 M2D transformations include rendering of well-designed documents in the
PDF or HTML format in the form of external services.

By introducing these transformations, we satisfy some of the user
requirements related to the more agile testing and documenting of DSLs,
models, and target interpreters. The ideal environment for the application of
these transformations within the MeMID activities is the one that supposes
the existence of the “universal interpreter” and does not require interrupting
the interpretation during the synchronization of model changes. These “hot”
switches to a new version of the model are known as incremental updates.
Universal interpreters that are independent of the application domain do not
exist. Any generalization of the target interpreter necessarily leads to a
greater separation of the language used to describe the problem from the
language interpretable by the interpreter. In practice, there is a compromise
to solve the widest possible class of problems by upgrading the interpreter so
that it could internally translate DSL constructs that are at a high level of
abstraction to an optimized set of elementary operations.

With respect to the connectedness of meta-models and models, modern
tools vary greatly. Some tools support meta-modeling only through textual
syntax and feature weak synchronization between meta-models and models
[15]. Other tools consistently support abstract graphical models, graphical
DSL constructions, and different visual representations for the same
language concept, as well as full synchronization between the meta-models
and models [30]. Different visual representations of a single language
concept allow animations, i.e., visual presentations of model states during

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1595

interpretation [29]. The debugging of DSM models cannot be equated with
the debugging inside GPL IDEs. With the GPL-to-assembly transformations,
there is a finite, predetermined set of source and target language concepts.
On the other hand, in DSM neither the source nor the target language needs
to be known in advance. The source language is constructed to meet the
domain-specific needs and the target code may substantially depend on the
existing libraries and frameworks. One of the approaches to the formation of
a stronger logical relationship between debugging environments and
modeling tools includes the use of patterns. In this manner, it is generally
possible to relate the model to the target code. One disadvantage of the use
of patterns is that they need to be created for each combination of a DSL and
target platform. The critical issue is how efficient the debugging of the
resulting code is when done through a GPL IDE that is logically separated
from the meta-modeling tool. This problem is extensively debated and the
proving of the language validity is a topic of numerous papers and books
[21], [27].

Further discussion of MeMID activities is based upon an assumption that
the debugging rules or steps should be defined inside the М2А, А2М and
M2D transformations in order to provide the feedback from the target
interpreter toward the model.

5. Using Submodels, Transactions, and Action Reports in

MeMID activities

Modeling tools usually support the concept of model decomposition, which
implies that an object, relation, or role may be linked to a submodel. This
allows for a model to be described and expressed at different levels of
granularity and sometimes even at different levels of abstraction. During
testing, it is necessary to focus on just a subset of elements within the model.
In DSM tools, this subset should be defined using a submodel, as a complex
object with its own structure, operations, and constraints. Although default
operations (insert, delete, connect, and disconnect) and constraints express
fundamental dynamics of the system described by that model, they are not
sufficient to express the rules for the translation of the model from one
consistent state to another. For this reason, modeling tools should include
support for the transaction concept. Transaction is defined as an operation
that validates a sequence of actions on a model and updates the repository.
Similar to the database transaction, it includes a validation of actions in the
context of MeMID activities. Therefore, we expect that modeling tools
explicitly support defining submodels, similarly to how it is supported in
DVDocIDE [10].

The purpose of submodels and transactions is illustrated by an example
presented in Fig. 3 The diagram in the left section of the figure features
activities А1-А4 that are part of the production of advertisements and related
documents. The activity А2 (Standard ad production) is composite and

Verislav Djukić et al.

1596 ComSIS Vol. 10, No. 4, Special Issue, October 2013

consists of several activities in the modeling of small advertisements. To
model advertisements, we use a DSL named DVAdLang, [5], [11]. The
subgraph of the object A2, marked with M4, is an advertisement model that
features a logo, several phone numbers, and an email address. In the upper
right section of the figure, there are three models (M1-M3) in three consistent
states (S1-S3), all of them representing the same advertisement. These
advertisements states, which are explicitly expressed by their models M1-M3,
are evaluated in the context of the submodel SM1, which does not contain
the advertisement title (the yellow rounded rectangle).

With respect to model execution, there are two levels of verification: (i)
model verification during design time, done by the modeling tool and in
accordance with the meta-model; and (ii) on-demand verification of the code
generated from the model, whose form of invocation is explicitly expressed
by transactions, i.e., action reports in a M2A transformation (in Fig. 3 marked
by T1 and T2). Successfully completed transactions change the
advertisement states while giving a visual representation for each of these
states, i.e., they document the changes in the advertisement states using
well-designed PDF documents (see the lower section of Fig. 3). Partial
verification of a model, herein illustrated by the example of the submodel
SM1, which is represented by a shaded rectangle with rounded edges, is not
directly supported in standard DSM tools. This fact hinders a wider use of
DSM tools in certain domains, such as document engineering and
incremental specification of measurement and control processes. In the
presented example, we implemented this functionality using the incremental
document generator DVDocGen [6] as the target interpreter. In this manner,
we obtained advertisement images, which are shown in the lower section of
Fig. 3. DVDocGen can detect, interpret, and update action reports. The DSM
modeling tool needs to interpret only a property value set operation in order
to visualize the model execution flow. As opposed to DVDocIDE [10], which
is focused on the formal specification of documents, general purpose DSM
tools mostly do not support such operations.

Examples 1 and 2 further refer to the contents of Fig. 3 and include: (i)
specification of the action report AR1, which sets the text property
Font.Underline in the objects in the modeling tool; and (ii) a generic form of a
DSL script, which is an interpretable textual representation of a portion or
whole semantics expressed by a model.

Example 1. The action report AR1 is defined using DVRepLang [8], [38], a
language similar to the MetaEdit+ Reporting Language (MERL) [30]. Both
languages are navigation languages for M2T transformations of models into
an arbitrary target text. AR1, which is presented in Listing 1, is applicable to
all models that are of the same type as М1-М4 from Fig. 3. It is used to
generate, in accordance with the syntax of DVAdLang language, a DSL script
from the advertisements models. Besides the code segments that are
responsible for a standard M2T transformation, AR1 also contains sections
for embedded semantic actions.

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1597

Fig. 3. Submodels, transactions, and testing of models and the target interpreter

Listing 1. Action report example

Report 'AR1'

CALL_TYPE = event; /*interval,cyclic,event*/

foreach >ContentUnit {

do .()

{'<'type '>'

if type = 'LOGO' then

 ID ',' :Alignment; ',' :Height;

else :Value; endif

newline

dowhile ~Phones in> Phone connections~Phone rings in.()

Verislav Djukić et al.

1598 ComSIS Vol. 10, No. 4, Special Issue, October 2013

 {

 '<' type '>' :Value; newline

 ACTION_BEGIN

 '<STATE>'objID

 :Font.Underline=true;

 ACTION_END

 }

}

The existing syntax of DVRepLang, which is used for М2Т transformations,

is extended with: (i) CALLTYPE command for the declaration of conditions or

intervals for the exchange of action reports with the target interpreter, and (ii)

ACTIONBEGIN and ACTIONEND primitives, which mark a report code

section related to synchronization. In Listing 1, the new language commands
are marked in bold.

Example 2. During the interpretation of the AR1 report from Example 1, a
DSM tool generates target text. In this particular case, it is a DSL script in the
DVAdLang syntax, which is featured in Listing 2. The definition of action

reports is inserted into the <ARMETA> tag. This definition is required by the

target interpreter during the whole synchronization process done with the
modeling tool and client applications.

Listing 2. Embedded definition of an action report in the DSL script

<AR_META>="REPORT AR1..."

<CU>Initial DSL script

<STATE>S1

<CU>Increment for S2 (Transaction T1)

<STATE>S2

<CU>Increment for S3 (Transaction T2)

<STATE>S3

The <STATE>objID commands in a DSL script in the target language

explicitly denote states, and define transitions and semantic action during
model execution. During the interpretation of each <STATE> command, a

client application or document generator finds an action definition within the
<AR_META> tag and executes that action while informing the modeling tool

about the interpretation state. In this example, the property-setting operation
Font.Underline=true (marked by ACTION_BEGIN and ACTION_END) is

called.
Semantic action of synchronization through an action report may be

arbitrarily complex. It may include incremental specification and rendering of
documents inside MeMID activities. In this particular example, since the
target interpreter is a document renderer, the semantic action represents both
a proof of model execution and a rendered documentation about model
testing. For the visualization of the execution of document models and
business process models, very fast document generators are required [4]. An
example of one such simulation that follows the life cycle of documents is
presented in a video clip [5].

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1599

6. User Application and Modeling Tool

In a typical DSM scenario, HMI components of a user application are
generated or parameterized from models. User applications are not utilized in
modeling but are products of modeling that are obtained in the automatic
generation of source code. In environments where DSM is being applied,
users often have their own framework and HMI components whose layout
and functionality are too complex to be specified using editors for meta-
modeling. Therefore, it is useful to allow simple integration and use of
external HMI components in DSM tools. This integration does not only
include exchange of values according to the scenario described in the
previous section, but also implies use of external HMI components for visual
representation of abstract DSL concepts. In the following discussion, we
restrict ourselves to the pragmatic approach that utilizes action reports and
common properties of visualization elements in the DSM tool and HMI
components.

Fig. 4. Editor of common properties, action specifications, and synchronization

Verislav Djukić et al.

1600 ComSIS Vol. 10, No. 4, Special Issue, October 2013

In Fig. 4, we illustrate an approach to the integration of user HMI
components into DSM tools. In the upper left corner of Fig. 4, there is a
function block object in a default visual representation created using a DSM
tool. In the upper right corner of the same figure, there is a user HMI
component that in the form similar to a bar chart shows input and output
values of variables associated with the function block. The output variable
out2 is of the bool type, so it is represented in the HMI component as an
empty circle when its value is false, or as a filled circle when its value is true.
Both the DSM tool and the HMI component support reading and changing the
property values in several ways, e.g., mouse operations and using a text
editor. The P(dsm) label denotes properties defined using the DSM tool, while
the P(hmi) label denotes properties belonging to the HMI component. The
integration procedure consists of three steps: (i) property linking (also shown
in Fig. 4), in which the semantically equivalent properties are found between
the two visual representations, irrespectively of the actual form of
visualization; (ii) defining user actions on the elements of the graphical
representation when certain semantic actions should be executed (labeled
Action specification in Fig. 4); and (iii) defining the semantics of actions using
a language for action reports.

The target interpreter, which is shown in the lower section of Fig. 4,
executes the current specification, i.e., interprets the model and action
reports. In the context of the target interpreter, it is not important whether the
action reports were created by a DSM tool or user application. The role of the
target interpreter is to fetch the values of some properties from the current
state of the interpretation, update the action report, and send it back. The
communication may also go in the opposite direction. Based on the state of
the real system, the target interpreter detects the conditions when the
semantic actions, whose structure and content are represented by the
previously defined action reports, should be called. In this manner, the state
of the model within the DSM tool or the state of the user application may be
updated. Modifications in the model are not restricted only to setting new
values of some properties, but they may be arbitrarily complex and include
any operation that is supported within the graphical interface of the DSM tool,
HMI components, and user application containing those HMI components.

In the context of the example from Fig. 4, Listing 3 illustrates what is
executed by the action report interpreter featured in the target interpreter.

Listing 3. Structure of the semantic action for synchronization

ACTION_BEGIN

:in3=‘2.54’

ACTION_END

The value of the in3 property is set to 2.54 and the updated action report is

sent back to: (i) the modeling tool for the purpose of modifying interface
properties and (ii) the HMI client application for the purpose of setting the
values for visualization controls. Report exchange is performed periodically

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1601

or on a certain event that is not time dependent, according to the role of an
external HMI component. This approach to the synchronization between the
HMI components and target interpreters is not supported within the general
purpose DSM tools, so the testing is performed using DVRepLang and
DVDocIDE, which are DSM tools for document engineering.

7. DSM and Action Reports vs. UML in the Domain of

Measurement and Control Systems

Software models are widely used in the manufacturing of measurement and
control systems (MCSs), as well as in processes that are automated by these
systems. In the field of MCS, there are numerous specifications and solutions
that were created in previous decades without significant use of standardized
modeling languages. There are several important reasons why UML has not
become widely adopted in the MSC industry:

 UML is a graphical language that is not intuitive for domain-specific
problems;

 there is a discrepancy between abstract models and a target language that
is used in model implementation;

 UML cannot be used to easily transform submodels of abstract
specifications into various target languages; and

 UML tools offer limited possibilities when it comes to model execution.
Some of the aforementioned restrictions, which used to impede the full-
fledged application of UML in the MCS industry, have been overcome,
however many practical issues still remain. MSC solutions have to satisfy
rigorous requirements related to low system resources consumption,
precision, execution speed, and reliability of control programs. Application of
abstract UML models was not attractive to domain experts in spite of
potential benefits that could be expected in software development from such
an approach. Practical experience of domain experts shows that the gap
between an ontology and the linguistic concepts of UML that describe the
meaning increases with the specialization of a production environment.

DSM languages and tools have become more prominent as a result of
trying to avoid numerous issues that arise from using GPLs to model domain-
specific problems. The goals of DSM are to completely formally describe a
data structure and process using domain-specific concepts and to generate
code from abstract models while using all the capabilities of a target
environment. One particularly beneficial effect of using DSM tools, especially
those that support access to their repositories through a web service, could
be a move from domain-specific to domain modeling. This means that, in
some business domains, a problem solution based on DSM may be made
available to users from similar domains by offering: (i) a set of domain
specific languages for modeling different aspects of a system; (ii) libraries
containing abstract model transformations for various target environments
(concrete programming languages, interpreters, and hardware languages);

Verislav Djukić et al.

1602 ComSIS Vol. 10, No. 4, Special Issue, October 2013

(iii) a predefined set of constraints for different contexts of use; and (iv)
concepts for describing model variations and the customization of services to
a concrete environment that are both formal and simple for users.

7.1. Applying Action Reports to Models of Car Control Systems

The example given below illustrates the application of action reports in the
synchronization of complex services and actions in a simplified version of a
car control system. The DSL that is featured in Fig. 5 was constructed
starting from the Real-time Object-oriented Modeling Language (ROOM) [35],
whose numerous variations are used in the automotive industry. The basic
concepts of this language include objects (Actor, External client port, External
server port, and Switch) and relations (Binding and Visualization). These
language concepts are sufficient for describing driver’s interaction with car
devices, command processing, state indications on a display, and the
feedback between the current car speed and the way the system reacts on
driver’s commands and states of different sensors.

The model shows a collection of external client ports, such as gas pedal,
brake pedal, rotation counter, engine thermometer, and fuel state indicator.
These mostly analogue devices are connected through sensors to controllers
or external server ports, from which measured values are forwarded to
display components (for speed, rotation, temperature, and fuel level).
Switches that turn engine and cruise control (tempo limiter) on and off are
connected to gas and speed controllers. This abstract model of a car control
system has two units. The first unit includes objects that read values and
forward them to controllers. The other unit contains objects that are used to
display values. In the development of car control systems, a practitioner
would have the following expectations from DSM:

 to be able to extend the language and graphical representations of
concepts (meta-modeling);

 to be able to describe any complex control system using diagrams and to
test such models (modeling);

 to connect a model to analogue devices, external applications, or HMI
components that support advanced graphics;

 to generate code for different target systems and controllers; and

 to automatically document each test case in a readable format (PDF).
Such expectations are well founded because across different industries there
are many software solutions that satisfy the majority of these requirements to
some extent. At the moment, connecting to external applications, and
documenting of test cases are areas that still need significant improvement.
This example is generally focused on illustrating the use of HMI components
with the advanced Windows Presentation Form (WPF) graphics [39]. The
advertisement example featured in Section 5 illustrates how documents are
generated during the testing of models.

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1603

Fig. 5. Car control system as specified in a DSL

HMI components or user applications are connected to a model in two
ways (see Fig. 6). In the first scenario, HMI instances are generated from
models, while some of the properties are set according to the model state. In
this case, graphical components are implemented using WPF. In the second
scenario, HMI components are default visual representations of linguistic
concepts that are used for modeling. In both cases, linking of model elements
and visual representations is based on property linking (see Fig. 4) and using
action reports. All external server ports that correspond to different types of
scales, such as speed, rotations, temperature, and fuel state featured in Fig.
5, are implemented as web services. These services are used to retrieve the
latest state and forward a new value. All scales that are located to the right
side of the SM1 submodel are implemented using the WPF components. In
the existing DSM tools, the aforementioned functionality dedicated to
connecting DSM and HMI components may be achieved only indirectly,

Verislav Djukić et al.

1604 ComSIS Vol. 10, No. 4, Special Issue, October 2013

because these tools do not include an implementation of action report
interpreters. The indirect method involves using APIs to access the repository
of DSM tools with the goal of creating objects and setting property values.

Fig. 6. HMI components as created in WPF

In Listing 4, we present a code generator for the model featured in Fig. 5.
It is a MERL report that generates code for web service calls.

Listing 4. MERL report that generates web service calls

Report 'External Server Ports'

$mUrl = :VusualURL;

foreach .External Server Port;

{

 filename :CodeTargetFolder;1 :Name; '.h' write

 '#ifndef C_' :Name;'_HEADER_H_' newline

 '#define C_' :Name;'_HEADER_H_' newline

 newline

 '#include "GenericServerPort.h"

class C' :Name; ' : CGenericServerPort' newline

 '{

public:'

 newline

 ' C' :Name; '(int mCurrVal) : CGenericServerPort(currVal)

 {

 //TODO: ???

 }' newline

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1605

 ' virtual~C' :Name; '(void) {

 }'

 newline

 do ~ValueOnPort;~UsedFor;.()

 {

 ' int Get' type '()

 {

 ';

 ' String mUrl = "' $mUrl 'Get' type '";

 }'

 newline

 }

 ' void On' :Name; 'Update(int currVal)

 {'

 newline

 do ~ValueOnPort;~UsedFor;.()

 {

 ' String mUrl = "' $mUrl 'Set' type

 do :()

 {

 '?' type'=m_'type;

 }

 '";'

 newline

 }

 ' };'

 do ~Server~Server.()

 {

 if :IsSensor;='T' then

 newline ' C' :Name; '& m_' :Name; ';'

 endif

 }

 newline

 '#endif'

 newline

 close

}

endreport

From the model, we generate web service addresses and HTTP GET
requests that read and set the current speed. An excerpt from the code that
was generated using the aforementioned report is presented in Listing 5.

Listing 5. An excerpt from the generated code for calling web services

#ifndef C_Speed_HEADER_H_

#define C_Speed_HEADER_H_

#include "GenericServerPort.h"

class CSpeed : CGenericServerPort

{

public:

Verislav Djukić et al.

1606 ComSIS Vol. 10, No. 4, Special Issue, October 2013

CSpeed(int mCurrVal) :

CGenericServerPort(currVal)

{

 //TODO: ???

}

 virtual~CSpeed(void) {

 }

int GetSpeedScale()

{

 String mUrl = "http://localhost:13216/

 CarDashWebService.asmx/GetSpeedScale";

}

void OnSpeedUpdate(int currVal)

{

 String mUrl ="http://localhost:13216/

 CarDashWebService.asmx/SetSpeedScale?

 ScaleName=m_ScaleName?MinValue=m_MinValue?

 MaxValue=m_MaxValue?Precision=m_Precision?

 CurrValue=m_CurrValue";

};

 CSpeedMeasure& m_SpeedMeasure;

#endif

7.2. Applying Action Reports to Function Block Diagrams

In this subsection, we present another practical example that highlights our
experience in the application of GPLs and DSLs in measurement and control
systems. The example involves using DSM tools to construct and apply a
graphical language for the description of function block diagrams according to
the IEC 611.31 specification [18].

The IEC 611.31 specification features five parts, two of which, structured
text and function block diagrams, are especially important in the subsequent
discussion. Structured text (ST) is a textual GPL with a syntax similar to that
of Pascal and with features similar to those of C++, but containing certain
language concepts that provide some benefits when applied to MCSs. A
function block diagram (FBD) is a graphical GPL that may be used to specify
flows in measurement and control processes by diagrams. In practice,
numerous tools for specifying FBDs (modeling MCSs using FBDs) are used.
A common characteristic of ST and FBD languages is the fact that the syntax
is fixed in advance. For that reason, in most tools, algorithms for generating
code from the model are hard-coded. The main shortcoming of tools for
modeling using FBD is the fact that domain-specific problems are modeled
using general purpose language concepts that are often not compatible with
the models in real systems. For modeling activities, experienced IEC 611.31
programmers and companies are often hired, however, their productivity in
actual projects cannot be readily predicted. In order to point out possible
solutions to the aforementioned problems, in the provided example we
applied the DSM approach which includes the following activities:

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1607

 applying DSM tools in the construction of a IEC 611.31 language,

 specifying code generators and action reports using a M2T transformation
language,

 generating ST and native code from models; and

 interpreting models where incremental updating is supported.
For the construction of the IEC 611.31 graphical GPL, we used the MetaEdit+
modeler. In Fig. 7, there is an example of FBD, which is further used to
explain main concepts of the language. The language features objects of the
following types: function block (1), type convertor (2), distributor (3), input and
output connectors (4), and connectors of logical pages (5). Function block
(FB) has three subtypes: built-in FB (1.1), intrinsic FB (1.2), and external FB
(1.3). Each function block has ports through which it exchanges input and
output values with other objects. In the process of language construction, we
defined several variants of concrete graphical syntax, model constraints, and
diagnostics for incorrect operations and inconsistent model states. We
selected the textual IEC 611.31 (ST) and Abstract Syntax Tree (AST) to be
our target languages. In line with the example from the introduction (Fig. 1),
our intention was to generate GPL specifications in the IEC 611.31 ST syntax
from model, together with native code for Intel and ARM processors that is
optimized for the target domain, by using AST as input structure for native
code generation. Since in both cases a target interpreter is required to
execute a model, for that purpose we used a special RTS that executes
segments of native code. As native code generation is closely related to
compiler construction, to this end, we relied on various industry and
academic solutions and experiences.

Fig. 7. A FBD example in IEC 611.31

Verislav Djukić et al.

1608 ComSIS Vol. 10, No. 4, Special Issue, October 2013

In Listings 6 and 7, we give short excerpts from the generator of ST code,
as well as the end result related to the model in Fig. 7. Generators were
written in MERL. The ST code generator iterates through all Custom FBs and
checks whether they are macros. In the case they are macros, it calls a
generator that retrieves the code defined by the macro. In the case they are
not macros, by relying on properties, it retrieves definitions of input
(VAR_INPUT … END_VAR) and output (VAR_OUTPUT … END_VAR) signals,

as well as internal variables (VAR … END_VAR). Whenever a function block is

declared as a macro, its graphical representation is changed so that a circled
letter M appears in the center of the symbol (see Fig. 7). The body of the
Custom FB is retrieved from the :IEC_StructText; property.

Listing 6. Excerpt from the generator of ST code

report '_IEC_CodeForCustomFB'

foreach .IEC_CustomFB;

{

 if :IEC_IsMacro; = 'T' then

 do decompositions

 {

 subreport '!IEC_STCode' run

 newline

 }

 else

 'FUNCTION_BLOCK ':IEC_CustomFBName; newline

 $p = ''

 do :IEC_Inputs; {$p ='T'}

 if $p = 'T' then

 'VAR_INPUT' newline

 do :IEC_Inputs;

 {

 ' ':IEC_PortName; ':' :IEC_DataType;

 if :IEC_Default; <> '' then

 ' := ' :IEC_Default;

 endif ';'

 newline

 }

 'END_VAR' newline

 endif

 $p = ''

 do :IEC_Outputs; {$p ='T'}

 if $p = 'T' then

 'VAR_OUTPUT' newline

 do :IEC_Outputs;

 {

 ' ':IEC_PortName; ':' :IEC_DataType;

 if :IEC_Default; <> '' then

 ' := ' :IEC_Default;

 endif ';'

 newline

 }

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1609

 'END_VAR' newline

 endif

 $p = ''

 do :IEC_LocalVars; {$p ='T'}

 if $p = 'T' then

 'VAR' newline

 do :IEC_LocalVars;

 {

 ' ':IEC_PortName; ':' :IEC_DataType;

 if :IEC_Default; <> '' then

 ' := ' :IEC_Default;

 endif ';'

 newline

 }

 'END_VAR' newline

 endif

 :IEC_StructText; newline

 endif

 if :IEC_IsMacro; = 'F' then

 'END_FUNCTION_BLOCK' newline newline

 endif

}

endreport

The resulting ST code is produced by calling the generator, which

translates the whole model and associated submodels. Generation of Custom
FBs is only one segment of the translation process. In the generated code,
after the PROGRAM keyword, there is the name of the model featured in Fig.

7, followed by the definitions of all the input and output ports or signals. Input
and output signals are translated into input and output variables of the
corresponding types, while external signals are translated into external
variables. At the end of the code excerpt, there is the body of the ST
program, which contains a description of the relations defined by the model.
The code in the line Add_1_out := ADD(INT_TO_UDINT(SIG45),

SIG1, SIG18); indicates that the out port of the FB instance Add_1 is

modified by adding SIG45, SIG1, and SIG18, where SIG45 was previously
converted from INT to DINT.

Listing 7. Generated ST code

PROGRAM Example_with_all_language_concepts

VAR_INPUT

 DstrSrc:INT;

 SIG1:UDINT := 7;

 SIG18:UDINT := 21;

 SIG45:INT := 10;

END_VAR

VAR_OUTPUT

 AbsSig:USINT;

Verislav Djukić et al.

1610 ComSIS Vol. 10, No. 4, Special Issue, October 2013

 SIG3:BOOL;

END_VAR

VAR_EXTERNAL

 SIG444:REAL;

 Sensor1:INT;

 Sensor2:INT;

END_VAR

VAR

 Abs_1_out :INT;

 Add_1_out :UDINT;

 Add_2_out :REAL;

 Add_Dstr_out :INT;

 Eq_1_out :BOOL;

 Mul_1_out :INT;

 SinusGen:GENERATOR;

 Custom_FB2:CFB_Commands;

 FanCtrl:CFB_HomeHeating;

END_VAR

 Add_1_out := ADD(INT_TO_UDINT(SIG45), SIG1, SIG18);

 Eq_1_out := EQ(Add_1_out, INT_TO_UDINT(FanCtrl.Speed));

 SinusGen(1, 1.0, 5.0, 10.0, 2.0);

 Add_2_out := ADD(INT_TO_REAL(FanCtrl.out2), 55.9,

SinusGen.OUT);

 Custom_FB2(Add_2_out, 46.0);

 FanCtrl(Sensor1, 9, 10, Sensor2);

 Mul_1_out := MUL(FanCtrl.Speed, FanCtrl.out2, 40);

 Abs_1_out := ABS(Mul_1_out);

 AbsSig := INT_TO_USINT(Abs_1_out);

 SIG3 := Eq_1_out;

 Add_Dstr_out := ADD(DstrSrc, DstrSrc, REAL_TO_INT

(Custom_FB2.out1));

 SIG444 := Custom_FB2.out2;

END_PROGRAM

By constructing the language and using the IEC 611.31 ST generator, we

have achieved two important goals that can be accomplished neither by
modeling tools that focus only on FBDs nor by UML tools. The first goal was
to construct a language that could be easily transformed into a DSL in order
to satisfy some domain-specific requirements. The second goal was to
transform abstract models into an arbitrary target language, as well as into
native code, For some FBs, it is possible to generate code according to some
syntax, e.g., to that of VHDL, that would initialize wired-logic controllers. In
Fig. 7, such a FB is shown with a processor symbol in the middle. Submodels
of a model are transformed into even more different languages. Since DSM
tools do not support explicit declaration of a submodel, we achieved this by
introducing the IsWired property to FBs and writing a generator that utilizes
that property.

From the user's point of view, in addition to fast and complete specification
of a modeling language, it is also very important how models are verified.

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1611

Numerous tools support model verification but only for complete
specifications. Our approach is based on the following idea: each
specification, from an empty model to the most complex specification, should
be interpreted simultaneously with the modeling process. We refer to such
model execution as the interpretation with incremental updating. Similar
approaches may be found within simulation tools, such as Simulink [36] or
LabView [23]. However, in those cases, the semantics of a modeling
language is fixed in advance, which significantly simplifies the whole process.
Because of the restrictions associated with language construction, model
execution using these tools cannot be considered as a full-fledged MeMID
activity.

Fig. 8. Incremental update of a MCS

In the rest of this section, we present a practical example of using
incremental updating and action generators in a typical MeMID activity. In
Fig. 8, two states of a model for fan control, S1 and S2, are depicted as
submodels of the model featured in Fig. 7. The state of the model S1
corresponds to the state of a real system when Sensor 1 (T1) is functioning
normally. The state of the model S2 corresponds to the state of the real
system when sensor T1 is being repaired or replaced. This is the case when a
problem with rotation speed of a fan may occur due to a thermometer
malfunction. In the model, thermometer replacement is defined as a complex
transaction that is made of various MeMID activities. It is also possible for an
external application that is synchronized with the model or interpreter to
display an image which shows that the installation is in progress. Sensor
change is recorded in a document that contains information about the
location, time, and identifier of the replaced sensor. In order to better
understand the example featured in Fig. 8, it may be worth consulting the
specification of function block diagrams in accordance with the IEC 611.31
specification [18] and watching a video clip [9] that demonstrates the
construction of a DSL and model execution in a target interpreter.

According to the MeMID scenario, a sensor replacement procedure and
documenting of the replacement include the following actions:

 An action report that simulates the replacement is executed. It changes the
model from state S1 to state S2 and sets an appropriate image in a client
application.

 An action report that generates a service order in PDF format is executed.
All specifications are in various DSLs.

Verislav Djukić et al.

1612 ComSIS Vol. 10, No. 4, Special Issue, October 2013

 Sensor 1 (T1) is detached from the function block and a default value that
corresponds to the temperature which is measured by some other
thermometer is assigned to the input i1 (i1=21°C). The transaction is then

confirmed by the model. Using this information, a code update is
generated for a target interpreter. This update is only an increment and not
a complete program.

 A service person replaces the sensor.

 In the simulator, the model changes to the previous state and checks the
functioning of a new sensor (Sensor 1 is reattached to i1).

 The model is connected to the real system and returns to interpreting from
the previous state.

 An action report that generates the documentation about the changes in
the system during sensor replacement is executed.

Documenting model changes, as a part of the MeMID activity, is partially
covered in the example featured in Section 5. When action reports are used
in documenting results of the testing of a MCS, they retain a similar structure.
They feature nested commands that contain a DSL script or functions which
return document content increment.

The aforementioned examples illustrate one advanced scenario of
applying DSM tools in specialized production environments. While DSM tools
support meta-modeling and modeling well, when it comes to the
transformation of submodels to certain target languages, their use in complex
MCSs is limited. The main reason is the way how they synchronize with
external applications and their poor support for logical connection of actions
in a real system to operations on models. General purpose DSM tools are
less user-friendly for modeling when compared to specialized CASE tools or
applications for modeling measurement and control systems. Efficient use of
DSM tools also requires improvement of their graphical interfaces. In the
following section, these improvements are described as user operations on
models.

8. Action Reports and Operations on Model

DSM tools are usually more advanced in terms of concepts when compared
to CASE tools and applications used to model MCSs. On the other hand,
dedicated CASE tools and applications have better suited graphical
interfaces that support drawing of models considerably closer to the specific
standards of a particular business domain. In previous sections, we
demonstrated how DSM tools may be improved for the purpose of
supporting: (i) model execution and (ii) usage of DSM tools as client
applications for monitoring, i.e., surveilance of states in a real system [9]. In
this section, we explain how the graphical interface of a DSM tool may be
improved for the purpose of its more efficient utilization in specific application
domains.

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1613

Using action reports for formal specification and implementation of three
groups of operations constitutes the basis for the improvement of DSM tools.
The first group includes operations that accelerate the construction of a DSL
and different visual representations of language concepts in a DSM tool by
relying on the existing user HMI components. The second group includes
operations used to define the behavior of the graphical interface for basic
user operations: insert, delete, connect, disconnect, update, move, etc. The
third group includes operations on submodels. With some minor extensions,
navigation languages for M2T transformations could support all three groups
of operations.

The general structure of reports used to define operations of the first
group, i.e., those used to transfer a part of the definition of an external HMI
component to a meta-model, is presented in Listing 8. As previously
discussed, the DSM tool and user application need to include instances of an
action report interpreter capable of interpreting specified actions.

Listing 8. General structure of reports defining operations that transfer
definitions of external HMI components to meta-models

ACTION_BEGIN

 ObjectDef | RelDef | RoleDef | PropDef

ACTION_END

Operations used to define the behavior of the graphical interface should
provide expected spatial arrangement of model elements during all kinds of
user actions. One method of defining the behavior of a graphical interface is
to apply structural patterns in the way that we used them to define document
layout. In Listing 9, we present only some of the typical patterns, while a
more detailed description of grammar rules and examples may be found in
[14]. Each pattern consists of an ordered (OL) or unordered list (UL) of
elements, which represent objects and relations in a DSM model. Validation
or customization of the model according to the specified patterns is
performed during the execution of user operations (insert, delete, connect,
etc.). Semantic actions that perform validation according to the patterns are
executed using action reports. During this process, rules of spatial layout and
structural rules are translated into topological properties of model elements.

Listing 9. Pattern examples

PATTERN A UL(B,C,D) END

// The A element consists of three elements, which may appear

in any order.

PATTERN A OL(B,C,D) END

// The A element consists of three elements, which may appear

only in the specified order.

PATTERN A UL(B,C,D) isLeftOf(C,D) END

// The A element consists of three elements, but the C element

must appear before the D element.

Verislav Djukić et al.

1614 ComSIS Vol. 10, No. 4, Special Issue, October 2013

PATTERN A UL(B,C,D) isLeftOf(C,D) isBelow(D,B) END

// The A element consists of three elements, but the C element

must appear to the left of the D element while the D element

must appear above the B element.

PATTERN A UL(B,C[3..5],D) END

// The B element appears exactly once, the C element appears

from three to five times, while the D element appears exactly

once. The elements may appear in any order.

PATTERN A OL(B*,OL(C,D)) END

// The B elements must appear first for any number of times,

followed by the C element and the D element, respectively.

PATTERN A UL(B*,C*,D*) END

// The elements B, C, and D may appear for any number of times

in any order.

The third group of operations, whose semantics may be expressed through
action reports, is used to: (i) construct submodels and carry out all operations
on (sub)models without the need for the execution of low-level API functions
on the repository; and (ii) define transactions.

The construction of submodels and corresponding operations is similar to
the definition of views in relational databases or the definition of complex
objects in object databases. We focus on operations that could significantly
improve MeMID activities when the modeling tool is linked to the target
interpreter via action reports. Therefore, we give an overview of the selected
operation set:

 CreateSubmodel (listOfElems) – creates a submodel based on the
specified list of objects, connections, relations, roles, and properties from
an existing model;
SetCurrentSubm (m_ID) – sets one of the defined submodels as the

current one;
DeleteSubmodel (m_ID) – deletes the submodel definition;

AddModel (m_1,m_2) – joins two submodels into one without modifying
any relations;

Subtract (m_1,m_2) – removes m_2 from the existing composite model
m_1;

Multiply (m_1,n) – creates a new model by repeating the model m_1 n
times;

Intersection (m_1,m_2) – returns a model containing intersecting element
from m_1 and m_2;

Union (m_1,n) – joins two models without repeating elements having
same identifiers;

SimDifference (m_1,m_2) – finds a symmetric difference between the two
models;

Remove (objType|relType) – removes objects or relations of the specified
type from the submodel; and

Clone (objType|relType|roleType) – clones the complete model or just
object, relations, roles, and properties of the specified type or matching the
specified pattern.

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1615

We used DVDocIDE, a DSM tool for document modeling, to test usage of
action reports and patterns as means of a more efficient DSM modeling of
documents and their templates. We used DVQL [25], a command/query
language for documents, to implement operations on submodels. In order to
verify usefulness of these operations in general purpose DSM tools, the latter
should be considerably extended. This issue is also one of the topics of our
future research.

9. Related Work

Over the last few years, Executable UML has been a recurring topic in both
the academic and engineering community [32]. Numerous papers and
practical solutions extend its usability for simulations and model execution
[17], [23], [36]. However, it seems that the transfer of very narrow specialized
knowledge to web services (Cloud computing) is advancing more rapidly as
opposed to the use of UML tools for the domain-specific problems. In the
academic community, much of the model transformation research relies on
the OMG’s specification Query/View/Transformation (QVT) [28]. The
specification consists of three interrelated languages: (i) Relations, (ii) Core
and (iii) Operational Mapping. Atlas Transformation Language (ATL) [2] by
the Eclipse Foundation [15] is an example of a model-to-model (M2M)
transformation language in accordance with the QVT standard. Among the
commercial tools, one of the best known transformation languages is
MetaEdit+ Reporting Language (MERL) [30]. It is a language mainly focused
on model-to-text (M2T) transformations. It partially supports transformations
that conduct synchronization between the model, client applications, and
target interpreter. By minimally extending MERL to allow specification and
interpretation of action reports, it would be possible to synchronize
applications that feature disparate user interfaces, and target interpreters or
“execution machines” [1], [4], [6], [24], [31], [38].

In [20] and [27], the authors present ideas and solutions for domain-
specific model transformations and debugging. Our consideration of code
generators differs slightly from the one presented in [20]. We believe that
template-based M2T transformations are complex, insufficiently flexible, and
complicated to be implemented within the HMI components and target
interpreter of models.

In [16], the authors present a translational and an interpretational approach
to execution of domain-specific models. These approaches are based on
explicit definition of semantics for execution of each model. The translational
approach relies on generating code that should be compiled and then
executed, while the interpretational approach relies on model interpretation
by a target interpreter. The disadvantage of the former approach is that it is
unsuitable for simulations and rapid prototyping. On the other hand, the latter
approach is considerably more suitable for both rapid prototyping and
incremental update of an active system. The authors recognized the

Verislav Djukić et al.

1616 ComSIS Vol. 10, No. 4, Special Issue, October 2013

necessity of the use of transactions and logging of all model changes for the
purpose of backtracking. They resolve the issue of the synchronization
between a model and the execution engine by relying on the concurrent
access to configuration files used by the DSM editor and execution machine.
From their simple example implemented using Eclipse EMF, it seems that
the application of their idea is limited to less complex cases. In our approach,
which is based on the use of M2T transformations, there are slight extensions
of existing navigational languages for M2T transformations and two logically
independent execution engines: a report interpreter and a target interpreter of
models.

In [37], the authors describe the OMG’s approach to standardization of
UML model execution, which involves using Action Semantics, i.e., explicit
definition of execution rules at the level of the UML meta-model. The goal of
this standardization is to allow: (i) software independent specification of
actions on UML models; and (ii) execution of UML models. Their approach is
based on the following three abstractions: meta-model, execution model
(UML model), and actions. The semantics of actions is defined, but not the
concrete syntax, because it depends on the target language used in code
generation from a model. Because this approach requires knowledge about
UML meta-modeling, it seems unlikely that it will be widely applied in domain
specific problems, particularly for modeling measurement and control
systems.

Among numerous tools for modeling measurement and control system that
may be used in the extension of DSM tools, or for better illustration of action
reports and use of modeling tool as client applications, the following two
stand out: Simulink [36] and IbaLogic [17]. Simulink is a tool primarily aimed
at drawing function block diagrams. It features a large library of function
blocks that may be customized and supports generation of source code in the
C language. In the context of the MeMID activities, Simulink does not
adequately support meta-modeling and generation of documentation about
model execution. IbaLogic is a tool for modeling measurement and control
systems that employs structured text and function block diagrams according
to the IEC 611.31 specification, where a function block model is also an
execution model. This tool supports linking to various run-time systems that
may interpret or execute a model. However, meta-modeling and code
generation for different programming languages are not supported. Owing to
the featured implementation of a set of basic operations on models, it
supports: (i) every version of the incremental update for a target system
during interpretation; and (ii) visualization of the state of a real system within
the modeling tool.

10. Conclusion

In this paper, we present the first practical results and foundations of an
approach aimed at further improvement of DSM tools. Our objective is to

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1617

better automate the MeMID activities: meta-modeling, modeling, testing of
models, generated code, and interpreter, and generation of documentation
about test cases. In the areas of document engineering and development of
measurement and control systems, the action report approach allows us to
specify the following procedures within abstract models: (i) the process of
documenting model validation; and (ii) in the context of certain business rules
and procedures, the synchronization of actions on a model to the state of the
real system. Owing to this, action reports are especially effective when
combined with DSM tools that, instead of relying on patterns, conduct M2T
transformations by using a dedicated target language and interpreter. In
production systems where business procedures are specified both precisely
and formally, there is also a need to document each action on the model or to
execute each action on the model by relying solely on the previously
generated and authorized document. By using action reports, it is possible to
synchronize not only the different components that are part of the MeMID
activities but also the heterogeneous business and control processes, which
feature complex business rules and operation of arbitrary control systems.

Our future research directions include: (i) construction of a language for
the description of constraints on presentation elements (graphs), which in turn
would simplify the customization of meta-modeling and modeling tools for
different domains of application; (ii) construction of M2T transformations, i.e.,
code generators that would produce binary or assembly code for different
processors by starting from abstract models; and (iii) conceptualization of
run-time systems that would interpret abstract models, which in turn would be
transformed into different target languages, software logic or wired logic. The
ultimate goal of our research is to support, to the greatest extent possible, the
MeMID scenario, which consists in using modeling tools as client applications
to manage business and control processes. The approach presented in this
paper was created to be focused on the domain of application and provide
pragmatic support to users. For these reasons, its application capabilities
may not be fully generic. However, the goal of developing the approach is not
primarily oriented to this end, but to provide the foundation for a quality
support to users in the domain of monitoring the measurement and control
processes. At present, our approach supports modeling and executing
models of measurement and control systems. We expect that our ideas,
examples, and practical solutions presented in this paper are going to
contribute to a better use of DSM tools as client applications for the
monitoring of measurement and control processes.

Acknowledgment. This research was supported by Ministry of Education, Science
and Technological Development of Republic of Serbia, Grant III-44010: Intelligent
Systems for Software Product Development and Business Support based on Models.
The authors are grateful to their colleague Tefik Bećirović for help with the testing of
action reports using user WPF components and also to Juha-Pekka Tolvanen of the
MetaCase company for valuable support in the rapid construction of the IEC 611.31
language using the MetaEdit+ Modeler.

Verislav Djukić et al.

1618 ComSIS Vol. 10, No. 4, Special Issue, October 2013

References

1. Apache Software Foundation: FOP. [Online]. Available: http://xmlgraphics.
apache.org/fop/0.95/index.html (Accessed: May, 2013)

2. ATL - A Model Transformation Technology. [Online]. Available:
http://www.eclipse.org/atl/ (Accessed: May, 2013)

3. Beaudoux, O., Blouin, A.: Using Model Driven Engineering technologies for
building authoring applications. Proceedings of ACM Symposium on Document
Engineering. (2010)

4. Djukić, V.: DVDoc Renderer Benchmak. [Online]. Available:
http://www.dvdocgen.com/Framework/DVDocRenderBench.pdf (Accessed: May,
2013)

5. Djukić, V.: DVDocFlowLang Demo, video. [Online]. Available: http://www.
dvdocgen.com/Framework/DVDocFlow.wmv (Accessed: May, 2013)

6. Djukić, V.: DVDocGen Framework, Application Interface. [Online]. Available:
http://www.dvdocgen.com/Framework/DVDocFramework.pdf (Accessed: May,
2013)

7. Djukić, V.:DVDocLang Language Reference. [Online]. Available: http://www.
dvdocgen.com/Framework/DVDocLang.pdf (Accessed: May, 2013)

8. Djukić, V.: DVRepLang Demo, video. [Online]. Available: http://www.
dvdocgen.com/Framework/ModelTransformation.wmv (Accessed: May, 2013)

9. Djukić, V.: MeMID Activities, DSM Tools and Model Execution, video. [Online].
Available: http://www.dvdocgen.com/Framework/MetaEditModelExec.wmv
(Accessed: May, 2013)

10. Djukić, V.: Using DVDocIDE, video. [Online]. Available:
http://www.dvdocgen.com/
Framework/UsingDVDocIDE.wmv (Accessed: May, 2013)

11. Djukić, V., Luković, I., Popović, A.: Domain-Specific Modeling in Document
Engineering. Proceedings of the Federated Conference on Computer Science
and Information Systems, Poland. (2011)

12. Djukić, V., Luković, I., Popović, A., Dimitrieski, V.: Domain-Specific Modeling
Tools as Client Applications Providing the Production of Documents.
Proceedings of the Industrial Track of Software Language Engineering workshop,
Dresden, Germany. (2012)

13. Djukić, V., Luković, I., Popović, A., Ivančević, V.: Using Action Reports for
Testing Meta-models, Models, Generators and Target Interpreter in Domain-
Specific Modeling. Proceedings of the Federated Conference on Computer
Science and Information Systems, Wroclaw, Poland. (2012)

14. Djukić, V., Popović, A.: .DVRepLang Grammar Specification. [Online]. Available:
http://www.dvdocgen.com/Framework/DVDocRepLang.pdf (Accessed: May,
2013)

15. Eclipse Modeling Framework Project (EMF). [Online]. Available:
http://www.eclipse.org/modeling/emf/ (Accessed: May, 2013)

16. Hartmann, T., Sadilek, D. A.: Undoing Operational Steps of Domain-Specific
Modeling Languages. Proceedings of the 8th OOPSLA Workshop on Domain-
Specific Modeling (DSM 2008), University of Alabama at Birmingham. (2008)

17. IbaLogic, IbaAG. [Online]. Available: http://www.iba-ag.org (Accessed: May,
2013)

18. IEC 611.31 Specification. [Online]. Available: http://www.dvdocgen.com/
Framework/ModelTransformation.wmv (Accessed: May, 2013)

Model Execution: An Approach based on extending Domain-Specific Modeling with
Action Reports

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1619

19. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code
Generation. ISBN: 978-0-470-03666-2. Wiley-IEEE Computer Society Press.
(2008)

20. Klatt, B.: A Closer Look at the Model2text Transformation Language. [Online].
Available: http://wiki.eclipse.org/Model2Text_using_Xpand_and_QVT_for_Query
(Accessed: May, 2013)

21. Klеppe, A.: Software Language Engineering: Creating Domain-Specific
Languages Using Metamodels. Addison-Wesley, ISBN: 0-321-55345-4. (2008)

22. Kosar T., Oliveira N., Mernik M., Pereira M. J. V., Črepinšek M., Cruz D.,
Henriques P. R.: Comparing General-Purpose and Domain-Specific Languages:
An Empirical Study. Computer Science and Information Systems (ComSIS),
ISSN: 1820-0214, Vol. 7, No. 2, 247-264. (2010)

23. LabVIEW System Design Software. [Online]. Available:
http://www.ni.com/labview/ (Accessed: May, 2013)

24. Luković, I., Djukić, V.: DVDocLang vs. XSL-FO. [Online]. Available:
http://www.dvdocgen.com/Framework/DVDocLang_XSL-FO.pdf (Accessed: May,
2013)

25. Luković, I., Djukić, V.: DVQL Language Specification. [Online]. Available:
http://www.dvdocgen.com/Framework/DVQL.pdf (Accessed: May, 2013)

26. Luković, I., Mogin, P., Pavićević, J., Ristić, S.: An Approach to Developing
Complex Database Schemas Using Form Types. Software: Practice and
Experience, ISSN: 0038-0644, Vol. 37, No. 15, 1621-1656. (2007)

27. Mannadiar, R., Vangheluwe, H.: Debugging in Domain-Specific Modelling.
SLE'10 Proceedings of the Third international conference on Software language
engineering. (2010)

28. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification.
[Online]. http://www.omg.org/spec/QVT/1.0/ (Accessed: May, 2013)

29. MetaEdit+ 5.0 Beta Primer. [Online]. Available: http://www.metacase.com/
download/metaedit/MetaEdit+ 5.0 Beta Primer.pdf (Accessed: May, 2013)

30. MetaEdit+ Workbench, MetaCase. [Online]. Available: http://www.metacase.com
(Accessed: May, 2013)

31. Microsoft Extensible Application Markup Language (XAML). [Online]. Available:
http://www.microsoft.com/en-us/download/details.aspx?id=19600 (Accessed:
May, 2013)

32. Milićev, D.: Model-Driven Development with Executable UML. Wiley Publishing
Inc. (2009), ISBN: 978-0-470-48163-9

33. Object Management Group. [Online]. Available: http://www.omg.org/ (Accessed:
May, 2013)

34. OMG Systems Modeling Language. [Online]. Available:
http://www.omgsysml.org/ (Accessed: May, 2013)

35. Selic, B., Gullekson, G., Ward, P.T.: Real-time Object-oriented Modeling. ISBN
0-471-59917-4. John Wiley & Sons, New Jersey, USA. (1994)

36. Simulink – Simulation and Model-Based Design. [Online]. Available:
http://www.mathworks.com/products/simulink/ (Accessed: May, 2013)

37. Sunyé, G., Pennaneac’h, F., Ho, W. M., Le Guennec, A., Jézéquel, J. M.: Using
UML Action Semantics for Executable Modeling and Beyond. In Dittrich, K.R.,
Geppert, A., Norrie, M.C. (eds.) Advanced Information Systems Engineering
(CAiSE 2001), LNCS, Vol. 2068, Springer Berlin Heidelberg, 433-447. (2001)

38. User Interface Markup Language (UIML). [Online]. Available: https://www.oasis-
open.org/committees/download.php/28457/uiml-4.0-cd01.pdf (Accessed: May,
2013)

Verislav Djukić et al.

1620 ComSIS Vol. 10, No. 4, Special Issue, October 2013

39. Windows Presentation Foundation. [Online]. Available: http://windowsclient.
net/wpf (Accessed: May, 2013)

Verislav Djukić received his M.Sc. degree in the area of Software Support
for Information Systems from the Faculty of Military and Technical Sciences
in Zagreb. At the University of Belgrade, Faculty of Organizational Sciences,
he completed his Mr degree in the area of Formal Specification of Software
Interfaces. He is currently a Ph.D. student at the University of Novi Sad,
Faculty of Technical Sciences. He lives in Germany where he works as a
director of a software company specializing in domain-specific modeling in
document engineering, and measurement and control systems.

Ivan Luković received his M.Sc. degree in Informatics from the Faculty of
Military and Technical Sciences in Zagreb in 1990. He completed his Mr (2
year) degree at the University of Belgrade, Faculty of Electrical Engineering
in 1993, and his Ph.D. at the University of Novi Sad, Faculty of Technical
Sciences in 1996. Currently, he works as a Full Professor at the Faculty of
Technical Sciences at the University of Novi Sad, where he lectures in
several Computer Science and Informatics courses. His research interests
are related to Database Systems and Software Engineering. He is the author
or co-author of over 90 papers, 4 books, and 30 industry projects and
software solutions in the area.

Aleksandar Popović graduated from Faculty of Science at the University of
Montenegro. He completed his Mr (2 year) degree at the University of Novi
Sad, Faculty of Technical Sciences. Currently, he is a Ph.D. student and
teaching assistant at the University of Montenegro, Faculty of Science. He
assists in teaching several Computer Science and Informatics courses. His
research interests include Software Engineering, Database Systems and
Domain Specific Languages.

Vladimir Ivančević is a PhD student in Applied Computer Science and
Informatics and a teaching assistant at the Faculty of Technical Sciences,
University of Novi Sad (Serbia), where he also gained his BSc and MSc in
Electrical Engineering and Computing. His research interests include domain
specific languages (DSLs), data mining (DM), and databases. At the moment,
he is involved in several projects concerning application of DSLs and DM in
the fields of software engineering, education, and public health.

Received: December 28, 2012; Accepted: June 21, 2013

DOI: 10.2298/CSIS121210067R

Possible Realizations of Multiplicity Constraints

Zdeněk Rybola1 and Karel Richta23

1 Faculty of Information Technology, Czech Technical University in Prague
Thákurova 9, 160 00 Prague

zdenek.rybola@fit.cvut.cz
2 Faculty of Mathematics and Physics, Charles University in Prague

Malostranské nám. 25, 118 00 Prague
richta@ksi.mff.cuni.cz

3 Faculty of Electrical Engineering, Czech Technical University in Prague
Technická 2, 160 00 Prague

richta@fel.cvut.cz

Abstract. Model Driven Development (MDD) approach is often used to
model application data and behavior by a Platform Independent Model
(PIM) and to generate Platform Specific Models (PSMs) and even the
source code by model transformations. However, these transformations
usually omit constraints of the binary association multiplicities, especially
the source class optionality constraint.
This paper is an extended version of the paper ’Transformation of Special
Multiplicity Constraints - Comparison of Possible Realizations’ presented
at MDASD workshop at the FedCSIS 2012 conference. In this paper, we
summarize the process of the transformation of a binary association from
a PIM into a PSM for relational databases. We suggest several possi-
ble realizations of the source class optionality constraint to encourage
the automatically transformation and discuss their advantages and dis-
advantages. We also provide experimental comparison of our suggested
realizations to the common realization where this constraint is omitted.

Keywords: MDD, UML, transformation, multiplicity constraints, source class
optionality constraint, OCL, SQL.

1. Introduction

Model Driven Development (MDD) is a development process that is based on
modeling and transformations. In our case, it is based on the Model Driven Ar-
chitecture (MDA) developed by the Object Management Group (OMG) [8, 10].
This process usually consists of creating a set of models of various abstraction
levels and points of view. The process also consists of various transformations
between these models. These transformations usually support both forward
engineering and reverse engineering, the processes of transforming abstract
models into more specific models or source code, or specific models into more
abstract models, respectively.

The most common use case of MDD approach is the development of a
Platform Independent Model (PIM) of the application data and its transforma-
tion to a Platform Specific Model (PSM) for a relational database, as well as

Zdeněk Rybola and Karel Richta

the generation of SQL scripts to create the database schema. However, these
transformations usually do not take the multiplicity constraints into account, and
therefore a database schema created according to the generated PSM can be
inconsistent according to the defined multiplicity constraints and the database
can contain invalid data.

Therefore, in this paper, we deal with the transformation of binary associ-
ations along with their multiplicity constraints from a PIM into a PSM for rela-
tional databases. Many CASE tools such as Enterprise Architect [16] support
the model transformation and the source code generation. However, they have
many limitations regarding the integrity and multiplicity constraints [3]. The tools
usually do not transform these constraints to an implementation.

In particular, we focus on a special case of a multiplicity constraint – the
source class optionality constraint – that we consider the most often neglected
constraint during the transformations. We define this constraint using another
formalism then the grafical notation of the class diagram of the Unified Mod-
eling Language (UML) – as an invariant in the Object Constraint Language
(OCL). We believe such a definition can be transformed into the implementa-
tion more straightforwardly than it is done so far. For instance, OCL tools such
as DresdenOCL Toolkit [4] can be used to transform such a constraint into an
implementation.

Our motivation for this research is the intent to bring this issue in attention
of the community of data analysts and database designers and to show that
this constraint can be quite easily realized in common relational databases. We
also believe that the integration of the suggested realizations in the transforma-
tion processes of CASE tools may save a lot of effort of analysts and database
designers when trying to design a consistent database and even improve the
database consistency as this effort is usually neglected. Therefore, we want to
stimulate the motivation of CASE tool and transformation tool builders to include
a realization for such a constraint in their tools to support this case of the MDD
approach. Therefore, we propose several possible implementations for this con-
straint in relational databases and we discuss advantages and disadvantaged
of each suggested implementation. Finally, we provide an experimental com-
parison of suggested implementations to the common approach, without the
source entity optionality constraint implemented. The comparison is done from
the point of view of database operations – inserts to the database, queries to
the database and deletes of the data from the database.

This paper is an extended version of [14]. It extends the work presented
in [13] and [11] where the rules for the transformation of a binary association
from a PIM into a PSM are discussed. The contributions of this paper are the
constraint implementation, including the update and delete operations, and new
experiments for the delete operation and more suitable examples.

The paper is structured as follows: In Section 2, we present a running ex-
ample to define basic assumptions and illustrate our approach. In Section 3,
we discuss related work and existing tools and their problems in comparison
to our approach. In Section 4, the transformation of a binary association and

1622 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

its multiplicity constraints from a PIM into a PSM for a relational database is
discussed using an example. Various possible realizations of the special con-
straint for the source entity optionality are defined and discussed in Section 5.
Experiments and their results are discussed in Section 6. Finally, in Section 7,
the conclusions are given.

2. Running Example

In the running example, we use UML to express models and we use SQL as
the domain specific language for relational databases used in the implementa-
tion. UML [9, 2] is a general-purpose visual modeling language for specifying,
constructing, and documenting the artifacts of systems. Additional constraints
for UML models are usually defined in OCL [7], which is a part of UML spec-
ification. OCL is a specification language used to define restrictions, such as
invariants, pre- and post-conditions for the connected model elements. The in-
variants are conditions that must be satisfied by all instances of the element.
OCL can also be used as a general object query language.

In the PIM, each object of a problem domain is represented by a class – in
some languages called an entity – with a set of attributes and its instances [2].
The classes are linked together by associations to represent the relationships
between the objects – instances of the respective classes. Each association has
its name to describe the meaning of the relationship and multiplicities to define
the number of instances of each class related to each other. Fig. 1 shows a
general form of modeling a binary association by the means of a UML class
diagram [2].

Fig. 1. Labeling of the multiplicities of an association between two classes

The minimal multiplicity defines the minimal number of instances of one class
related to a single instance of another class. In Fig. 1, value k denotes the min-
imal multiplicity of instances of the ClassA for a single instance of the ClassB
and the value m denotes the minimal multiplicity of instances of ClassB for a
single instance of the ClassA. Although this constraint can be generally used to
restrict the minimal number of instances to any value possible, for instance at
least 11 members for a soccer team, usually the constraint is only used to re-
strict the optionality of the instances – if there needs to be at least one instance

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1623

Zdeněk Rybola and Karel Richta

related – value k = 1 – or if there can be no instances related at all – value k =
0.

The maximal multiplicity – also called cardinality – defines maximal num-
ber of instances of one class related to a single instance of another class. In
Fig. 1, the values l and n denote the maximal multiplicities of the ClassA and
ClassB, respectively. Although this constraint can be generally used to restrict
the maximal number to any possible value, for instance at most 11 members of
a soccer team playing in a match at a time, usually the constraint is used just to
distinguish if there can be just one instance related – value l = 1 – or there can
be a collection of instances related to the same instance – value l = *.

Further on, we will deal only with the minimal multiplicity values of 0 and 1
and the maximal multiplicity values of 1 and *. However, our approach can be
generalized for any special multiplicity values, whenever we want to restrict the
number to other values.

When transforming the PIM into a PSM for a relational database, each one–
to–many association is transformed to a foreign key constraint. Because the
foreign key is unidirectional, we need to distinguish between the source and
target class or table. The source class of an association is the class that is
transformed into the table where the foreign key value is situated. The target
class of an association is the class that is transformed into the table that is
referred by the foreign key constraint. Usually, the source class is the class at
the end of the association where the maximal multiplicity value is n = * and
the target class is the class at the end of the association where the maximal
multiplicity value is l = 1. Also notice that the association in the PIM is non-
directional. That is because on the PIM level we only define that two classes
of instances are related and define the association multiplicities but we do not
define the direction of the association’s realization – the direction is defined on
the PSM level or during the transformation. The determination of the source
and target classes of an association are discussed in more detail in [13].

In this paper, we focus mainly on the source class multiplicity constraint used
in one-to-many relationships where the minimal multiplicity value of the many-
class is equal to one. This constraint is often used in models when we need to
restrict the required existence of both related entities in such a relationship –
none of them can exist without the other one. Our approach will be illustrated on
an example of ordered items, where each order must include at least one item
and each item must be part of an order. The PIM of the example is shown in
Fig. 2. According to the maximal multiplicities of the association, the OrderItem
class is the source class and the Order class is the target class.

3. Related Work

The problem of the transformation of a PIM of the application data into the re-
lational database is not new. There is a lot of books such as Rob and Coronel
[12] describing the principles of the data modeling and the transformation tech-
niques to the database. It is also a part of the information technology education

1624 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

Fig. 2. PIM of one-to-many relationship of an order and its items

in most universities worldwide. Tools such as DresdenOCL [4] and Enterprise
Architect [16] provide the support for such a modeling and transformations.

Rob and Coronel [12] presented the basic transformation of an ER model
into database tables. They utilized FOREIGN KEY constraint to realize binary
relationships and UNIQUE and NOT NULL constraints to restrict the multiplic-
ities. They also suggested using an ON DELETE RESTRICT clause for the
FOREIGN KEY constraint to prevent violation of the target entity optionality
constraint, if required. However, this clause restricts only the target entity op-
tionality. Furthermore, they suggested no solution to restrict the source entity
optionality. Their suggested transformation can be also used for the transfor-
mation of a PIM into a PSM for a relational database as discussed in Section 4
with additional constraint for the source class optionality constraint.

In [3], Cabot and Teniente identify various limitations of a current code gen-
eration tools. The limitations concern the integrity constraints defined in PIMs,
including OCL constraints and multiplicity constraints. In our paper, we focus
on the multiplicity constraints and propose possible realizations of such con-
straints in relational databases. Regarding these constraints, Cabot and Te-
niente [3] identified only one tool called Objecteering/UML [15] that is able to
correctly transform multiplicity constraints. In addition to the tools compared in
[3], we also identify another CASE tool with similar limitations. Enterprise Ar-
chitect (EA) [16] is a complex commercial CASE tool for maintenance of mod-
els, their transformations, source code generation and reverse engineering pro-
cess from a source code into PSM. Besides, it provides transformations from
PIM data model to a specific database PSM model, and a generation of SQL
source code from such a PSM model. However, the default transformations of
Enterprise Architect do not consider the optionality of associations to determine
neither the direction of the relationship implementation by the FOREIGN KEY
constraint nor the required multiplicity restrictions. It does not support special
multiplicity values either. Although EA allows the definition of OCL constraints,
the constraints are not realized by the transformations.

In [1], the authors also identify a problem of current relational databases in
the realization of a source entity optionality constraint – they call this constraint
in the database an inverse referential integrity constraint (IRIC). The authors
also present an approach to the automated implementation of the IRICs by

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1625

Zdeněk Rybola and Karel Richta

database triggers in a tool called IIS*Case. This tool is designed to provide
a complete support for developing database schemes including the check of
the consistency of constraints embedded into the DB [1] and the integration of
subschemas into a relational DB schema [5].

DresdenOCL Toolkit [4, 17] is a research project at the Technical University
of Dresden. After loading a model and its instance along with a set of OCL con-
straints, the tool provides OCL syntax checking and OCL constraints evaluation.
It also provides generation of SQL tables and views according to the model.
OCL constraints are transformed into database views containing only records
satisfying the constraint. The tool also offers transformation of the model with
constraints into AspectJ for the Java source code. However, the DresdenOCL
Toolkit does not consider the minimal multiplicity constraints of associations in
the PIM to determine neither the source and target tables for the FOREIGN
KEY constraint nor the other multiplicity constraints’ realization.

4. Transformation of PIM into PSM for Relational Databases

Our approach to the transformation of a data PIM into a PSM for relational
databases has been introduced in [13, 11]. This section briefly summarizes our
approach.

In general, data is stored as rows in tables with a set of columns to store
specific data in a relational database. Therefore, the classes of PIM are trans-
formed into database tables with the columns corresponding to the attributes.
Each row in a database table is identified by a PRIMARY KEY. The PSM gen-
erated by the transformation of the PIM of our running example (see Fig. 2)
is shown in 3. The class Order is transformed into the Order table and the
class OrderItem is transformed into the OrderItem table. Also notice the PRI-
MARY KEY columns orderID and orderItemID and constraints denoted with PK
stereotype and prefix to identify individual rows in the Order and the OrderItem
tables, respectively. In the following, we will use the source and target tables as
the tables generated by the transformation of the source and target classes of
the PIM, respectively, to discuss the realization of the multiplicity constraints in
the PSM.
Associations defined in the PIM are realized by a mechanism called FOREIGN
KEY [12]. This mechanism adds a special column or columns to the source
table and defines the FOREIGN KEY constraint linking the FOREIGN KEY col-
umn or columns of the source table to the PRIMARY KEY column or columns
of the target table. In the Fig. 3, the orderID column in the OrderItem table is
defined for the FOREIGN KEY value and the FOREIGN KEY constraint is de-
fined for that column to refer to the orderID column of the Order table. Using
this mechanism, each row can refer only to a single target row, thus we can
realize only one-to-one and one-to-many associations and the cardinality of the
target table is always restricted to 1 [6]. However, many-to-many associations
can be transformed into two many-to-one associations and an association table
and these can be then transformed as usual [12].

1626 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

Fig. 3. PSM of one-to-many relationship of an order and its items

In fact, this restriction of the foreign key mechanism is the most important
clue to determine the direction of the association. In the running example in Fig.
2, the cardinality n = * requires the FOREIGN KEY in the table OrderItem which
refers to table Order as shown in Fig. 3, and therefore it automatically restricts
the cardinality of the target table to l = 1.

The target table optionality k = 1 can be realized by the NOT NULL con-
straint defined on the FOREIGN KEY column orderID in the OrderItem table.
This constraint enforces each row in the source table OrderItem to refer to a
row in the target table Order and thus restricting the target table optionality.
Furthermore, for the completeness of the multiplicity constraints discussed, a
UNIQUE constraint on the FOREIGN KEY column of the source table may be
used to restrict the source table cardinality n = 1 for one-to-one associations,
as the constraint prevents the insertion of more rows in the source table with
the same FOREIGN KEY value. However, this is not the case of our running
example.

The only multiplicity value we have not restricted yet is the source table
optionality m = 1. There is no possible way to restrict the source entity optionality
by the means of the FOREIGN KEY. As mentioned before, the usual method is
to omit this restriction and to provide the constraint checking by the application
that uses the database schema [12, 13]. However, we suggest a method to
express this constraint by an OCL invariant, and realize it in various ways in
SQL to keep the database consistent, independently of the application. The
OCL invariant is shown in Fig. 4.

context o:Order inv minItems:
OrderItem.allInstances()->exists(i|i.orderID = o.orderID)

Fig. 4. OCL constraint for the required source entity optionality

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1627

Zdeněk Rybola and Karel Richta

This constraint can be violated only by three operations:

1. If a new order is inserted with no items referring to this new order.
2. If the last item of an order is updated, changing its order to another one.
3. If the last item of an order is deleted.

Therefore, when executing these operations, the checks of the defined OCL
invariant must be executed to ensure the data consistency. Moreover, in a re-
lational database, one more operation can violate the constraint: if the order’s
ID is changed to a new value with no items referring to it. But, this operation
also violates the FOREIGN KEY constraint, and therefore it is not possible to
execute such an operation without changing the order’s items, as well.

5. Realization of the Source Table Optionality Constraint

SQL scripts for creating database tables can be generated from the PSM by
many tools including the EA. The creation scripts for the database tables used
in the following examples of realizations of the source table optionality constraint
are shown in Fig. 5. All examples are given in the Oracle SQL syntax.

CREATE TABLE Order (
orderID NUMBER(8) NOT NULL,
dateOrdered DATE,
paid CHAR(1));

CREATE TABLE OrderItem (
orderItemID NUMBER(8) NOT NULL,
orderID NUMBER(8) NOT NULL,
name VARCHAR2(50),
price NUMBER(8,2),
quantity NUMBER(8));

ALTER TABLE Order ADD CONSTRAINT PK_Order
PRIMARY KEY (orderID) USING INDEX;

ALTER TABLE OrderItem ADD CONSTRAINT PK_OrderItem
PRIMARY KEY (orderItemID) USING INDEX;

ALTER TABLE OrderItem ADD CONSTRAINT isContained
FOREIGN KEY (orderID) REFERENCES Order (orderID);

Fig. 5. SQL script for creating database tables of the running example

In some cases, after adding another constraint for checking the existing
items for an order, we could not be able to insert new data because of two

1628 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

mutually dependent checks – the constraint checking existing items for an or-
der, and the FOREIGN KEY constraint isContained requiring an existing order
for each of the order item. This conflict can be solved by deferring one of the
constraints [6]. Defining a constraint as deferrable causes the database engine
to check the constraint at the end of the transaction instead of checking it in
the time of inserting the data. By the deferred FOREIGN KEY constraint, we
can insert the order items referring to the order not inserted yet, and then to
insert this order. The other constraint would be evaluated when inserting the
order but, in that time, there already exist the items referring to it. On the other
hand, the FOREIGN KEY constraint is not evaluated while inserting the items,
it is evaluated at the end of the transaction when the order has already been
inserted. The deferred FOREIGN KEY constraint can be defined as shown in
Fig. 6.

ALTER TABLE OrderItem ADD CONSTRAINT isContained
FOREIGN KEY (orderID) REFERENCES Order (orderID)
DEFERRABLE INITIALLY DEFERRED;

Fig. 6. SQL script for creating the deferrable FOREIGN KEY constraint

The following subsections deal with the possible implementations of the re-
quired source table optionality constraint and their pros and cons.

5.1. Database Views

The most straightforward realization of the constraint are the database views
[13, 11]. Each constraint is transformed into a database view to filter only the
valid data stored in a table. This approach is inspired by DresdenOCL Toolkit
[4] that transforms defined OCL constraints into the database views. These
views contain only the rows that satisfy the defined constraint using the WHERE
clause. The realization of the constraint for the required optionality of OrderItem
in Fig. 3 can be defined as shown in Fig. 7.

CREATE VIEW valid_orders AS
SELECT o.* FROM Order o WHERE EXISTS
(SELECT 1 FROM OrderItem i WHERE i.orderID = o.orderID)

Fig. 7. SQL script for creating the view to select only valid orders

The realization by the database views does not increase the time required
for inserting new entries to the tables because the data is inserted directly into

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1629

Zdeněk Rybola and Karel Richta

the table without any additional constraints checks. On the other hand, the se-
lection of valid data contains the evaluation of the condition of the view, which
increases the time required to query the data.

This approach does not automatically ensure consistency of the data stored
in the database. We are still able to insert invalid data, which can violate the
multiplicity constraints defined in the PIM. The application itself must use the
view to work with the valid data only and must provide support for the correction
of the invalid data. For this process, an inverse view can be useful to detect the
invalid data violating the constraints. Such an inverse view can be defined as
shown in Fig. 8.

CREATE VIEW invalid_orders AS
SELECT o.* FROM Order o WHERE NOT EXISTS
(SELECT 1 FROM OrderItem i WHERE i.orderID = o.orderID)

Fig. 8. SQL script for creating the view to select invalid orders

Updatable Database Views. To overcome this problem of the invalid data be-
ing hidden by the view, DML operations should be executed on the view instead
of executing them over the tables directly. To be able to execute DML operations
on the view, the view must be updatable. A view is updatable, if:

– it does not use a DISTINCT quantifier, a GROUP-BY or a HAVING clause,
– all derived columns appear only once in the SELECT list,
– each column of the view is derived from exactly one table,
– and the table is used in the query expression in such a way that its primary

key or other candidate key relationships are preserved [6].

CREATE VIEW valid_orders AS
SELECT o.* FROM Order o WHERE EXISTS
(SELECT 1 FROM OrderItem i WHERE i.orderID = o.orderID)
WITH CHECK OPTION

Fig. 9. SQL script for creating the view to select only valid orders with CHECK OPTION
clause

If the view is updatable, then DML operations like inserts, updates and deletes
can be executed on the view. In fact, the operations are translated to the corre-
sponding underlying table or tables, and executed on the data directly in these
tables. Therefore, it is possible not only to manipulate with the data which is

1630 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

not accessible through the view, but it is also possible to violate the source ta-
ble optionality constraint. To prevent such operations that affect the data which
is not selected by the view, the view must be defined with the WITH CHECK
OPTION clause [6]. This clause prevents an insertion of not accessible records
and update operations that make accessible records inaccessible by the view.
Example of the view definition with the check option is shown in Fig. 9.

INSERT INTO valid_orders (ORDERID, ORDER_DATE, PAID)
VALUES (3, sysdate, ’N’);

Fig. 10. SQL script for inserting a new order using the view with CHECK OPTION clause

If we try to insert a new order to the database using the view as shown in Fig.
10, an exception is thrown as shown in Fig. 11.

Error report:
SQL Error: ORA-01402: view WITH CHECK OPTION

where-clause violation
01402. 00000 - "view WITH CHECK OPTION where-clause violation"

*Cause:

*Action:

Fig. 11. Exception thrown by Oracle database when trying to insert new record that is
not accessible by the view used for insertion

Using the updatable view with a check constraint, we can ensure that no
invalid data is inserted into the Order table. However, we are still able to violate
the source entity optionality constraint either by deleting the last item in the
order or by updating the last item to another order. To prevent such operations,
a view with CHECK OPTION should be defined joining the Order table and the
OrderItem table as shown in Fig. 12. In this view, an OUTER JOIN must be
used to filter out the orders without any item, and thus violating the WHERE-
clause as shown in Fig. 11. However, this view is not updatable because of that
OUTER JOIN, and therefore any updates and deletes result in an exception as
shown in Fig. 13.

5.2. CHECK Constraint

In relational databases, CHECK constraint can be used to restrict the values in
a column of a table [6]. The constraint is checked whenever a value is inserted
or updated in the column, and the operation is rolled back when the constraint is
violated. Such a constraint can restrict a range for the numeric values or provide

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1631

Zdeněk Rybola and Karel Richta

CREATE VIEW valid_items AS
SELECT i.*,
(SELECT COUNT(*) FROM OrderItem WHERE orderID = o.orderID) items
FROM Order o

LEFT OUTER JOIN OrderItem i ON (o.orderID = i.orderID)
WHERE (SELECT COUNT(*)

FROM OrderItem WHERE orderID = o.orderID) > 0
WITH CHECK OPTION;

Fig. 12. SQL script creating the view on the orders and their items with a CHECK OP-
TION clause

Error report:
SQL Error: ORA-01779: cannot modify a column which maps to

a non key-preserved table
01779. 00000 - "cannot modify a column which maps to

a non key-preserved table"

*Cause: An attempt was made to insert or update columns
of a join view which map to a non-key-preserved
table.

*Action: Modify the underlying base tables directly.

Fig. 13. Exception thrown by Oracle database when trying to insert a new record that is
not accessible by the view used for the insertion

a list of valid values. By this approach, we can define a CHECK constraint to al-
low only the primary key values of the orders that are referred by the rows in the
order items’ table. According to the SQL:1999 specification [6], the constraint
for the situation in Fig. 3 can be defined as shown in Fig. 14.

ALTER TABLE Order ADD CONSTRAINT order_check
CHECK (orderID IN (SELECT orderID FROM OrderItem))

Fig. 14. SQL script to create the CHECK constraint

As the CHECK constraint and the FOREIGN KEY constraint are mutually de-
pendent, one of them must be defined as deferrable. Other ways, we would not
be able to insert a new record to any of the two tables. We will suggest the
deferrable FOREIGN KEY constraint as shown in Fig. 6.
By this realization, the data consistence is ensured, since it is impossible to
insert invalid data. However, there are some problems with this implementa-
tion. One of the problems is as follows: if a violation is detected by the deferred
constraint, the whole transaction is rolled back because it is not possible to de-
termine which command caused the violation [6]. Another important problem

1632 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

Error report:
SQL Error: ORA-02251: subquery not allowed here
02251. 00000 - "subquery not allowed here"

*Cause: Subquery is not allowed here in the statement.

*Action: Remove the subquery from the statement.

Fig. 15. Exception thrown by the Oracle database when trying to create the CHECK
constraint

of this realization is the fact that, although specified by the SQL:1999 speci-
fication [6], none of the current common database engines support this kind
of the CHECK constraints because it contains a subquery. The Oracle data-
base returns the error message (see Fig. 15) when trying to create the CHECK
constraint.

Therefore we cannot use this realization until the database engines provide
the support for this specification.

5.3. Triggers

Triggers are special procedures available in many relational databases [6] con-
nected to some special events in the table. In Oracle database, each trigger
can be defined to be executed BEFORE or AFTER such an event, while the
event can be any statement to insert new rows, update rows or delete rows, in-
cluding combinations. Furthermore, the triggers can be defined to be executed
for each affected row or for all rows affected by the statement at once. During
the execution of the trigger, the original row data and the new row data can be
accessed by special keywords. In the following, we will use the syntax of the
Oracle PL/SQL language to define triggers but similar approach can be used in
other databases and database languages as well. The generic form of triggers
for inverse referential integrity constraint can be seen in [1].

In the context of constraints checking, a trigger can be defined to check
the validity of the inserted data. Such a trigger could throw an exception if the
inserted data is invalid. For the situation in Fig. 3, the trigger would check the
existence of order items for the inserted order. The insert trigger for Oracle 10g
database can be defined in Oracle PL/SQL as shown in Fig. 16.

This trigger is executed before each insert statement, which is executed for
the Order table. The order items referring to the inserted order by its PRIMARY
KEY are being searched. If no items are found, the exception is thrown, which
causes the statement to roll back. As this trigger is always executed in the
time of an order insertion, the items must be inserted before this statements. To
enable it, the FOREIGN KEY constraint on the orderID column of the OrderItem
table must be defined as deferrable (see Fig. 6).

The trigger ensures the data inserted into the database is consistent, as
it does not allow to insert the invalid data violating the multiplicity constraint.
However, the check is executed for each order insertion or update searching

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1633

Zdeněk Rybola and Karel Richta

CREATE OR REPLACE TRIGGER check_existing_items_insert
BEFORE INSERT ON Order
FOR EACH ROW
DECLARE

l_count NUMBER;
BEGIN

SELECT COUNT(*) INTO l_count
FROM OrderItem i
WHERE i.orderID = :new.orderID;
IF l_count = 0 THEN

raise_application_error (-20910,
’order item not found for the inserted order’);

END IF;
END

Fig. 16. SQL script for creating the trigger to check the constraint violation while inserting
new orders

for the related items. This search takes the longer time the more records have
already been stored in the table. However, this searching time can be decreased
by defining an index on the FOREIGN KEY column orderID in the source table
OrderItem. For the situation in Fig. 3, the index can be defined as shown in Fig.
17.

CREATE INDEX items_order_index ON OrderItem (orderID);

Fig. 17. SQL script for creating the index on orders of items

Moreover, this trigger does not prevent the violation of the source table option-
ality constraint by updating or deleting the items of an order. To prevent such
violations, another trigger must be defined, see Fig. 18. This trigger checks, if
there exists at least one order item for the currently referred order after updating
or deleting the order item.

However, this trigger causes a mutating table exception, see Fig. 19, when
trying to update or delete an item. This exception is caused because a query
is executed on the table that is currently being updated and therefore the data
cannot be reliable to resolve the query.

This problem can be solved by a trigger fired AFTER the event on the
STATEMENT level as shown in Fig. 20. This trigger is fired after the opera-
tion of update or delete was executed and all the data was updated. Then, the
trigger checks if there are any orders without the items. If it finds such orders,
it throws an exception that causes the whole transaction to roll back. However,
such a trigger can not detect which item caused the constraint violation.

1634 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

CREATE OR REPLACE TRIGGER check_existing_items_up_del
BEFORE UPDATE OR DELETE ON OrderItem
FOR EACH ROW
DECLARE

l_count NUMBER;
BEGIN

SELECT COUNT(*) INTO l_count
FROM OrderItem i
WHERE i.orderID = :old.orderID

and i.orderItemID <> :old.orderItemID;

IF l_count = 0 THEN
raise_application_error (-20910,

’No item left for the order ’ || :old.orderID || ’!’);
END IF;

END;

Fig. 18. SQL script for creating the trigger to check the constraint violation while updating
or deleting items

Error report:
SQL Error: ORA-04091: table ORDERITEM is mutating,

trigger/function may not see it
ORA-06512: at "CHECK_EXISTING_ITEMS_UP_DEL", line 4
ORA-04088: error during execution of trigger

’CHECK_EXISTING_ITEMS_UP_DEL’
04091. 00000 - "table %s.%s is mutating, trigger/function

may not see it"

*Cause: A trigger (or a user defined plsql function that
is referenced in this statement) attempted to look
at (or modify) a table that was in the middle of
being modified by the statement which fired it.

*Action: Rewrite the trigger (or function) so it does not read
that table.

Fig. 19. Exception thrown by the Oracle database when trying to update or delete a
record from the OrderItem table

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1635

Zdeněk Rybola and Karel Richta

CREATE OR REPLACE TRIGGER check_existing_items_up_del
AFTER UPDATE OR DELETE ON item_table_trigger
DECLARE

l_count NUMBER;
BEGIN

SELECT COUNT(*) INTO l_count FROM (
SELECT o.orderID
FROM order_table_trigger o
LEFT OUTER JOIN item_table_trigger i

ON (o.orderID = i.orderID)
GROUP BY o.orderID HAVING COUNT(i.orderItemID) = 0);

IF l_count > 0 THEN
raise_application_error (-20910,

’No item left for an order!’);
END IF;

END;

Fig. 20. SQL script for creating the trigger to check the constraint violation after update
or delete of items

6. Experiments

To compare our proposed implementations, we made some experiments. These
experiments compare our proposed realizations with the commonly used real-
izations without the source table optionality constraint checking in three areas -
in inserting new orders, in selecting existing orders, and in deleting order items.

The suggested implementation by the triggers requires the select operations
being executed during the insertion of the new entries to the table. Similarly, the
insert operations by the view with the CHECK OPTION require a condition eval-
uation. Therefore we made an experiment to compare our suggested implemen-
tations by the triggers and views with the CHECK OPTION with the commonly
used realization omitting this constraint. In our experiment, the implementation
by the check constraint should be also tested but it cannot be implemented in
the Oracle database, because it does not support the queries in the CHECK
constraints. The insertion experiment is described in Section 6.1.

The suggested realization by the triggers also requires additional select op-
erations during the deletion of the order items to check whether there always
remains at least one item for each order. Therefore, we made another exper-
iment to compare the execution time of our proposed implementation by the
triggers with the common implementation without such a validation. The exper-
iment is described in Section 6.2.

On the other hand, the suggested realization by the views used to select only
the valid data requires an additional condition evaluation during the selection.
Therefore, we also made the experiments to compare the time of the selection

1636 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

of the entries from the Order table directly, with the time of the selection using
the view valid orders. The experiment is described in Section 6.3.

Before each experiment and test variant, the database should contain from
one to five order items for each of the already existing orders according to the
following formula:

(orderID mod 5) + 1

items, where OrderId is the identifier of the order. To such a database, new
orders and items are inserted, existing order items are deleted and existing
orders are searched.

We used Oracle 10g XE database installed on Acer TravelMate 7730 (In-
tel(R) Core-(TM)-2 Duo CPU @ 2.00GHz with 2GB RAM, Windows 7 Profes-
sional 32-bit) for our experiments. The block size was set to 8kB and the data-
base buffer was 52736 blocks.

6.1. The Insert Experiment

The experiment presents the time comparison of the process of inserting new
entries for various implementations of a one-to-many relationship in a relational
database. We developed several scripts for creating the database tables with
the constraints and appropriate insert scripts for each of the implementation to
simulate the process of inserting new entries into the database.

Table 1 presents the constraint implementation for each variant. The Simple
variant is the standard implementation of one-to-many relationship with a pri-
mary key in both tables and a foreign key, which refers to the table Order, see
Fig. 5. This variant does not restrict the minimal multiplicity for the items in the
order. The View variant uses the view with the CHECK OPTION shown in Fig. 9
to insert new entries while checking whether there exist the items for this order.
The View with an index variant uses the same view with the index defined in
Fig. 17. The Trigger variant adds a trigger, as shown in Fig. 16, to check an ex-
isting item for each inserted order. In this variant, the trigger prevents inserting
the orders without any items. Finally, the Trigger with an index variant adds the
index on the orderID in the table OrderItem, as shown in Fig. 17, to speed up
the search of items by their order.

Table 1. Variants of create scripts for various constraint realizations (+ implemented, *
implemented deferrable, - not implemented)

Variant primary keys foreign key index trigger view
Simple + + - - -
View + * - - +
View with index + * + - +
Trigger + * - + -
Trigger with index + * + + -

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1637

Zdeněk Rybola and Karel Richta

The pseudo-SQL code of the insertion procedure for all the tested variants is
given in Fig. 21. The script inserts several items with a reference to the inserted
order. The number of the items of the same order differs in checking the options
of inserting no, one or more items for the same order, respectively. While insert-
ing and order, the number of its items is determined by the following formula:

(orderID mod 5).

The commit operation comes after each group of items of the same order to
apply the constraint check. In the case of the Simple variant, the items are
inserted after the order is inserted, because the FOREIGN KEY constraint is
checked immediately, while in the case of other variants, the items are inserted
before the order is inserted.
Fig. 22 presents the execution time of the insertion of 100 new orders for each
of the variants in database already containing a various number of entries as
described in the beginning of Section 6.

As we can see, the Simple variant proved that the execution time is nearly
independent on the data already stored in the database since there are no con-
straints to check during the insertion. However, the optionality of the order items
for each of the orders is not checked and even the orders without any items
are inserted. The Trigger variant enforces only valid orders with at least one
item to be inserted. However, the constraint check slows down the evaluation
when more entries already exist in the tables. The Trigger with the index variant
proved to be able to eliminate this problem and to be even faster than the Sim-
ple variant. Similar results were measured for the view implementations. The
View variant became even slower than the Trigger variant because of checking
the view condition after trying to insert new data. However, the View with the
index variant eliminates the slowdown by the index and is almost equivalent to
the Trigger with the index variant. All the measured data is summarized in Table
2.
The strange decrease of the time required for the insertion of data to the data-
base containing 10000 and 100000 records in the Simple method is proba-
bly caused by the checkpoint processing. In the Oracle database, records are
stored in data blocks in the buffer cache and the checkpoint process synchro-
nizes the buffer cache with the data blocks in the persistent storage – usually
data files. Also, for each experiment run, we delete the records inserted in the
last run to insert the new data in the same database state. Therefore, some data
blocks are loaded to the buffer cache just before the insert starts. Then, when
inserting into a small database, there is only a few of data blocks is available to
insert the data and the checkpoint process blocks the insertion when the blocks
are locked for synchronization. On the other hand, in the large database, a lot
of blocks is available in the buffer cache that are not locked by the checkpoint
process and thus are available for insertion.
However, this applies only for the Simple variant as there are no special con-
straints aside the PRIMARY KEY that need to be checked and which cause
the serialization of data access. Additionally, in all the variants except the Sim-

1638 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

CREATE PROCEDURE insert_values (p_orders_count)
IS
BEGIN

l_count := 0;
SELECT COALESCE(MAX(orderItemID)+1,1)
INTO l_items_count FROM OrderItem;

SELECT COALESCE(MAX(orderID)+1,1)
INTO l_orders_count FROM Order;

l_starting_orders_count := l_orders_count - 1;

FOR l_iter IN 1..p_orders_count
LOOP

INSERT INTO Order (orderID, order_date, paid)
VALUES (l_orders_count, sysdate, ’N’);
COMMIT;

FOR l_iter2 IN 1..l_count
LOOP

INSERT INTO OrderItem
(orderItemID, orderID, name, price, quantity)
VALUES (

l_items_count, l_orders_count,
’item’ || l_iter2, mod(l_orders_count, 10)+1,
mod(l_orders_count, 20)+1);

l_items_count := l_items_count + 1;
END LOOP; -- insert items
COMMIT;

l_orders_count := l_orders_count + 1;
l_count := mod (l_count + 1, 5);

END LOOP; -- insert order
END; -- insert_values

Fig. 21. Pseudo-SQL code of experimental insert scripts

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1639

Zdeněk Rybola and Karel Richta

Fig. 22. Execution time of insertion of new entries for various implementation variants

ple variant the FOREIGN KEY constraint is deferrable. This causes the con-
straint to be checked at the end of the transaction and therefore it requires
post-processing that eliminate the advantage of many available blocks in the
buffer cache.

Table 2. The results of the insertion experiment - execution times of new entries insertion
for various implementations in milliseconds.

Number of
entries Simple Trigger Trigger with index View View with index

0 0.930 0.540 0.540 0.470 0.390
100 0.950 0.520 0.490 0.480 0.390

1000 0.950 0.800 0.400 0.660 0.340
10000 1.000 1.590 0.390 3.150 0.310

100000 0.780 14.510 0.390 29.000 0.310
200000 0.370 28.980 0.440 57.870 0.320

Also note that the PRIMARY KEY value is generated in a sequence. If it is
generated randomly, the insert would take more time as the correct data block
would be needed to be loaded to the buffer cache to insert the record in the
correct place according to the PRIMARY KEY value. It would especially affect
the Simple variant in large databases where the execution time would not de-
crease.

1640 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

6.2. The Delete Experiment

The delete experiment compares the execution time of the delete operations on
the table OrderItem. If the source entity optionality constraint is realized by the
trigger as defined in Fig. 18, the DELETE operation requires to select the orders
and its items to check if the deleted item was not the last one, and thus making
the order invalid. This constraint check slows down the DELETE operation as
demonstrated by this experiment.

Table 3. Variants of deletes executed and measured (+ implemented, - not implemented)

Variant Trigger Index
Simple - -
Trigger + -
Trigger with index + +

Fig. 23. Execution time of the deletion of the order items for various implementation
variants

Three various implementations were tested to compare. The Simple variant
represents the delete operations on the OrderItem table directly without a con-
straint realization. The Trigger variant represents the delete operations with the
trigger defined on the OrderItem table as shown in Fig. 18. In this variant, only
such items are deleted that do not violate the source entity optionality constraint

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1641

Zdeněk Rybola and Karel Richta

of the orders. The Trigger with the index variant uses the same trigger. How-
ever, in this variant, the index is defined as shown in Fig. 17 to speed up the
search of the items by the order identifier. All the variants are summarized in
Table 3.

Fig. 23 presents the execution time comparison for the deletion of the last
100 order items inserted to the database by its OrderItemID attribute executed
for various number of orders and items existing in the database. Before such a
test, the database contains the data as described in the beginning of Section 6.

As we can see, the Simple variant is the fastest, since there are no con-
straints to check when deleting the order items. However, the required option-
ality of the order items for each order is not checked and the orders without
any item can appear in the database. It violates the source table optionality
constraint. The Trigger variant prevents from deleting the last item of an order,
however, the execution time is much slower, especially if more orders and order
items are stored in the database. Even the index does not help because it is not
used in the checking SELECT operation in the trigger while joining orders and
its items. The measured data is summarized in the Table 4.

Table 4. The results of the deletion experiment - execution times of deletion of order
items for various implementations in milliseconds.

Number of order items Simple Trigger Trigger with index
300 0,11 3,63 3,69

3000 0,14 5,45 5,74
30000 0,09 26,45 26,33

300000 0,13 256,76 256,72

6.3. The Select Experiment

This experiment presents a comparison of the execution time of a SELECT
operation from the table Order directly, and by the view for accessing the valid
data only. The SELECT statement is shown in Fig. 24, where X is a random
order identifier. It searches for an order by its OrderID. No other conditions
were measured because we compared the effect of the source entity optionality
constraint check for the selected data. Therefore the more data is stored in the
database, the slower the SELECT statement is.

SELECT * FROM Order WHERE OrderID = X;

Fig. 24. The SELECT statement for the selection experiment

Three various implementations were measured for each selection. The Simple
variant presents the selection from the table Order directly without checking the

1642 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

constraint. The View variant presents the selection from the view valid orders
defined over the table Order to check the existing entries in the Order table and
to select only from valid orders. The View with the index variant presents the
selection from the view valid orders defined over the table Order with the index
defined on the order identifier in the table OrderItem to speed up the search
of the items of the order while checking the existence. All select variants are
summarized in Table 5.

Fig. 25 presents the results of the experiment. It shows the execution time
of each variant for various number of orders stored in the Order table together
with associated items in the OrderItem table as described in the beginning of
Section 6.

The Simple variant proved to be the fastest variant – as expected – since
there is no additional condition to check during the selection. However, the
query returns back both valid and invalid data according to the source entity op-
tionality constraint. The View variant results become much slower when more
entries are stored in the tables, because of an additional constraint with a sub-
query for checking the valid orders. However, only valid orders according to the
source entity optionality constraint are returned back. The index defined over
the foreign key value in the OrderItem table speeds up the subquery execution
rapidly as shown by the View with index variant results. Therefore, the View
with the index variant seems to be nearly equivalent to the direct selection from
the table in the execution time. However, the View with the index provides only
the valid data. The measured data of the experiment is summarized in Table 6.

Table 5. Variants of selects executed and measured

Variant Source Index in the OrderItem table
Simple table Order not defined
View view valid orders not defined
View with index view valid orders defined

Table 6. The results of the selection experiment - execution times of SELECT operations
for various implementations in seconds

Number of entries Simple View View with index
100 0.002 0.002 0.003

1000 0.000 0.000 0.000
10000 0.000 0.002 0.000

100000 0.004 0.009 0.014
500000 0.039 0.061 0.031

1000000 0.050 0.519 0.039
2000000 0.054 3.091 0.041

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1643

Zdeněk Rybola and Karel Richta

Fig. 25. Execution time of selection of entries for various implementation variants

7. Conclusions

In this paper, we summarized the currently used method for modeling binary
associations in the data models using UML class diagrams. We showed the
way to specify multiplicity constraints in the model. Furthermore, we showed a
usual transformation of the model from PIM to PSM for the relational database
and the usual transformations for multiplicity constraints using FOREIGN KEY,
NOT NULL and UNIQUE constraints in SQL.

We pointed out the constraint for the source entity optionality. This constraint
is often used in the model but not realized in the database because the foreign
key is insufficient instrument for full implementation. Therefore, we defined this
constraint in another formal way by an OCL invariant and suggested several
methods how this constraint can realized in a relational database.

We also compared the suggested implementations to the currently used ap-
proaches in the context of the execution time while inserting new data to the
tables, deleting data from the tables and selecting existing data from the tables.
The experiments showed that the trigger realization and the view realization
slow down the insertion of new data the more rapidly the more data has been
stored in the tables. However, when the index is defined in the referring table,
this slowdown is eliminated and the insertion is even faster. The results also
showed that selecting the data using the view with the index on the FOREIGN
KEY column is equivalent in the execution time to the direct access while provid-
ing only the valid data. However, when trying to check the source table option-
ality constraint by the trigger when deleting the data, the trigger implementation
showed to be very slow even with the defined index.

1644 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Possible Realizations of Multiplicity Constraints

According to the experiment results, we suggest the constraint should be
realized in CASE tools’ transformations of data models to relational databases
either by the trigger or the view with the check option to prevent it from inserting
invalid data or by the view to filter invalid data from the selection. However, the
realization of the constraint check for the delete and update operations should
be objectives of the future research to be able to fully prevent the invalid data
being present in the database. We also believe that the integration of the sug-
gested realizations in the transformation processes of CASE tools may save a
lot of effort of analysts and database designers when trying to design a con-
sistent database and even improve the database consistency as this effort is
usually neglected.

Acknowledgments. We would like to thank for financial support of Student Grant Com-
petition of CTU in Prague, grant number SGS13/099/OHK3/1T/18 and also to AVAST
Foundation in Prague.

References

1. Aleksić, S., Ristić, S., Luković, I.: An approach to generating server implementa-
tion of the inverse referential integrity constraints. In: Proceedings. AL-Zaytoonah
University of Jordan, Amman, Jordan (May 2011)

2. Arlow, J., Neustadt, I.: UML 2.0 and the Unified Process: Practical Object-Oriented
Analysis and Design (2nd Edition). Addison-Wesley Professional (2005)

3. Cabot, J., Teniente, E.: Constraint support in MDA tools: A survey. In: Rensink, A.,
Warmer, J. (eds.) Model Driven Architecture Foundations and Applications. Lecture
Notes in Computer Science, vol. 4066, pp. 256–267. Springer Berlin / Heidelberg
(2006), http://www.springerlink.com/content/4902321654674181/abstract/

4. Demuth, B.: DresdenOCL. http://www.reuseware.org/index.php/ DresdenOCL (Jan
2011)

5. Luković, I., Mogin, P., Pavićević, J., Ristić, S.: An approach to developing complex
database schemas using form types. Software: Practice and Experience 37(15),
16211656 (Dec 2007), http://dx.doi.org/10.1002/spe.v37:15

6. Melton, J.: Advanced SQL:1999. Morgan Kaufmann Publishers (2003)
7. OMG: Object constraint language, version 1.3.

http://www.omg.org/spec/OCL/2.2/PDF (Feb 2010)
8. OMG: Object management group. http://www.omg.org/ (Dec 2011)
9. OMG: UML 2.4.1. http://www.omg.org/spec/UML/2.4.1/ (Aug 2011),

http://www.omg.org/spec/UML/2.4.1/
10. OMG, Miller, J., Mukerji, J.: MDA guide version 1.0.1. http://www.omg.org/cgi-

bin/doc?omg/03-06-01.pdf (Jun 2003)
11. Richta, K., Rybola, Z.: Transformation of relationships from UML/OCL to SQL.

In: ITAT 2011: Zbornı́k prı́spevkov prezentovaných na konferencii ITAT. vol. 11.
University of P. J. Šafárik, Košice, Slovakia, Terchová, Slovakia (Sep 2011),
http://itat.ics.upjs.sk/proceedings/itat2011-zbornik.pdf

12. Rob, P., Coronel, C.: Database Systems: Design, Implementation, and Manage-
ment. Boyd & Fraser, 2nd edn. (1995)

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1645

Zdeněk Rybola and Karel Richta

13. Rybola, Z., Richta, K.: Transformation of binary relationship with particular multi-
plicity. In: DATESO 2011. vol. 11, pp. 25–38. Department of Computer Science,
FEECS VSB - Technical University of Ostrava, Pı́sek, Czech Republic (Apr 2011),
http://www.informatik.uni-trier.de/˜ley/db/conf/dateso/dateso2011.html

14. Rybola, Z., Richta, K.: Transformation of special multiplicity constraints - comparison
of possible realizations. In: Proceedings of the Federated Conference on Computer
Science and Information Systems. pp. 1357–1364. FedCSIS, Wroclaw, Poland (Sep
2012)

15. Softeam: Objecteering/UML. http://www.softeam.com/technologies objecteering.php
(Dec 2012)

16. Sparx Systems: Enterprise architect - UML design tools and UML CASE tools
for software development. http://www.sparxsystems.com.au/products/ea/index.html
(Mar 2011)

17. Wilke, C., Thiele, M., Freitag, B.: Dresden OCL: manual for installation, use and
development (Oct 2010)

Zdeněk Rybola is a PhD. student and an assistant professor at the Depart-
ment of Software Engineering at the Faculty of Information Technology, Czech
Techical University in Prague. His area of interest includes Model Driven De-
velopment in context of relational databases and multiplicity constraints and the
usage of OntoUML in software engineering.

Karel Richta is an associate professor at the Department of Software Engineer-
ing at the Faculty of Mathematics and Physics, Charles University in Prague,
and also at the Department of Computer Science and Engineering at the Fac-
ulty of Electrical Engineering, Czech Technical University in Prague. His re-
search is primarily focused on formal specifications and similar approaches us-
able in software engineering. He has published more than 100 publications,
including 5 books. He is the president of Czech ACM Chapter.

Received: December 10, 2012; Accepted: September 2, 2013.

1646 ComSIS Vol. 10, No. 4, Special Issue, October 2013

DOI: 10.2298/CSIS130115069L

Testing framework for embedded languages?

Dániel Leskó1 and Máté Tejfel1

Eötvös Loránd University
Department of Programming Languages and Compilers

{ldani; matej}@elte.hu

Abstract. Embedding a new programming language into an existing one
is a widely used technique, because it fastens the development process
and gives a part of a language infrastructure for free (e.g. lexical, syntac-
tical analyzers). In this paper we are presenting a new advantage of this
development approach regarding to adding testing support for these new
languages.
Tool support for testing is a crucial point for a newly designed program-
ming language. It could be done in the hard way by creating a testing tool
from scratch, or we could try to reuse existing testing tools by extending
them with an interface to our new language. The second approach re-
quires less work, and also it fits very well for the embedded approach.
The problem is that the creation of such interfaces is not straightforward
at all, because the existing testing tools are mostly not designed to be
extendable and to be able to deal with new languages.
This paper presents an extendable and modular model of a testing frame-
work, in which the most basic design decision was to keep the – previously
mentioned – interface creation simple and straightforward. Other impor-
tant aspects of our model are the test data generation, the oracle problem
and the customizability of the whole testing phase.

Keywords: testing support for embedded languages, testing framework,
abstraction over evaluation.

1. Introduction

Nowadays, embedding a language into an existing one (host language), is a
well known and widely used approach to create a new programming language.
This quickens the development process, because the host language’s infras-
tructure (lexical, syntactical analyzer) can be reused. Modern functional host
languages are flexible enough that the resulted combination has more the feel
of a new language than just a library.

The ”embedded” approach has proved to be an excellent technique for spec-
ifying and prototyping domain-specific languages (DSLs) [11]. Basically two
approaches exist: shallow embedding, which directly maps the new language
constructs to their semantics, while the deep embedding first builds an abstract
syntax tree and later this tree is mapped to the language semantics.

? Supported by ELTE TÁMOP-4.2.2/B-10/1-2010-0030

Dániel Leskó and Máté Tejfel

Shallow embedding can be seen as an augmentation to an existing lan-
guage. According to Mernik et al. [17] every library can be seen as a shallowly
embedded language. While deep embedding really forms a new language on
the foundations of the host language. Therefore the deep approach is more
suitable for building a compilable and optimizable language. In this case a host
language can be seen as a very powerful template or macro language.

There are numerous papers about embedded DSLs, such as how to de-
sign [15, 13], implement [10] or compile [7] them. However, as far as we know
there are no specific paper, which aims to present a general solution for adding
testing tool support – at low cost – for already existing embedded languages,
while – as we all know – it is crucial for a language to have a proper testing tool
support.

Implementing a testing system in a DSL is mostly not an option due to its
labour-intensive nature and the fact that most DSLs are not designed for that
kind of task. The realistic option is to use an already existing test environment,
written in the host language. In this case we need to extend the existing frame-
work with an interface to the embedded language, while the business logic re-
mains untouched. Doing this is a much smaller task, than creating the testing
support from scratch. This approach also fits nicely with the motivation of em-
beddedness, namely to save time and resources by reusing as much from the
host language as possible.

The main problem with existing testing tools (QuickCheck [5], JUnit [2], HU-
nit [12]) that they were designed to test programs of one specific language and
sometimes even for specific testing and test data generation methodologies.
Therefore they are not easily extendible with an interface to another program-
ming language or to another evaluation method. Furthermore they could be
quite specific in certain aspects, like how the input test data are produced,
or how the results are evaluated and decided whether a test case failed or
passed. Another aspect regarding a testing framework is the viability and clear
designability of supporting both property based and differential testing method-
ologies.

Our goal in this paper is to present a general and permissive model of a
testing framework which can address properly all the previously mentioned as-
pects. The model is abstracted along four orthogonal aspects such as test data
generation, the used evaluation method, the oracle problem and partly the used
testing methodology.

Based on our model, a Haskell implementation was created. Its main char-
acteristics are modularity and extensibility. The existence of such framework in
Haskell (or in any host language) results that an embedded language can get
a testing support by implementing only a simple and straightforward interface
which spans the gap between the host and the embedded language.

1648 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Testing framework for embedded languages

2. The model

The following model was inspired by all the previously mentioned reasons and
aspects, and it was designed to nicely fit for all of them. Figure 1 shows the
data-flow model of a test case in our model.

The generator ’s responsibility is to provide correctly typed input for trans-
formers. This input will be referred as the generated test data.

A transformer encapsulates the to-be-tested computation, and gives an uni-
versal interface, which hides such unnecessary details as how and by what
the computation will be evaluated. A transformer can be thought as a function,
whereat the generated test data is applied, and it yields the result of the com-
putation. The number of the transformers are not limited, it could be as many
as the user wants.

A property is a function, which receives each transformer ’s result, and also
the originally generated test data. The outcome is a boolean value, which rep-
resents whether the specific property (given by the user) holds in that particular
case, or not.

An operator is basically a driver, which controls the data-flow between the
small boxes (in the figure). The configuration comes from the outside world
(from the model’s point of view), and it affects the operator (e.g. the number of
performed tests).

Operator

Generator

test
data

Transformer_2

Transformer_1

Property

result

result

failed /
passedconfig

Fig. 1. The data-flow model of a test case with two transformers

To describe a test case in the terms of this model, we need one test data
generator, a non-empty list of transformers, and one property. To be able to run
a test case, we also need an operator, which specifies the way how to do that.

One of the earliest design decision was that the model has to be as gen-
eral as possible, in terms of that the four major parts of the model (generator,
transformer, property, operator) have to be separate, independent and modu-
lar parts while the interactions between them should done through well defined
and public channels.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1649

Dániel Leskó and Máté Tejfel

2.1. Generator

The model’s only expectation about a generator is that it has to supply test data
with a matching type for the given transformers. However there are a lot of un-
controlled aspects by the model, such as the used generation tactics (random,
exhaustive), the test data distribution or controlling the size of the generated
test data. All of these are entirely depending on the particular implementation
of a specific generator.

To give control for the user over the previously mentioned aspects, we defi-
nitely need a small domain-specific language for building and specifying gener-
ators. Since QuickCheck [5] and also SmallCheck [20] has some really powerful
tools to do that, we can easily reuse those existing tools as a library. Note that
the re-usage of such libraries not conflicts with the language independence of
the model, since QuickCheck is re-implemented for more than 20 languages.

The model and the generator notion is not limited to the previously men-
tioned tools, any DSL or library which aims to generate test data could be in-
tegrated easily into the model and also into a testing framework, based on the
model.

2.2. Transformer

Using a transformer is a way to abstract over specific evaluation methods (etc.
interpreting, compiling) and specific programming languages. The model repre-
sents a transformer as one function, but under the hood it is a bit more compli-
cated. A transformer is usually created by applying the to-be-tested function to
a transformer pattern. Therefore the previously mentioned abstraction are done
by the means of transformer patterns.

A specific transformer pattern could evaluate any program of a specific lan-
guage with a specific evaluation method (e.g. C compiler, Haskell compiler,
Haskell interpreter). On the implementation level it is a higher order function
which takes a function (the to-be-tested) as its first argument and a complex
data structure (holds the input data) as its second argument. Adding support
for a new language or evaluation method can be done simply by creating a new
transformer pattern for it.

2.3. Property

One of the most fundamental questions in automated software testing is to
decide whether a test case is passed or failed, because it is hard to create
an algorithm/oraculum which is general enough to correctly judge the results.
However, if we somehow succeed, it is not a flexible solution to hardwire this
decision method into a general framework.

A common resolution of this problem is to devolve this job to the user, who
writes the actual test case. In our model it can be done with the use of the
so-called property, which can be thought as a boolean function with two pa-
rameters. Note that our notion of property is quite far from QuickCheck’s. Our

1650 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Testing framework for embedded languages

version means a much smaller part of the model. An expression evaluated to
true indicates a successful test, false indicates a counter example. The first
parameter of a property is the originally generated test data (the input of the
transformers), the second is a list of transformer’s results. The number of the
compared transformers are not limited, but they have to have the same type
signature.

The model does not specify what kind of results should be passed to a prop-
erty, because that could depend on the used specific transformer pattern. For
example a transformer pattern of a C compiler could pass compile time and
ELOC (effective lines of code) information besides the result of the computa-
tion. Having also non-functional results can allow us to build more sophisticated
properties.

2.4. Operator

The role of an operator is much more technical then the previously mentioned
three parts of the model. This difference comes from the fact that an operator
isn’t part of a test case, it is only needed to perform the execution of it.

On the model level an operator ’s job is to handle the data-flow from the gen-
erators towards to a property through one of the transformers. On the frame-
work level there are several other technical responsibilities such as control-
ling the number of required iterations, the level of verbosity, setting logging and
the working directory. The framework contains one predefined operator, which
gives a standard way to handle the previously mentioned aspects. So normally
a user doesn’t have to create a new operator.

2.5. Testing framework - based on our model

The presented model is general in the sense that it doesn’t require any specific
programming language constructs, so it can be implemented in almost any host
language. We have chosen Haskell, because it nicely fits for this job [11], and
lately Haskell is a very favoured host language.

The implemented framework supports both property based testing and dif-
ferential testing. As a property based tester it is a kind of generalization of
QuickCheck and SmallCheck with the support for additional test data gener-
ation approaches. The most important feature – as a differential testing tool
– is a ”common ground” for different evaluation methods and also for differ-
ent languages. The existence of this common ground makes comparability and
modularity really easy.

In the following section we are discussing a detailed use case of the frame-
work. At first sight it may look like that we are using it solely as a differential
testing tool, but in reality it is rather about new transformer patterns, mostly
answering the why and how questions.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1651

Dániel Leskó and Máté Tejfel

3. A detailed use case - Testing support for Feldspar

We used the framework to test the Feldspar1 [1] language, which is a new em-
bedded language for describing digital signal processing algorithms. We have
more than 300 test cases, which were used on a daily basis to test the Feldspar
language itself, and the existing Feldspar example programs. We also had to
ensure that the Feldspar compiler and interpreter are in sync, and the results
are valid (compared to trusted reference implementations or expected output
sets). Besides testing equivalence, most of the test cases are checking non-
functional properties too.

The actual implementation of the testing framework reused QuickCheck’s
Gen class and SmallCheck’s Serial class as generators. The used properties
are mostly check equivalence either strictly or with a given epsilon threshold.
We also used non-functional properties, which were about compile-time, run-
time, ELOC, memory-usage.

The most important and interesting part is the transformer, which we present
in the following subsections. Each subsection firstly introduces an aspect of
Feldspar which will be tested, than shortly presents how such a specific trans-
former pattern can be created and how the testing can be achieved.

3.1. Testing the Feldspar interpreter

Unfortunately Feldspar doesn’t have a written specification about semantics,
so the interpreter couldn’t be tested against that. But in many ways Feldspar
is really similar to Haskell, in fact – by definition – a lot of primitive function
and operator of Feldspar has the exact same semantics like their equivalents in
Haskell.

This realization means, that we could test the Feldspar’s primitive functions
against their Haskell equivalents. In order to do that we need two new trans-
former patterns. The first one will be responsible for the evaluation of a Feldspar
program, using the Feldspar interpreter, while the other one will evaluate a
Haskell function by the Haskell interpreter.

3.2. Testing the Feldspar compiler

The Feldspar compiler [6] has a capability of supporting several different back-
ends to generate code for them. The main and mostly used platform is ANSI C,
there are other developments like Ti specific instrinsics or LLVM back-end, but
from the testing point of view, the C platform is the important one.

It is important from the testing point of view, that the generated C code is
just a function, which has almost the same arguments, like the original Feldspar
program.

1 Developed by the Feldspar project, which was a joint research project of Ericsson;
Chalmers University of Technology (Göteborg, Sweden) and Eötvös Loránd University
(Budapest, Hungary).

1652 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Testing framework for embedded languages

As there is no written specification for Feldspar, the interpreter could be
thought as some kind of executable reference implementation of the semantics.
So the best way to verify the compiler is to test it against the interpreter.

The following steps have to be done, if we would like to compile and execute
a Feldspar program and run from Haskell. So creating a transformer pattern –
which evaluates a Feldspar program by the Feldspar compiler – requires that
these steps have to be automated and built-in:

1. Compile a Feldspar program into a C function.
2. Generate a proper C main() function, which reads the input data from stan-

dard input, passes these data to the previously generated C function, and
prints the result to standard output.

3. Compile the previous two C files with gcc.
4. Start an external process from Haskell to run the executable file, and feed it

with proper test data.
5. Wait until the execution ends, read the result from the process, and close it.

3.3. Testing Feldspar programs against reference implementations

As it was mentioned earlier, Feldspar is a domain specific language (DSL),
targeting digital signal processing (DSP). So it is obvious that there is a certain
set of algorithms, which are very typical for that domain. We can assume that
there are notable algorithms (e.g. Fast Fourier Transform [4]), which already
have an implementation from a reliable source. These implementations can be
treated as a reference to check and test the expressiveness, the usability and
the correctness of the Feldspar language itself, and also the programs written
in Feldspar.

Since DSP algorithms are mostly implemented in C, we need a transformer
pattern that can evaluate an arbitrary C function. The function is either given
as a string, or as an external file. Evaluation means here that the transformer
pattern takes the C code, compiles it with a C compiler (e.g. gcc), generates a
proper main() function, feeds this function with the generated input data, and
reads the result back to the testing framework.

Since the C language is not embedded into Haskell, and there is no strong
connection between those two languages, we are losing some type information
there. While in case of Haskell and languages embedded into Haskell we could
statically type-check the assembled test cases. This means that if a generator-
transformer-property is ever wrongly paired or assembled, then we get a com-
pile time type-check error.

Because of the less type information, the transformer pattern for C has to
assume that a few invariant – regarding to the number and order of the parame-
ters – have not been violated, otherwise we could end up with sudden run-time
errors.

The typical use case of this pattern is to first have a transformer for a
Feldspar program and then compare that with a reference C program. At first
this testing approach could be a little bit confusing, because a failure doesn’t

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1653

Dániel Leskó and Máté Tejfel

mean always a bug in the Feldspar language, it is always a possibility that the
Feldspar implementation of the chosen algorithm is simply wrong. But as these
test cases are based on real life examples, eventually the goal is to produce a
properly working Feldspar implementation of those algorithms.

3.4. Simple testing approaches

In the following we will present, how the testing framework supports some basic
testing methodology, such as negative testing, or testing with constant input.

Testing with constant data There are certain cases when the random test
data generation is not enough, and we want to create some hardwired test
case with specific input data. But in this case, we also might want to specify
the result of the computation. It’s basically the oldest and simplest version of
testing, the input and the result are given manually, and we check it against the
computed result.

To support this kind of testing, we need transformer pattern, which gets a
constant as its first arguments, and results a constant transformer, always yield-
ing the given constant.

Negative testing As it was mentioned earlier in subsection 2.2, a transformer
could fail, but this failure is also handled as data. Besides the error message,
there are some information about the source of error (e.g. Haskell, gcc, Feldspar
compiler, Feldspar interpreter).

In order to build such a test case, which passes when one of the transform-
ers fails, we need a new transformer pattern which constantly yields failure with
the given error source.

The most likely use case for this kind of testing, if there are a certain set
of Feldspar functions, which shouldn’t be compiled to C, because they clearly
hasn’t got enough information (e.g. too general type signature) to produce a
proper C code.

3.5. Concrete test case

The following is a Feldspar function, which takes an int stored on 32 bit (as the
starting value of the accumulator) and a list of ints. The list is folded, while every
element is added to the accumulator, which is the result of the function.

foldAdd :: Data Int32 -> DVector Int32 -> Data Int32
foldAdd = Feldspar.Vector.fold (+)

The tc1 example test case tests the foldAdd function by comparing the
Feldspar compiler, the Feldspar interpreter and the corresponding foldl (+)
Haskell function.

1654 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Testing framework for embedded languages

tc1 = TestCase
{ tc_name = "testing fold with addition"
, gen = genInt32 ::> vectorOf 200 genInt32 ::> ()
, trans = [refHaskellTP (Prelude.foldl (+))

, evalTP foldAdd
, compilerTP foldAdd]

, prop = base 1 strictEquality}

The results are strictly compared to the result of the Haskell function, which
is treated as a reference implementation for Feldspar’s fold function.

The test data is coming from a list of QuickCheck generators. Please note,
that Feldspar uses fixed length lists (vectors) due to efficiency and optimization
reasons, therefore we have to fix this information (200) at test data generation,
otherwise we could use QuickCheck’s arbitrary function or SmallCheck’s
serial function too, as a generator.

4. Improving transformers

Every testing system is made to support the development or maintenance by
saving time and resources which allows to create and run more tests in an
automated way.

The presented model and framework supports this goal, but still we have to
create every test case manually for every function (like foldAdd) we would like
to test, which is a very boring and time consuming work. Besides this obvious
drawback there is an other disadvantage, namely that it is very easy to leave
out a few functions during test case production.

This motivated us to enhance the previously presented transformer concept
by generalizing the parameter of a transformer pattern. Previously a pattern ex-
pected a concrete function as its parameter to form a transformer. The new,
enhanced transformer patterns expects only a type signature instead of a con-
crete function.

Meta-transformers Type wise a meta-transformer looks and feels like an av-
erage transformer, but internally it is a bit more complicated. We can form a
meta-transformer by applying only some type signature information on a trans-
former pattern. Based on this type information, the meta-transformer will inter-
nally generate the to be tested function with a matching signature to the given
type information. This internal generation instantiates a meta-transformer and
creates an ordinary transformer.

Basically we need type signature guided, automatic program generation.
Since it is not an easy task, we solve it in two consecutive steps. The first phase
does the real generation, and ensures the type correctness by producing closed
and correctly typed lambda calculus terms. While the second phase translates
the generated lambda term into a concrete program.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1655

Dániel Leskó and Máté Tejfel

Palka et al. [18] successfully applies correctly typed lambda term genera-
tion to generate and test Haskell list expressions. Our approach is basically a
generalization and improvement of their work.

The details and background of this two-phase generation go way beyond the
scope of this paper and testing framework. Our point here is that the presented
model and testing framework is so modular and flexible enough to accommo-
date even this kind of improvements too.

5. Related work

Helvetia [19] is a tool chain for developing an internal DSL by transforming an
abstract syntax tree. The benefit of this approach is that a homogeneous tool
support can be given for the newly created embedded languages. Therefore –
in this case – there is no need for our testing framework. However our approach
is applicable for already existing embedded languages, while to benefit from
the homogeneous tool support of Helvetia we have to reimplement and embed
our language into Helvetia, which is a much bigger task than just creating a
transformer for our test framework.

So Helvetia only suits well for you if you are at the beginning of the lan-
guage development process, but later it is not really an option to apply. While
our solution is easily applicable for new and also existing languages too.

Testing embedded languages Grima et. al [8] developed an embedded lan-
guage (in Haskell) addressing geometrical problems. The paper presents two
different methodologies to test programs, written in that new language. The first
simply reuses QuickCheck, while the second works on C level. Both using ran-
dom input generation to verify the given properties, but they are two, completely
separate solution on implementation level.

Our test framework could solve this in an unified way instead of those sep-
arate solutions. Furthermore the usage of our framework would save a consid-
erable amount of time and resources, because we only need to create the two
transformer patterns (one for the Haskell level and one for the C level testing),
the rest is already in the framework.

Test data generation The test data generation is always a crucial point in
automated software testing. Numerous property or specification based testing
tools are using some kind of test data generation. For example: QuickCheck [5],
SmallCheck [20], Gast [14], Korat [3]. QuickCheck uses random generation
(with the ability to shrink the founded counterexamples), while SmallCheck,
Gast and Korat do exhaustive generation up to a limit given by the user.

It looks like that every tool supports only a specific programming language
and a specific test data generation methodology. Our framework is designed to
support arbitrary number of different test data generation methodologies and

1656 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Testing framework for embedded languages

also to hide their differences by giving a unified generator interface. For exam-
ple the presented model can accommodate QuickCheck’s random generator as
well as SmallCheck’s serial generator at the same time.

Differential testing McKeeman states the following: ”The ugliest problem in
testing is evaluating the result of a test.” [16]. He was the first, who described
the use of randomized differential testing for C compilers. His domain was es-
sentially static: a test data was randomly generated based on a model of the
valid inputs. The tested programs were compiled by different translators, and
if the obtained results are different, the situation is considered to be potentially
erroneous. The word ”potentially” is important here, because the results – given
by the two tested programs – may differ and yet still be correct depending on
the requirements. This is the starting point of our property notion, which solves
the oracle problem by simply porting it to the user.

McKeeman’s model is really close to ours in the sense that he had a test
data generator, translators – which corresponds with our transformer notion
– and some kind of very simple property to check the results. However, his
solution was specifically designed to test different C compilers with random test
data, therefore there is no chance for such kind of extendability and flexibility
like new test data generation methods, language interfaces and properties.

A reusable framework One of the simplest reusable framework is JUnit [2],
and it’s clones for other languages, like HUnit [12] for Haskell. Our model aims
to preserve the simplicity of the previously mentioned tools, but also tries to
support differential and property based testing, arbitrary test data generation
methodologies and language independence in the sense of the tested program.

A test framework was developed for testing the Flash file system, and later
it was reused for two other testing projects [9]. Their conclusion was that initial
efforts to develop an effective test system pay off in re-use on similar projects,
because the significant differences were less important than the similarities.
Their experiences confirms that we have chosen the right design decision in
case of our model. It also points out that resources can be saved in the long
run, by developing a modular and extensible testing framework, like ours.

6. Conclusion and future work

We presented a permissive model of a modular and extensible testing frame-
work. The main contributions of the model are the followings:

– testing support for embedded languages at low cost. To add support for
a new language, we only have to create a new transformer, the test data
generation and the basic properties are already there.

– an unified interface to support different test data generation methods. The
integration of a new test data generator is very easy, nearly ”plug and play”.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1657

Dániel Leskó and Máté Tejfel

– using abstraction over different evaluation methodologies. This latter as-
sures that programs written in different languages can be tested against
each other.

The model essentially supports property based and differential testing, where
the oracle problem is ported to the user.

Language and platform independency was an early design decision for the
model. A real test of this would be to try to create another (non-Haskell) imple-
mentation of the model, maybe in an object-oriented or imperative programming
language.

A possible future work is to extend the framework with new transformer pat-
terns to support new programming languages. For Feldspar, it could be a rea-
sonable goal to add support for testing against reference MatLab programs.

References

1. Axelsson, E., Dévai, G., Horváth, Z., Keijzer, K., Lyckegård, B., Persson, A.,
Sheeran, M., Svenningsson, J., Vajda, A.: Feldspar: A Domain Specific Language
for Digital Signal Processing algorithms. In: Proc. Eighth MemoCode (2010)

2. Beck, K., Gamma, E.: Test infected: Programmers love writing tests. Java Report
3(7), 51–56 (1998)

3. Boyapati, R., Khurshid, S., Marinov, D.: Korat: Automated testing based on java
predicates. In: In Proc. International Symposium on Software Testing and Analysis
(ISSTA. pp. 123–133 (2002)

4. Brigham, E.O.: The Fast Fourier Transform (1974)
5. Claessen, K., Hughes, J.: Quickcheck: A Lightweight Tool for Random Testing of

Haskell Programs. In: ACM SIGPLAN Notices. pp. 268–279 (2000)
6. Dévai, G., Tejfel, M., Gera, Z., Páli, G., Nagy, G., Horváth, Z., Axelsson, E., Sheeran,

M., Vajda, A., Lyckegård, B., Persson, A.: Efficient Code Generation from the High-
level Domain-specific Language Feldspar for DSPs. In: Proc. ODES-8: 8th Work-
shop on Optimizations for DSP and Embedded Systems, assoc. with IEEE/ACM
International Symposium on Code Generation and Optimization (CGO) (2010)

7. Elliott, C., Finne, S., Moor, O.d.: Compiling embedded languages. In: Proceedings
of the International Workshop on Semantics, Applications, and Implementation of
Program Generation. pp. 9–27. SAIG ’00 (2000)

8. Grima, M., Pace, G.J.: An embedded geometrical language in haskell: Construction,
visualisation, proof (2007)

9. Groce, A., Holzmann, G., Joshi, R.: Randomized differential testing as a prelude to
formal verification. In: Proceedings of the 29th international conference on Software
Engineering. pp. 621–631. ICSE ’07 (2007)

10. Hudak, P.: Modular domain specific languages and tools. In: Proceedings of the 5th
International Conference on Software Reuse. pp. 134–142. ICSR ’98 (1998)

11. Hudak, P.: Building domain-specific embedded languages. ACM Comput. Surv. 28
(December 1996)

12. HUnit: Haskell unit testing. http://hunit.sourceforge.net/ (2012)
13. Kamin, S.N.: Research on domain-specific embedded languages and program gen-

erators. In: Electronic Notes in Theoretical Computer Science (1998)

1658 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Testing framework for embedded languages

14. Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: Generic automated
software testing. In: The 14th IFL’02, Selected Papers, volume 2670 of LNCS. pp.
84–100 (2002)

15. Leijen, D., Meijer, E.: Domain specific embedded compilers. SIGPLAN Not. 35, 109–
122 (December 1999)

16. McKeeman, W.M.: Differential testing for software. Digital Technical Journal 10(1),
100–107 (December 1998)

17. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37, 316–344 (December 2005)

18. Palka, M.H., Claessen, K., Russo, A., Hughes, J.: Testing an optimising compiler by
generating random lambda terms. In: Proceedings of the 6th International Workshop
on Automation of Software Test. pp. 91–97. AST ’11, ACM, New York, NY, USA
(2011), http://doi.acm.org/10.1145/1982595.1982615

19. Renggli, L., Girba, T., Nierstrasz, O.: Embedding languages without breaking tools.
In: In ECOOP 2010: Proceedings of the 24th European Conference on Object-
Oriented Programming (2010)

20. Runciman, C., Naylor, M., Lindblad, F.: Smallcheck and lazy smallcheck: automatic
exhaustive testing for small values. In: Proceedings of the first ACM SIGPLAN sym-
posium on Haskell. pp. 37–48. Haskell ’08 (2008)

Dániel Leskó is pursuing his Ph.D. in Test data generation and static analy-
sis at Eötvös Loránd University in Hungary, where he received his B.Sc. and
M.Sc. degree in software technology in 2008 and in 2010. His research in-
terests include functional programming, compilers, automated testing and test
data generation.

Máté Tejfel is an assistant professor at Eötvös Loránd University, Faculty of
Informatics, Department of Programming Languages and Compilers. His main
research topics are parallel programming, functional programming and verifica-
tion.

Received: January 15, 2013; Accepted: September 10, 2013.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1659

DOI: 10.2298/CSIS130115070M

Extending Programming Language to Support
Object Orientation in Legacy Systems

Hemang Mehta, S J Balaji, and Dharanipragada Janakiram

Department of Computer Science and Engineering,
Indian Institute of Technology Madras,

Chennai 600036, India
{hemang,sjbalaji,djram}@cse.iitm.ac.in

Abstract. The contemporary software systems written in C face main-
tainability issues because of tight coupling. Introducing object orientation
can address these problems by raising the abstraction to objects, thereby
providing better programmability and understandability. However, compil-
ing a C software with a C++ compiler is difficult because of the incompat-
ibilities between C and C++. Some of the incompatibilities such as des-
ignated initializers are nontrivial in nature and hence are very difficult to
handle by automation such as scripting or by manual efforts. Moreover,
runtime support for features such as global constructors, exception han-
dling, runtime type inference, etc. is also required in the target system.
Clearly, the traditional procedural language compiler cannot provide these
features. In this paper, we propose extending programming language such
as C++ to support object orientation in legacy systems instead of com-
pletely redesigning them. With a case study of Linux kernel, we report ma-
jor issues in providing the compile and runtime support for C++ in legacy
systems, and provide a solution to these issues. Our approach paves the
way for converting a large C based software into C++. The experiments
demonstrate that the proposed extension saves significant manual efforts
with very little change in the g++ compiler. In addition, the performance
study considers other legacy systems written in C and shows that the
overhead resulting from the modifications in the compiler is negligible in
comparison to the functionality achieved.

Keywords: g++, programming language, Linux kernel, legacy systems,
object orientation.

1. Introduction

Many well-known large scale software systems such as Linux kernel[5], Apache
webserver[7], PostgreSQL[6], etc. have been programmed in procedural lan-
guage C. As these systems evolve with time, they become prone to issues
related to cohesion and coupling. These issues make the systems difficult to
maintain and reduce the understandability of the code. For example, Linux ker-
nel has undergone studies[12,11] which reveal that it is a tightly coupled system
and the instances of common coupling are increasing exponentially with new

Hemang Mehta et al.

versions. Our previous work on object oriented(OO) wrappers[8] shows that
the introduction of minimal OO features can help increase the maintainability.
There are two main challenges when introducing OO concepts in a procedural
language based system. The first is to compile all C files with a C++ compiler.
The other challenge is to provide runtime support for features such as invoking
of constructors for global and static objects.

Though C++ is perceived as a superset of C language, there are many in-
compatibilities between them which restrict compilation of the legacy system
with a C++ compiler. The incompatibilities between C and C++ can be classi-
fied in trivial and nontrivial categories. The trivial issues can be addressed using
scripting (e.g. renaming C++ keywords used as identifiers) or can be resolved
manually if there are limited instances (e.g. pascal style function definitions). On
the other hand, nontrivial issues can not be easily solved by the same means.
An example of such incompatibility is support for nontrivial designated initializ-
ers.

Designated Initializers(DI) are used for initializing complex datatypes such
as structures and arrays as shown in the following code snippet.

struct book { char name[]; int pages; }book var = {
‘‘Programming’’, 200 };

int arr[5] = { 10, 12, 21, 25, 32 };

Support for trivial DI was included in C89 standard[1] and C++ standard[3]
also conforms to the same. On the other hand, nontrivial DI were introduced in
C99[2]. The nontrivial DI provides the following features on top of trivial DI:
Labeled Initializing: Structure members can be selectively initialized out of the
order in which they are defined.
Indexed Initializing: Assign values to specific array members using their in-
dexes.
Ranged Initializing: specific range of an array can be initialized.
These features grant increased flexibility of initialization to the programmers.
In addition, the absence of explicit constructors for structure variables leads to
extensive and complex usage of DI (We shall use term ‘DI’ for nontrivial desig-
nated initializers henceforth.) in a C based software. Since C++ standard does
not include DI, compiling a software written in C with g++ is not possible.

In this paper, we present an approach to extend g++ so that it recognizes
the ranged, labeled, indexed initialization and nesting of them. With the help of
a case study of Linux kernel, we show that it recognizes numerous instances of
DI in the kernel and saves significant efforts. The main challenges we envisage
are:
1. Different types of DI for structures and arrays,
2. Different combinations of types used in a single initialization and
3. Nested usage of DI in macro preprocessors.

Additionally, we explain how runtime support for C++ can be added in a
legacy system with an example of Linux kernel.

The rest of the paper is organized as follows: Section 2 explains the moti-
vation behind extending g++, as compared to other possible approaches. The

1662 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Extending PL to Support OO in Legacy Systems

design and implementation of the g++ extension are presented in Section 3.
Section 4 describes the usefulness of the proposed approach using Linux ker-
nel as a case study and also presents a performance study of the same. In Sec-
tion 5, we explain how the runtime support for global constructors and volatile
typecasting was included in the Linux kernel. The concluding remarks with fu-
ture working directions are presented in Section 6.

2. Motivation

The first motivation of extending g++ was the absence of support for DI in g++
compiler. It is not included in the latest C++ standard [4] that was developed in
2011. To the best of our knowledge, there have been no attempts in the litera-
ture to explore this area. In case of C++, the complex datatype widely used is
class and constructors are used to initialize objects. There was no need pre-
viously to statically initialize structure variables because of this, and hence the
need for supporting DI was not felt in C++. However, with Linux kernel, we
need some structure variables to be initialized at compile time since their ini-
tial state is required for system booting. The constructors are ill-suited in this
case as they are called only after basic system initialization is complete. Sec-
ondly, many systems are implemented with both C and C++ like MySQL[10]
and Windows kernel[9]. The primary reason behind this is that C++ provides
higher abstractions in form of objects and many other useful features such as
inheritance, polymorphism, templates, etc. If g++ could compile DI, the efforts
in the development of these system can be significantly reduced. Thus, the
primary objective is to make g++ recognize DI. We explain different possible
approaches to tackle this issue. We motivate the need of extending g++ as a
solution by comparing them with those solutions.

2.1. List Initialization

C++ standard supports list initialization of structure variables. The list method
allows assigning values to all members of a structure in the exact order in which
they are defined in the structure. Hence one approach is to replace labeled DI
with list method using an automatic process such as scripting. However, con-
verting labeled DI to list construct has two major issues. Firstly, the uninitialized
members of the structure should be assigned their default values. Thus the
script performing the replacement has to infer the datatypes of the member
variables and their default values. Secondly, the values of members to be ini-
tialized have to be ordered. This becomes difficult especially when there is a
nesting of DI (i.e. a member of a structure is also a structure and is initialized
using the DI) and the nested element is initialized with a macro.

Apart from the labeled DI for structures, indexed and ranged initialzers are
also required to be replaced by the list method. The list method is ill-suited if
the array is very large and uses indexed or ranged methods.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1663

Hemang Mehta et al.

2.2. Constructor for Structures

Another way to make g++ compatible with DI is to replace usages of DI with
constructors for structures. However, this method adds another function call at
runtime for initialization of structure members adding to overhead. If these vari-
ables are in global scope, then there are two issues. The first is that static (com-
pile time) initialization is not possible, which is a requirement in case of Linux
kernel. This is because when the system boots, some global system variables
should be initialized before global and static constructors are called. Moreover,
the order among global constructors can not be guaranteed. This means that
if an uninitialized global structure variable is being used in another initializa-
tion, it may lead to system crash. Finally, this method is not suitable for array
initialization and hence the issues of ranged and indexed initializations remain
unresolved.

2.3. Extending g++

We examined two different approaches other than extending the C++ compiler.
We found that both the approaches are difficult in implementation as well as in
verification of their correctness. This is because large systems like Linux kernel
have various ways in which DI are used and it is a cumbersome process to
examine all of them. An example of one such usage of DI in Linux kernel is
shown in Figure 1.

Fig. 1. A precompiled code snippet from kernel/sched.c, the scheduler of
Linux kernel. It shows nesting of labeled(load balancer) and ranged initial-
izer(cpu mask) with labeled initializer(nohz).

The automation used for one software may not work for other softwares as
the use cases may be different for them. In this way, changing the C++ com-
piler is a practical and easy solution to the problem. The proposed extension of
g++ allows out-of-order and selective initialization of members. It also facilitates
static and global initialization as it is done by gcc for any C based system. In
addition, it is independent of the target software and does not involve any ef-
fort on the developer’s part to apply any script or perform any kind of manual

1664 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Extending PL to Support OO in Legacy Systems

modification. Finally, as will be explained in Section 3, it is relatively simple and
involves changing only 3 files of g++ source code.

3. Design and Implementation

This section explains the design and implementation of the extension to sup-
port designated initializers in C++ compiler. We have designed the extension
with g++ version 4.4.5 as the base compiler. The proposed design primarily in-
volves recognizing DI and performing corresponding semantic actions. Though
this process spans across only 3 files, identifying the places to modify required
careful analysis of the compiler code. The files to be modified for the implemen-
tation of the design include parser.c, decl.c and typeck2.c. They are
part of the g++ branch of gcc compiler source tree(gcc/cp/). Each file repre-
sents a phase which the code being compiled passes through. In this section
we explain the extended functionality of each phase to recognize all 3 DI types.

Fig. 2. The g++ extension design to recognize labeled, indexed and ranged
lnitializer involving parser, declarator and type-checker.

Parser: Since C++ standard does not include DI, the original parser throws
syntax error when it encounters out of order labeled initializer. In order to sup-
port the same, we have added grammar rules in g++ parser. These rules rec-
ognize the signature patterns of DI and store initializer (values) and identifiers
(member variables) in a list. This list is known as unprocessed vector, which is
a fixed size array. The outcome of this process is shown in column 1 of Figure

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1665

Hemang Mehta et al.

2 (corresponding to the first phase). The parser passes the vector to declarator
of g++.

Declarator: We have modified the declarator to process the unprocessed
vector provided by the parser based on the type of initializer. The declarator
validates the vector by checking if any identifiers are left uninitialized. It creates
entries for uninitialized identifiers in the vector and marks them as ‘erroneous’
(See Figure 2, column 2). The partially processed vector is then passed on to
the type checker.

Type-checker: The type checker has been refactored to consume the vector
passed by the declarator and to perform final processing on the same. It infers
the type of the identifiers of the erroneous entries for structures. It assigns de-
fault values to such identifiers with the assistance of back-end of the g++ com-
piler. The basic datatypes like numbers are assigned 0, pointers are assigned
NULL, characters are assigned ‘\0’ and boolean identifiers are assigned 0-bit.
On the other hand, derived datatypes are broken into basic datatypes based on
their members and the same procedure is followed.

For array (indexed and ranged) initializers, type-checker scans the initializa-
tion list till the end when explicit size is not provided. Then it allocates memory
of the size according to the maximum index specified in the initialization. All
erroneous entries are filled with 0. This accomplishes the processing of vector
and the values are copied to the actual structure / array members as shown in
the last phase of Figure 2.

4. Evaluation

The evaluation of the proposed g++ extension is divided into two parts. The first
part explains how the extension reduces manual efforts by using Linux kernel
as a case study. The second part presents the comparison of both original and
extended compiler by measuring their performances.

4.1. Case Study: Linux Kernel

We explain the evaluation of the proposed extension to g++ in this section using
Linux kernel as a case study. Linux kernel is a large software written in C, which
makes extensive use of DI to initialize its global variables. We measure the
increased productivity and ease of porting Linux kernel to C++ by counting the
number of occurrences of DI in different subsystems.

We have extended gcc version 4.4.5 to count the number of DI instances
everytime it encounters one. Table 1 shows the counter values calculated after
the compilation of Linux kernel 2.6.23 with the modified compiler.

The experiment shows that more than 5600 variables are initialized using
DI in core kernel and other subsystems of the Linux kernel. This result shows
that making manual modifications is not a feasible solution. We have already
seen how complex the usage of DI in the kernel can be, which renders scripting
ineffective as an option. On the other hand, our extension only modifies 238

1666 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Extending PL to Support OO in Legacy Systems

Table 1. Number of instances of designated initializers of different types in Linux
kernel 2.6.23 as counted by the g++ extension (Core includes management of
processes, timers, scheduling, etc.)

Kernel Subsystems Labeled Indexed Ranged Total
Core 750 30 109 889
Memory 165 1 2 168
Network 1415 0 225 1640
File System 509 0 41 550
Architecture 300 16 90 406
Device Drivers 1818 7 124 1949

lines (including addition, removal and modification) of the compiler source code.
Thus, our exploration in modifying g++ is justified by the results.

4.2. Performance Study

Performance is one of the key concerns when a system such as compiler is
refactored. In order to discover the overhead that results from the proposed
extension of g++, we compared building times for 3 different systems; Linux
kernel, Apache HTTPD (Web) server and PostgreSQL database. Our objective
here was to ensure that performance is not sacrificed in order to gain more func-
tionality. Additionally, this experiment verifies how the new compiler compares
with the original one while compiling other systems than the Linux kernel.

The base system for the experiments consisted of Intel Core i7 quad core
CPU at 2.4 GHz, 6GB RAM and Fedora 13 operating system. gcc compiler
version 4.4.5 was used as original compiler and the same version was modified
as explained earlier in the paper. The Linux kernel version was 2.6.23 while
the versions of PostgreSQL and HTTPD were 9.2.4 and 2.4.6 respectively. The
compilation times for building these systems were obtained using time utility
of Linux to the precision of millisecond.

Table 2. Comparison of building (compilation) times (in seconds) for Linux ker-
nel, Apache HTTPD server and PostgreSQL database

System Name Extended Compiler Orignial Compiler
Linux Kernel 774.060 774.039
Apache HTTPD 75.938 75.940
PostgreSQL 211.381 211.384

Table 2 summerizes the results of the experiment carried out for compar-
ing the performance of both versions of compiler. It is evident that Linux kernel
is the largest among all systems that were tested, as it takes longest to build.
The extended compiler takes slightly longer time for Linux kernel than the orig-
inal one since it has numerous instances of nontrivial designated initializers.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1667

Hemang Mehta et al.

However, the overhead in this case is in order of milliseconds, which is a very
small fraction of the total time taken for compiling the kernel and hence can be
considered to be reasonable.

On the other hand, HTTPD and PostgreSQL are compiled in almost the
same time by both the compiler versions. Again, the reason being the absence
of nontrivial designated initializers. Thus, it can be observed that the modifica-
tions in the compiler do not have any adverse effect on the compilation of the
software that does not utilize nontrivial designated initializers heavily.

5. Runtime Support for g++ in Linux Kernel

The Linux kernel needs built-in library support for basic operations since it is
the only code in execution during the bootstrap of the system and it can not use
any runtime linking for library functions. Hence certain C library functions and
runtime have been included in Linux source tree at lib/ directory. In order to
include runtime support for g++, we added the necessary files from g++ source
to this location. This section explains the issues that arose during this process
and how they were addressed.

5.1. Volatile Typecasting of Complex Types for C++

Background: In some cases, certain compiler optimizations are a hindrance to
the functional objective of the program. Usage of memory mapped I/O in Linux
kernel is one such instance. In memory mapped I/O, an I/O device is mapped
to a memory location. Accessing that location results in read/write operation
on that device. However, compiler optimizes that location to be accessed from
cache memory only and the operation does not happen on the device.

Problem: In order to stop compiler from optimizing operations on certain
variables (memory locations), they are typecast as volatile in C. Linux kernel
uses this mechanism very often. It uses ACCESS ONCEmacro to accomplish this
task. Following is the definition of ACCESS ONCE macro.

#define ACCESS_ONCE(x) (*(volatile typeof(x)*)&(x))

This definition works well in C compiler for complex datatypes such as struc-
tures. However, this definition only works for basic datatypes in g++.

Solution: We have extended this definition to make it compatible with g++
using runtime type inference (RTTI) and reinterpret casting. Basically the cen-
tral idea of the solution is as follows:
1. Infer the type of data at runtime using typeid construct of g++.
2. If the datatype is basic, the C style definition should be used.
3. In case the datatype is complex, reinterpret casting should be used.

The reinterpret cast, as defined by the C++ standard [4], allows casting of a
pointer to any other (including unrelated) type. Additionally it ensures that if the
pointer is cast back to the original type, its value is preserved. This is achieved

1668 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Extending PL to Support OO in Legacy Systems

by reinterpreting the bit pattern of the value to the target type. Thus, when used
with volatile, reinterpret cast treats the variable as volatile, and directs
the compiler not to apply any cache optimization on the variable.

The definition of ACCESS ONCE macro, according to the proposed solution,
is shown below:

#ifdef __cplusplus /*g++ compiler*/
#include <iostream>
#include <typeinfo>
using namespace std;
#define ACCESS_ONCE(x) \

(typeid(x).name()[0] == ’P’ || \
typeid(x).name()[0] == ’1’ || \
typeid(x).name()[0] == ’2’) \

? reinterpret_cast<volatile typeof(x) &>(x) \
: (*(volatile typeof(x)*)&(x))

#else /*C compiler*/
#define ACCESS_ONCE(x) (*(volatile typeof(x)*)&(x))
#endif

In this definition, typeid() and typeof() are RTTI constructs, which ex-
plains the necessity of runtime support for C++ in Linux kernel. It returns ‘P’,
‘1’ or ‘2’ in case of pointers, structures and classes respectively, implying that
the identifier is of complex type and reinterpret cast should be used to make it
volatile.

5.2. Global Constructors

Background: The constructors for global and static objects are usually called
by a special function named do global ctors aux (void), which is in-
serted by g++ compiler in the linked object file. It is called before the main()
function and thus before any possible usage of the global/static objects. Sim-
ilarly, destructors are called after main() using a special function which is
inserted by g++ compiler. In order to achieve this, a compiled object file is
linked with crtbegin.o and crtend.o files. These pre-generated files are
used by g++ to traverse through the given file to find global and static objects.
For each such object its constructor and destructor are placed in the lists of
global constructors and destructors respectively. The starting and ending of
each list is denoted by g++ compiler variables CTOR LIST and CTOR END
in case of constructors; and DTOR LIST, DTOR END in case of destructors.
do global ctors aux function traverses the constructor list in downward

fashion, i.e. from CTOR END to CTOR LIST.

Problem: For normal application programs, this is handled by g++ and the
linker automatically. However, for Linux kernel, we have to provide this run-
time support. Hence we had to add that support in Linux kernel by adding

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1669

Hemang Mehta et al.

Fig. 3. The memory layout of vmlinux kernel image depicting boundary crossing
of .ctors section and its solution

crtstuff.c file and libstdc++ directory from source of g++. We also made
suitable changes in the kernels makefiles at different levels, so that a C++ file
can be compiled with g++ compiler. However, in the existing g++ files for that
support, while traversing through constructor list, the initial boundary (CTOR LIST)
was getting missed. This led to function do global ctors aux getting into
the previous section of constructors. This resulted in execution of non-executable
data and subsequently crashing of kernel.

Solution: Figure 3 shows the layout of vmlinux, the kernel image in the
memory. It is an elf image that is made of different sections. We have added a
new boundary for CTOR LIST, the beginning of the constructor section which
do global ctors aux function checks when it iterates through the list. We

have added this symbol as a kernel image (vmlinux) symbol, which g++ com-
piler can access in do global ctors aux function. The actual definition of
the symbol is as follows:

#ifdef CONFIG_CONSTRUCTORS
#define KERNEL_CTORS() . = ALIGN(8); \

VMLINUX_SYMBOL(__ctors_start) = .; \

*(.ctors) \

1670 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Extending PL to Support OO in Legacy Systems

VMLINUX_SYMBOL(__ctors_end) = .;
#else
#define KERNEL_CTORS() VMLINUX_SYMBOL(__ctors_start) = .; \

*(.ctors) \
VMLINUX_SYMBOL(__ctors_end) = .;

#endif

6. Conclusions and Future Work

This paper presented how object orientation can be supported in a large scale
system such as Linux kernel by extending g++ compiler. As a part of compile-
time support, a g++ extension for nontrivial designated initializers(DI) for struc-
tures and arrays was added. It handles usage of ranged, indexed, labeled and
nesting of all types of DI in an application transparently. Furthermore, the pa-
per showed how global constructors and volatile typecasting in C++ can be
supported in Linux kernel. Finally the experiments proved that the proposed
approach saves a lot of manual efforts with a very reasonable overhead.

We envisage that an automated tool for converting legacy systems written in
C into C++ can be well appreciated by the software engineering community. At
present, the proposed approach has limited features and there are still many
incompatibilities between C and C++ that require addressing. In future, this
tool can be made more enhanced and sophisticated by integrating the modified
compiler with scripting support to tackle these issues. This tool can be used to
cater to specific issues of other legacy systems, as opposed to just Linux kernel.
At a later stage, this work can be extended to raise abstractions from objects to
services in legacy systems. The services are more abstract than procedures or
objects and hence are independent of the language they are implemented in,
which can make maintenance of the legacy systems easier.

Acknowledgments. The authors acknowledge Prateek Dhawaalia, IIT Madras for his
inputs in implementation of the g++ extension. The authors also thank DIT, Government
of India for financially supporting this work.

References

1. ISO/IEC 9899:1990 - Programming languages - C (1989), http://www.iso.
org/iso/catalogue_detail.htm?csnumber=17782

2. ISO/IEC 9899 - Programming languages - C (1999), http://www.open-std.
org/jtc1/sc22/wg14/www/standards.html#9899

3. ISO/IEC 14882:1998 - Programming languages – C++ (2005), http://www.iso.
org/iso/catalogue_detail.htm?csnumber=25845

4. ISO/IEC 14882:1998 - Programming languages – C++ (2011), http://www.iso.
org/iso/catalogue_detail.htm?csnumber=50372

5. Beck, M., Bohme, H., Kunitz, U., Magnus, R., Dziadzka, M., Verworner, D.: Linux
kernel internals. Addison-Wesley Longman Publishing Co., Inc. (1996)

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1671

http://www.iso.org/iso/catalogue_detail.htm?csnumber=17782
http://www.iso.org/iso/catalogue_detail.htm?csnumber=17782
http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899
http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899
http://www.iso.org/iso/catalogue_detail.htm?csnumber=25845
http://www.iso.org/iso/catalogue_detail.htm?csnumber=25845
http://www.iso.org/iso/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/catalogue_detail.htm?csnumber=50372

Hemang Mehta et al.

6. Douglas, K.: PostgreSQL. Sams (2005)
7. Fielding, R., Kaiser, G.: The apache http server project. Internet Computing, IEEE

1(4), 88–90 (1997)
8. Janakiram, D., Gunnam, A., Suneetha, N., Rajani, V., Reddy, K.V.K.: Object-oriented

wrappers for the Linux kernel. Software Practice & Experience 38(13), 1411–1427
(2008)

9. Solomon, D.A., Custer, H.: Inside Windows NT. Microsoft Press, Redmond, WA,
USA, 2nd edn. (1998)

10. Widenius, M., Axmark, D.: MySQL reference manual: documentation from the
source. O’Reilly Media, Inc. (2002)

11. Yu, L., Schach, S.R., Chen, K., Heller, G.Z., Offutt, J.: Maintainability of the kernels
of open-source operating systems: A comparison of Linux with FreeBSD, NetBSD,
and OpenBSD. Journal of Systems and Software 79(6), 807–815 (2006)

12. Yu, L., Schach, S.R., Chen, K., Offutt, J.: Categorization of common coupling and
its application to the maintainability of the Linux kernel. IEEE Transactions Software
Engineering 30, 694–706 (October 2004)

Hemang Mehta is an MS research scholar at Department of Computer Science
and Engineering, Indian Institute of Technology Madras, India. His research in-
terests include design of operating systems, distributed systems and compilers.
Specifically, his work focuses on applying principles of service oriented comput-
ing to improve the design of operating systems.

S J Balaji is an MS student of Computer Science and Engineering at Indian
Institute of Technology Madras. He received a BE degree in Electronics and
Telecommunication Engineering from Mumbai University in 2010. His research
interests are operating systems design, distributed systems, cloud-based sys-
tems, energy aware system designs and manycore operating systems.

Dharanipragada Janakiram is currently a professor in the Department of Com-
puter Science and Engineering, Indian Institute of Technology (IIT) Madras, In-
dia, where he heads and coordinates the research activities of the Distributed
and Object Systems Lab. He obtained his Ph.D from IIT, Delhi. His current re-
search involves building large scale distributed systems focusing on design pat-
tern based techniques, measurements, peer-peer middleware based grid sys-
tems, cloud bursting, etc. He is currently an associate editor of IEEE Transac-
tions on Cloud Computing, the SIG Chair of Distributed Computing of Computer
Society of India, Chair of ACM Chennai Chapter and is also the founder of the
Forum for Promotion of Object Technology in India.

Received: January 15, 2013; Accepted: August 20, 2013.

1672 ComSIS Vol. 10, No. 4, Special Issue, October 2013

DOI: 10.2298/CSIS130120071K

Context Parsing (Not Only) of the
Object-File-Format Description Language

Jakub Křoustek and Dušan Kolář

Faculty of Information Technology, IT4Innovations Centre of Excellence
Brno University of Technology, Božetěchova 1/2, 612 66 Brno, Czech Republic

{ikroustek,kolar}@fit.vutbr.cz

Abstract. The very first step of each tool such as linker, disassembler, or
debugger is parsing of an input executable or object file. These files are
stored in one of the existing object file formats (OFF). Retargetable tools
are not limited to any particular target platform and they have to deal with
handling of several OFFs. Handling of these formats is similar to parsing
of computer languages — both of them have a predefined structure and a
list of allowed constructions. However, OFF constructions are heavily mu-
tually interconnected and they create context-sensitive units. In present,
there is no generic system, which can be used for OFF description and its
effective parsing.
In this paper, we propose a formal language that can be used for OFF
description. Furthermore, we present a design of a context parser of this
language that is based on the formal models. The major advance of this
solution is an ability to describe context-sensitive properties on the level
of the language itself. This concept is planned to be used in the exist-
ing retargetable decompiler developed within the Lissom project. In this
project, the language and its parser will be used for an object file parsing
and its automatic conversion into the internal uniform file format. It is im-
portant to say that the concept of this parser can be utilized within other
programming languages.

Keywords: object file format, context parsing, scattered context grammar,
priority function, attributed grammar, decompilation, Lissom, ELF

1. Introduction

Reverse compiler (i.e. decompiler) is yet another tool that takes executable files
on its input. Its purpose is to translate this input into a high level language (HLL)
representation, such as a C code. This tool can be used for source code recon-
struction, binary code migration, malware analysis, etc. Retargetable decompi-
lation is a more difficult task because it must handle all the platform, operating
system, and programming language specific features.

Platform-specific decompilation is a well-described discipline, e.g. see [5,7,40].
On the other hand, retargetable (i.e. platform-independent) decompilation is still
a quite unexplored area, despite the first attempts done decades ago. However,
several steps of retargetable decompilation have been already done, such as

Jakub Křoustek and Dušan Kolář

uniform extraction of instruction semantics, machine-code decoding, reverse
compilation into HLL, etc. See [43,44] for details.

However, there is still one non-covered phase of retargetable decompila-
tion — the handling and conversion of platform-dependent object file formats
(OFFs). This is the preliminary step of decompilation. Within this step, an in-
put file is being analyzed, validated, and converted into the internal, uniform
representation. This conversion transforms all the necessary information (e.g.
machine code, data, symbols) into the internal structures. It might be possible
to use one of the existing single-purpose converters or write a new one from a
scratch. However, none of these is a truly generic solution.

This problem can be divided into two tasks. (1) Description of a target OFF
using a specific description language. (2) Automatic generation of an OFF con-
verter based on this description. Afterwards, the converter can be used for con-
version of applications stored in a particular OFF into an internal code repre-
sentation used by a decompiler.

Structure of most OFF is relatively complicated (e.g. Windows PE, UNIX
ELF) because its elements are mutually interconnected and the structure is
heavily influenced by content of these elements. We can say that these ele-
ments create a context-sensitive behavior. This is a problem for design of such
OFF description language because the theory of computer-language compila-
tion settled down on the concept of context-free parsing for most of the existing
languages during the last sixty years.

Within the context-free parsing concept, syntax of programs is usually pro-
cessed using automatically generated context-free parsers. Parser generators
like YACC, Bison, or ANTLR are able to create a skeleton of target language-
specific parser. However, this skeleton has to be enriched of hand-written HLL
code implementing semantics checking (so called semantic actions). This con-
cept is prone to errors and each change of the target language needs reimple-
mentation of the parser (at least its semantic actions).

In this paper, we present a new formal language for the description of OFFs
that is capable to describe context-sensitive elements. We propose a context
parser of this language that is based on the newly created formal models (at-
tributed scattered context grammar with priority function, etc.).

The concept is planned to be used in the existing retargetable decompiler
developed within the Lissom project [23]. In this project, the OFF language
is used for object-file handling and its automatic conversion into the internal
Common-Object-File-Format (COFF)-based file format, which is processed by
the decompiler afterwards, see [45] for details. Moreover, the language is de-
signed to be general enough for usage in other retargetable tools (e.g. loaders,
disassemblers, debuggers) and the context parser can be used for parsing of
different programming languages, not just OFF description language.

The paper is organized as follows. Section 2 introduces some preliminaries.
Section 3 briefly characterizes common OFFs. Then, we discuss existing con-
version techniques and applications in Section 4. The Lissom project is briefly
described in Section 5. Our language for OFF description is presented together

1674 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Context Parsing (Not Only) of the Object-File-Format Description Language

with an example of its usage in the subsequent Section 6. Within this section,
we also depict several context-sensitive features of this language. In Section 7,
we present a concept of the context parser as well as the definition of the new
formal models that the parser is based on. We also give a short overview on the
current state of the parser’s implementation together with experimental results
within the same section. Finally, discussion of future research closes the paper
in Section 8.

2. Preliminaries and Definitions

We assume a reader is familiar with the formal language theory (for further
reference, see for example [26]).

Definition 1. A phrase-structure grammar is a quadruple

G = (V, T, P, S),

where

– V is a total alphabet ;
– T ⊂ V is a finite set of terminal symbols (terminals);
– S ∈ V − T is the start symbol of G;
– P is a finite set of productions p = x→ y, x ∈ V ∗(V − T)V ∗, y ∈ V ∗.

The symbols in V −T are referred to as nonterminal symbols (nonterminals).
We set lhs(p) = x and rhs(p) = y, which represents the left-hand side and the
right-hand side of the production p, respectively.

Definition 2. A context-sensitive grammar (CSG) is a phrase-structure gram-
mar

G = (V, T, P, S),

such that every production p = x→ y ∈ P satisfies |x| ≤ |y|.

Definition 3. A context-free grammar (CFG) is a phrase-structure grammar

G = (V, T, P, S),

such that every production p = x→ y ∈ P satisfies A→ x, where A ∈ V −T
and x ∈ V ∗.

Definition 4. A scattered context grammar (SCG, see [11]) is a quadruple,

G = (V, T, P, S),

where

– V is a total alphabet;
– T ⊂ V is a finite set of terminals;

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1675

Jakub Křoustek and Dušan Kolář

– S ∈ V − T is the start symbol;
– P is a finite set of productions of the form

(A1, . . . , An) → (x1, . . . , xn),

where Ai ∈ V − T , xi ∈ V ∗ for all i : 1 ≤ i ≤ n.

Definition 5. A propagating scattered context grammar (PSCG) is a SCG

G = (V, T, P, S),

in which every (A1, . . . , An) → (x1, . . . , xn) ∈ P satisfies xi ∈ V + for all
i : 1 ≤ i ≤ n.

Definition 6. Let G = (V, T, P, S) be a (propagating) SCG. If

y = u1A1u2 . . . unAnun+1,
z = u1x1u2 . . . unxnun+1,

and y, z ∈ V ∗, p = (A1, . . . , An) → (x1, . . . , xn) ∈ P , then y directly derives
z in the SCG G according to the production p,

y ⇒G z [p] (or simply y ⇒G z).

Let ⇒+
G and ⇒∗

G denote the transitive and the reflexive-transitive closure of
⇒G, respectively. To express that G makes the derivation from u to v by using
the sequence of productions p1, p2, . . . , pn ∈ P , we write u ⇒∗

G v [p1p2 . . . pn]
(or u ⇒+

G v [p1p2 . . . pn] to emphasize that the sequence is non-empty). We
abbreviate ⇒G to ⇒ when it is clear which grammar we are referring to. This
definition also holds for other SCG-based grammars listed below.

Now we are able to define scattered context grammars regulated by priority
functions, see [21] for details of their properties.

Definition 7. A (propagating) scattered context grammar with priority, abbrevi-
ated as ((P)SCGP), is a quintuple

G = (V, T, P, S, π),

where (V, T, P, S) is a (propagating) scattered context grammar and π is a
priority function

π : P → N.

Definition 8. Let G = (V, T, P, S, π) be a (P)SCGP. We say that y directly
derives z in (P)SCG G according to the production p, y ⇒G z [p] (or simply
y ⇒G z), if and only if:

– y = u1A1u2 . . . un Anun+1 ∈ V ∗,
– z = u1x1u2 . . . unxnun+1 ∈ V ∗,
– p = (A1, . . . , An) → (x1, . . . , xn) ∈ P , and

1676 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Context Parsing (Not Only) of the Object-File-Format Description Language

– there is no p′ = (A′
1, . . . , A

′
n) → (x′1, . . . , x

′
n) ∈ P , such that:

1. y = u′1A
′
1u

′
2 . . . u

′
nA

′
nu

′
n+1 ∈ V ∗, and

2. π(p′) > π(p).

Definition 9. A (propagating) scattered context language with priority is lan-
guage generated by a (propagating) scattered context grammar with priority.
The family of (propagating) scattered context languages with priority is denoted
by L((P)SCP). In [21], it has been proved that

L(CS) = L(PSCP) ⊂ L(RE) = L(SCP),

where RE stands for the set of all recursively enumerable languages.

3. Object File Formats

The term object file format refers to a format of an executable code, library
code, or object code that has not been linked yet. In the following text, we focus
mainly on the executable code. A generic OFF usually consists of the following
parts [22]:

– Header – contains essential information about the file (e.g. its identification,
size, section pointers);

– Object code – i.e. sections containing machine code and application data;
– Relocations – “Relocation is the process of assigning load addresses to the

various parts of the program, adjusting the code and data in the program to
reflect the assigned addresses” [22]. We can find a wide range of relocation
types for each target architecture. Some relocations can be resolved during
compilation by linker; while the other ones has to be resolved by loader
before program’s execution;

– Symbols – symbols are usually stored in tables and they characterize its
local, imported, and exported symbols (variables, functions, etc.);

– Debugging information – generated by compilers for debug support. There
exist several debugging information standards [20]. The presence of the
debugging information is optional.

Unfortunately, there is no such generic format and each platform (i.e. a com-
bination of an operating system and a processor architecture) has its own for-
mat, or a derivative of an existing one. In present, we can find two major OFFs
— UNIX ELF [39] and Windows PE [29], see Fig. 1. However, other formats
are on arise (e.g. Apple Mach-O), see [19]. In the Lissom project [23], a COFF-
based file format is used for internal code representation. The overview of other
common formats can be found in [19].

The UNIX ELF [39] file format is a standard on all UNIX-like systems. It is
independent on a particular target architecture (e.g. Intel IA-32, SPARC, ARM).
The leading part of the ELF file is a header with all the essential information. It
also points to the program and section header tables. These tables contain in-
formation about particular segments and sections, respectively (e.g. their sizes,

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1677

Jakub Křoustek and Dušan Kolář

offsets within the file). Each section can store different content (e.g. code, data,
symbol, hash tables); furthermore, one or more sections may form a segment.

From the linker point of view, an ELF file consists of a group of sections
defined in a section-header table. Contrariwise, loader handles the ELF file as a
group of segments defined in a program-header table, see 1. The very important
characteristic of this format is its flexibility. Only the header has a fixed offset
within the file, all other elements are optional, as well as their offsets within the
file. Therefore, all elements are scattered throughout the file, and the size or
content of padding is unspecified.

Fig. 1. ELF (on left) and Windows PE (on right) file formats.

The Microsoft’s Windows Portable Executable (WinPE) [29] format also
supports all the three file types — object files, executables, and libraries. Win-
dows PE can be used on all Windows-based systems on architectures Intel
IA-32, IA-64, x86-64, ARM, and others. The structure of the PE format is based
on the COFF format [10]. It consists of a number of headers and sections that
tell the loader how to map the file into memory. Each section has its own header
and often a specific purpose, for illustration see 1. For example, the .text sec-
tion holds the program code; .data sections hold global variables, .edata
and .idata sections contain exported and imported symbols, etc.

The E32Image format is used on the Symbian operation systems, usually
used in smartphones [31]. It was developed by Symbian Ltd., which currently
belongs to Nokia. E32Image is used only on the ARM architecture.

E32Image is a proprietary format, and its specification has never been pub-
licly published; therefore, all the necessary information was gathered using re-
verse engineering. This format was originally based on Windows PE, but since
Symbian version 9.1 (in 2005), its authors switched to an ELF-like format. The

1678 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Context Parsing (Not Only) of the Object-File-Format Description Language

E32Image file is created from an existing executable PE or ELF file by a special
post-linker. The main idea of this format is to provide basic file format structure
with low-memory overhead. The differences over the mentioned formats include
that the same type sections are merged and might be compressed, information
about the target architecture (e.g. word size) is not explicitly encoded, and that
unnecessary strings (e.g. symbol names) might be removed.

The Mach-O object file format [3] is used in operation systems Darwin,
NeXTSTEP, Mac OS X, or iOS from Apple Inc. It is made up of three parts
— Mach-O header, followed by a series of load commands, and one or more
segments, each of them containing up to 255 sections. Mach-O supports Intel
IA-32, x86-64, PowerPC, and PowerPC64 as the target architectures.

A special feature of this format is its support of multi-architecture binaries,
where multiple Mach-O files can be combined in a single multi-architecture file.
Such binary file contains code for multiple instruction set architectures.

4. Related Work

We can find several projects focused on parsing and binary conversion of OFFs.
They are used mostly in reverse engineering or for code migration between
particular platforms. The largest group consists of hand-coded tools that are
focused on binary conversion between two particular OFFs.

A typical example is the Macintosh Application Environment project [2], which
supports execution of native Apple Macintosh applications on UNIX based work-
stations. AT&T’s FreePort Express [6] is another binary translator, which permits
conversion of SunOS and Solaris executables into Digital UNIX executables.
Wabi allows conversion of executables from Windows 3.x to Solaris [12].

Another important project is the Binary File Descriptor library (BFD) [4]. BFD
was developed by the Cygnus Support company, and currently forms a part of
the GNU Binutils package. It supports unified, canonical format for manipula-
tion tens of OFFs (e.g. ELF, PE, COFF). BFD is used as a front-end of many
existing projects, however, it is not a retargetable solution because support of
each new OFF must be hand-coded. Furthermore, due to BFD’s complexity, the
interconnection of the target application and BFD is often difficult. Details about
a successful BFD-based solution can be found in [19].

The last group of projects uses their own grammar-based systems for a for-
mal description of binary formats. The architecture description language (ADL)
SLED [32], developed within the New Jersey Machine Code Toolkit [33], is sup-
posed to describe the instruction sets of target processor architectures, i.e. syn-
tax and binary encoding of each instruction. Such description can be used for
the automatic generation of retargetable linker [9], debugger [34], or other tools.
However, this language does not support description of OFFs. We can find the
same limitation in all common ADLs, see [25] for more details.

We can find two formalisms called BFF grammar (Binary File Format Gram-
mar). The first one (DWG BFF) [8] was originally designed for description of
non-executable file formats. More precisely, it was designed and tested only on

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1679

Jakub Křoustek and Dušan Kolář

the AutoCAD DWG format. This grammar is a state-of-the-art concept, which
has never been implemented, nor used in any tool. The grammar is limited to
the DWG format, but it can be be possibly used on other OFFs. Its author claims
(see [8]) that the grammar is in LL(1) form and it can be parsed by the recursive
descent approach.

The DWG BFF grammar inspired project UQBT [42] and its SRL BFF gram-
mar [41]. Despite the limitations of the original DWG BFF grammar, it was sim-
plified and used within this project for generation of the Simple Retargetable
Loader (SRL). Although, it is claimed that this concept can be used for au-
tomatic generation of other retargetable tools, the grammar constructions are
limited only for a simple loader. According to [41], the SRL was tested as an
ELF loader for existing decompiler dcc [5].

Both BFF grammars have several limitations. For example, they are un-
able to properly model optional elements of OFFs, such as the missing sec-
tion header table in ELF; relocation information is not taken into account, etc.
The most significant drawback of both grammars is the lack of semantic ac-
tions [1] (e.g. semantic checks, validation of OFF content, user-defined actions),
see Figure 2. Therefore, the grammars are only capable to describe syntactical
structure of the input OFFs, but modeling of context-sensitive properties is left
on the user.

DEFINITION FORMAT
header
program_header_table
sections
section_header_table

END FORMAT

DEFINITION header
h_ident SIZE 16
h_type SIZE 16
h_machine SIZE 16
h_version SIZE 32
...

END header

Fig. 2. Example of the BFF grammar description of the ELF format [42].

In conclusion, none of the previously mentioned concepts can be used for
effective handling of OFFs for retargetable decompilation.

1680 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Context Parsing (Not Only) of the Object-File-Format Description Language

5. Lissom Project’s Retargetable Decompiler

The Lissom project’s [23] retargetable decompiler aims to be independent on
any particular target architecture, operating system, or OFF. It consists of two
main parts—the preprocessing part and the decompilation core, see Figure 3.
Its detailed description can be found in [45,43]. The decompilation process con-
sists of the following phases.

target
architecture

 models

DECOMPILER

LOFF

B A C K - E N D

M I D D L E - E N D

F R O N T - E N D

G
E
N
E
R
A
T
O
R

MIPS

x86

ARM

...

input
application

C Python’ ...

Preprocessing

...ELF WinPE

additional
information

Fig. 3. The concept of the Lissom project’s retargetable decompiler.

(1) At first, the input binary executable file is transformed using a plugin-
based binary file converter from a particular OFF (e.g., Windows PE, ELF) into
its own internal object-file-format called LOFF (Lissom Object File Format) [16].
LOFF was designed in reference to independence on any particular architec-
ture, universality, and to be well readable. Therefore, it is possible to describe
architectures with different types of endianity, byte sizes, instruction lengths, or
instruction alignments. It is also possible to store executable, object, or library
code within the LOFF format.

The LOFF structure is similar to the COFF format. Basically, it has one
header, followed by section headers, sections, and symbolic information (sym-
bols, relocations, and debug information). The section’s content is characterized
by section flags. The format of LOFF is textual; therefore, it is possible to study
its content without any additional tools, see Figure 4. LOFF is used by a com-
plete set of retargetable tools that are automatically generated in this project
(e.g. retargetable disassembler, simulator, and decompiler).

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1681

Jakub Křoustek and Dušan Kolář

AgT62kG9y7 // Magic string
32 // Word bit-size
4 // Bytes per word
0 // Byte order, 0-little, 1-big
X // Flags (eXecutable, etc.)
1 // Is the entry point set?
143654972 // Byte address of the entry point
30 // Section count
1 // Symbol table count
... // Information about sections
.text // Section header name
0 // Section byte alignment
1 // Is address absolute?
143654972 // Section address
T // Section flags (Text, Data, BSS, etc.)
10536 // Section data size in bytes
0 // Count of relocations
20 // First line of section data
0 // First line of relocation data

// Section data follows
00111111110000001111110000000101 // .text section data
00000000000000000000000000000000

Fig. 4. Simplified example of the LOFF format (several attributes are not listed).

In present, the conversion plugin from each supported OFF into LOFF is
hand written; thus, the converter is not truly retargetable yet. This is the reason
why we need a fully-automatic retargetable solution, such as presented in this
paper.

(2) Afterwards, the LOFF file is processed in the front-end part which is par-
tially automatically generated based on the description of target architecture
(e.g. MIPS, ARM, Intel x86). The architecture description language ISAC [25],
developed also within the Lissom project, is used for this purpose. This decom-
pilation phase is responsible for decoding of machine-code instructions, their
static analysis, and detection of HLL constructions (e.g. loops, functions). The
resulting code is emitted as LLVM IR [24], which is used as an internal code rep-
resentation of decompiled applications in the remaining decompilation phases.

(3) Afterwards, this program representation is optimized in a middle-end us-
ing many optimization passes.

(4) Finally, the program intermediate representation is emitted as the tar-
get HLL in a back-end. Currently, the C language and a Python-like language
are used for this purpose and the decompiler supports decompilation of MIPS,
ARM, and x86 executables. Both middle-end and back-end are built on the top
of the LLVM Compiler System [38].

1682 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Context Parsing (Not Only) of the Object-File-Format Description Language

6. Context-Sensitive Description of Object File Formats

In the previous section, we described the current state of the OFF conversion
tool used within the Lissom project. This plugin-based concept has been al-
ready implemented and it is used in practice. Its main drawback is the imple-
mentation complexity of each newly created plugin. Such plugin has to be writ-
ten manually either on the top of some existing library or written entirely from
scratch.

The complexity of existing parsing-libraries differs dramatically based on the
target file format and supported features of library, see Table 1. For example, the
BFD library supports multiple file formats (more than 50), but it contains more
than half million code lines and its maintenance and extensibility is question-
able. On the other hand, there exist lightweight libraries, like ELFIO, containing
only few thousand code lines, but they lack any advanced functionality, such as
processing of the parsed files.

Table 1. Complexity of several existing OFF parsing libraries.

Parsing library Lines of code (LoC)

Binary File Descriptor library (BFD) 615,856
PeLib 12,220
LibELF 10,930
pyelftools 10,582
ELFIO 3,068

The existing plugins used within the Lissom project have different complex-
ity too, see Table 2. The former three plugins in the table use the third party
libraries; therefore, they are relatively small. On the other hand, the E32Image
and Android DEX plugins are build from scratch and they are larger than the
others.

Table 2. Complexity of Lissom project OFF-conversion plugins.

Conversion plugin Lines of code (LoC)

WinPE 2,831
ELF 2,154
Mach-O 2,227
E32Image 9,419
Android DEX 10,582

According to our experience, the manual implementation of conversion plu-
gins is slow (in matter of implementation) and prone to errors. This approach

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1683

Jakub Křoustek and Dušan Kolář

is also complicated whenever implementing a non-common OFF (e.g. bFLT,
XCOFF, OMF) because there are no suitable existing parsing libraries.

In order to achieve a true decompilation retargetability, we should apply the
concept similar to one used for description of target processor architectures
and automatic generation of the front-end part. This can be done in two steps.
(1) Develop a specific language for OFF description. (2) Create an automatic
generator of OFF-handling tools (i.e. OFF parsing and conversion) based on
the description of the target OFF. Once this concept is adopted, the description
complexity of the new OFFs should significantly decrease (i.e. the user will
need to describe OFF using several hundred lines without using any external
libraries).

In the rest of this section, we introduce the OFF description language. This
language should be able to describe structure of each particular OFF as well as
its context-sensitive aspects. We specify this language by using a grammar de-
noting this language and we add its brief description. At the end of this section,
an example of ELF description is presented.

6.1. Grammar of the OFF Description Language

In programming language terminology, the grammars (see Section 2) are used
for describing syntax of programming languages. In other words, a grammar
creates a core of a programming-language parser. Such parser handles in-
put programs (written in this language) using the grammar productions (rules).
Parser can be used within compilers, verification software, or just for syntax
checking. Within the classical compilation concept (see [1]), grammar serves
only for description of syntax. The programming language semantics have to
be described manually (e.g. HLL code realizing analysis of parsed code, se-
mantic actions coupled with grammar productions).

In our case, we also use grammar to represent some kind of code — OFF
structure. Each particular grammar description specifies one OFF; using this
description, we are able to automatically generate the parser of this OFF. This
parser will be used as a core of OFF converter to LOFF format. Moreover, our
grammar is more advanced and it can also describe context-sensitive properties
as well as semantic actions on the level of the grammar itself (this is another
difference to existing OFF grammars described in Section 4 that are based on
classical context-free grammars as defined in Definition 3). Formal definition
and parsing of this grammar are described in the following section.

The language is designed for a description of the common OFFs (and hope-
fully the future ones, too). Executable or object file on parser’s input are viewed
as a binary stream. Its parsing is done via interconnected analyzers that invoke
each other whenever it is necessary. Analyzers are also able to seek to the de-
sired file offset within the stream. The language is not limited to any particular
OFF construction, and it is capable to describe optional or scattered parts of
the OFFs.

Modified Extended Backus-Naur Form (EBNF) is used for grammar’s syntax
description. Terminal symbols are typeset in boldface. Symbol ∼ is used for

1684 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Context Parsing (Not Only) of the Object-File-Format Description Language

concatenation. Sequences (i.e. zero or more repetitions) are denoted by {};
optional constructions (i.e. zero or one occurrence) are denoted by []; finally,
selections (i.e. a choice between more constructions) are denoted by |. The
grammar is depicted in Figure 5. For clarity, only the most important productions
are specified.

start -> root analyzer def { parser def } { production }
analyzer def -> analyzer id ([offset [, offset]]) { {

statement ; } }
statement -> element [{ semantic actions }]

-> analyzer id { [times] } [{ semantic actions }]
element -> type idattribute

-> type [value]
analyzer id -> idattribute ([offset [, offset]])
type -> (int | uint) ∼ bitwidth size { [array size] }
attribute -> [< id { , id }] >]
production -> (idattribute { , idattribute }) ->

([id’attribute] { , [id’attribute] }) [priority]

Fig. 5. Grammar of the OFF description language.

start is the start symbol of the grammar (see Definition 1). The keyword
root denotes the starting analyzer, which is executed at the beginning of pars-
ing. Each analyzer can be controlled by the begin and end offset. In that
case, analyzer executes its job from the beginning offset and it must finish anal-
ysis before the stop offset, otherwise it will end as a parsing error. Analyzers
read desired number of bits from an input stream, see Figure 6 for illustration.

The number of bits is specified by element with different sizes (specified by
type). Elements are continual sequences of bits in an input stream. The value
of an element can be skipped (i.e. so-called “don’t care” value), enforced (i.e.
analyzer ends with error if there is an unexpected value on input), or checked
by analyzer, see Figure 7.

Elements and analyzers may contain a list of attributes. Attributes con-
tain information about properties such as element’s value or type. They can be
used either in semantic actions (e.g. checking of element) or in context produc-
tions. In general, attributes are used for re-referencing previously parsed parts,
such as information from OFF header. This context behavior is not common in
classical programming language grammars. Therefore, it is possible to use both
synthesized and inherited attributes from previously parsed elements within the
semantic actions, see [1] for details.

Checking of elements is done either via semantic actions, which are
statements of the ANSI C code. Semantic actions can be used either for ele-
ment checking as well as for interaction with retargetable tools. In our case, they
are used mainly for direct LOFF generation. For illustration see Figure 8.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1685

Jakub Křoustek and Dušan Kolář

// Root (starting) parser of a particular file format XY
root analyzer XY_OFF_parser ()
{

/* It invokes an analyzer of file-header. The header
is located on the first 64 bytes. */

header_parser(0, 512);
// ...

}

// Parser of header - limited by offset range
analyzer header_parser (start_offset, end_offset)
{

// ...
}

// Parser not limited by any offset range
analyzer another_parser ()
{

// ...
}

Fig. 6. Example of analyzers definition.

analyzer header_parser (start_offset, end_offset)
{

uint8 ’X’; // Two magic bytes - enforced values
uint8 ’Y’;
int16; // Don‘t care value (e.g. OFF version)
// ...

}

Fig. 7. Example of statement types that are usable within analyzers.

Parsing can be also controlled via context productions; they are format-
ted as scattered context grammar productions (see Defintion 4); therefore, the
number of items within brackets must be the same on both sides (ε-rules are
allowed). The nonterminals idattribute stand for element or analyzer id
and they are rewritten according to the right-hand-side of those productions.
Attributes are also taken into account during derivation. Finally, it is possible to
describe priority of each production. A higher value means a higher priority.
This is handy whenever we need to perform some actions before any other pro-
duction (e.g. detecting a fault OFF structure as soon as possible). Details about
parsing of these productions are described in the following section.

Finally, analyzers are interconnected via the analyzer call statement.
Analyzer can be invoked multiple times using times, this is useful for descrip-

1686 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Context Parsing (Not Only) of the Object-File-Format Description Language

analyzer header_parser (start_offset, end_offset)
{

// ...
int16 architecture <value>
{

if (architecture.value != 1)
{ // Unsupported target architecture type

parse_error();
}
else
{ // C code producing a part of OFF conversion

converter->setArchitectureType(architecture.value);
}

};
// ...

}

Fig. 8. Usage of attributes and semantic actions within analyzers.

tion of repeating parts (e.g. table items). Analyzer invocation can also be done
within the semantic actions by a call to the function with analyzer’s name. There-
fore, it is possible to conditionally invoke different analyzers based-on an actual
context, see Figure 9.

root analyzer XY_OFF_parser ()
{

// Invocation with offset range
header_parser(0, 512);
// Invocation without offset range
another_parser();
// Invocation 10 times
another_parser() [10];
// ...

}

Fig. 9. Example of different types of analyzer call.

6.2. Example of Usage

We can illustrate usage of the previously defined language on the 32-bit ELF
format. A snippet of this description is depicted on Figure 10. The following
description is used for its conversion to the Lissom LOFF format. At first, the

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1687

Jakub Křoustek and Dušan Kolář

header is analyzed by invocation of elf header analyzer. This analyzer starts
at zero offset and analyzes all its elements and makes necessary checks.

It also converts basic information (e.g. entry point, endianness) to the LOFF
format. The value attribute is used in several elements for referencing from
other elements. At the end of the elf header analyzer, we can see condi-
tional invocation of section-header-table analyzer. It will be executed only if the
table is present. We can also see that the analyzer elf sht is invoked together
with specification of its beginning and ending offset gathered from previous at-
tributes. This corresponds to the structure depicted in Figure 1.

The last construction depicted on this example is a context production. It
controls that executable files do not contain static relocations (e.g. static reloca-
tion R 386 PC32). It is marked with priority higher than other productions; there-
fore, it will be checked at first. Whenever the preliminary part is satisfied (e.g.
executable file is not properly linked), it blocks parsing by nonterminal error,
which leads to parsing error.

7. Context Parsing

In this section, we present a concept of the context parser that can be used for
parsing the previously described OFF language. The major difference to other
existing languages is its support of describing context-sensitive relations. How-
ever, parsing of these constructions is non-trivial because there is no suitable
formalism capable of describing such grammar in present.

The idea of context parser is not entirely new and we can find several at-
tempts to create a parser for context-sensitive language (Definition 2) in past,
see [37,35,1]. These attempts were only partially successful. They were either
focused on a very specific aspects of some domain-specific language, or they
were not based on formal models; therefore, it was hard to prove such concepts.

Today’s traditional techniques perform context analysis via semantic actions
written in the host language accompanying usually context-free grammar of a
suitable form (see [1]). The other possibility is to use some context-free parser
based on any available technique and then to perform analysis of a data struc-
ture created as an output of the parser (usually some tree-like structure or some
kind of byte-code [30]).

A mixture of several descriptive means (grammar together with host lan-
guage or another combination) bound by explicit data structures stored in trees,
attributes, code, or their mixture is not suitable if an analyzer is to be described
formally. Moreover, a change to the input language syntax usually dramatically
affects other parts of a parser.

Therefore, in this section, we define two new formal models that are based
on scattered context grammars—attributed scattered context grammars and at-
tributed scattered context grammars with priority function. These grammars can
be effectively used for formal description of context-sensitive relations in a par-
ticular language. Furthermore, we modify the existing regulated pushdown au-

1688 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Context Parsing (Not Only) of the Object-File-Format Description Language

root analyzer ELF32 () {
elf_header(0) { check_header(); }; // parse ELF header

}
analyzer elf_header (start_offset) {

uint8 [16] e_ident { /* Check of the "ELF Identification"
field */ };

uint16 e_type <value> {
if (e_type.value > 4)

parse_error(); // Unsupported ELF file type
};
uint16; // e_machine - a don’t care value
uint32 1; // e_version needs to be ’1’
uint32 e_entry <value> { // Direct generation of LOFF

LOFF->setEntryPoint(e_entry.value);
};
// ...

// Section header table’s offset (SHT)
uint32 e_shoff <value>;
// ...
// Size of entrie in SHT and number of elements in SHT
uint16 e_shentsize;
uint32 e_shnum <value> {

if (e_shoff.value != 0) // Analyze SHT
elf_sht(e_shoff,

e_shoff + e_shnum.value * e_shentsize);
};
// ...

}
analyzer elf_sht (start_offset, end_offset) {

// ...
// Analysis of Section Header Table

}
analyzer elf_section (start_offset, end_offset) {

// ...
// Analysis of each particular section

}

// Productions describing context behavior
// Simplified control of appearance of static relocations
// within executable files
(elf_header<is_executable>, elf_relocation<is_static>}) ->

(error, error) [999] // High-priority production
// Other productions

Fig. 10. A code snippet of an ELF description using OFF language.

tomata (see [17]) for parsing these grammars. Finally, we give a brief overview
of a context parser construction.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1689

Jakub Křoustek and Dušan Kolář

7.1. Attributed Scattered Context Grammars

In this subsection, we define two new formalisms that are based on scattered
context grammars. We assume a reader is familiar with the attributed grammars
(for further details see [36,30,1].

Definition 10. A voidy n-tuple over domain D is the tuple

< d1, . . . , dn > ∈ Dn,

where Dn stands for D1 ×D2 × . . . ×Dn and n ∈ N; if n = 0 then the tuple is
void and we write <> or simply we do not write anything if it is clear from the
context.

Definition 11. Variable voidy Cartesian product ∪D over domain D is defined
as

∪D = ∪n
i=0D

i,

where Dn stands for D1 ×D2 × . . .×Dn and n ∈ N; D0 = {<>}.

Definition 12. An attributed scattered context grammar (aSCG) is a seven-
tuple,

G = (V, T, P, S,D,R, ρ),

where

– V is a total alphabet;
– T ⊂ V is a finite set of terminals;
– S ∈ V − T is the start symbol;
– P is a finite set of productions of the form

(A1
w1
, . . . , An

wn
) → (x1@, . . . , x

n
@),

where Ai ∈ V − T , wi = ρ(Ai), xi@ ∈ V ∗ for all i : 1 ≤ i ≤ n and all symbols
in xi@ have their corresponding voidy tuple of attributes;

– D is the domain of attributes;
– R is the naming of attributes representing any value from D;
– ρ is a mapping ρ : V → ∪R, where ∪R is the variable voidy Cartesian

product.

Definition 13. An attributed propagating scattered context grammar (aPSCG)
is an aSCG

G = (V, T, P, S,D,R, ρ),

in which every (A1
w1
, . . . , An

wn
) → (x1@, . . . , x

n
@) ∈ P satisfies xi@ ∈ V + for all

i : 1 ≤ i ≤ n.

Notation of attribute use is the following: we write

A<a1,...,an> if ρ(A) = < a1, . . . , an >

1690 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Context Parsing (Not Only) of the Object-File-Format Description Language

for any n, or simply Aw if attribute names are not in our focus; we write A<> if
we want to stress that void attribute tuple is assigned to the symbol, or we write
just A for the sake of simplicity. If there is a string of symbols x = A1 . . . An and
for every Ai, i ∈ {1 . . . n} there is wi such that ρ(Ai) = wi we write x@ to stress
that every symbol of x has its voidy tuple of attributes.

Definition 14. Let G = (V, T, P, S,D,R, ρ) be a (propagating) aSCG. If

y = u1A
1
w1
u2 . . . unA

n
wn
un+1,

z = u1x
1
@u2 . . . unx

n
@un+1,

and y, z ∈ V ∗, p = (A1
w1
, . . . , An

wn
) → (x1@, . . . , x

n
@) ∈ P , and if every attribute

occurring in A1
w1
, . . . , An

wn
and x1@, . . . , x

n
@ has a value from D defined and every

occurrence of some attribute a ∈ R in A1
w1
, . . . , An

wn
and x1@, . . . , x

n
@ carries

the same value from D then y directly derives z in the (propagating) aSCG G
according to the production p,

y ⇒G z [p] (or simply y ⇒G z).

A language generated by (propagating) aSCG is defined the same way as
for (propagating) SCG. Similarly, family of (propagating) attributed scattered
context languages is defined as L(a(P)SC).

To give a light insight and motivation on usage of attributed grammar, we
present a small example. Let us take into account the language anbncn for n ≥
1. This is truly a context-sensitive language (see [28]). Using SCG1, we can
describe the language by grammar:

G1 = ({S,X,C, a, b, c}, {a, b, c}, P, S),

with P containing

P = { (S) → (XC), [p1]
(X,C) → (aXb, cC), [p2]
(X,C) → (ab, c)} [p3]

As an example of derivation by using this grammar

S ⇒ XC [p1]
⇒ aXbcC [p2]
⇒ aaXbbccC [p2]
⇒ aaabbbccc [p3]

From a formal point of view, the presented grammar represents a perfect
description of a given language. From a practical point of view, this kind of de-
scription is too specific. Let us assume a modification of this language: znunvn

for n ≥ 1. This language has the same structure as the previous one except the

1 This grammar is actually a propagating SCG because it does not contain any erasing
rules.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1691

Jakub Křoustek and Dušan Kolář

different terminal names. However, this small difference means that the original
grammar has to be significantly rewritten.

In particular, terminals a, b, and c are too specific in the original grammar.
In a fact, each of them can be considered as an identifier, which was named
e.g. ’a’. On the other hand, such an identifier is bound to some particular value
(’a’) that can be described by a value of attribute bound to particular (otherwise
anonymous) terminal.

Thus, we introduce attributes to keep fully formal view and obtaining expres-
sive power and variability. Therefore, we define the attributed SCG

G2 = (V, T, P, S,D,R, ρ).

Now we can modify our example in such a way: we add a domain of at-
tributes D of all textual strings (string is written in quotes, e.g. ’z’), we add a
naming R = {q, w, e}, we define mapping ρ such a way, so that:

ρ(S) = <>
ρ(X) = < q,w >
ρ(C) = < e >
ρ(a) = < q >
ρ(b) = < w >
ρ(c) = < e >

and present an aSCG grammar productions (as a modification of the previ-
ous SCG):

(S) → (X<′a′,′b′>C<′c′>)
(X<q,w>, C<e>) → (a<q>X<q,w>b<w>, c<e>C<e>)
(X<q,w>, C<e>) → (a<q>b<w>, c<e>)

A modification of the presented aSCG allows to change terminals with re-
definition of just a single grammar production, in particular, attribute values, as
the production remains the same, as such. To get the second mentioned lan-
guage, we have to change just the first production to (S) → (X<′z′,′u′>C<′v′>)
and the rest remains the same.

To extend expressive power and bring necessary pragmatic features for
practical exploitation of a(P)SCG in context analysis/parsing, we extend a(P)SCG
to priority attributed scattered context grammars.

Definition 15. A (propagating) attributed scattered context grammar with prior-
ity
(a(P)SCGP) is an eight-tuple

G = (V, T, P, S,D,R, ρ, π),

where (V, T, P, S,D,R, ρ) is a (propagating) attributed scattered context gram-
mar and π is a function

π : P → N.

1692 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Context Parsing (Not Only) of the Object-File-Format Description Language

Definition 16. Let G = (V, T, P, S,D,R, ρ, π) be an a(P)SCGP. We say that y
directly derives z in a(P)SCG G according to the production p, y ⇒G z [p] (or
simply y ⇒G z), if and only if:

– y = u1A
1
w1
u2 . . . un A

n
wn
un+1 ∈ V ∗,

– z = u1x
1
@u2 . . . unx

n
@un+1 ∈ V ∗,

– p = (A1
w1
, . . . , An

wn
) → (x1@, . . . , x

n
@) ∈ P ,

– there is no p′ = (A′1
w1
, . . . , A′n

wn
) → (x′

1
@, . . . , x

′n
@) ∈ P , such that:

1. y = u′1A
′1
w1
u′2 . . . u

′
nA

′n
wn
u′n+1 ∈ V ∗, and

2. π(p′) > π(p);
– and conditions of Definition 14 for attributes must hold.

Language generated by a(P)SCGP is defined similarly as for a(P)SCG.
To give an order of rules when several options could be used, we use priority.

For demonstration, we define the attributed SCG with priority

G3 = (V, T, P, S,D,R, ρ, π).

The grammar is the same as G2 up to priority mapping, which is defined as:

π((S) → (X<′a′,′b′>C<′c′>)) = 1
π((X<q,w>, C<e>) → (a<q>X<q,w>b<w>, c<e>C<e>)) = 1

π((X<q,w>, C<e>) → (a<q>b<w>, c<e>)) = 1

Then, the sentence a<′a′>a<′a′>b<′b′>b<′b′>c<′c′>c<′c′> is obtained by the
following derivation:

S ⇒ X<′a′,′b′>C<′c′> [p1]
⇒ a<′a′>X<′a′,′b′>b<′b′>c<′c′>C<′c′> [p2]
⇒ a<′a′>a<′a′>b<′b′>b<′b′>c<′c′>c<′c′> [p3]

that represents the string aabbcc.

7.2. Regulated Pushdown Automata

As has been illustrated above, the a(P)SCGP can be easily used for description
of context-sensitive languages. However, we still need a formal model for pars-
ing such description. For this reason, we use a Regulated Pushdown Automata.

In [15], it is presented, how regulated pushdown automata can be exploited
for building context parsers derived from scattered context grammars of partic-
ular features. Basic concept of regulated pushdown automata can be found in
[17,27] — papers especially present definition and expressive power of various
versions of regulated pushdown automata.

Consider a pushdown automaton (PDA)

M = (Q,Σ,Ω,R, s, S, F),

where

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1693

Jakub Křoustek and Dušan Kolář

– Q is a finite set of states;
– Σ is an input alphabet ;
– Ω is a pushdown alphabet ;
– R is a set of productions of the form

Apa→ wqb,

where A ∈ Ω, p, q ∈ Q, a ∈ Σ ∪ {ε}, w ∈ Ω∗ and b ∈ {a, ε} (if b ̸= ε then the
production ”tests” the value under the reading head, the head is not shifted,
the symbol is not read);

– s ∈ Q is the start state;
– S ∈ Ω is the start symbol ;
– F ⊆ Q is a set of final states.
– Without a loss of generality, we require that Q, Σ, and Ω are pairwise dis-

joint.

Now, consider a control language, Ξ (formally defined below), over M ’s pro-
ductions. Informally, with Ξ, M accepts a word, x, if and only if Ξ contains a
control word according to which M makes a sequence of moves so it reaches
a final configuration after reading x.

Let Ψ be an alphabet of production labels such that card(Ψ) = card(R), and
ψ be a bijection from R to Ψ . For simplicity, to express that ψ maps a production,
Apa → wq ∈ R, to ρ, where ρ ∈ Ψ , this paper writes ρ.Apa → wq ∈ R; in other
words, ρ.Apa→ wq means ψ(Apa→ wq) = ρ.

Definition 17. A configuration of M , χ, is any word from Ω∗QΣ∗. For every
x ∈ Ω∗, y ∈ Σ∗, and ρ.Apa → wq ∈ R, M makes a move from configuration
xApay to configuration xwqy according to ρ, written as xApay ⊢ xwqy [ρ].

Let χ be any configuration ofM .M makes zero moves from χ to χ according
to ε, symbolically written as χ ⊢0 χ [ε]. Let there exist a sequence of configu-
rations χ0, χ1, . . . , χn for some n ≥ 1 such that χi−1 ⊢ χi [ρi], where ρi ∈ Ψ ,
for i = 1, . . . , n, then M makes n moves from χ0 to χn according to ρ1 . . . ρn,
symbolically written as χ0 ⊢n χn [ρ1 . . . ρn].

Definition 18. Let Ξ be a control language over Ψ ; that is, Ξ ⊆ Ψ∗. With Ξ, M
defines the following three types of accepted languages:

L(M,Ξ, 1)—the language accepted by final state
L(M,Ξ, 2)—the language accepted by empty pushdown
L(M,Ξ, 3)—the language accepted by final state and empty pushdown

defined as follows. Let χ ∈ Ω∗QΣ∗. If χ ∈ Ω∗F , χ ∈ Q, χ ∈ F , then χ is
a 1-final configuration, 2-final configuration, 3-final configuration, respectively.
For i = 1, 2, 3, define L(M,Ξ, i) as L(M,Ξ, i) = {w | w ∈ Σ∗, and Ssw ⇒∗

χ [σ] in M for an i-final configuration, χ, and σ ∈ Ξ}.

Definition 19. Regulated pushdown automata (RPDA). For any family of lan-
guages, X, set RPDA(X, i) = {L | L = L(M,Ξ, i), where M is a PDA and
Ξ ∈ X, where i = 1, 2, 3}.

1694 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Context Parsing (Not Only) of the Object-File-Format Description Language

Namely, pushdown automata regulated by linear languages have the same
power as Turing machine

RE = RPDA(LIN, 1) = RPDA(LIN, 2) = RPDA(LIN, 3),

where RE stands for the set of all recursively enumerable languages and
LIN stands for the set of all linear languages [26] — proof can be found in [17].

Thus, such automata are powerful enough for analysis of context languages.
Nevertheless, we need a deterministic version of such automata. Their detailed
description and a way, how the automaton can be built from a SCG of certain
features, can be found in [15].

Definition 20. Let M = (Q,Σ,Ω,R, s, S, F) be a regulated pushdown automa-
ton, with set of labels Ψ , bijection ψ from labels Ψ to productions R, and with
control language Ξ. Such an RPDA is deterministic (DRPDA) if being in a state
q, q ∈ Q, the appropriate action, which should be performed, can always be
deterministically selected. This can only be due to the following two circum-
stances:

(1) For the given state, there is only one production r ∈ R that is applicable
in a given situation (state, symbol on the top of the pushdown or under the
reading head) and, moreover, control language admits such a production.

(2) If there are more than one productions that are applicable in a given
situation then the production can be deterministically denoted according to the
actual context of sentential form of the control language applicable to the current
state of operation performed by RPDA.

To give a rough idea from another viewpoint: in a center, there is non-
deterministic pushdown automaton; all of its operations are encoded as a sym-
bols of the control-language alphabet; successful operation of the PDA must be
verified by the control language, which means that operation of PDA produces
a string of symbols (step-by-step operations of the automaton are encoded to
string of symbols) and if the string is a sentence of the control language then
the operation of regulated PDA is successful; if PDA fails during its operation or
the produced string is not in the control language then it means that analyzed
input is not accepted.

7.3. Context Parser Construction

Relation between automata presented above and implementation is quite sim-
ple. We can build appropriate automaton from a given grammar (see [14,15,18])
automatically. Moreover, usage of Haskell programming language enables to
build a kind of domain specific language on the top of Haskell. Thus, it is neces-
sary to define the wanted grammar inside Haskell using supporting predefined
constructs and the parser is done. Lexical analysis is done in the same way as
in any other parser (i.e. definition of lexemes and their transformation to tokens,
see [1]). Also manipulation of the output of the parser is done in a traditional
way. The key feature is that just a simple modification of the grammar allows

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1695

Jakub Křoustek and Dušan Kolář

to dramatically modify the parsed input. Thus, any change is much faster then
using any other technique.

Furthermore, we can apply the same principles as in SCG parsing (see [15]):

– regulated PDA can be made deterministic;
– having SCG of suitable features (LL SCG, see [15]), we can algorithmically

derive a deterministic regulated pushdown automaton, which accepts (de-
cides) the language generated by the SCG.

To achieve full flexibility and big expressive power, so that changes in a
language can be efficiently handled on the grammar level, we need to introduce
attributes and priorities to LL SCG parsers.

Attributes Introduction of attributes is not difficult at all — grammar (omitting
attributes) must satisfy the same conditions as LL SCG grammars, plus the
following one — ∀(A1

w1
, . . . , An

wn
) → (x1@, . . . , x

n
@) ∈ P it must hold:

– ρ(A1) =<> and
– let x1@ = X1

v1 . . . X
m
vm then ∀Xi ∈ (V − T) : ρ(Xi) =<>, i ∈ {1 . . .m}

Priorities Fortunately, priorities are not a problem of construction parsing ta-
bles and automaton as such. They are problem of saving automaton configura-
tion and its restoration — from a formal point of view.

The situation is such, priorities can cause that we have several grammar
productions for expansion for the same automaton configuration (symbol under
the reading head and top of the pushdown) — we say the productions are over-
lapping. In the traditional notion of deterministic PDA it means a conflict and no
automaton can be built.

If we have priorities for grammar productions introduced then this situation
is conflict if two or more such overlapping productions have the same priority
assigned.

If the priorities for overlapping productions are different then we have to
order such set of productions from the highest priority to the lowest one. When
the automaton configuration gets to the point when some of these productions
could be applied, the production with the highest priority is applied at first. If it
fails then the original configuration is restored and the next production is applied
and so on and so on, until some production succeeds. If none of the productions
succeeds then the analysis fails with an error.

The problem is about storing the configuration and restoration, especially,
how we can recognize that some production expansion fails. Fortunately, as it
can be seen in [14,15,18], during expansion, when we search for suitable non-
terminals on the pushdown, we use the control language to save the content
of the pushdown that is popped out of the pushdown. Thus, when we reach
bottom of the pushdown it means that the production cannot be expanded in the
situation, so that we should apply another one. In such a situation the content
of the pushdown is saved in the context of the control language and we can

1696 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Context Parsing (Not Only) of the Object-File-Format Description Language

restore it to its original content before trying to expand the production. It is used
the same technique with a small difference, when right hand sides of the so far
expanded part are not pushed to the pushdown, but the original content is.

7.4. Experimental Results

In present, the context parser of the OFF language is in the prototype phase.
Therefore, we are unable to give any experimental results in a deeper detail yet.
On the other hand, the concept of the parser can be described using the simple
context-sensitive language.

Performance measurement of our approach is not easy. The reason is that
there is no context parser based on grammar input available. General approaches
are well known to be inefficient. Thus, it was quite difficult to find simple use
case for comparison.

Our implementation language is Haskell due to ease of use for our purposes.
Re-implementing our parser in C/C++ would be time consuming, so we decided
to implement competitive parser of some suitable language in Haskell directly,
without using our grammar based context parser.

We have decided to use parser of the aforementioned language anbncn

based on the presented grammar, but without any attributes and priority —
firstly, they are not necessary for such a simple case; secondly, it would be
quite complicated to implement something similar in the other program for com-
parison.

The comparison is unfair for the SCG-based solution, though. We compare
parser based on complex SCG with straightforward ”C-like” implementation of
analysis of the language anbncn. There are several reasons, why it is unfair:

– The grammar based parser uses stack to create contextual information and
its consumption is proportional to input size.

– The ”C-like” implementation is very much Haskell syntax of C approach, on
the other hand the grammar based parser is very much of the Haskell.

– ”C-like” implementation is constant space so it provokes for better perfor-
mance.

In other words, we compared something incomparable, in a fact. The com-
parison of speed is depicted in Figure 11. The tests were limited on size due to
stack utilization and application size limitation in Windows 32-bit application.

Surprisingly, the time complexity according to input size is almost the same.
Thus, we can state that our approach is not only very efficient in change in-
corporation both on user and implementation side, but is is even quite efficient
from the evaluation speed viewpoint.

The evaluation of this concept on a more complex examples (such as the
OFF language) is marked as our future research but unavailable yet.

8. Conclusion and Future Work

This paper was focused on handling of OFFs and its usage in retargetable tools.
Several existing solutions were presented, and their limitations were discussed.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1697

Jakub Křoustek and Dušan Kolář

0,0

5,0

10,0

15,0

20,0

0 20 40 60 80 100 120 140 160

Haskell Parser C-like Parser

Symbols in input file (millions)

T
im

e
 (

se
co

n
d

s)

Fig. 11. Speed comparison between two parsers of the anbncn language.

The main contribution of this paper is a presentation of the language for OFF
description and concept of its parser. The major advantage of this concept is its
ability to describe and parse context-sensitive properties. The parser is based
on the formal models that were designed for this purpose.

A prototype of this context parser is under development. The Haskell pro-
gramming language is used for this purpose because it is well-suited for our
needs (lazy evaluation [13], type inference, etc.). According to the preliminary
experimental results, which were focused on simple languages like anbncn, this
approach is faster than other parsers of the same language.

The language can be used for OFF parsing and manipulation. Its main us-
age is within an existing retargetable decompiler, where it will be used for con-
version from platform-dependent OFFs into an internal COFF-based file format.
However, this is not a limitation because the language can be used in other re-
targetable tools, such as disassemblers, loaders, or debuggers.

In the future research, we would like to use the context parser in other areas.
For example it can be used for natural language processing, description of other
binary file formats (i.e. not just OFF), or parsing of HLL programming languages,
such C, where it will be able to automatically check consistency of declaration,
definition, and usage of variables, see [28,41,37] for details.

Acknowledgments. This work was supported by the project TA ČR TA01010667 Sys-
tem for Support of Platform Independent Malware Analysis in Executable Files, BUT
grant FEKT/FIT-J-13-2000 Validation of Executable Code for Industrial Automation De-
vices using Decompilation, BUT FIT grant FIT-S-11-2, by the project CEZ MSM0021630528

1698 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Context Parsing (Not Only) of the Object-File-Format Description Language

Security-Oriented Research in Information Technology, and by the European Regional
Development Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070).

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Boston, 2nd edn. (2006)

2. Apple Inc.: Macintosh application environment. http://www.mae.apple.com
(1994)

3. Apple Inc.: Mac OS X ABI Mach-O file format reference (2009)
4. Chamberlain, S.: The Binary File Descriptor Library. Iuniverse Inc. (2000)
5. Cifuentes, C.: Reverse Compilation Techniques. Ph.D. thesis, School of Computing

Science, Queensland University of Technology, Brisbane, QLD, AU (1994)
6. Digital: Freeport express. http://www.novalink.com/freeport-express

(1996)
7. Emmerik, M.J.V.: Static Single Assignment for Decompilation. Ph.D. thesis, Univer-

sity of Queensland, Brisbane, QLD, AU (2007)
8. Faase, F.: BFF: A grammar for binary file formats. http://www.iwriteiam.nl/

Ha_BFF.html (2012)
9. Fernández, M.F.: Simple and effective link-time optimization of Modula-3 programs.

SIGPLAN Not. 30(6), 103–115 (1995)
10. Gircys, G.R.: Understanding and Using COFF. O’Reilly & Associates, Inc., Se-

bastopol, US-CA (1988)
11. Greibach, S., Hopcroft, J.: Scattered context grammars. Journal of Computer and

System Sciences 3(3), 233–247 (1969)
12. Hohensee, P., Myszewski, M., Reese, D.: Wabi cpu emulation. Hot Chips VIII (1996)
13. Jirák, O., Kolář, D.: Derivation in scattered context grammar via lazy function evalua-

tion. In: 5th Doctoral Workshop on Mathematical and Engineering Methods in Com-
puter Science (MEMICS’09). OpenAccess Series in Informatics (OASIcs), vol. 13.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, DE (2009)

14. Kolář, D.: Pushdown Automata: Another Extensions and Transformations. Habilita-
tion thesis, Brno University of Technology, Faculty of Information Technology (2005)

15. Kolář, D.: Scattered context grammars parsers. In: 14th International Congress of
Cybernetics and Systems of WOCS. pp. 491–500. Wroclaw University of Technol-
ogy, PL, Wroclaw, PL (2008)

16. Kolář, D., Husár, A.: Output object file format for assembler and linker. Internal doc-
ument, Brno University of Technology, Faculty of Information Technology, Brno, CZ
(2012)

17. Kolář, D., Meduna, A.: Regulated pushdown automata. Acta Cybernetica 2000(4),
653–664 (2000)

18. Kolář, D., Meduna, A.: Regulated automata: From theory towards applications. In:
8th International Conference on Information Systems Implementation and Modelling
(ISIM’05). pp. 34–48. MARQ, Ostrava, CZ (2005)

19. Křoustek, J., Matula, P., Ďurfina, L.: Generic plugin-based convertor of executable
file formats and its usage in retargetable decompilation. In: 6th International Sci-
entific and Technical Conference (CSIT’11). pp. 127–130. Ministry of Education,
Science, Youth and Sports of Ukraine, Lviv Polytechnic National University, Institute
of Computer Science and Information Technologies (2011)

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1699

http://www.mae.apple.com
http://www.novalink.com/freeport-express
http://www.iwriteiam.nl/Ha_BFF.html
http://www.iwriteiam.nl/Ha_BFF.html

Jakub Křoustek and Dušan Kolář

20. Křoustek, J., Přikryl, Z., Kolář, D., Hruška, T.: Retargetable multi-level debugging in
HW/SW codesign. In: 23rd International Conference on Microelectronics (ICM’11).
p. 6. Institute of Electrical and Electronics Engineers (2011)

21. Křoustek, J., Židek, S., Kolář, D., Meduna, A.: Scattered context grammars with
priority. International Journal of Advanced Research in Computer Science (IJARCS)
2(4), 1–6 (2011)

22. Levine, J.R.: Linkers and Loaders. Operating Systems, Morgan Kaufmann Publish-
ers (2000)

23. Lissom: http://www.fit.vutbr.cz/research/groups/lissom/ (2013)
24. LLVM Assembly Language Reference Manual: http://llvm.org/docs/

LangRef.html (2013)
25. Masařı́k, K.: System for Hardware-Software Co-Design. VUTIUM, Brno University

of Technology, Faculty of Information Technology, Brno, CZ, 1st edn. (2008)
26. Meduna, A.: Automata and Languages: Theory and Applications. Springer-Verlag,

London, GB (2005)
27. Meduna, A., Kolář, D.: One-turn regulated pushdown automata and their reduction.

Fundamenta Informaticae 2001, 1001–1007 (2001)
28. Meduna, A., Techet, J.: Scattered Context Grammars and their Applications. WIT

Press, Southampton, GB (2010)
29. Microsoft Corporation: Microsoft portable executable and common object file for-

mat specification. http://www.microsoft.com/whdc/system/platform/
firmware/PECOFF.mspx (2013), version 8.3

30. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers, San Francisco, US-CA (1997)

31. Nokia: E32Image. http://www.developer.nokia.com/Community/Wiki/
E32Image (2012)

32. Ramsey, N., Fernández, M.: Specifying representations of machine instructions.
ACM Transactions on Programming Languages and Systems 19(3), 492–524
(1997)

33. Ramsey, N., Fernandez, M.F.: The New Jersey Machine-Code Toolkit. In: USENIX
Technical Conference. pp. 289–302 (1995)

34. Ramsey, N., Hanson, D.R.: A retargetable debugger. Tech. rep., Princeton Univer-
sity, Princeton, US-NJ (1992)

35. Roberts, D.M.: Earley parsing for context-sensitive grammars. http://
danielmattosroberts.com/earley/context-sensitive-earley.pdf
(2009)

36. Rodriguez-Cerezo, D., Cabezuelo, A.S., Sierra, J.L.: A systematic approach to the
implementation of attribute grammars with conventional compiler construction tools.
Computer Science and Information Systems (ComSIS) 9(3), 983–1017 (2012)

37. Rychnovský, L.: Parsing of context-sensitive languages. In: 2nd International Work-
shop on Formal Models (WFM’07). pp. 219–226. Opava, CZ (2007)

38. The LLVM Compiler Infrastructure: http://llvm.org/ (2013)
39. TIS Committee: Tool Interface Standard (TIS) Executable and Linking Format (ELF)

Specification (1995), http://refspecs.freestandards.org/elf/elf.pdf
40. Troshina, K., Chernov, A., Derevenets, Y.: C decompilation: Is it possible? In: Inter-

national Workshop on Program Understanding (IWPU’09). pp. 18–27 (2009)
41. Ung, D., Cifuentes, C.: SRL - a simple retargetable loader. In: The Australia Software

Engineering Conference. pp. 60–69. IEEE Computer Society (1997)
42. UQBT - A Resourceable and Retargetable Binary Translator: http://itee.uq.

edu.au/˜cristina/uqbt.html (2012)

1700 ComSIS Vol. 10, No. 4, Special Issue, October 2013

http://www.fit.vutbr.cz/research/groups/lissom/
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://www.developer.nokia.com/Community/Wiki/E32Image
http://www.developer.nokia.com/Community/Wiki/E32Image
http://danielmattosroberts.com/earley/context-sensitive-earley.pdf
http://danielmattosroberts.com/earley/context-sensitive-earley.pdf
http://llvm.org/
http://refspecs.freestandards.org/elf/elf.pdf
http://itee.uq.edu.au/~cristina/uqbt.html
http://itee.uq.edu.au/~cristina/uqbt.html

Context Parsing (Not Only) of the Object-File-Format Description Language

43. Ďurfina, L., Křoustek, J., Zemek, P., Kábele, B.: Detection and recovery of functions
and their arguments in a retargetable decompiler. In: 19th Working Conference on
Reverse Engineering (WCRE’12). pp. 51–60. IEEE Computer Society, Kingston,
ON, CA (2012)

44. Ďurfina, L., Křoustek, J., Zemek, P., Kolář, D., Hruška, T., Masařı́k, K., Meduna,
A.: Design of a retargetable decompiler for a static platform-independent malware
analysis. In: 5th International Conference on Information Security and Assurance
(ISA’11). Communications in Computer and Information Science, vol. 200, pp. 72–
86. Springer-Verlag, Berlin, Heidelberg, DE (2011)

45. Ďurfina, L., Křoustek, J., Zemek, P., Kolář, D., Hruška, T., Masařı́k, K., Meduna,
A.: Design of a retargetable decompiler for a static platform-independent malware
analysis. International Journal of Security and Its Applications (IJSIA) 5(4), 91–106
(2011)

Jakub Křoustek is a Ph.D. student at the Faculty of Information Technology,
Brno University of Technology, Czech Republic. He received the MSc. degree
from the same university in 2009. He is currently working on the Lissom re-
search project as the leader of the generic decompiler and debugger devel-
opment team. His current research interests include the reverse engineering,
malware detection, and compiler design, with special focus on the code analy-
sis and reverse translation.

Dušan Kolář went to Brno University of Technology, Czech Republic, where he
studied computer science and cybernetics and obtained his degrees in 1994
and 1998. Since then, he has been working at the university, presently at the
Faculty of Information Technology. His main research interests are formal lan-
guages and automata and formal models with focus on their exploitation in com-
pilers and formal models transformation.

Received: January 20, 2013; Accepted: September 2, 2013.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1701

DOI: 10.2298/CSIS121202065H

An evaluation of keyword, string similarity and
very shallow syntactic matching for a university

admissions processing infobot

Peter Hancox1 and Nikolaos Polatidis2

1 School of Computer Science, University of Birmingham
Edgbaston, Birmingham, B15 2TT, United Kingdom

pjh@cs.bham.ac.uk
2 Department of Applied Informatics, University of Macedonia

156 Egnatia Street, 54006, Thessaloniki, Greece
npolatidis@uom.edu.gr

Abstract. “Infobots” are small-scale natural language question answer-
ing systems drawing inspiration from ELIZA-type systems. Their key dis-
tinguishing feature is the extraction of meaning from users’ queries with-
out the use of syntactic or semantic representations. Three approaches
to identifying the users’ intended meanings were investigated: keyword-
based systems, Jaro-based string similarity algorithms and matching based
on very shallow syntactic analysis. These were measured against a cor-
pus of queries contributed by users of a WWW-hosted infobot for respond-
ing to questions about applications to MSc courses. The most effective
system was Jaro with stemmed input (78.57%). It also was able to pro-
cess ungrammatical input and offer scalability.

Keywords: chatbot, infobot, question-answering, Jaro string similarity, Jaro-
Winkler string similarity, shallow syntactic processing.

1. Introduction

University student recruitment administration is an application where there is
potential for a large volume of enquiries of a fairly routine and predictable nature
from a world-wide pool of applicants. The costs of call centres (both in terms
of running the centres and recruiting and retaining a knowledgeable workforce)
make such ventures unattractive. On the other hand, it should be possible to im-
plement a technological solution beyond adding over-large FAQs to web pages.
The amount and breadth of information required to answer the applicants’ ques-
tions would require a large number of long FAQs with quite possibly a complex
net of interrelations.

Student recruitment, particularly at graduate level, is international in out-
look: in UK postgraduate computing degrees, it is not unusual for international
students to outnumber UK students by two to one. Communicating with inter-
national applicants brings with it all the problems of understanding versions of

Peter Hancox and Nikolaos Polatidis

English that can vary from the excellent to the less than adequate. Most appli-
cants have a strong commitment to accessing the information that they need
to be able to make a choice of what and where to study. Varying language
capabilities notwithstanding, many applicants are very articulate (and so able
to frame precise requests for information) and discriminating in making their
choices based on that information. Although universities work hard at providing
prospectus information that ranges from detail of the structure of courses to the
accommodation packages and sports facilities available, many applicants still
find themselves wanting to ask highly targeted questions about, for instance,
module choice deadlines and visa requirements. Given the wide range of time
zones that applicants come from and that 24 hour access to staff is not a possi-
bility, the work reported here emanated from projects to implement a web-based
infobot application for answering applicants’ enquiries.

The aim was to provide a service where users could ask questions in En-
glish about making applications. (The system was not intended to be able to
answer highly specific questions such as the reason for rejection of a particular
application.) In doing this, the system would have to be able to process input
in the syntactic form of questions over the relatively narrow semantic domain of
applications for graduate study asked in versions of English that are not always
those of a native speaker.

A number of organizations (for instance in the UK, the Alliance & Leicester
bank and the O2 mobile phone company) have made chatbots available on
their websites. Chatbots have a long history and the first implementation, ELIZA
[30], is particularly famous. Recent bots owe much to the ALICE software which
consists of a matching engine and an XML-based language for writing rules to
transform input [1].

We argue that the use of traditional chatbots for informational systems is
inappropriate. Writing of the first extensive script he prepared for ELIZA which
parodied “the responses of a nondirective psychotherapist”, Weizenbaum [30,
p. 188] stated “I chose this script because it enabled me to temporarily sidestep
the problem of giving the program a database of real-world knowledge.” ELIZA
was a conversational agent: whatever happened and wherever the dialogue
went, the aim was to keep the conversation going. Being a nondirective psy-
chotherapist, information content was low, the main tactic being to use keywords
from the user’s input to fill slots in the system’s output. In the following, ELIZA
[30, p. 2] has used boyfriend and depressed to fill pre-prepared templates:

User: Well, my boyfriend made me come here.
ELIZA: Your boyfriend made you come here.
User: He says I’m depressed much of the time.
ELIZA: I am sorry to hear you are depressed

To avoid the conversation becoming too repetitive, ELIZA used two ways of
introducing variety into its responses. For each keyword there could be a num-
ber of possible responses; each was used in turn to introduce some variation.
Also previous topics were stored on a stack (thus keeping a record of the con-
versation) so that, should it be impossible to match a keyword with a template,

1704 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Evaluation of keyword, string similarity and very shallow syntactic matching

a previous keyword could be revisited. This had the significant effect of making
it seem as if there was some larger dialogue management taking place.

The ELIZA/ALICE model is essentially conversational: the chatbot attempts
to maintain a dialogue exchange above all else. The communication of infor-
mation is very much a secondary objective; hence Weizenbaum’s choice of a
nondirective psychotherapist.

Both the Alliance & Leicester and O2 chatbots try to communicate informa-
tion about products while trying to maintain a dialogue. In particular, they use
an avatar figure to represent the computer partner in the chatbot dialogue. Al-
though it might seem attractive from a marketing point of view to present the
user with a “chatbot friend” in the hope they will bond with it, many users must
be sufficiently ICT-literate and the chatbots so limited that the illusion of a con-
versational friend is shattered. However, behind such systems, the information
content is equivalent to an over-large FAQ. This paper focuses on providing
a natural language interface to a set of FAQ-like topics where the number of
topics is too large for a conventional WWW-based FAQ and too small for a full
database natural language interface system. While a small FAQ list ranging
over a very limited topic area is usually an ideal way of presenting information,
a larger FAQ list ranging over a broader topic area or areas is less effective.
For the information seeker, the organization of the question list may seem un-
familiar or unintuitive and the length of the list makes is difficult to locate the
perhaps small piece of information. It may seem that the FAQ writer has not
predicted the user’s question or the information being sought is given as the
part answer to several questions. For the work presented here, the user may
not find their question expressed in a form they recognize, perhaps because of
differing levels of competence in the language of the FAQ [25, p. 97].

More specifically, the aims of the natural language interface investigated
here can be stated as:

1. robustness - capable of processing well-formed English or ill-formed either
because the user’s command of English is poor or because of ellipsis;

2. low cost - such a system should use relatively simple techniques to extract
meaning from input and to return outputs, thus reducing the cost of imple-
mentation and maintenance;

3. low-skilled maintenance - it is essential that adding to and modifying the
knowledge base of the application should be as simple as possible, allowing
changes to be made by IT literate rather than computer science trained
colleagues.

As explained above, the context of this investigation was a system for re-
sponding to natural language enquiries about applications to MSc courses.
Such a system would consist of a WWW interface to a bank of 50-100 top-
ics (i.e. too many for a manageable unhierarchically structured FAQ). Two main
ways of accessing the bank of topics were chosen:

– keywords - keywords were manually assigned to each topic, together with
a weight in the range 1. . . 5 (where 1 was relatively insignificant and 5 ex-
tremely significant);

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1705

Peter Hancox and Nikolaos Polatidis

– sentences - one or more stereotypical interrogative sentences were as-
signed to each topic. No weights were assigned to these sentences. (These
are referred to in the remainder of the paper as “stereotypical queries”.)

In both cases, it would be relatively easy for non-computer scientists to an-
notate the topic banks. This system is termed an “infobot” to distinguish its
informational and non-conversational functionality from that of chatbots.

Experiments were designed to assess the effectiveness of a number of
methods of matching queries with either sets of keywords or stereotypical queries.
The latter were also used as the source for syntactically selected sets of key-
words.

2. Claims

The main claim made as a result of the experiments is that:

– A Jaro-based string similarity algorithm [10] is at least as effective as the
less complex keyword-based methods tested and offers better scalability.

Sub-claims are:

– Abbreviated, terse queries (e.g. “cost of courses”) and lengthy inputs have
no significant effect on the performance of the best-performing matching
algorithms.

– The best performing matching algorithms are robust when processing “non-
native” English.

– Matching with keywords extracted using shallow syntactic techniques offers
no improvement in performance.

The methodology was first to establish a corpus of queries from users. This
was used as the basis for building the keyword and sentence indexes. Then,
each matching method was applied to the corpus to provide a basis of compar-
ison.

3. Preparing a Corpus

To collect a sample of inputs, a simple keyword-based infobot for delivering
admissions-related information in response to natural language queries was
mounted on the WWW.

This infobot was implemented in SICStus Prolog with a PrologBeans inter-
face to the Java front-end. Users’ inputs were delivered to the Prolog applica-
tion which extracted keywords or key-phrases and used these to match with
keywords or key-phrases associated with “chunks” of informational text (Fig. 1).
These informational texts were created after a study of a log of email enquiries
received from MSc applicants in the previous of the academic year.

The system was made accessible via the WWW to applicants for MSc courses
in the School of Computer Science, University of Birmingham [23] in two phases.

1706 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Evaluation of keyword, string similarity and very shallow syntactic matching

Informational text Keywords

Our programmes begin on 4th October 2010. Next academic
year begins on 26th September 2011.

begin
beginning
‘academic year’
‘starting date’

The on-line application form is at:
http://apply.bham.ac.uk/cp/home/loginf.

’online application’

Fig. 1. Rules and keywords from the simple chatbot

3.1. Phase 1: Initial Testing

This was a feasibility study designed to assess whether there were informa-
tional texts missing from the system or if extra keywords needed to be added
to existing information texts. A subset of about 15% of current MSc applicants
were contacted by email, inviting them to use the system. Taking a random sam-
ple of the set of current applicants would have been possible but unduly com-
plex, given that the set of applicants changed dynamically as some applications
were rejected and new applications were received. Rather, all applicants with
surnames beginning with ‘S’ or ‘T’ were included in the subset.3 121 queries
were submitted by members of this subset of applicants. These were analysed
with two extra informational texts being added and extra keywords added to
some existing informational texts. This resulted in the infobot system that was
used in the second phase to produce the corpus used in the experiments de-
scribed in the remainder of this paper.

3.2. Phase 2: Corpus Collection

The second phase was used to collect a reference sample of queries that might
be used to evaluate later systems, to analyse the behaviour of users and to
analyse the performance of this simple system. 573 applicants were invited by
email to use the system (being applicants with surnames beginning with other
than ‘S’ or ‘T’). 357 queries were recorded of which 70 were repeats4.

All inputs and responses were logged. Each input was manually annotated
as one of:

– Correct - the input was judged to be grammatical, correctly spelled and the
question appropriate to the domain.

– Correct/spelling error - an otherwise correct input that contains at least one
spelling error.

3 This subset of surnames was chosen because the spread of nationalities of, and
languages spoken by, applicants was better than other subsets of surnames, e.g. ‘A’
and ‘Z’.

4 A repeat is defined as a user immediately entering an input identical to their previous
input.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1707

Peter Hancox and Nikolaos Polatidis

Examples: How long it takes to finish the porgram? How do I know if my
online registration is finnished?

– Correct/grammar error - an otherwise correct input that contains at least
one grammatical error.
Examples: Do i require to attend an interview? Is there any part time pro-
grams?

– Abbreviated - an input that was too brief (usually lacking a verbal compo-
nent) for keywords to be reliably identified.
Examples: Registration? FAQ? why Birmingham?

– Inappropriate - the input was either judged to be grammatical, correctly
spelled but the question inappropriate to the domain or the input was not
English or not natural language.
Examples: What time is it now? What is your name? Das ist ein scholarship!
MumbleJumble,ISupposeThisIsATest, ????, “; OR 1=1”.

3.3. Analysis of Users’ Inputs

In the email inviting applicants to take part in the trial, it was explained to them
that this was a system under development that needed testing. An analysis of
the input shows that a substantial number of the enquiries were well-formed
and relevant English questions. Some applicants chose to use abbreviated en-
quiries such that they might use in a general search engine. Inevitably, in the
context of a test where there was no identification of individual users, some
chose to enter completely irrelevant (and thus inappropriate) queries (Fig. 2).

Fig. 2. Classification of inputs

From the log of inputs it could be seen that some users immediately followed
their original query with one or more repetitions of the input as if they believed

1708 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Evaluation of keyword, string similarity and very shallow syntactic matching

Table 1. Classification of inputs

Label Original input
n %

Repeated input
n %

Total input
n %

Correct 105 76.64 32 23.36 137 100.00
Correct/incorrect spelling 7 77.78 2 22.22 9 100.00
Correct/incorrect grammar 4 100.00 0 0.00 4 100.00
Abbreviated 22 91.67 2 8.33 24 100.00
Inappropriate 49 59.04 34 40.96 83 100.00

that a repetition would, for some reason, return an alternative response (Table
1). It is very noticeable that users’ willingness to repeat input was determined
by the nature of their original input. 23.36% of correct inputs were repetitions,
whereas only 8.33% of abbreviated queries were repeated, suggesting users
realised that their input was too brief. The number of repetitions of inappropriate
input was particularly large at 40.96%, perhaps suggesting that such users had
a poor initial model of the system and were struggling to refine that model.

3.4. From Input to Corpus

To build a corpus as a tool for testing alternative designs, the inputs were
selected as follows. All correct inputs were kept as were correct/grammar er-
rors inputs. Correct inputs with spelling errors were corrected and (unless al-
ready present in the corpus) included. The inappropriate inputs were not in-
cluded in the corpus. Abbreviated inputs were included where it was possi-
ble to glimpse some intended meaning. The corpus consisted of 154 queries,
including well-formed and less well-formed questions as well as terse non-
grammatical queries. Thus the corpus could claim to represent a real-life variety
of English performance. The mean length of queries was 6.19 words and the
mode was 5 words.

A “response class” set of 68 interpretations was formed. Each query in the
corpus was assigned to one of the infobot’s response class interpretations. For
instance, the input “how long does it take to pursue a master program?” was
labelled as a “duration” so that the query would be given the response “Our MSc
programmes last for one year”. A few response class interpretations were very
closely related, for instance “birmingham location” (“Where is Birmingham”) and
“location university” (“Where is Birmingham University”). Such similarity would
make the task of retrieval more difficult but reflected the practical difficulties of
responding to some queries. Two topics dominated others in the corpus: the
cost of tuition fees and the availability of scholarships. There was a noticeable
difference between the contents of emails previously sent to admissions tutors
and infobot queries: when applicants realised they were communicating with a
machine, they felt sufficiently uninhibited to ask about money issues.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1709

Peter Hancox and Nikolaos Polatidis

4. Experiments on Matching Methods

The matching methods used fell into three groups:

1. Those that used keywords extracted from the query matched against key-
words assigned to interpretations from the response class (Section 4.1).

2. Those that matched the whole text of the user’s query with one or more
stereotypical queries assigned to interpretations from the response class
(Section 4.2).

3. Shallow syntactic extraction of keywords from the user’s query. The Stanford
Parser [13] was used to analyse the stereotypical queries assigned to inter-
pretations drawn from the response class, giving dictionary entries which
also included information about keyword co-occurrence and the ordering of
keywords (Section 4.3).

The results of each experiment were classified into one of three categories:

1. Correct - the outcome matched the expected outcome given in the corpus;
2. Incorrect - the outcome did not match the expected outcome given in the

corpus;
3. No response - there was no outcome, for instance because no match was

made by the current matching algorithm.5

4.1. Keyword-based Matching

Words judged to be significant were manually added to the keyword set.6 In the
following queries from the corpus, the keywords have been underlined:

how many modules
what is the last date of submitting the recommendations

Weights were manually assigned to each keyword, with low weight attached to
meaningful but commonly used keywords (“how many” = 1) and high weight to
those keywords thought to carry the main content of their queries (“recommen-
dations” = 4). As explained above, each keyword was associated with one or
more interpretations from the response class; an interpretation here meaning
the label of a particular response, for instance the duration example (Sec. 3.4).
There were 152 keywords indexing 68 topics.

Simple Keyword Matching This method of matching was not expected to be
effective but was used to provide a baseline method against which all other
methods could be compared. (It should be viewed as a keyword equivalent

5 In these experiments, the use of a corpus that excluded irrelevant queries meant that
“no response” would be indicative of system failure rather than irrelevant input.

6 Here “keyword” in understood to mean both single word and multi-word keywords,
e.g. “part time”.

1710 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Evaluation of keyword, string similarity and very shallow syntactic matching

of the bag-of-words model in document classification.) In the first experiment,
weights were ignored. Competing interpretations were judged solely by the
number of keywords found in the input. So, if the underlined words are key-
words that shared the same interpretation (deadline application):

what is the last date of submitting the recommendations

the score for the deadline application interpretation was 3. Where there was a
tie between two or more interpretations, the first occurring interpretation was
selected.7 Results are given in Table 2.

Weighted Keyword Matching Here the weights were summed. So, if the
underlined words are keywords that shared the same interpretation (dead-
line application):

what is the last date of submitting the recommendations

and their weights were:

what - deadline application - 1
last date - deadline application - 3
recommendations - deadline application - 1

the sum was 5. Where there was a tie, the first occurring interpretation was
selected. Results are given in Table 3.

Simple/Weighted Keyword Matching The sum of the weights and the number
of keywords found were summed. Again, using the example:

what is the last date of submitting the recommendations

where the simple keyword score was 3 and the weighted keyword score was 5,
the simple weighted keyword was 8. Where there was a tie, the first occurring
interpretation was selected. Results are given in Table 4. (It might seem more
reasonable to calculate the mean weight of keywords by dividing the summed
weight by the number of keywords but this gave a slightly worse performance.)

4.2. Sentence-based Matching (String Similarity)

One or more stereotypical queries were written for each interpretation. For in-
stance, for the “duration” interpretation, the stereotypical queries were:

how long does a masters degree take?
how long does the program take?
how long does the programme take?

7 In a practical system, it would be necessary to employ some principled way of choos-
ing between tied interpretations, for instance by allowing the user to choose the re-
sponse best suited to their query. This, however, is an evaluation where the emphasis
is on mechanically selecting the most appropriate interpretation.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1711

Peter Hancox and Nikolaos Polatidis

Table 2. Simple keyword matching: results

Outcome n %
Correct 105 68.18
Incorrect 49 31.82
No response 0 0.00
Total 154 100.00

Table 3. Weighted keyword matching:
results

Outcome n %
Correct 118 76.62
Incorrect 36 23.38
No response 0 0.00
Total 154 100.00

Table 4. Simple and weighted keyword
matching: results

Outcome n %
Correct 119 77.27
Incorrect 35 22.73
No response 0 0.00
Total 154 100.00

how long is the msc?
what is the duration of the course?
what is the duration of the program?
what is the duration of the programme?

The matching process was to compute the string similarity between input (here
drawn from the corpus) and the stereotypical queries. There are a number of
string similarity algorithms that could be used [7]. Those selected were:

– Jaro proximity8 (comparing inputs/stereotypical questions forwards and
backwards);

– Jaro-Winkler proximity (forwards and backwards).

These algorithms were devised tor comparing strings such as personal names
where strings would be short and errors likely to be transpositions over fairly
short distances.

The Jaro algorithm compares two strings such as ‘Martha’ and ‘Marhta’. One
string is scanned, character-by-character. (In this example, ‘Martha’ is taken
as the first string.) A moveable window is placed over the second string. The
width of the windows is computed as half the length of the longer string - 1.
The window moves in synchrony with the scanning of the first string. A match
between a character in the first string can only occur within the window. In the
example, the emboldened characters are matches while underlined characters
are within the current window:

Martha Martha Martha Martha Martha Martha
Marhta Marhta Marhta Marhta Marhta Marhta

8 Confusingly, “proximity” and “distance” seem to be used interchangeably in the litera-
ture.

1712 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Evaluation of keyword, string similarity and very shallow syntactic matching

In a second scan, the number of transpositions is counted. The calculation of
Jaro proximity is:

1

3
× matches

length(string1)
+

matches

length(string2)
+

matches− (transpositions//2)

matches
(1)

(It should be said that the detailed implementation of transposition matching is
not intuitive: “The number of transpositions . . . is computed somewhat differently
from the obvious manner.” [32, p. 10].)

The Jaro-Winkler algorithm is founded on the observation that transposition
errors are less likely to occur in names or addresses within the initial n char-
acter positions (usually n = 4). Winkler extended the Jaro algorithm by adding
a threshold of similarity (usually 0.70). For two strings with a Jaro proximity of
0.7 or more, the initial n characters are matched for absolute similarity (giving a
“match length”). Thus, Jaro-Winkler proximity is calculated as:

JaroProximity + (length(match)× position× (1.0− JaroProximity)) (2)

Jaro [10] and Jaro-Winkler [31] algorithms have a record of good perfor-
mance [7]. Whilst developed for character-by-character processing of names, in
these experiments the comparison was word-by-word and thus inputs in these
experiments were relatively short and had a number of words comparable to the
number of letters in names. The rationale was that only a very limited domain of
words could be reasonably used to request information on any particular topic.
Also, the form of queries could be very standardised with only minor variations,
for instance because of choice of function words (e.g. “a”, v. “the”) or that there
would be minor variations caused by an applicant’s imperfect command of En-
glish. In both cases, a Jaro-based algorithm would seem to offer a way of pairing
a stereotypical query with a closely related user query. It should be noted that
the proportion of matching words (either directly aligned or transposed) was
lower than the proportion of matching characters in a personal name [16].

Jaro Proximity String Similarity The standard Jaro algorithm uses a matching
window defined as:

max(length(string1), length(string2))

2
− 1 (3)

A number of runs were tried to investigate the effect of longer window sizes,
leading to the conclusion that Jaro’s original window size was optimal.

Two experiments were carried out: searching from beginning to end of in-
put/stereotypical queries (Table 5); searching from end to beginning (Table 6).

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1713

Peter Hancox and Nikolaos Polatidis

Jaro-Winkler Proximity String Similarity This modification of the Jaro algo-
rithm rewards matches at the beginning of the two strings, specifically in the first
four positions. It was used in these experiments because it seemed that the be-
ginning of a query (e.g “how many . . . ”, “are there any . . . ”) was significant in
the query’s meaning. It was hypothesised that it would be more significant still
for comparing the endings of queries because many questions in English begin
with the same sequence of words, thus the endings of queries should be more
discriminating. The results are presented in Tables 7 and 8.

Table 5. Jaro (forward): results

Outcome n %
Correct 118 76.62
Incorrect 26 23.38
No response 0 0.00
Total 154 100.00

Table 6. Jaro (backwards): results

Outcome n %
Correct 105 68.18
Incorrect 49 31.82
No response 0 0.00
Total 154 100.00

Table 7. Jaro-Winkler (forward): results

Outcome n %
Correct 117 75.97
Incorrect 37 24.03
No response 0 0.00
Total 154 100.00

Table 8. Jaro-Winkler (backwards): results

Outcome n %
Correct 104 67.53
Incorrect 50 32.47
No response 0 0.00
Total 154 100.00

Jaro/Jaro-Winkler with Stemming Both the forward and backwards versions
of the Jaro and Jaro-Winkler algorithms were supplemented by stemming the
input and stereotypical queries. The stemming algorithm used was the Porter
algorithm [17]. The query:

what is the last date of submitting the recommendations

would be reduced to:

what i the last dat of submit the recommend

Results are given in Tables 9 to 12.

4.3. Sentence-based Matching (Shallow Syntax)

The hypothesis was that relative order of keywords is intrinsically important
over and above mere co-occurrence of keywords. However, choice of keywords
should not be left to human assignment (as in Section 4.1) but chosen using
syntactic information. Additionally, the order of keywords relative to other key-
words is significant as may be the distance between any two keywords.

1714 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Evaluation of keyword, string similarity and very shallow syntactic matching

Table 9. Jaro (forward-stemmed): results

Outcome n %
Correct 121 78.57
Incorrect 33 21.43
No response 0 0.00
Total 154 100.00

Table 10. Jaro (backwards-stemmed):
results

Outcome n %
Correct 106 68.83
Incorrect 48 31.17
No response 0 0.00
Total 154 100.00

Table 11. Jaro-Winkler (forward-stemmed):
results

Outcome n %
Correct 119 77.27
Incorrect 35 22.73
No response 0 0.00
Total 154 100.00

Table 12. Jaro-Winkler (backwards-
stemmed): results

Outcome n %
Correct 106 68.83
Incorrect 48 31.17
No response 0 0.00
Total 154 100.00

The aim was to build a matching algorithm that, for any given keyword, had
associated with it an ordered list of keywords that could (and should) occur in
the query before the given keyword and an ordered list of keywords that could
(and should) occur in the query after the given keyword. For the query:

what is the last date of submitting the recommendations

when the algorithm selected “submitting” as the given keyword, the ordered list
of prior keywords would be [last, date] and the subsequent keywords would be
[recommendations].

This method of matching required more pre-processing than the keyword-
based matching and Jaro-based matching. To “learn” a set of possible keyword
combinations, the Stanford Parser [13] was used to analyse each of the stereo-
typical queries. This produced a syntactic structure:

(ROOT
(SBARQ
(WHNP (WP what))
(SQ (VBZ is)
(NP
(NP (DT the) (JJ last) (NN date))
(PP (IN for)
(S
(VP (VBG submitting)
(NP (NNS recommendations)))))))

(. ?)))

from which keywords were extracted. Three sets of syntactic classes were cho-
sen:

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1715

Peter Hancox and Nikolaos Polatidis

1. nouns and adjectives (JJ, NN, NNS)9 giving from the example above the
keywords {last, date, recommendations}.

2. verbs, nouns and adjectives (JJ, NN, NNS, VRB, VRG, VRB, VRP) giving
from the example above the keywords {last, date, submitting, recommen-
dations}.

3. WH-adverbs, verbs, nouns and adjectives (JJ, NN, NNS, VRB, VRG, VRB,
VRP, WRB) giving from the example above the keywords {what, last, date,
submitting, recommendations}.

For each keyword, a dictionary entry was formed giving the keyword and the
ordered “before” and “after” keyword lists thus enforcing a very shallow amount
of (linear) syntactic structure:

dictionary(date, [what, last], [submitting, recommendations])

The matching algorithm scanned the user’s query. Each word in the input having
a dictionary entry was identified as a “main keyword”. The whole query was
them matched as follows:

1. Each keyword in the “before” list was sought in the user’s query before the
occurrence of the current main keyword. If a “before” keyword was found,
then any subsequent “before” keyword had to occur afterwards in the query
but before the “main keyword”. For instance, with the “before” keyword list
[what, last], there would be a complete match with:

what is the last date . . . ?

but would be an incomplete match of:

last what is the date for submitting recommendations?

In this second example, there is an incomplete match because the algorithm
requires the keywords to occur in order.

2. Each keyword in the “after” list was sought in the user’s query after the
occurrence of the current main keyword. The same requirement of ordering
was enforced.

Keyword matches were scored. Each valid occurrence of a keyword was
given a point, so

what is the last date for submitting recommendations?

scored 5, whereas:

last date is what for submitting recommendations?

scored 4 as would:

last what is the date for submitting recommendations?

9 The Stanford Parser uses the Penn Treebank tagset.

1716 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Evaluation of keyword, string similarity and very shallow syntactic matching

In addition, a mean distance was calculated so that queries with fewer non-
keywords between keywords would be rewarded. Given competing interpreta-
tions, the interpretation with the highest keyword score and (in the case of inter-
pretations with the same keyword score) then with the lowest mean difference
between keywords was ranked first (with the first found being arbitrarily chosen
amongst equal scoring interpretations).

As stated above (page 1715), three slightly differing syntactic classes were
used to construct the keyword dictionary. One of these (nouns and adjectives)
was used in conjunction with the Porter stemming algorithm, so that all dictio-
nary keywords (including those in the before and after lists) and the stereo-
typical queries from the test corpus were stemmed. The hypothesis was that
stemming would increase the number of matching keywords and thus increase
accuracy. Results for all four experiments are given in Tables 13 to 16.

Table 13. Shallow syntactic (nouns and
adjectives): results

Outcome n %
Correct 104 67.53
Incorrect 50 32.47
No response 0 0.00
Total 154 100.00

Table 14. Shallow syntactic (verbs, nouns
and adjectives): results

Outcome n %
Correct 105 68.18
Incorrect 49 31.82
No response 0 0.00
Total 154 100.00

Table 15. Shallow syntactic (WH-adverbs,
verbs, nouns and adjectives): results

Outcome n %
Correct 84 54.55
Incorrect 64 41.56
No response 6 3.90
Total 154 100.00

Table 16. Shallow syntactic (nouns and
adjectives) stemmed: results

Outcome n %
Correct 91 59.09
Incorrect 60 38.96
No response 3 1.95
Total 154 100.00

5. Interpretation of Results

The shallow syntactic matching algorithm including WH-adverbs, verbs, adjec-
tives and nouns was the worst-performing method. The range between the
worst (54.55%) and the best-performing methods (78.57%) is not particularly
narrow but disappointingly poor at the high end where only four out of five
queries would be correctly answered.

There is little to choose between Jaro (forward-stemmed) (78.57%),
simple/weighted keywords (77.27%) and Jaro-Winkler (forward-stemmed)
(77.27%).

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1717

Peter Hancox and Nikolaos Polatidis

Fig. 3. Incorrect interpretations by method of matching

5.1. Simple Matching

The simple method (here used for baseline comparison) is almost the least
reliable because its only strategy of choice is the number of keywords. So from
Fig. 3, it can be seen that when word length rises beyond three, the simple
method tends to perform less well. Essentially, given the restricted domain (and
hence vocabulary of the application) the more words a query such as:

by when do I need to accept a course offer?

contains, the greater probability there is that the query contains keywords for
an inappropriate interpretation. The likelihood of incorrect interpretations was
compounded by the lack of a principled way of selecting between alternatives.

5.2. Simple/Weighted Matching

The performance of simple/weighted matching was almost as good as the best
method. There were some queries which it processed incorrectly but which the
other methods processed correctly. Examples are:

why Birmingham University?
why study at Birmingham University?

In both cases, it provided an interpretation for the very closely related query:

why should I come to Birmingham?10

10 Where this sentence is understood to mean the city of Birmingham.

1718 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Evaluation of keyword, string similarity and very shallow syntactic matching

It seems at this level of subtlety, the simple/weighted matching method was
unable to distinguish satisfactorily between competing interpretations.

5.3. Jaro (Forward-Stemmed)

Of the eight Jaro-based methods, Jaro (forward-stemmed) was most effec-
tive (78.57%). It might have been expected to work even better. Fig. 3 fails to
record any particular pattern to failures amongst three similarly scoring meth-
ods, for instance they did not mainly occur amongst queries of shorter lengths.
Neither did the errors occur amongst longer queries. The stemming algorithm
worked to reduce variability between users’ expressions. Thus users’ variabil-
ity of expression became less significant and one stereotypical query would
match with a larger number of users’ queries. This is supported by an examina-
tion of queries which keyword methods could resolve correctly but which Jaro
(forward-stemmed) failed. The most extreme was:

when do I need to finalize my course optional modules?11

Without a sufficiently similar stereotypical query, it would be more a matter of
luck if the nearest matching stereotypical query had an appropriate interpreta-
tion.

5.4. Shallow Syntax

All four variants of the very shallow syntactic search algorithm produced consis-
tently poor results. It would be reasonable to expect the inclusion of verbs to in-
crease reliability as they have a crucial role in specifying complements which, in
turn are realized primarily by adjectives and nouns within noun phrases. In fact,
it produced no better results than the simplest (and crudest) keyword matching
algorithm. The addition of stemming decreased accuracy still further. This was
because it increased the number of candidate interpretations of a query without
in any way contributing to an improvement in their ranking. Thus it increased
the likelihood that the matching algorithm would be unable to select the current
interpretation from a larger set of candidates.

5.5. Scalability

The corpus was, at 154 entries, small-scale. Nonetheless, it is possible to dis-
cern some problems of scalability even at this size. Simple/weighted matching
failed where it had to choose between two closely related interpretations. An
attempt to increase the success rate from 77.27% would require, in part, more
keywords. This evaluation suggests that increasing keywords in a limited do-
main (with the likelihood that one keyword will index multiple interpretations)
would bring a decrease in accuracy.

11 A simpler way of expressing this might have been: “what is the deadline for choosing
optional modules?”

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1719

Peter Hancox and Nikolaos Polatidis

While it was difficult to see a consistent pattern of failure for the best per-
forming Jaro (forward-stemmed) (78.57%), there is some evidence that a lack
of stereotypical queries was a cause of failure. Thus an increase in the cov-
erage would, unlike simple/weighted matching, improve performance. In sum-
mary, Jaro (forward-stemmed) has the potential for scalability; simple/weighted
matching does not.

5.6. Lack of Input v. Correctness

It was hypothesised that it would be more difficult to answer shorter queries
correctly. Fig. 3 gives only very limited evidence of this. At a query length of
two, Jaro (forward) did badly; at query length of three words, keyword-based
matching did less well. However, there is no clearly significant evidence and so
the hypothesis can be neither confirmed nor denied.

5.7. Processing Ungrammatical Inputs

It was hypothesised that simple/weighted matching would outperform Jaro
(forward-stemmed) in processing ungrammatical inputs. The proportion of un-
grammatical inputs12 (less than 10%) was small. Errors of grammar (usu-
ally number/person agreement failures) were either very local (“a courses”) or
longer distance:

when does the university starts?

For the keyword-based systems, there was no notion of agreement: each
keyword was independent and so number/person agreement could not be en-
forced, even if desirable. Agreement is explicit in Jaro-based methods because,
assuming stereotypical queries will be well-formed, there would be no com-
plete match between the users’ inputs and the stereotypical queries. However,
for longer distance ungrammaticality to be possible, there has to be a relatively
long input and so the Jaro score would be less reduced than it would be with
very local ungrammaticality in short inputs.

Adding stemming worked against any effects of agreement. By reducing
word forms to their stems, morpho-syntactic information was removed and so it
played no part in the matching process. This had the effect of improving match-
ing.

6. Related Work

ELIZA [28] was one of three well-recognized natural language processing sys-
tems developed at much the same time. Raphael’s SIR system [19] and Bo-
brow’s STUDENT [4] answered mathematical questions. That they were both
based on very formal domains of knowledge contributed to their success. As

12 Not to be confused with abbreviated input e.g. “registration deadline?”

1720 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Evaluation of keyword, string similarity and very shallow syntactic matching

Weizenbaum himself noted “from the purely technical programming point of
view, the psychiatric interview [which ELIZA modelled] has the advantage that
it eliminates the need for storing explicit information about the real world.” [29,
p. 474], [14, pp. 28-41; 110-111].

ELIZA has a long-enduring popularity. Implementations are still widely avail-
able13 and its reputation has outlasted STUDENT and SIR. Much of ELIZA’s
reputation is attributable to its domain: a psychiatric therapist was novel and
still is very accessible (and even attention catching) to the less-than-expert AI
practitioner. This alone does not account for its reputation and longevity: it was
an early example of robust processing in that it could deal with ungrammatical
input and conversations where topics were abandoned and returned to later,
or the changing themes of the conversation were unrelated. Most of all, ELIZA
offered an early prospect of a system that could pass the popularized notion
of the Turing Test. Weizenbaum himself (incidentally rather than intentionally, it
seems) raised this prospect in reporting that, although his secretary knew that
in using it she was “talking to a machine”, she asked “‘Would you mind leav-
ing the room, please?’ I [i.e. Weizenbaum] believe the anecdote testifies to the
success with which the program maintains the illusion of understanding.” [29,
p. 478].

Weizenbaum attempted to show the potential for question-answering sys-
tems using a refinement of the ELIZA system14, i.e. by developing it into what
this paper terms an infobot. He chose to demonstrate his ideas by providing
another system to answer maths problems, which necessitated the addition of
an expression evaluator. Changes were made to the store of templates. It was
divided into what Weizenbaum likened to a routine (i.e. controlling set of tem-
plates which he termed a “script”) and subroutines (i.e. groups of closely related
templates on very narrow topics). The reason for this hierarchical organization
seems to be both practical (in that it allowed larger dialogues to be handled in
small memories) and theoretical (reflecting a concern with being able to dis-
tinguish between alternative word senses). This development did not have the
impact of the first ELIZA, failing to develop the ELIZA techniques in any impor-
tant way, and remains a curiosity.

Shapiro and Kwasny’s 1975 development of an ELIZA infobot [24] proved
more influential. In part, their success can be attributed to the development of
real-time time-sharing interactive computing. Newly developing operating sys-
tems and databases were applications which allowed greater user interaction
but also required quite detailed knowledge of command languages. A common
theme amongst the approaches being developed to help systems was how the
user could find what they needed without first knowing the appropriate tech-
nical vocabulary or command language. Shapiro and Kwasny demonstrated a
straightforward development of ELIZA to provide help for the DECsystem-10.

13 For instance: http://www.chayden.net/eliza/Eliza.html (Java).
14 Confusingly Weizenbaum also called his new system ELIZA [29, p. 478, col. 1].

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1721

Peter Hancox and Nikolaos Polatidis

Their evaluation was slight by modern standards but their work was highly re-
garded for providing access to naı̈ve or casual users15 [9], [18], [20].

1991 saw the beginning of the Loebner Prize contests in which competing
chatbots attempt to persuade a jury of their ability to pass the Turing Test. To
succeed, it is necessary for a chatbot to chat, irrespective of topic or quality of
responses. In this respect, the Loebner Prize has not directly contributed to the
development of infobots. The attachment of a virtual character, an avatar, to a
chatbot has become fairly common [2]. There has been a return to the chatbot
as therapist with avatars being added to systems for education (e.g. [21]) and
psychiatric therapy and counselling [26]. Some organizations, such as Ikea,
Alliance & Leicester bank and the O2 mobile phone company (see p. 1704
above) have used chatbots and avatar interfaces as product advisors. The de-
velopment of such systems has been encouraged in part by the availability of
the ALICE system with the AIML (Artificial Intelligence Markup Language) [1].
This provides a more formal way of specifying ELIZA-like templates together
with a slightly more sophisticated matching algorithm which allows for some
non-determinism. One addition beyond that of the original ELIZA is the “predi-
cate” feature which allows the “botmaster” to write rules that contain is/or facts,
for instance: “Samuel Clemens is Mark Twain”. This provides a method, albeit
unsophisticated, to store factual information.

In common with any developer of a natural language-interfaced informa-
tion retrieval system, infobot developers have the twin problems of ensuring the
coverage of their information resource is correct and complete and their inter-
face covers the range of inputs users wish to employ. The capability for the
user to add novel ways of expressing queries was introduced in Weizenbaum’s
second ELIZA [29, p. 479] where there is an impressive learning of German
queries. This kind of learning was included in CSIEC, where it stored all inputs
and used them in its responses [11]. The difficulty for infobots is that extending
the language coverage alone might not be sufficient: it may also be necessary
to extend or improve the information content. CSIEC allowed the user to add
new information (i.e. by adding new facts which would be matched to existing
templates and so were analysable, such as “Australia is in the Pacific”). Learn-
ing additional information by the kinds of infobot discussed in this paper would
be problematic because the information to be added would usually be beyond
simple facts (e.g. “Australia is in the Pacific”) and the quality of newly learned
information would have to be assured by the system operators.

Some infobots have been part of larger systems that include, amongst other
components, a database. Sammut’s system [22] provided an infobot for a mu-
seum collection. The pattern matching of natural language inputs to rules (writ-
ten in production rule form) did not extend the capabilities of ELIZA (or even
ALICE) and it is not clear that the incorporation of a database made any differ-

15 Cuff [8, p. 168] offered a more rigorous analysis of what was meant by “casual user”,
perhaps from a less favourable standpoint when he stated: “. . . the author’s [sic] dis-
cussion is a piece of special pleading for a natural language understanding program
which will explain unfamiliar parts of a computer system.”

1722 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Evaluation of keyword, string similarity and very shallow syntactic matching

ence to the processing of natural language inputs. Similar comments apply to
a system that provides information about student loans [15]. Regretfully, there
is often a lack of rigorous evaluation in this work, the notable exception being
Carroll and McKendree’s evaluation of three types of interface (including ELIZA)
to expert systems [6].

Some researchers have, like the work reported here, tried to find alternative
ways of matching inputs with FAQ-type information sources. Banchs and Li de-
veloped IRIS, a system they described as “a chat-oriented dialogue system.” [3]
Rather than using templates, they used a vector space model, searching over
previous dialogues. Information retrieval systems for FAQs that made no claim
to chatting (i.e. are less infobot and more conventional information retrieval sys-
tem) have used similar, statistically-based matching techniques [12], [5]. Both of
these systems identify questions within FAQs and use these to match with the
users’ queries. This is similar to the use of “stereotypical queries” in the current
work.

Shallowness in language analysis is, it seems, a vague term. The work de-
scribed here is “very shallow” in that, where is uses syntactic processing, it does
so only to isolate keywords of particular grammatical classes. Wang, Ming and
Chua use slightly less shallow parsing in that they (more conventionally) iso-
late phrase groups (e.g. VP) to find similar questions which have been asked
of services such as Yahoo. They are able to claim that their technique offers
robustness when presented with ungrammatical inputs [27]. At the opposite
extreme, Sneiders’ interpretation of shallow is, if anything, as shallow as the
weighted keyword matching presented here. “Shallow language understand-
ing” is implemented in what he terms “prioritized keyword matching” where he
divides keywords into four groups: required, optional, forbidden and stop-list
(i.e. high-frequency function words). There is no syntactic analysis. Perhaps to
solve problems of conflicting word senses, Sneiders uses multiple lexicons, as
many as one per FAQ text [25].

The work surveyed shows the tension between chatting – the need to keep
the conversation going whatever the topic of ungrammaticality of the input – and
the desire to provide users with information. Infobots (as opposed to chatbots)
are very much rarer in the literature. While they can respond robustly to all
inputs, the accuracy of their responses is disappointing. Work on developing
template matching, such as reported here, has been rare. Those systems that
have provided information retrieval for the kind of FAQ system used in this work
have tended to use statistical techniques with limited robustness.

7. Conclusions and Further Work

A best correctness rate of 78.57% is not high enough for an effective system.
The Jaro (forward-stemmed) method offers the possibility of further improve-
ment because it is scalable, thus allowing more stereotypical queries to be
used. In particular, it performed well on closely related sentences and less well
on longer sentences not closely represented in the stereotypical query store.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1723

Peter Hancox and Nikolaos Polatidis

The target application of a postgraduate application enquiry system would be
used by native and non-native English speakers. There is no evidence that un-
grammatical queries led to serious deterioration of performance of the Jaro
(forward-stemmed) string similarity algorithm.

The problem with the use of the Jaro (forward-stemmed) method is acquiring
stereotypical queries. To this end it is proposed that, in the target application,
users be allowed to decide if the system has answered their question or not. If
their response in positive, their query could be added to the store of stereotyp-
ical queries. Thus the system would, in a limited way, be capable of learning.
In this way, it would have a more limited learning capability than those systems
(e.g. CSIEC [11]) that seek knowledge from the user.

There is further work that could explore the capabilities of keyword-based
searches. First, a limited dictionary of synonyms could be used to normalise
queries. So, instances of “MSc”, “master”, “masters”, “MSc in”, “MSc of”,
etc. could be normalised to one chosen form. This would reduce the number
of keywords to be stored and make it easier to keep keywords and their weights
consistent with other keywords and weights. Second, as very shallow syntac-
tic techniques decrease effectiveness, it would seem sensible to investigate
more ELIZA-like techniques by, for instance, returning to templates for match-
ing where the system has a number of patterns of the form:

what is the deadline for KEYWORD(S)?

However, this could overcomplicate the system, leading to poorer performance.
It would require a more sophisticated keyword system, perhaps of a predi-
cate/argument structure (e.g. deadline(option choice)). This in turn would be
more difficult to use with abbreviated (“Google-like”) queries.

Acknowledgments. We wish to thank those anonymous applicants who tested the sys-
tems for us and Professor Achim Jung and Dr Alberto Simões for their support.

References

1. ALICE Artificial Intelligence Foundation: AIML: Artificial intelligence markup lan-
guage, www.alicebot.org/aiml.html, [Accessed 31 May 2013].

2. Allen, C.: Artificial life, artificial agents, virtual realities: technologies of autonomous
agency. In: Floridi, L. (ed.) The Cambridge Handbook of Information and Computer
Ethics, chap. 13, pp. 219–233. Cambridge University Press, Cambridge (2010)

3. Banchs, R.E., Li, H.: IRIS: a chat-oriented dialogue system based on the vector
space model. In: ACL 2012: Proceedings of the 50th Annual Meeting of the Associ-
ation for Computational Linguistics, Jeju, Jeju Island, South Korea, 8-14 July 2012.
pp. 37–42. Association for Computational Linguistics, Stroudsburg, PA (2012)

4. Bobrow, D.G.: Natural language input for a computer problem solving system. In:
Minsky, M.L. (ed.) Semantic Information Processing, pp. 146–226. MIT Press, Cam-
bridge, MA (1968)

5. Burke, R.D., Hammond, K.J., Kulyukin, V., Lytinen, S.L., Tomuro, N., Schoenberg,
S.: Question answering from frequently asked question files: experiences with the
FAQ finder system. AI Magazine 18(2), 57–65 (1997)

1724 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Evaluation of keyword, string similarity and very shallow syntactic matching

6. Carroll, J.M., McKendree, J.: Interface design issues for advice-giving expert sys-
tems. Communications of the ACM 30(1), 14–32 (1987)

7. Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string distance metrics for
name-matching tasks. In: IIWeb-03: proceedings of the IJCAI-2003 Workshop on
Information Integration on the Web, Acapulco, 9-10 August 2003. pp. 73–78. IJCAI
Press, Palo Alto, CA (1993)

8. Cuff, R.N.: On casual users. International Journal of Man-Machine Studies 12(2),
163–187 (1980)

9. Houghton, R.C.: Online help systems: a conspectus. Communications of the ACM
27(2), 126–133 (1984)

10. Jaro, M.: Advances in record linkage methodology as applied to the 1985 census of
tampa florida. Journal of the American Statistical Society 84(406), 414–420 (1989)

11. Jia, J.: CSIEC: a computer-assisted English learning chatbot based on textual
knowledge and reasoning. Knowledge-based Systems 22(4), 249–255 (2009)

12. Jijkoun, V., de Rijke, M.: Retrieving answers from frequently asked questions pages
on the web. In: CIKM ’05: proceedings of the 14th conference on Information and
Knowledge Management, Bremen, 31 October-5 November 2005. pp. 76–83. ACM,
New York (2005)

13. Klein, D., Manning, C.: Accurate unlexicalized parsing. In: Proceedings of the 41st
Meeting of the Association for Computational Linguistics. pp. 423–430. Association
for Computational Linguistics, Stroudsburg, PA (2003)

14. Nilsson, N.J.: The quest for artificial intelligence: a history of ideas and achievement.
Cambridge University Press, Cambridge (2010)

15. Owda, M., Bandar, Z., Crockett, K.: Conversation-based natural language interface
to relational databases. In: WI-IATW ’07: proceedings of the 2007 IEEE/WIC/ACM
International Conferences on Web Intelligence and Intelligent Agent Technology -
workshops, Silicon Valley, CA, 5-12 Nov. 2007. pp. 363–367. IEEE Press, New York
(2007), presented at Workshop on Communication between Human and Artificial
Agents (CHAA-07)

16. Polatidis, N.: Chatbot for admissions. School of Computer Science, University of
Birmingham (2011), unpublished MSc dissertation

17. Porter, M.: An algorithm for suffix stripping. Program 14(3), 130–137 (1990)
18. Price, L.A.: Thumb: an interactive tool for accessing and maintaining text. IEEE

Transactions on Systems, Man and Cybernetics 12(2), 155–161 (1982)
19. Raphael, B.: SIR: a computer program for semantic information retrieval. In: Minsky,

M.L. (ed.) Semantic Information Processing, pp. 33–145. MIT Press, Cambridge,
MA (1968)

20. Relles, N., Price, L.A.: A user interface for online assistance. In: ICSE 1981: pro-
ceedings of the 5th International Conference on Software Engineering, San Diego,
CA, 9-12 March 1981. pp. 400–408. IEEE Press, New York (1981)

21. Rothkrantz, L.: E-learning in virtual communities. Communication & Cognition 42(1
& 2), 35–52 (2009)

22. Sammut, C.: Managing context in a conversational agent. Linkoping Electronic Arti-
cles in Computer & Information Science 3(7) (2001)

23. Satterthwaite, S.: Prolog-Java chatbot for postgraduate admissions in the School of
Computer Science. School of Computer Science, University of Birmingham (2010),
unpublished MSc dissertation

24. Shapiro, S.C., Kwasny, S.C.: Interactive consulting via natural language. Communi-
cations of the ACM 8(8), 459–462 (1975)

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1725

Peter Hancox and Nikolaos Polatidis

25. Sneiders, E.: Automated FAQ answering: continued experience with shallow lan-
guage understanding. In: Chaudhri, V., Fikes, R. (eds.) Question Answering Sys-
tems: papers from the 1999 AAAI Fall Symposium, North Falmouth, MA, 57 Novem-
ber 1999. pp. 97–107. AAAI Press, Palo Alto, CA (1999), Technical Report FS-99-02

26. Tantam, D.: The machine as psychotherapist: impersonal communication with a ma-
chine. Advances in Psychiatric Treatment 12(6), 416–426 (2006)

27. Wang, K., Ming, Z., Chua, T.S.: A syntactic tree matching approach to finding similar
questions in community-based QA services. In: SIGIR ’09: proceedings of the 32nd
International ACM SIGIR conference on research and development in Information
Retrieval Boston, MA, 19-23 July 2009. pp. 187–194. ACM Press, New York (2009)

28. Weizenbaum, J.: ELIZA: a computer program for the study of natural language com-
munication between man and machine. Communications of the ACM 9(1), 36–45
(1966)

29. Weizenbaum, J.: Contextual understanding by computers. Communications of the
ACM 10, 474–480 (1967)

30. Weizenbaum, J.: Computer power and human reason: from judgement to calcula-
tion. Penguin, Harmondsworth (1984)

31. Winkler, W.: String comparator metrics and enhanced decision rules in the Fellegi-
Sunter model of record linkage. In: Proceedings of the Section on Survey Research
Methods. pp. 354–359. American Statistical Association, Washington, D.C. (1990)

32. Winkler, W.: Overview of record linkage and current research directions. Research
report series Statistics 2006-2, Statistical Research Division, U.S. Census Bureau,
Washington, D.C. (2006)

Peter Hancox is a Senior Lecturer in the School of Computer Science at the
University of Birmingham. He holds a BA and was awarded a PhD for work
on the machine translation of limited texts. His research interests are in both
natural language processing and parallel implementations of constraint logic
programming languages.

Nikolaos Polatidis is a PhD student at the Department of Applied Informatics
at the University of Macedonia, Thessaloniki, Greece. He received his Mas-
ter’s degree in Internet Software Systems from the University of Birmingham,
UK, having previously completed his BSc in Computer Science at Heriot-Watt
University, Edinburgh. His research interests include recommender systems,
mobile technologies and natural language processing.

Received: December 2, 2012; Accepted: August 12, 2013.

1726 ComSIS Vol. 10, No. 4, Special Issue, October 2013

DOI: 10.2298/CSIS121130060L

Using proximity to compute semantic relatedness
in RDF graphs

José Paulo Leal

CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto
Porto, Portugal
zp@dcc.fc.up.pt

Abstract. Extracting the semantic relatedness of terms is an important
topic in several areas, including data mining, information retrieval and web
recommendation. This paper presents an approach for computing the se-
mantic relatedness of terns in RDF graphs based on the notion of prox-
imity. It proposes a formal definition of proximity in terms of the set paths
connecting two concept nodes, and an algorithm for finding this set and
computing proximity with a given error margin. This algorithm was imple-
mented on a tool called Shakti that extracts relevant ontological data for
a given domain from DBpedia – a community effort to extract structured
data from the Wikipedia. To validate the proposed approach Shakti was
used to recommend web pages on a Portuguese social site related to
alternative music and the results of that experiment are also reported.

Keywords: semantic similarity, semantic relatedness, ontology genera-
tion, web recommendation, processing Wikipedia data

1. Introduction

Searching effectively on a comprehensive information source as the Web or just
on the Wikipedia usually boils down to using the right search terms. Most search
engines retrieve documents where the searched terms occur exactly. Although
stemming search terms to obtain similar or related terms (e.g. synonyms) is a
well known technique for a long time [15], it is usually considered irrelevant in
general and search engines of reference no longer use it [1].

Nevertheless, there are cases where semantic search, a search where the
meaning of terms is taken in consideration, is in fact useful. For instance, to
compare the similarity of genes and proteins in bio-informatics, to compare ge-
ographic features in geographical informatics, and to relate multiword terms in
computational linguistics.

The motivation for this research in semantic relatedness comes from an-
other application area, recommendation. Most recommenders use statistical
methods, such as collaborative filtering, to make suggestions based on the
choices of users with a similar choice pattern. For instance, an on-line library
may recommend a book selected by other users that also bought the books al-
ready in the shopping basket. This approach has a cold start issue: what should

José Paulo Leal

be recommended to someone that was not yet bought or searched anything? to
whom recommend a book that was just published and few people have bought?

An alternative approach is to base recommenders on an ontology of rec-
ommend items. An on-line library can take advantage from the structure of an
existing book classification, such as the Library of Congress Classification sys-
tem. However, in many cases such classification does not exist and the cost
of creating and maintaining an ontology would be unbearable. This is specially
the case if one intends to create an ontology on a unstructured collection of
information, such as a folksonomy.

Consider a content-based web recommendation system for a social net-
work, where multimedia content (e.g. photos, videos, songs) is classified by
user-provided tags. One could simply recommend content with common tags
but this approach would provide only a few recommendations since few content
items share the exact same tags. In this case, to increment the number of re-
sults, one could search for related tags. For instance, consider that your content
is related to music that users tag with names of artists and bands, instruments,
music genres, and so forth. To compute the semantic relatedness among tags
in such a site one needs a specific ontology adapted to this type of content.

It should be noticed that, although several ontologies on music already ex-
ist, in particular the Music Ontology Specification1, they are not adjusted to this
particular use. They have a comprehensive coverage of very broad music gen-
res but lack most of the sub-genres pertinent to an alternative music site. The
same would happen with lexical thesaurus, such as WordNet. To create and
maintain an ontology adjusted to a very specific kind the best approach is to ex-
tract it from an existing source. The DBpedia2 is a knowledge base that harvests
the content of the Wikipedia and thus covers almost all imaginable subjects. It is
based on an ontology that classifies Wikipedia pages and on mapping rules that
convert the content of Wikipedia info-boxes and tables into Resource Descrip-
tion Framework (RDF) triplets available from a SPARQL endpoint (SPARQL is
a recursive acronym for SPARQL Protocol and RDF Query Language).

In this paper we present Shakti, a tool to extract an ontology for a given do-
main from DBPedia and use it to compute the semantic relatedness of terms
defined as labels of concepts in that ontology. One of the main contributions
of this paper is the algorithm used for computing relatedness. Most ontologies
based algorithms for computing relatedness assume that ontologies are tax-
onomies or at least direct acyclic graphs, which is not generally the case of
an ontology extracted from DBpedia. Also, these algorithms usually focus on
a notion of distance. Instead the proposed algorithm is based on a notion of
proximity. Proximity measures how connected two terms are, rather than how
distant they are. A term may be at the same distance to other two terms but
have more connections to one than the other. Terms with more connections are
in a sense closer and thus have an higher proximity.

1 http://musicontology.com/
2 http://dbpedia.org/About

1728 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using proximity to compute semantic relatedness in RDF graphs

The rest of this paper is organized as follow. The following section presents
related work on semantic relatedness algorithms and on the use of knowledge
bases such as DBpedia. Section 3 is the main section as it introduces the con-
cept of proximity, provides a formal definition of this concept in terms of sets
of paths, and presents an algorithm for computing proximity based on the pro-
posed definition. Section 4 presents the design and implementation of Shakti,
a tool implementing the proposed algorithm. The following section describes a
use of Shakti to populate a proximity table of a recommender service that was
used as validation of the proposed approach. The final section summarizes the
contributions of this paper and highlights future directions of this research.

2. Related Work

This section summarizes the concepts and technologies that are typically used
as basis for the computation of semantic relatedness of terms in the Web.

2.1. Knowledge representation

Currently, the Web is a set of unstructured documents designed to be read by
people, not machines. The semantic web — sponsored by W3C - aims to en-
rich the existing Web with a layer of machine-interpretable metadata on Web
resources so that computer programs can predictably exchange and infer new
information. This metadata is usually represented in RDF. Its specification [2]
includes a data model and a XML binding. The RDF data model is a collection
of triples – subject, predicate and object — that can be viewed as a labeled
directed multigraph; a model well suited for knowledge representation. Ontolo-
gies formally represent knowledge as a set of concepts within a domain, and the
relationships between those concepts. Ontology languages built on top of RDF
provide a formal way to encode knowledge about specific domains, including
reasoning rules to process that knowledge [4]. In particular, RDF Schema [3]
provides a simple ontology language for RDF metadata that can be comple-
mented with the more expressive constructs of OWL [12]. The triplestores can
be queried and updated using SPARQL.

2.2. Knowledge bases

Knowledge bases are essentially information repositories that can be catego-
rized as machine or human-readable information repositories. A human-read-
able knowledge base can be coupled with a machine-readable one, through
replication or some real-time and automatic interface. In that case, client pro-
grams may use reasoning on computer-readable portion of data to provide,
for instance, better search on human-readable texts. A great example is the
machine-readable DBpedia extraction from human-readable Wikipedia.

Wikipedia articles consist mostly of free text. However, the joint efforts of
human volunteers have recently obtained numerous facts from Wikipedia, stor-
ing them as machine-harvestable triplestores in Wikipedia infoboxes [17]. The

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1729

José Paulo Leal

DBpedia project extracts this structured information and combines this informa-
tion into a huge, cross-domain knowledge base. DBpedia uses RDF as the data
model for representing extracted information and for publishing it on the Web.
Then, SPARQL can be used as the query language to extract information allow-
ing users to query relationships and properties associated with many different
Wikipedia resources.

2.3. Semantic similarity

Extracting the semantic relatedness of terms is an important topic in several
areas, including data mining, information retrieval and web recommendation.
Typically there are two ways to compute semantic relatedness on data:

1. by defining a topological similarity using ontologies to define the distance
between words (e.g. in a directed acyclic graph the minimal distance be-
tween two term nodes);

2. by using statistical means such as a vector space model to correlate words
from a text corpus (co-occurrence).

Semantic similarity measures have been developed and applied in sev-
eral domain ontologies such as in Computational Linguistics (e.g. Wordnet3)
or Biomedical Informatics (e.g. Gene Ontology4). In order to calculate the topo-
logical similarity one can rely either on ontological concepts (edge-based or
node-based) or ontological instances (pairwise or groupwise). A well-known
node-based metric is the one developed by Resnik [13] which computes the
probability of finding the concept (term or word) in a given corpus. It relies on
the lowest common subsumer which has the shortest distance from the two
concepts compared. This metric is usually applied on WordNet [6] a lexical
database that encodes relations between words such as synonymy and hyper-
nymy. A survey [14] between human and machine similarity judgments on a
Wordnet taxonomy reveal highest correlation values on other topological met-
rics such the ones developed by Jiang [9] and Lin [10].

Statistical computation of semantic relatedness relies on algebraic models
for representing text documents (and any objects, in general) as vectors of iden-
tifiers. Comparing text fragments as bags of words in vector space [1] is the sim-
plest technique, but is restricted to learning from individual word occurrences.
The semantic sensitivity is another issue where documents with similar context
but different term vocabulary won’t be associated, resulting in a ”false nega-
tive match”. Latent Semantic Analysis (LSA) [5] is a statistical technique, which
leverage word co-occurrence information from a large unlabelled corpus of text
[8].

Currently, Wikipedia has been used for information retrieval related tasks
[16], [18], [7] and [11]. This is due to the increasing amount of articles avail-
able and the associated semantic information (e.g. article and category links).

3 http://wordnet.princeton.edu/
4 http://www.geneontology.org/

1730 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using proximity to compute semantic relatedness in RDF graphs

One of these efforts is the Explicit Semantic Analysis(ESA), a novel method
that represents the meaning of texts in a high-dimensional space of concepts
derived from Wikipedia and the Open Directory Project (ODP). It uses machine
learning techniques to represent the meaning of any text as a weighted vector of
Wikipedia-based concepts. The relatedness of texts in this space is obtained by
comparing the corresponding vectors using conventional metrics (e.g. cosine)
[7].

3. Proximity

This section presents an approach to compute semantic relatedness using on-
tological information in RDF graphs. The first subsection provides the moti-
vation for using proximity, rather than distance, as the underlying concept for
computing semantic relatedness between two nodes. The following subsection
presents a formal definition of the proximity based on sets of paths connecting
the nodes. The final subsection outlines the algorithm for computing proximity
using the proposed definition.

3.1. Motivation

Concepts on DBPedia are represented by nodes. Take for instance the music
domain used for the case study presented in section 5. Singers, bands, music
genres, instruments or virtually any concept related to music is represented
as a node in DBpedia. These nodes are related by properties, such as has
genre connecting singers to genres, and thus form a graph. This graph can be
retrieved in RDF format using the SPARQL endpoint of DBpedia.

The core idea in the research presented in this paper is to use the RDF
graph to compute the similarity between nodes. Actually, the goal is the similar-
ity between terms, but each node and arc of this graph has a label — a string
representation or stringification — that can be seen as a term.

At first sight relatedness may seem to be the inverse of the distance between
nodes. Two nodes far apart are unrelated and every node is totally (infinitely) re-
lated to itself. Interpreting relatedness as a function of distance has an obvious
advantage: computing distances between nodes in a graph is a well studied
problem with several known algorithms. After assigning a weight to each arc
one can compute the distance as the minimum length of all the paths connect-
ing the two nodes.

On a closer inspection this interpretation of relatedness as the inverse of
distance reveals some problems. Consider the graph in Fig. 1. Depending on
the weight assigned to the arcs formed by the properties has type and has
genre, the distances between Lady Gaga, Madonna and Queen are the same.
If the has genre has less weight than has type, this would mean that the
band Queen is as related to Lady Gaga as Madonna, which obviously should
not be the case. On the other hand, if has type has less weight than has

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1731

José Paulo Leal

Band Musical Artist

Lady Gaga MadonnaQueen

Pop Rock

has g enre

hastyp e has typ e has typ e

AC/DC

Hard Rock

has typ e

has g enrehas g enrehas g enre

 Rock

sub g enre sub g enre

Fig. 1. RDF graph for concepts in music domain

genre then Queen is more related to AC/DC than Lady Gaga or Madonna
simply because they are both bands, which also should not be the case.

In the proposed approach we consider proximity rather than distance as a
measure of relatedness among nodes. By definition5, proximity is closeness;
the state of being near as in space, time, or relationship. Rather than focusing
solely on minimum path length, proximity balances also the number of exist-
ing paths between nodes. As a metaphor consider the proximity between two
persons. More than resulting from a single common interest, however strong, it
results from a collection of common interests.

With this notion of proximity, Lady Gaga and Madonna are more related
to each other than with Queen since they have two different paths connecting
each other, one through Musical Artist and another Pop Rock. By the
same token the band Queen is more related to them than to the band AC/DC.

An algorithm to compute proximity must take into account the several paths
connecting two nodes and their weights. However, paths are made of several
edges, and the weight of an edge should contribute less to proximity as it is
further away in the path. In fact, there must be a limit in number of edges in a
path, as RDF graphs are usually connected graphs.

3.2. Definition

To be of practical use the notion of proximity among RDF nodes needs to be
formalized. Proximity must be a function of graph nodes returning their amount

5 https://en.wiktionary.org/wiki/proximity

1732 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using proximity to compute semantic relatedness in RDF graphs

of proximity. Given a graph with a set of nodes V the objective of this subsection
is thus to define a function

p : V × V → [0, 1]

The proximity function p must take two nodes and return the “percentage” of
proximity between them. That is, proximity of related nodes must be close to 1,
with ∀v∈V p(v, v) = 1, and the proximity of unrelated nodes must be close to 0.

An RDF graph is actually a typed multigraph, meaning that any pair of nodes
can be connected by several edges, known as properties. Nodes and specially
edges (properties) in RDF graphs have an URI that can be interpreted as a
type6. For the purpose of defining a proximity function only edge types are rel-
evant. Moreover, this approach requires weights associated with edge types,
rather then directly to edges as is usual in graph theory.

Consider a direct7 typed multigraph G = (V,E, T,W) where V is a set of
nodes or vertices, E is a set of edges, T is a set of edge types and W is
a mapping of types to positive integers. Each edge in E is an ordered triplet
(u, v, t) where u, v ∈ V and t ∈ T .

The set W defines a mapping w : T → N+ and the lower upper bound of
weights for all types is

Ω(G) ≡ max
ti∈T

w(ti)

The degree of a node is the number of edges connecting to it, deg(u) =
#{(u′, v′, t′) ∈ E : u′ = u} and the degree of a graph G, denoted ∆(G), is
usually defined as the maximum of the node degrees

∆(G) = max
v∈V

deg(v)

Given the multigraph G, an acyclical path p of size n ∈ N+ is defined as a
sequence of unrepeated nodes u0 . . . un∀0≤i,j≤nui 6= uj connected by edges
with type ti in either direction, that is ∀i(ui−1, ui, ti) ∈ E ∨ (ui, ui−1, ti) ∈ E, as
follows.

p = u0
t1−→ u1

t2−→ u2 . . . un−1
tn−→ un

An acyclical path must have at least one edge and cannot have loops. In the
remainder of this section an acyclical path is simply referred as a path.

The weight function defined above can be extended to paths. The weight of
path p is the sum of weights of each edge’s type, w(p) = w(t1) + w(t2) + . . . +
w(tn). Since w(ti) ≤ Ω(G) it results that w(p) ≤ Ω(G)n, where n is the size of
the path.

The set of all paths connecting vertices u and v with exactly n ≥ 1 edges is
defined as follows.

6 A type in the usual sense of graph theory, not an RDF Schema or OWL type.
7 An RDF graph is a direct graph. However, edge direction is irrelevant for the purpose

of this definition of proximity.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1733

José Paulo Leal

Pnu,v = {u0
t1−→ u1 . . . un−1

tn−→ un : u = uo ∧ v = un ∧ ∀0≤i,j≤n ui 6= uj}

The weight of Pnu,v can be computed using the path weight function defined
above simply by adding the contribution of each path. The reader should note
that

∑
p∈Pn

u,v
w(p) ≤ Ω(G)n∆(G)n since ∀p∈Pn

u,v
w(p) ≤ Ω(G)n and #Pnu,v ≤

∆(G)n.
A proximity function can be defined in terms of these sets of paths. The prox-

imity of a node to itself must be taken as a special case given that ∀n∈N+Pnu,u =
∅. For the general case where the two nodes are different, proximity must take
into account each path in Pnu,v, for all values of n. However, shorter paths must
weight more that longer paths. That is, paths in Pnu,v for smaller values of n must
contribute more to proximity than those of larger values of n. Having this in mind
the proposed proximity function p is defined as follows.

p(u, v) =


1 ← u = v

1
Ω(G)

∞∑
n=1

1
2nn∆(G)n

∑
p∈Pn

u,v

w(p)← u 6= v

Since this definition relies on an infinite series one must ensure that it con-
verges. Given that

∑
p∈Pn

u,v
w(p) ≤ Ω(G)n∆(G)n, if u 6= v, p(u, v) ≤

∑∞
n=1

1
2n =

1, and thus the series converges absolutely. It is trivial that the proximity func-
tion is non-negative, since all its terms and factors are natural numbers. Hence
this also proves that the image of the proposed function is defined within the
intended codomain ([0, 1]).

3.3. Algorithm

The proximity function as defined in the previous subsection requires computing
an infinite series. However, since the series defining this function converges
absolutely, the first n terms compute the proximity within a known error margin.

The proposed proximity algorithm is formalized in Algorithm 1. It takes a
multigraph and two strings, and starts by creating initial sets of paths for each
of the given terms. If these sets are equal then proximity is set to its maximum
value (1). Otherwise the algorithm computes the sets of paths linking the two
nodes with a size under a predefined limit.

To compute the set of paths of size n the algorithm expands half-paths start-
ing on both ends. The set PathSetA contains paths starting in the node with
label A and the set PathSetB contains paths ending in the node with label B.
Paths of size n are those with semi-paths in PathSetA and PathSetB with
a common ending. The contribution of these paths to proximity is computed
by summing their weights, using the PathWeight function, and divide it by a
denominator that depends on the value of n. Before proceeding to the next
value of n, first the semi-paths from sets PathSetA and PathSetB are alter-
nately expanded. If both sets were expanded at once only paths with an even
number of nodes would be generated.

1734 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using proximity to compute semantic relatedness in RDF graphs

Algorithm 1: Proximity function
Input : G = (V,E,T,W), A, B
Output: Proximity

Ω ← MaxWeight(T,W)
∆← MaxDegree(V,E)
PathSetA← NodeSetWithLabel (A,V,E,T)
PathSetB← NodeSetWithLabel (B,V,E,T)

Proximity← 0
ExpandLeft← true

if PathSetA = PathSetB then
Proximity = 1

else
for N← 0 to MaxLevel do

Denominator← 2NΩN∆N

. Process all paths of size N
for PathA ∈ PathSetA do

for PathB ∈ PathSetB do
if LastNodeInPath(PathA) = LastNodeInPath(PathB) then

Weight← PathWeight(PathA) + PathWeight(PathB)
Proximity← Proximity +Weight/Denominator

. Expand paths one level alternately in each side
if ExpandLeft then

PathSetA← ExpandPaths(PathSetA,E)

else
PathSetB← ExpandPaths(PathSetB,E)

ExpandLeft← Not(ExpandLeft)

Function ExpandPaths(PathSet,Edges)
Data: PathSet,Edges
Result: NewPathSet

NewPathSet← ∅
for Path ∈ PathSet do

LastNode← LastNodeInPath(Path)
for NextNode ∈ {n : (LastNode, n) ∈ Edges ∨ (n, LastNode) ∈ Edges} do

if NextNode /∈ Path then
NewPathSet 3 (Path,NextNode)

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1735

José Paulo Leal

The function ExpandPaths expands each path in the given set of paths
using a set of edges. Paths are expanded at their end with nodes for which there
is an edge starting (or ending) at their last node. If the new node already occurs
in the selected path then this is not a valid expansion as it would contain a cycle
and it is not added to the expanded path set. Note that this function expands the
size of the paths rather than the cardinality of the set. The expanded path set
contains paths of size n+ 1 where n is the size of the paths in the original path
set. The cardinality of the expanded path set may either increase, decrease, or
remain unchanged by this expansion.

Madonna Britney Spears

Pop Music

Dance Pop

Musical Artist

Rock Music

Music Genre

Fig. 2. Using the proximity algorithm to relate “Madonna” and “Britney Spears”

Figure 2 shows how the proximity algorithm proceeds to relate the nodes
“Madonna” and “Britney Spears”. This example omits the label nodes and starts
with concept nodes associated with the relevant terms. We can see that each
node is at the center of a pair of concentric circles. Each circle intersects a set of
nodes that are reached from the center with a certain number of path segments.
For instance, “Rock Music”, “Musical Artist” and “Pop Music” are all a path seg-
ment away from “Madonna”. A similar situation occurs with “Britney Spears”
and some nodes are common to both circles, in this case “Musical Artist” and
“Pop Music”. These two intermediary nodes contribute with two independent
paths connecting the original modes. The remaining nodes, “Rock music” for
“Madonna” and “Dance Pop” for “Britney Spears” are used to continue unfold-
ing the sets of nearby nodes connected to the original ones. In this case the

1736 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using proximity to compute semantic relatedness in RDF graphs

node “Music genre” is common to both circles on the second level. This path
is longer than the previous ones (i.e. has more path segments) and thus con-
tributes less to proximity. At each level the contribution of new paths diminishes,
although they are usually in greater number. After a few levels (typically 5) the
algorithm stops.

The proximity algorithm can be extended to compare groups of concepts.
This is relevant to relate two web pages, for instance. For this purpose a web
page is represented by a bag-of-words, where each word occurs in the web
page and is also a label of a graph node. The proximity between the two bags-
of-words can be defined as the average, or the maximum, of all proximity pairs.

4. Shakti

The algorithm described in the previous section is implemented by a system
called Shakti. This system is responsible for extracting data relevant to a given
domain from DBpedia, and to provide a measure of the proximity among con-
cepts in that domain. This system is implemented in Java using an open-source
semantic web toolbox called Jena8 including application interfaces for RDF and
OWL, a SPARQL engine, as well as parsers and serializers for RDF in several
formats such as XML, N3 and N-Triples.

The overall architecture of a Shakti use case is described in the diagram in
Figure 3. It shows that Shakti mediates between a client system and DBpedia,
that in turn harvests its data from the Wikipedia. The system itself is composed
of three main components:

controller is parametrized by a configuration file defining a domain and pro-
vides control over the other components;

extractor fetches data related to a domain from the DBpedia, pre-processes it
and stores the graph in a local database;

proximity uses local graph to compute the proximity among terms in a pre-
configured domain.

The purpose of the controller is twofold: to manage the processes of extract-
ing data and computing proximity values by proving configurations to the mod-
ules; and to abstract the domain required by client applications. For instance, to
use Shakti in a music domain it is necessary to identify the relevant classes on
concepts, such as musical artist, genre or instrument, as well as the properties
that connect them, such as type, has genre or plays instrument. To use Shakti
in a different domain, say movies, it is necessary to reconfigure it.

The controller is parametrized by an XML configuration file formally defined
by an XML Schema definition as depicted in Figure 4. The top level attributes
in this definition configure general parameters, as the URL of the SPARQL end-
point, the natural languages of the labels (e.g. English, Portuguese), the max-
imum level used in the proximity algorithm, among others. The top level ele-
ments are used for defining prefixes, types and properties. XML prefixes are

8 https://jena.apache.org/

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1737

José Paulo Leal

Client

Data

Configu
ration

DBpedia Wikipedia

Contro l

Proximity Extractor

Shakti

Fig. 3. The architecture of Shakti

routinely used in RDF to shorten the URLs used to identify nodes. This con-
figuration enables the declaration of prefixes used in SPARQL queries. The
configuration file also enumerates the types (classes) of concepts required by a
domain. This ensures that all the concepts with a declared type, having a label
in the requested language are downloaded from DBpedia. The declaration of
properties has a similar role but it also provides the weights assigned to path
segments required by the algorithm. Each property definition includes a set of
occurrences since the same name may be used to connect different types. That
is, each property occurrence has a domain (source) and a range (target) and
these must be one of the previously defined types. These definitions ensure
that only the relevant occurrences of a property are effectively fetched from
DBpedia.

The extractor retrieves data using the SPARQL endpoint of DBpedia. The
extractor processes the configuration data provided by the controller and pro-
duces SPARQL queries that fetch a DBpedia sub-graph relevant for a given
domain. Listing 1.1 shows an example of a SPARQL query to extract a type
declared in the configuration file, where the string “[TYPE]” is replaced by each
declared type. Similar queries are used for extracting properties.

Part of the data extracted this way, namely the labels, must be preprocessed.
Firstly, multiword labels are annotated incorrectly with language tags and must

1738 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using proximity to compute semantic relatedness in RDF graphs

Fig. 4. The XML Schema definition of Shakti configuration

Listing 1.1. SPARQL query for extracting a type
SELECT ?R ?L
WHERE {

?R r d f : type dbpedia : [TYPE] ;
r d f s : l a b e l ?L .

}

be fixed. For instance, a label such as ‘‘Lady Gaga@en’’ must be converted
into ‘‘Lady Gaga’’@en. Secondly all characters between parentheses must
be removed. The Wikipedia, and consequently DBpedia, use parentheses to
disambiguate concepts when needed. For instance, ‘‘Queen (Band)’’@en
is a different concept from ‘‘Queen’’@en but in a music setting the term in
brackets is not only irrelevant but would disable the identification with the term
‘‘Queen’’ when referring to the actual band. Also, concepts with short labels
(less than 3 characters) or solely with digits (e.g. “23”) are simply discarded.

The proximity module is responsible for computing the relatedness between
two terms, or two bags-of-terms, from the graph extracted from DBpedia and
already preprocessed. This module maintains a dictionary with all labels in the
graph, implemented using a prefix tree, or trie. This data structure enables an
efficient screening of terms, discarding those for which relatedness cannot be
computed. Following this step, the implementation follows Algorithm 1.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1739

José Paulo Leal

5. Evaluation

This section presents a use of Skati in the implementation of a recommender
developed as part of the project Palco 3.0. This project was targeted to the
re-development of an existing Portuguese social network — Palco Principal —
whose main subject is alternative music.

The goals of this project include the automatic identification, classification
and recommendation of site content. The recommendation service developed
for this project is structured around recommenders — pluggable components
that generate a recommendation for a certain request based on a given model.
Most of the recommenders developed for this service use collaborative filtering.
For instance, a typical recommender suggest songs to users in Palco Principal
based on the recorded activity of other users. If a user shares a large set of
songs in his or her playlist with other users then it is likely that he or she will
enjoy other songs in their playlist.

This approach is very effective and widely used but its main issue is cold
start. If the system has no previous record of a new user then it will not be able
to produce a recommendation. An alternative is to produce a content-based rec-
ommender. To implement such a recommender Shakti was used to find related
content on the web site. This recommender can be used on words extracted
from the web page itself, such as news articles or interviews, or on tags used
to classify web pages, such as musics, photos of videos.

The remainder of this section describes the main steps to define a content
recommender for Palco Principal using Shakti and how this experiment was
used to evaluate this approach.

5.1. Proximity based recommendation

Palco Principal is a music website hence this is the domain that must be used in
Shakti. This required selecting DBpedia classes and properties relevant to this
domain, preparing DBpedia for extracting data from the Portuguese Wikipedia
to populate these classes, and configuring Shakti with the relevant types and
properties to compute proximity values.

DBpedia already has an extensive ontology covering most of the knowl-
edge present in Wikipedia. This is certainly the case with the music domain
and all the necessary classes and properties were already available. The DB-
pedia uses a collection of mappings to extract data present in the info boxes
of Wikipedia. Unfortunately these mappings were only available for the English
pages of Wikipedia and they had to be adapted for the pages in Portuguese.
The DBpedia uses a wiki to maintain these mappings and new mappings of
some classes had to be associated with the language label ”pt”.

In the Shakti it was necessary to configure the XML file to extract the se-
lected classes and properties from DBpedia. These classes, whose mappings
were created on DBpedia wiki for Portuguese pages, are:

MusicalArtist solo performers (e.g. Madonna, Sting);

1740 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using proximity to compute semantic relatedness in RDF graphs

Band groups of musicians performing as a band (e.g. Queen, Bon Jovi);
MusicGenre musical genres (e.g. rock, pop).

The properties associated with these classes that were considered relevant
were also inserted in the configuration file and are enumerated in Table 1. This
table defines also the weights assigned to properties, with values ranging from
1 to 10, needed for computing proximity values. These weights were assigned
based on the subjective perception of the authors on the proximity of different
bands and artists. A sounder approach to weight calibration was left for future
work.

Table 1. Properties of a music domain

Property Domain Range Weight
Genre Band and MusicalArtist MusicGenre 7
Instrument Band and MusicalArtist label 2
StylisticInfluences MusicGenre label 4
AssociatedBand Band Band 10
AssociatedMusicaArtist MusicalArtist MusicalArtist 10
CurrentMember Band label 5
PastMember Band label 5

To integrate Shakti with the recommender it was necessary to implement a
client application. This application is responsible for populating a table with prox-
imity values among web pages recorded on the recommender service database.
For each page this client application extracts a bag-of-words, either the words
on the actual page or its tags. For each pair of bags-of-words it computes a
proximity using methods provided by Shakti.

5.2. Results analysis

Shakti is currently being used in an experimental recommender. Thus, the rec-
ommendations are not yet available on the site the of Palco Principal. For this
reason a comprehensive analysis is not yet possible. This subsection presents
some experimental results that are possible to obtain from the current setting.

For this experiment the recommender system computed proximity values
among news and events pages, which took about a day. In total 57,982 proximity
relations among news pages were calculated, plus 59992 among event pages,
performing a grand total of 69604805 relations.

Table 2 displays the proximity table for news pages ordered by decreasing
proximity. Each id code is a news item in the web site. For this particular entity
the recommender searched for content regarding both terms from its text and
tags.

To analyze the performance of Shakti the contents of the 2 most related
pages — id 3540 (resource A) and id 2623 (resource B) — were compared in

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1741

José Paulo Leal

Table 2. Proximity between pairs of news pages.

Resource ID Resource ID Proximity
3540 2623 0.22
3540 2431 0.21
3540 3000 0.15
3540 4115 0.15
3540 2691 0.15
3540 1892 0.15
3540 2676 0.14
3540 760 0.14
3540 3189 0.14
3540 4397 0.14

detail. The text and tags of this resource can be viewed in Figure 5. In order to
calculate proximity values, Shakti merge both fields and generates a group of
concepts present in the RDF graph. Thus, from all the words of text and tags
fields only the following bag-of-words are actually used to compute proximity:
38 Special, Lynyrd Skynyrd, Bret Michaels. For resource B the bag-of-words
considered for computing compute proximity is: Lemmy, Myles Kennedy, An-
drew Stockdale, Dave Grohl, Fergie, Ian Astbury, Kid Rock, M. Shadows, Rock,
The Sword, Adam Levine, Ozzy Osbourne, Chris Cornell, Duff McKagan, Slash,
Iggy Pop. Using these two bags-of-words Shakti computes a proximity of 0.22.
The concepts are names of the bands appearing in news text, so the approach
of using the this field to determine proximity seems promising.

Fig. 5. News piece generated from resource A.

Analyzing these news items one notices that they are on two musician artists
with a musical genre in common, and both playing the guitar. This shows that
the two news items are in fact related and a 0.22 proximity seems a reasonable
figure. Note that proximity values range between 0.0 (unrelated) to 1.0 (the
same).

The proximity values computed for all pages vary between 0.1 and 0.22
and the average value of is 0.2. This value is lower than expected. Of course

1742 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using proximity to compute semantic relatedness in RDF graphs

that these figures can be modified simply by reconfiguring the property weights.
On the other hand, Shakti determined a non null proximity in 24,401 of a total
of 33,616,804 possible relationships, about 0.07%, which is an unsatisfactory
figure for a recommendation system.

One of the culprits for these poor results is the text encoding using HTML en-
tities in the database of Palco Principal. For instance, the term ”Guns N’ Roses”
(which is part of the text and tags of resource B) is written in the database in
the format ”Guns N&#039 Roses”. This value is sent to Shakti. As Shakti
is not prepared to receive this type of formatting, it does not detect the word in
the dictionary.

This experiment suggest that algorithm is producing the expected results.
For the pairs of pages that produced a non null proximity the obtained measure
is consistent with their degree of relatedness. However, the number of pages
that the algorithm was able to relate is insufficient for a recommender system.
The problems with text encoding alone do not justify the low number recommen-
dations obtained in this experiment. Most probably the words contained in those
pages are not labels in the sub-ontology extracted from DBpedia and it does not
not cover satisfactory the domain of Palco Principal. It should be noted that this
sub-ontology deals only with artists and bands that have sufficient recognition
to have their own entry in Wikipedia. Other concepts related to music, such as
musical instruments or music event venues, were not covered. Thus, pages on
music festivals featuring garage bands, for instance, or advertising used gui-
tars for sale, would be difficult to relate. In any event, further experimentation is
needed to validate both the algorithm itself and the approach of using semantic
relatedness a basis for recommendation.

6. Conclusions and future work

The goal of the research described in this paper is to measure the relatedness
of two terms using the knowledge base of BDPedia. The motivation for this
research is to use semantic relatedness in content-based recommenders, in
particular in tags provided by users in social networks.

This paper proposes proximity, rather than distance, as a means to compute
semantic relatedness on RDF nodes. It provides a formal definition of the prox-
imity in terms of the sets of paths connecting the nodes, and an algorithm to de-
termine these sets and compute proximity. The algorithm ponders the collection
on paths connecting the two terms using the weights associated to properties
on the ontological graph. This algorithm was implemented in a system called
Shakti. This system fetches a sub-graph of the ontology in DBpedia relevant
to a certain domain and computes the relatedness of terms assigned as labels
to concepts. To validate the proposed approach Shakti was used to populate a
proximity table on a web recommender service of Palco Principal, a Portuguese
social network whose subject is alternative music. The results are promising, al-
though the ontology extracted from DBpedia is not yet covering satisfactory the
terms contained on the pages of Palco Principal.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1743

José Paulo Leal

Part of the future work in this research includes the experimentation with
larger ontologies, providing better coverage of the underlying domain and val-
idating scalability of Shakti. At this stage most of the effort of using Shakti is
configuring this tool. We plan the development of a graphical user interface for
assisting the tool users in defining the classes and properties to extract from
DBpedia. There are two approaches being considered for this task. On the first
approach a seed class is typed in and other related classes and properties
in that domain are suggested for possible inclusion. On the second approach
Shakti is fed with a collection of example terms and DBpedia is searched for
related classes and properties. Independently from the selected approach, the
graphical user interface will also assist in the definition of property weights and
other general configurations required by Shakti.

The validation of the algorithm itself is perhaps the most important part of
the future work. It is necessary to compare it experimentally with the results
obtained by similar algorithms using standard benchmarks. A testbed for com-
puting similarity and visualizing relatedness among any sets of terms, based on
the full DPpedia ontology, is currently being developed. This testbed is expected
to be instrumental in the validation of the proposed algorithm.

The fact that the algorithm currently relies on weights being assigned to
properties is an obstacle to use it with multiple domains. This issue can be
overcome by assigning weights to properties according to their role on the on-
tology, independently of the domain: is-a properties with the maximum weight,
part-of properties with an intermediary weight, and all other properties with
a minimum weight. The testbed will be used to fine-tune these generic weights
and to validate this approach to weight assignment.

Acknowledgments.
This work is in part funded by the ERDF/COMPETE Programme and by FCT within

project FCOMP-01-0124-FEDER-022701. The author wishes to thank to Vânia Rodrigues
for her collaboration on the implementation o Shakti, and to Ricardo Queirós, João Del-
gado and the anonymous reviewers for their helpful comments.

References

1. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA (1999)

2. Beckett, D., McBride, B.: Resource description framework (RDF) model and syn-
tax specification (revised). Tech. rep., W3C (2004), http://www.w3.org/TR/REC-rdf-
syntax/

3. Brickley, D., Guha, R.: RDF vocabulary description language 1.0: RDF schema.
Tech. rep., W3C (2004), http://www.w3.org/TR/rdf-schema/

4. Corcho, O., Gómez-Pérez, A.: A roadmap to ontology specification languages. In:
Proceedings of the 12th European Workshop on Knowledge Acquisition, Modeling
and Management. pp. 80–96. EKAW ’00, Springer-Verlag, London, UK, UK (2000),
http://dl.acm.org/citation.cfm?id=645361.650838

1744 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using proximity to compute semantic relatedness in RDF graphs

5. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing
by latent semantic analysis. Journal of the American Society for Information Science
41, 391–407 (1990)

6. Fellbaum, C. (ed.): WordNet An Electronic Lexical Database.
The MIT Press, Cambridge, MA ; London (May 1998),
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=8106

7. Gabrilovich, E.: Feature generation for textual information retrieval
using world knowledge. SIGIR Forum 41(2), 123–123 (Dec 2007),
http://doi.acm.org/10.1145/1328964.1328988

8. Gabrilovich, E., Markovitch, S.: Overcoming the brittleness bottleneck us-
ing wikipedia: enhancing text categorization with encyclopedic knowl-
edge. In: proceedings of the 21st national conference on Artificial in-
telligence - Volume 2. pp. 1301–1306. AAAI’06, AAAI Press (2006),
http://dl.acm.org/citation.cfm?id=1597348.1597395

9. Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical
taxonomy. In: Proc. of the Int’l. Conf. on Research in Computational Linguistics. pp.
19–33 (1997), http://www.cse.iitb.ac.in/ cs626-449/Papers/WordSimilarity/4.pdf

10. Lin, D.: An information-theoretic definition of similarity. In: Proceedings of the
Fifteenth International Conference on Machine Learning. pp. 296–304. ICML
’98, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1998),
http://dl.acm.org/citation.cfm?id=645527.657297

11. Milne, D., Witten, I.H.: Learning to link with wikipedia. In: Proceedings of the 17th
ACM conference on Information and knowledge management. pp. 509–518. CIKM
’08, ACM, New York, NY, USA (2008), http://doi.acm.org/10.1145/1458082.1458150

12. Nilsson, M., Palmer, M., Brase, J.: The LOM RDF binding - principles and imple-
mentation. In: 3rd Annual ARIADNE Conference (2003)

13. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy.
In: Proceedings of the 14th international joint conference on Artificial intelligence
- Volume 1. pp. 448–453. IJCAI’95, Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA (1995), http://dl.acm.org/citation.cfm?id=1625855.1625914

14. Seco, N., Veale, T., Hayes, J.: An intrinsic information content metric for semantic
similarity in WordNet. Proc. of ECAI 4, 1089–1090 (2004)

15. Smirnov, I.: Overview of stemming algorithms. Mechanical Translation (2008)
16. Strube, M., Ponzetto, S.P.: Wikirelate! computing semantic relatedness us-

ing wikipedia. In: proceedings of the 21st national conference on Artifi-
cial intelligence - Volume 2. pp. 1419–1424. AAAI’06, AAAI Press (2006),
http://dl.acm.org/citation.cfm?id=1597348.1597414

17. Wu, F., Weld, D.S.: Automatically refining the wikipedia infobox ontol-
ogy. In: Proceedings of the 17th international conference on World
Wide Web. pp. 635–644. WWW ’08, ACM, New York, NY, USA (2008),
http://doi.acm.org/10.1145/1367497.1367583

18. Zesch, T., Gurevych, I.: Automatically creating datasets for measures of semantic
relatedness. In: Proceedings of the Workshop on Linguistic Distances. pp. 16–24.
LD ’06, Association for Computational Linguistics, Stroudsburg, PA, USA (2006),
http://dl.acm.org/citation.cfm?id=1641976.1641980

José Paulo Leal is assistant professor at the department of Computer Sci-
ence of the Faculty of Sciences of the University of Porto (FCUP) and asso-
ciate researcher of the Center for Research in Advanced Computing Systems

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1745

José Paulo Leal

(CRACS). His main research interests are eLearning system implementation,
structured document processing and software engineering. He has a special
interest on automatic exercise evaluation, in particular on the evaluation of pro-
gramming exercises, on ontology processing and on web adaptability. He has
participated in several research projects in his main research areas, including
technology transfer projects with industrial partners. He has over 60 publica-
tions in conference proceedings, journals and book chapters.

Received: November 30, 2012; Accepted: May 15, 2013.

1746 ComSIS Vol. 10, No. 4, Special Issue, October 2013

DOI: 10.2298/CSIS121130061M

Managing experiments on cognitive processes in
writing with HandSpy

Carlos Monteiro1 and José Paulo Leal2

1 CRACS & INESC-Porto LA
Faculty of Sciences, University of Porto

Porto, Portugal
carlosmonteiro@dcc.fc.up.pt
2 CRACS & INESC-Porto LA

Faculty of Sciences, University of Porto
Porto, Portugal
zp@dcc.fc.up.pt

Abstract. Experiments on cognitive processes require a detailed analy-
sis of the contribution of many participants. In the case of cognitive pro-
cesses in writing, these experiments require special software tools to col-
lect gestures performed with a pen or a stylus, and recorded with special
hardware. These tools produce different kinds of data files in binary and
proprietary formats that need to be managed on a workstation file system
for further processing with generic tools, such as spreadsheets and sta-
tistical analysis software. The lack of common formats and open reposito-
ries hinders the possibility of distributing the workload among researchers
within the research group, of re-processing the collected data with soft-
ware developed by other research groups, and of sharing results with the
rest of the cognitive processes research community.
This paper describes the development of HandSpy, a collaborative envi-
ronment for managing experiments in the cognitive processes in writing.
This environment was designed to cover all the stages of the experiment,
from the definition of tasks to be performed by participants, to the synthe-
sis of results. Collaboration in HandSpy is enabled by a rich web interface.
To decouple the environment from existing hardware devices for collecting
written production, namely digitizing tablets and smart pens, HandSpy is
based on the InkML standard, an XML data format for representing digital
ink. This design choice shaped many of the features in HandSpy, such as
the use of an XML database for managing application data and the use
of XML transformations. XML transformations convert between persistent
data representations used for storage and transient data representations
required by the widgets on the user interface. Despite being a system in-
dependent from a specific collecting device, for the system validation, a
framework for data collection was created. This framework has also been
highlighted in the paper due to the important role it took in a data collection
process, of a scientific project to study the cognitive processes involved in
writing.

Keywords: InkML, experiments management, collaborative environment,
XML data processing.

Carlos Monteiro and José Paulo Leal

1. Introduction

Writing is a basic tool for a successful personal and academic growth. Given
the importance of this subject social scientists are actively researching the cog-
nitive processes involved in writing. Writing studies can focus on different writ-
ing forms, such as keyboard logging and handwriting. The writting action can
be complemented with other indicators, such as eye movements and speech
made during the production. The collected data focus on the complementary
concepts of burst and pause [7]. A burst is a time span in which text was pro-
duced without interruptions. A pause is a non-writing time span between two
writing bursts. These two moments are linked to distinct cognitive processes.
The duration of a pause is related to the writing task being performed. Dur-
ing the pause period the working memory used in the writing process is freed.
Therefore the time spent pausing is used for planning and revising the written
production.

The development of HandSpy is embedded in the research project DAAR,
being held at the Psychology Faculty of Porto University. The object of study in
this research is the relation between the cognitive processes involved in writing
and the quality of the writing productions. As the goal of this research is in
general to determine the factors that influence the development of writing skills,
the participants are school children. The object of these research studies are
writing productions on different tasks such as narratives, copies, dictations and
alphabet transcriptions. Different tasks influence the way the idea of the text is
processed. The study results may be used to detect learning problems related
to the ability of creating good quality writing productions. This can then be used
to define new strategies and interventions on writing teaching.

The development of HandSpy was inspired on the existing, state of the art,
software for collecting and analysing written productions. Although these tools
offer a good handwritten analysis system they lack of a simple way to collect
and organize the data. With the desire to innovate and improve the way the
writing studies are processed, HandSpy was designed to be a web based sys-
tem offering typical features of writing research tools. The system covers the
entire experimental process filling the existing gap on the experiment manage-
ment. By using a common repository, researchers can set up an experiment for
storing all the entities involved. An entity is an abstract concept to define the
different components of project such as tasks definitions, trait information on
participants involved in the experiment and the generated data. Using a web
server for data storing, the system follows a collaborative paradigm where var-
ious researchers can work on the same experiment simultaneously. HandSpy
uses a standard XML format for data files which enables users to collect data
from various hardware devices. XML files enable the data persistence over time.
Being based on a web system avoids the complexity of installation processes,
as one installation can be shared by several users. The collected data files need
to be uploaded just once, and thereafter are accessible to all researches, even
to those not involved in the collection process.

1748 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

A collecting framework was developed to collect data for system validation.
This framework uses a fairly inexpensive hardware device in a shape of a nor-
mal pen, enabling a less intrusive collecting method in the writing process.

The present paper is organized as follows. Section 2 describes the state
of the art with regard to the platforms used to conduct scientific experiments
on writing productions and describes the principles of experiment management
systems in which HandSpy was based. Section 3 describes the main technolo-
gies used to develop HandSpy and describes existing devices to record hand-
writing productions. Section 4 is the main description of the design and im-
plementation methods. Section 5 describes a collecting framework created to
validate HandSpy usage. Section 6 is an evaluation of the usability of HandSpy
to prepare future modifications. Section 7 concludes this paper and identifies
opportunities for future work on HandSpy.

2. Related Work

This section covers background topics related to the development of a collabo-
rative environment for managing experiments on cognitive processes in writing.
Studying cognitive processes in writing involves the detailed analysis of writ-
ten productions, therefore the analysis component is the essential feature on a
software for that purpose. HandSpy analysis engine owes credit to two mature
systems used in the study of cognitive processes in writing. These systems are
described in the first section of this paper.
The proposed environment complies with the requisites for an Experiment Man-
agement System (EMS) [3] thus the second section is devoted to introduce this
kind of system.

2.1. Collecting and Analysing Tools

Studies on cognitive processes in writing are mainly conducted by social sci-
entists. In the last decade this subject was supported by the availability of new
devices to digitally record the writing productions and complemented with new
software to analyze those productions. The two most proeminent tools currently
available to conduct studies on cognitive processes in handwriting are Eye And
Pen [1] and Ductus [2]. The following subsections are a description of these
systems.

Eye And Pen The Eye and Pen system was originally design to study read-
ing while performing a writing production. The system is composed by three
parts. A collecting system composed by a digitizing tablet and a eye tracker, a
software for data analysis and experiment control system. The digitizing tablet
recordings and the eye tracker signals are synced in the begining of the ex-
periment. The digitizing tablet records the position of the pen and the pressure
made in every point throughout collection. This data is used by the Eye and

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1749

Carlos Monteiro and José Paulo Leal

Pen analysis software to reconstruct the written text and display the point of
regard on the tablet surface related to the pen position on that specific moment.
The point of regard is the spot in the paper that the participant is looking at a
particular moment. The text reconstruction can be played and controlled with a
media player style control set. The pauses are displayed on the reconstructed
text image and are represented by a circle centered on the place where the pen
stopped, its diameter is defined by the pause duration time.
The experiment control system consists on a scripting language used to define
the tasks to be performed. The tasks are displayed on the computer connected
to the tablet. Particular regions on the tablet can be assigned to a function.
When these regions are reached they act as control buttons of the experiment
and sets the end of a task.

Before Eye and Pen, the eye tracking devices were mostly used to study
reading processes. The first known use of eye trackers for studying writing was
made on computer typing. Studies on computer typed tasks are limited by the
expertise of the participants using a computer keyboard. The tasks that can be
performed with a computer keyboard are also limited to the typing action.
Any study that makes use of technological equipment to collect the data is sub-
ject to errors and mishandling of the devices. For instance the eye tracker de-
pends on specifications of the manufacture and some eye trackers require the
participant to hold the head still in order to work properly. Using an eye tracker
while writing may distract and alter the normal text production. These factors
may invalidate the text production.

Ductus Ductus is a software to study the processes involved on handwritten
productions. The system is composed by two modules, a Stimulus Presenta-
tion Module and a Data Analysis Module. The Stimulus Presentation Module
encompasses two parts, the stimulus presentation and a data acquisition mod-
ule. The stimulus is displayed on a computer screen in front of the participant
and consists on a series of images, words or texts for transcription. The stimu-
lus module supports plain text (.txt) and bitmap (.bmp) file formats. The visual
stimulus are preceded by a sound to signal the begining of a stimulus.
The data acquisition module works with any model of digitizer from Wacom,
a recognized tablets manufacturer. The sample rate is limited by the digitizer
model. The elements recorded by the acquisition module are:

– pen postion - the position of the pen on the digitizer.
– pressure - the pressure made on the digitizer, some digitizers enable the

recording of hovering movements on the tablet.
– latency - the time between the apearence of the stimulus and the pen touch-

ing the digitizer.
– event landmark - is an event defined by the experimenter to signal some

occurence during the recording.

The recorded data is stored in a plain text file and is used by the Data Analysis
Module to produce the calculations on kinematic and geometrical parameters

1750 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

of the handwriting. The Data Analysis Module interface displays information on
several windows. There are two windows that display information on the writing
and are the most used during the data analysis.

The first window is divided in four parts. A list with data on the points that
constitute the text, such as time, position, absolute velocity, absolute accel-
eration and pressure, an image with the reconstruction of the text, hovering
movements are displayed in a gray light tone, a graph with the variations on the
trajectory made with the pen and finally a graph with the pressure made on the
tablet and an image of the text and the graphs have a vertical line that syncs
the position in the text with the positions in the trajectory and pressure graphs.

The second window is used to segment the text for a thorough analysis.
The text can be segmented in a hierarchical way, the text can be divided into
paragraphs and each paragraph into words and the words into letters. These
segments are made to limit the calculations to a precise area. The results are
presented in a table and can be exported through the clipboard or can be saved
in a plain text file.

2.2. Experiment Management Systems

The growth of data collected during scientific experiments, leveraged by the
use of digital devices, created the need for systems to manage this data. Mul-
tiple fields of scientific research require the analysis of large amounts of data.
Usually, researchers in these areas do not have the necessary knowledge to
manage this information in an automated basis by using a digital database sys-
tem.
An Experiment Management System is composed by two parts, user interface
and data storage system. These systems aim to abstract experimentation pro-
cedures, offering a consistent data management system replicated by different
experiment stages and entities. An entity is a flexible abstract format to repre-
sent information regarding some aspect of the experiment, for instance the list
of participants, tasks involved in the experiment and actual collected data [3].

In the Figure 1 is depicts the life cycle of an experiment with data abstrac-
tion on entities and its relation with data transfers. The stages of an experiment
process depicted on the Figure 1 are described on the following.

Experiment Design is the first stage of the experimentation process. In this
stage, data files containing information about the experiment are defined. These
definitions can be updated in the course of the experiment. These definitions
are stored in the database alongside with the collected data.

Data Collection stage can be repeated several times during the experiment,
if there is a need to collect more data. The need to collect or recollect data, may
arise due to the invalidity of the data or the failure to produce conclusive results.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1751

Carlos Monteiro and José Paulo Leal

Fig. 1. Experiment Life Cycle

Data Access stage is set to retrieve the data, for analysis, validation or shar-
ing.

Analysis is the main stage of every experiment. The data analysis is done
by researchers that assess its validity and generate the results of their studies.
In this step design modifications and the need to collect more data may arise.

Results is the final stage of the experiment cycle where the results are gen-
erated. The experiment success is validated by the results. At this point the
experiment can be terminated, redesigned or more data may be collected.

3. Technology

3.1. InkML

The recent trend of sketching and writing on digital devices capable of record-
ing hand gestures created the need for a standard to describe this kind of data.
InkML is a W3C recommendation for storing and exchanging what is commonly
called digital ink. It is an XML data format to describe a set of strokes digitally
representing handwriting and other ink input gestures. It was design to describe
ink-based formats but it is flexible enough to store digital interactions such as

1752 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

keyboard logs and mouse movements.
The ink in InkML is defined by characteristics associated with the act of creat-
ing a trace such as the width and color of the trace, the pen orientation while
writing, the pen distance to the surface(whether the trace was made with the
pen down or hovering the writing surface), among others.

The root element of InkML is ink and has the identifier attribute documentID
with the type Uniform Resource Identifier (URI) that uniquely defines each file.
The trace element is set to describe a continuous trace, i.e. the act of sketching
a trace with the pen down on the surface. Each trace is a collection of points and
their features, separated by commas. These characteristics are defined in the
channel element. If no channel is defined to cast traces, the default trace
is simply the X and Y coordinates of each point. A set of traces can be grouped
in a context, defining optional features such as starting time, writing surface
dimensions and characteristics of the trace.

The Listing 1.1 is an example of the ”Hello” word described in a basic InkML
file. The word has five letters represented with five trace elements, its con-
tents are defined on the traceFormat with a set of channel elements whose
attributes define the name and the type. The values on the trace element
separated by commas represent the coordinates (X,Y) and a timestamp defined
on the traceFormat channel elements. This data represents each point de-
picted on the Figure 2 and the time the point was recorded.

Fig. 2. InkML Hello Example

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1753

Carlos Monteiro and José Paulo Leal

Listing 1.1. InkML ”hello” example
<i nk xmlns= ” h t t p : / /www.w3 . org /2003/ InkML ”>
<contex t x m l : i d = ” s t a r t ”>
<inkSource>

<t raceFormat>
<channel name= ”X” type= ” decimal ” />
<channel name= ”Y” type= ” decimal ” />
<channel name= ”T” type= ” decimal ” />

< / t raceFormat>
< / inkSource>
<t imestamp x m l : i d = ” s ta r tT ime ” t ime= ” 10000 ” />

< / con tex t>
<t r ace>

10 0 11000 , 9 14 11200 , 8 28 11400 , 7 42 11500 , 6
56 11600 ,

10 70 11700 , 8 84 11900 , 8 98 12100 , 8 112 12200 ,
9 126 12300 ,

10 140 12400 , 13 154 12500 , 14 168 12600 , 17 182 12800 , 18 188 12900 ,
23 174 13000 , 30 160 13100 , 38 147 13200 , 49 135 13400 , 58 124 13600 ,
72 121 13700 , 77 135 13800 , 80 149 13900 , 82 163 14000 , 84 177 14200 ,
87 191 14300 , 93 205 14400

< / t r ace>
<t r ace>

130 155 14500 , 144 159 14600 , 158 160 14800 , 170 154 15000 , 179 143 15100 ,
179 129 15200 , 166 125 15300 , 152 128 15400 , 140 136 15600 , 131 149 15700 ,
126 163 15800 , 124 177 15900 , 128 190 16000 , 137 200 16200 , 150 208 16300 ,
163 210 16400 , 178 208 16600 , 192 201 16700 , 205 192 16900 , 214 180 17000

< / t r ace>
<t r ace>

227 50 17100 , 226 64 17200 , 225 78 17400 , 227 192 17500 , 228 106 17600 ,
228 120 17800 , 229 134 17900 , 230 148 18100 , 234 162 18200 , 235 176 18300

< / t r ace>
<t r ace>

282 145 18600 , 281 159 18700 , 284 173 18900 , 285 187 19000 , 287 101 19100 ,
288 115 19200 , 290 129 19400 , 291 143 19700 , 294 157 19900 , 294 171 20000 ,
294 185 20200 , 296 199 20300

< / t r ace>
<t r ace>

366 130 20400 , 359 143 20600 , 354 157 20700 , 349 171 20800 , 352 185 21000 ,
359 197 21100 , 371 204 21300 , 385 205 21500 , 398 202 21600 , 408 191 21800 ,
413 177 21900 , 413 163 22000 , 405 150 22100 , 392 143 22200

< / t r ace>
< / i nk>

1754 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

3.2. Digital Sketching Devices

In recent years the digital recording of handwritten data, had significant devel-
opments. With smaller process units new writting tools appeared in the shape
of normal pens.
This section is an overview on devices that resemble a normal pen and have
the capability to digitally record handwritten text.

Fig. 3. Livescribe Smartpen and the dotted position system

Livescribe Smartpen The Livescribe Smartpen depicted on Figure 3 is a de-
vice with the shape of a normal pen featuring a LCD display, an infrared cam-
era and a microphone. The LCD display is just for status information on the
smartpen menu navigation and usage, the infrared camera is the key feature
for recording sketched shapes and more specifically handwriting. The smart-
pen has an internal memory capacity of up to 4GB and a built in battery. The
pen has a physical ink cartridge on the tip to sketch on the paper.

The smartpen works on a particular micro dotted paper which gives informa-
tion about its position on paper. The dots on the micro dotted paper, depicted
on Figure 3, are spaced about 0.3mm apart and form an apparently messy
square grid. The dots appear on one of four possible positions of an imaginary
square grid. The infrared camera captures a area of 6x6 dots on the paper and
transform this information into a X and Y coordinate pair. The camera has a fre-
quency of 72 captures per second which gives a sufficient sample rate to record
handwritting. The smartpen store the current position when pressure is made
on the tip of the pen and it is not correlated to the actual ink left on the paper.
Each page on every notebook is unique for that notebook, hence the smartpen

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1755

Carlos Monteiro and José Paulo Leal

can identify the number of the current page.

The smartpen runs a system based on Java Micro Edition and can run exter-
nal applications known as Penlets. Livescribe has a SDK for Penlets develop-
ment but its support has been discontinued, restricting the use of custom made
Penlets. The Penlets can raise events entering on active zones on the dotted
paper, for instance to scroll through the main menu. The smartpen has a built
in handwriting recognition (HWR) system. The dotted paper can be acquired
in the form of notebooks or can be produced and printed on a standard 600
dpi laser printer. Every notebook has a Anoto Functionality Document (AFD) to
describe it. This document needs to be installed on the smartpen so the printed
paper sheets can be used, all the recording done on a page on a notebook is
stored on the AFD structure.

For retrieving the recorded data, updating the software and recharging the
battery there is a dock station. It has a desktop application, Livescribe Desk-
top, that can run both on Windows and Mac OS environments. This application
downloads the data files from the smartpen and organizes by notebook. Live-
scribe has also a Desktop Application SDK for developing applications to extract
and process the recorded data on the pen.

The comercial bundle has an average price of 100e and comes with a
smartpen, a dotted notebook and the dock station.

Fig. 4. Wacom Inkling

Wacom Inkling The Wacom Inkling is a sketching recording system composed
by a pen and a receiver that can be clipped to the top of a paper sheet or note-
book, this arrangement is depicted in Figure 4. The pen can be used to draw on
the paper as it has a physical ink cartidge. The system has a memory capacity
of 2GB and a built-in battery.

1756 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

The operation of this tool mimics the functioning of a sonar system. The
pen emits an inaudible sound, that is processed by the receiver. The receiver
uses this pulse of sound to calculate the pen position and record it. The pen is
pressure sensitive, this enhances the digital line weights. The system allows the
definition of a new layer on the same sheet, by pressing a button on the receiver.

To transfer the data from the receiver to the computer, the receiver must be
connect to the charging case. The Inkling Sketch Manager is the desktop ap-
plication for downloading data from the receiver. Sketches can be saved as a
single image by merging different layers or can be exported as layered files and
be used on common image editors. The data can also be exported as an XML
format similar to InkML.

The comercial bundle has an average price of 200e and its composed by
the pen, the receiver and a charging case.

4. HandSpy

HandSpy is a web based application to manage distributed and collaborative
experiments on cognitive processes in writing. The system has the following
distinctive features:

– an experiment management philosophy encompassing all the steps of the
research in cognitive processes in writing;

– a multiuser web interface fostering collaboration among researchers and
enabling remote work on the experiments;

– a cloud-based data management system providing central storage for all
data collected in the experiments;

– an analysis process of the collected data, inspired in the state-of-art sys-
tems described in Section 2;

– the ability to select and synthesize collections of data based on different
criteria;

– the use of standard XML based data formats to promote interoperability and
cooperation among researchers in this community.

HandSpy system is based on a client-server model. The client makes re-
quests to the server and the server processes the request making use of other
applications to generate the response. The system follows a 3-tier architectural
model as depicted in Figure 5 where the presentation tier (a web interface) is
represented by the left box, the logic tier (a web server) is represented by the
central box and the data tier (an XML database) is represented by the right box.
This diagram represents also in three rows the data flows between these tiers.
In the top row marked with number one is represented the process of upload-
ing data files in InkML format to the database through the web interface. On
the server side the database manager module is responsible for organizing the
uploaded files in collections based on the current user context.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1757

Carlos Monteiro and José Paulo Leal

Protocols

Ink Data

Entities
Data

Source

Entity
Manager

Protocol
Manager

XML XML

3

XSL
Transformations

XML

2

XML

XML

Data
Source

1

.PNG

InkML

XML

Database
Manager

Presentation Logic data

XML

XML

Fig. 5. HandSpy application architecture

The middle row represents the interaction with ink data. The two main com-
ponents of HandSpy user interface are depicted in this row, an image viewer
to display the written production of the protocol ink and a list of calculations
based on the protocol data. The server gets the ink of the selected protocol
and generates an image file to feed the image viewer. The list grid is populated
with calculations results based on the pause concept. To optimize the system,
the main definitions on the HandSpy are classified and treated as entities. This
generalization of data permits to manage it in the same way. All data showing
objects are based on list grids which use XML data sources.

In the third row of the model in Figure 5 is shown the Entity Manager that
identifies the entity and uses the respective XSL transformer to transform the
data stored in the database into the client specific data source when the fetch
operation is made. Adding, updating and deleting entities uses XSL transforma-
tions to perform the operations and save the changes to the database.

4.1. Design

This section divides the description of the system design in three parts, the
Application Interface, Logic and Data Repository.

Application Interface The graphical user interface of HandSpy relies on a web
application. The workspace is divided in six tabs covering the usual work flow
of an experiment on cognitive processes in writing.

1758 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

Fig. 6. HandSpy interface

Tasks Identification of tasks to be performed by the participants during the
experiment. For instance, an experiment may include a task where partic-
ipants must write as much letters of the alphabet as they can in a fixed
amount of time.

Upload Upload of the InkML files collected with specialized hardware (smart
pens or digitizing tablets) to the system. The interface displays a collection
of thumbnail images of the uploaded files. Thumbnails can be selected to
display a real size image for better identification. At this stage the InkML
data is associated with a task and a participant.

Participants Manage the participants in the current experiment. Display the
features and the tasks completed by each participant. Custom features de-
scribing the participants, such as handedness or mother language, can be
added to the participants. The participants features are useful for select-
ing them in a particular study. The list of participants can be imported and
exported as a CSV (Comma Separated Values) file.

Selection Selection of protocols based on tasks and on features of the par-
ticipants such as age, handedness and gender. The selection is a collec-

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1759

Carlos Monteiro and José Paulo Leal

tion of conditions on protocols to be analyzed and synthesized. Selections
set by different researchers are independent from each other, enabling re-
searchers to analyze different collections of protocols simultaneously.

Analysis Figure 6 is a screenshot of HandSpy interface with the Analysis tab
selected. The area identified as 1 is a slider to browse the current protocol
selection (set in the Selection tab). Area 2 has a form to define the param-
eters to calculate the pauses which are listed in the table below. The main
parameter is the threshold, the time elapsed to be a pause. Each row has a
pause duration, a burst duration, a burst size is a number of words present
on the burst, burst distance and the burst average speed. The footer of the
table presents statistics on some of its columns, such as the average and
standard deviation of durations, and the count of words. Area 3 displays
the written production with red Ps (for Pause) marking the place where the
pauses selected in area 2 start. Pause selection allows worthless parts (for
instance, a part where the participant erased a word) to be removed from
the analysis. The current selection of pauses can be stored on the database
using the threshold value for identification, this enables the analysis work al-
ready done on this transcript to be retrieved for further analysis.

Synthesis Displays global statistics on the data processed on the Analysis tab
and is delimited by the selection criteria defined for the analysis process.
The statistics presented in Analysis tab table footer for each protocol are
computed on this tab aggregating all the selected protocols. These results
can be exported to other systems, such as spreadsheets or statistical anal-
ysis packages.

Logic The server side of the system was designed to receive requests, process
them and send the response to the client. Figure 7 depicts an image request flux
on the server. The client, on the left, sends a request for an image to the server.
The Process receives the request and authenticates the session based on the
UserContext. If it is a valid command for that session the command GetProcotol
is called. The Protocol accesses the Database and requests for the respective
InkML file. The resulting image is sent back to the client through the response
stream.

This flow describes the behavior of HandSpy upon a request. HandSpy
deals with many requests for information in the XML format. The main differ-
ence responding to these request is in the creation of the response. Requests
for XML files are created using an XSL transformations engine.

Data Repository HandSpy processes data uploaded in XML files and stores it
in a native XML database. The database structure model is depicted in Figure 8.
This structure keeps all the resources used by the application. Every project has
a set of entities that store data on Tasks, Participants, Selection and Configu-
rations. The data files containing the text productions of one experiment are
stored in the collection Ink in the InkML format. They remain unchanged and
are treated as read-only files. This enables future usage of the collected data

1760 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

Process (Servlet)Web browser

DatabaseUserContext

GetProtocol Protocol
1

3

4 5

62
10 9 8 7

Fig. 7. Image Request Diagram

HandSpy - Data

Users
<<resource>>

HandSpy
<<collection>>

Projects
<<collection>>

Project
<<collection>>

User
<<element>>

+ name
+ password
+ projects

Tasks
<<collect ion>>

Tasks
<<resource>>

Task
<<element>>

+ name
+ layo ut
+ sheets

InkType
<<resource>>

Ink
<<collect ion>>

Data
<<collect ion>>

Data
<<resource>>

+ particip ant
+ inkML

Part icipants
<<resource>>

Participant
<<element>>

+ code
+ name
+ ag e

Selection
<<resource>>

Configs
<<resource>>

KeyValueData
<<element>>

+ name
+ value Pauses

<<element>>

+ thresho ld

Fig. 8. Database structure diagram

for other purposes, projects or even different analysing systems. For every task
added to the project a task collection is created with the name of the task, to
store data files containing the calculations and other information obtained by
analysing the respective InkML file.

The file name is the key to identify and relate the InkML files with the respec-
tive calculated data. The InkML file name is a sequential number, given when
the file is uploaded. The data files stored in each task collection have the same
name of the respective InkML file. For every task a diferent Data file is created

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1761

Carlos Monteiro and José Paulo Leal

and associated with the InkML by name. Differente studies can be conducted
at the same time as every task has an independent Data file.

Schema Definitions The entities and the data file associated to the InkML files
were specifically defined to work with the proposed architecture. An abstract
data format – KeyValueData– which represent a mapping of a value to its key
was designed and is used in several entities on the system. The following list
covers the definitions of the resources presented on Figure 8.

– The Users resource is composed by the login name of the user, its pass-
word and a list of projects to which it has access.

– The Configs and Selection resources are composed by KeyValueData ele-
ments.

– The Tasks resource has the attributes to define the name, the layout and the
sheets. The sheets value is the page interval on the notebook associated
to this task.

– The Participants resource have the basic attribute code, to identify the par-
ticipant and a set of KeyValueData elements to complete the participant
details.

– The Data file has two attributes to identify the file. The participant which
has the code of the participant and the inkML that have the name of the
inkML file. Has pauseBurstBlock element which is a Pauses. The Pauses
element defines a set of Pause. Each Pause has an attribute threshold and
a set of Pause elements which is a PauseBurst format, with calculations for
the defined threshold. The PauseBurst element has several attributes and
a set of facets in the KeyValueData format. Figure 9 is the Data file schema
with focus on the attributes of the PauseBurst element. This file stores the
pauses selected on the interface tab Analysis described in the Section 5.

4.2. Implementation

As depicted in Figure 5, HandSpy is composed by presentation, logic and
data layers. The presentation layer was implemented on SmartClient JavaScript
framework. The logic layer was deployed on the Tomcat servlet container and
the data layer on the eXist XML database. The remainder of this section presents
the implementation of each layer, describing the implementation methods using
these components as platform.

Presentation Layer The Isomorphic SmartClient LGPL platform was the se-
lected web toolkit for the user interface. SmartClient provides sophisticated ta-
ble editing widgets connected to data sources in XML formats that are appropri-
ate to the data handled in HandSpy. These widgets have many built-in functions,
such as sorting and grouping on every column, search fields and column cus-
tomization. Data operations, such as fetching or querying, are built-in functions

1762 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

Fig. 9. Data schema

of the data source object. As the information can be displayed in a table fashion,
the most used widget is the ListGrid.

HandSpy analysis gear is the most important feature of the system as it
drives the research work. The analysis of the production is made with the visu-
altization of the text. SmartClient offers the possibility to create a HTML pane.
This pane enables the use of a HTML 5 canvas. Images of the written text
are generated on the server and displayed as background of HTML 5 canvas
object. The use of Javascript functions enables placement of image objects rep-
resenting the pauses starting points on the canvas, overlaying the background
image. This also provides flexibility for future costumizations without being tied
to widget/function limitations.

Logic Layer The server was deployed on a Tomcat - a Java Servlet container
instance. This server, based on a Java Servlet, is responsible for data transac-
tions between the Data Layer and Presentation Layer objects. The whole data
processing is done on this layer as well. The data processing consists on XML
transformations, generation of images, calculation of pauses and database man-
agement. Using eXtensible Stylesheet Language Transformations (XSLT) the
information on the database is transformed into the respective data sources on
the interface. The InkML files are used to generate the images and calculate

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1763

Carlos Monteiro and José Paulo Leal

the pauses. Creating and deleting files on the XML database is made by the
server. Maintaining the whole processing on the server side reduces the need
of processing power on client machines.

All the data is stored as XML files on the database. Using Java Architecture
for XML Binding (JAXB) it is possible to, marshal Java objects into XML files
and doing the inverse, unmarshal XML files to Java objects. This architecture
uses the XSD’s of the XML files to construct Java objects, with getters and
setters for the XML files elements and attributes. This provides a faster and
efficient generation of Java objects, that are in line with the definition of the
XML structure on the XSD. These objects can be used to extract values from
XML files and bind them to Java primitive data types.

This architecture is useful on the image generation and calculation process.
The InkML files are bound into Java objects. By using the InkML object we can
get the values of the (X,Y) pair for every point of every stroke in that production
and draw the corresponding image. The same object is used to fetch the times-
tamp of every point and calculate the pauses and the rest of the information.

HandSpy server side is composed by a Servlet that is the dispatcher for
client requests and a set of other functions to create responses. The next list
describes some of the main functions that compose the server.

– Process - implements a Java Servlet instance. Acts as the single entrance
point on the system, managing all client requests. The HttpSession and
the UserContext are requested or created when required. The information
is sent as an HTTP POST request and is parsed to retrieve the invoked
command. The command is tested by an authentication method to attest its
validity, if the command is valid for the authenticated user the doRequest
method is called. Every command performed is stored on the UserContext
for an efficient reusage of the same command.

– Command - is an abstract class to be used by the CommandFactory. The
method doRequest of class Command is implemented by each command.
Every command on the system needs an authenticated session to be per-
fomed. The Command have the HttpServletRequest, HttpServletResponse
and the UserContext as arguments.

– Protocol - is the class for managing the InkType and Data objects that are
the unmarshalled representations of the InkML and Data XSD. The Protocol
class implements several methods including the getImage, that uses the
InkType object to generate a png image and write it to the OutputStream of
the HttpServletResponse.

– Selector - is the class for implementing the selection engine of the sys-
tem. Makes use of the Selection resource described in Section 4.1. The
parameters of the Selection resource are used to make a XPath query
and generate a scrollable LinkedHashMap with the Protocol selection. The
slider on the client interface is delimited to this selection and can be used
to navigate in the selected elements.

– UserContext - as the name suggests, this class stores the information on
the user session. For instance, the current working project and the selection

1764 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

array are accessed through the UserContext, therefore all commands using
these variables must have a valid instance of UserContext.

– DBconnection - is a Singleton class that implements the connection to
the database. This class connects to the database using the XML:DB API,
the unique point for database management. When a fresh installation of the
system is made the method createDataBaseStructureIfNeeded is invoked
to create the basic structure of the database.

– EntityManager - is the class that implements the Add,Remove,List andUpdate
operations on the system resources. Every resource type has a XSL Trans-
formation for each operation. Using a DBconnection instance the resource
files on the database are requested and used to perfom these operations.
The result of the operation is written to the OutputStream.

Data Layer The Data Layer was implemented using eXist [4] database man-
agement system. As the system uses XML files to represent all the information
on the system, choosing a native XML database was the most suitable option.

The database system is installed on the same machine as the Tomcat server
and is remotely accessed through a socket. The database is exclusively man-
aged by the HandSpy server. The HandSpy database structure described in
Section 4.1 is created when the HandSpy starts for the first time.

5. Collecting Framework

As the focus of the project is based on writing productions, a tool for collecting
handwritten data was developed. The device used to collect the data for this
experiment was the Livescribe Smartpen, already described in Chapter 3.

There are several advantages in using a smartpen instead of digitizing tablets
traditionally used for this kind of experiment. The possibility of setting up an ex-
periment in a classroom, a familiar place to the participants and being a writing
device similar to the pens normally used by school children. These features
make the smartpen less intrusive than digitizing tablets. The cost of running
the experiment with smart pens is also relevant because the price of a single
digitizing tablet is equivalent to several pens. They are easy to carry, a single
researcher can set up and supervise several participants at once. The pens can
record several experiment tasks without the need to be connected to download
the data to the computer. A single computer can be used to download all the
data in every pen.

To generate the data for HandSpy with the Livescribe Smartpen was devel-
oped a framework consisting of three parts, a Penlet to record the necessary
data to calculate the pause and burst time, a Paper Application with specific
active regions to control the experiment and finally the Data File Generator to
extract the collected data and create files in the InkML format. The following
sections on this chapter cover the development of the three components of the
framework and describes a series of recurring problems of using this kind of

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1765

Carlos Monteiro and José Paulo Leal

smartpen.

5.1. Penlet

The smartpen records data written on the paper on the AFD file of the paper
application. This data is used by the Livescribe Desktop to organize the down-
loaded data and render the respective drawing. For the purpose of the exper-
iment the default data recorded on the AFD was not sufficient to calculate the
pause and burst time. By default the only information on the strokes that can be
retrieved with the AFD file was the starting time.

The penlet was developed with the Livescribe Pen API. Using the interface
– PenletStorage – storing a plain text file in the internal storage pool. For every
stroke, the timestamp of every point in the stroke was written on the file. This
extra timestamp enables the calculation of pauses occured within a stroke.

To record the moments when each experiment started and ended, active re-
gions were defined in the paper application. The active regions raise events on
the penlet when the specified regions are entered or exited. These regions set
a timestamp for the beginning and the end of the experiment. The timestamp is
over overriden if the active zone is repeatedly entered. These timestamps are
also written on the same file as extra information on the experiment and are
used to calculate the time taken to actually start the task.
A visual feedback on the status of the penlet is given through the display on the
smartpen. When the penlet starts its version is shown on the display as well as
the interaction with the active regions.
The penlet is associated with the specific paper application created for the ex-
periment, the penlet starts running when the tip of the pen touches the sheet of
paper. On every change of paper sheet the penlet writes a control line on the
text file to identify a new collection of strokes.

5.2. Paper Application

A paper application is an AFD file with the digital description of each sheet of a
notebook. Different paper applications were design to perfom the different tasks
for the experiment. The paper application was developed in the Integrated De-
velopment Environment (IDE), Eclipse. Livescribe provides an Eclipse plugin
to create an AFD file and interactively draw the active regions. A background
image, on the PostScript(PS) format, defines the page layout, with the page
header and a place for the action buttons.
All tasks, follow the same layout. The basic layout of the paper sheet consists
of three active regions. A top region to place the header, the start and the end
button region. The active regions can be drawn aided by the background image,
to ensure their exact position.

Figure 10 shows an example of a paper application with highlighted ac-
tive regions. In this case the header region acted as a passive region. Even

1766 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

Fig. 10. Paper Application - active regions in red

if the participant didn’t ”touch” the start button, the start timestamp setter was
activated by an event raised by any stroke made outside the header or start
delimited region.

5.3. Data File Generator

The Livescribe Desktop SDK is a C# API to extract data from the smartpen
used for generating the InkML files.
The AFD files and the internal storage pool, where text file with the extra infor-
mation on the strokes is stored, are accessed. For every control line with the
identification of a new collection of strokes found in the file, a new InkML file is
created. The next lines have the timestamp of the beginning of each stroke pre-
ceded by increments of milliseconds of every point within the stroke. The time
increments have as reference the beginning of the stroke timestamp. These in-
crements represent the time of each point within the stroke. The timestamps
are used to access the AFD file and retrieve the X and Y coordinates of every
point given the timestamp. The InkML file is written with the X,Y coordinates
and the respective timestamp. The Listing 1.2 is an example of trace element
generated with information of every point, following the schema [X Y Times-
tamp] separated by commas. This data was generated from a real collection
made with the smartpen.

5.4. Hardware Issues

The collecting framework was used on a real experiment cenario while it was
being developed. This experience led us to avoid some features of the smartpen
and to reimplement som functions of the penlet. Finally we managed to make a
good practical use of the device for an efficient data collection.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1767

Carlos Monteiro and José Paulo Leal

Listing 1.2. InkML trace element example
. . .
<t r ace>

2534 685 37297520816, 2537 684 37297520829, 2539 681 37297520843,
2544 678 37297520856, 2546 677 37297520883, 2546 678 37297520896,
2548 680 37297520909, 2549 682 37297520923, 2554 695 37297520949,
2559 707 37297520963, 2565 720 37297520976, 2572 732 37297520989,
2580 749 37297521016, 2582 753 37297521029, 2584 754 37297521043,
2584 754 37297521056, 2584 754 37297521083, 2584 754 37297521096,
2584 754 37297521109, 2584 754 37297521123, 2584 753 37297521149,
2585 751 37297521163, 2586 748 37297521176, 2592 738 37297521189,
2603 710 37297521216, 2611 694 37297521229, 2615 684 37297521243,
2620 673 37297521256, 2620 670 37297521283, 2621 670 37297521296

< / t r ace>
. . .

Our first intention was to use smartpen to react to active regions. On the
first version of the paper application the header had active regions to define
each field. The information written on the fields was processed by the HWR
engine to automatically transform the letters and numbers into its character
codes. To improve the HWR success different contexts were associated with
each field. For the code identification of the participant, as it was a numeric field,
the context was set to recognize only numeric symbols and for the name field,
only characters. This entailed a change of context for almost every field and
consequently an unexpected overload on the smartpen processing capacity.
This overload caused a significant increase in stroke losses, which invalidate
an entire collection. The ratio of successful recognitions was not enough to be
useful therefore the use of the HWR was discontinued.

The experiment participants are intended to be school aged children. The
use of audible signals to prompt entering active regions is also discouraged,
as it distracts the children and could led to an active region touching spree,
invalidating the experiment timestamps. Children tend to hold a pen close to its
tip. As the smartpen makes use of the infrared camera to work and it is located
on the tip of the pen, it is necessary to pick the pen in a way so the camera is
not blocked by any finger.

The Livescribe Desktop SDK is limited to Windows environment. On the first
month of the development of the collecting framework, a surprising business
move from Livescribe occurred, they discontinued the development program,
ceasing the support and updates on the Livescribe SDK. This led to run system
updates more thoroughly.

6. HandSpy Usability Evaluation

The project, Develop Automate and Auto Regulating cognitive processes in writ-
ing composition (DAAR), focus on the development of cognitive processes in

1768 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

written production. It aims to relate the automation of writing processes and
self-regulation of others with the development of this competence.

The plan of the study is divided in two phases. On the first phase, which
was the first year of HandSpy development, the participants were children from
the second grade to the seventh. The studies characterize the text production
and the involved cognitive processes. The second phase will be divided in two
interventions. The participants of the first intervention will be children from first
to fourth grade and will focus on transcription skills. The second, with children
in the fourth grade, will focus on strategies of self-regulation in writing.

In the first year of the development, HandSpy is being used to store the col-
lected data of the first phase of the study. More than two thousand productions
were collected on several tasks performed with five hundred and sixty children.
The collections were made with the collecting device described in Chapter 5
with groups of fifteen children at a time making five different writting tasks. Af-
ter collecting the data was uploaded to the HandSpy system and automatically
stored on the XML database. HandSpy is currently being used to analyze the
data of the first phase of the project.

The social scientists on this project were the users who had more contact
with HandSpy therefore they were the main assessors of the system usability.
Besides the evaluation that was made throughout the development which iden-
tified some problems, an evaluation based on the completion of a questionnaire
was also made. The evaluation method is described in the following sections.

6.1. Heuristic Evaluation

Heuristic evaluation is on the most popular methods to identify problems in
the user interface design. An heuristic is a set of rules and methods to solve
problems. Rolf Molich and Jakob Nielsen [6] describe the heuristic evaluation
as ”an informal method of usability analysis where a number of evaluators are
presented with an interface design and asked to comment on it”.

After evaluating different heuristics, Nielsen created a list with the best heuris-
tics to identify interface usability problems [5].

– Visibility of system status - The system should always give operation
status.

– Compatibility - The system should use familiar language to the user. Infor-
mation should appear in a natural order.

– User control and freedom - Support undo and redo operations to recover
from choosing functions by mistake.

– Consistency and standards - The interface should use consistent colors,
operations names and layout.

– Error prevention - Try to prevent errors from ocurring displaying confirma-
tion on critical operations.

– Recognition rather than recall - Minimize the users memory load by mak-
ing objects, actions, and options always visible.

– Flexibility and efficiency of use - Permission for the user to personalize
frequent actions.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1769

Carlos Monteiro and José Paulo Leal

– Aesthetic and minimalist design - The information displayed must be rel-
evant.

– Help users recognize, diagnose, and recover from errors - Error mes-
sages should be clear, precisely indicate the problem and suggest a solu-
tion.

– Help and documentation - Help and documentation should always be
available.

6.2. Evaluation

The evalution made on HandSpy usability was based on the results of a ques-
tionnaire. The questionnaire was based on the heuristic set listed in Section
6.1. The questionnaire was answered by three evaluators. The questionnaire
consisted on a multiple choice answer system. In the Figure 11 is the graph
with percentage of each heuristic. The results were processed as follows:

– For each group of questions the possible answers were - Does not apply
– Never – Almost Never – Regular – Almost Always – Always

– The total number of effective answers is calculated by subtracting the Does
not apply answers to the total answers.

– The percentage of the answers ”Never/Almost Never”, ”Regular”, ”Always/Al-
most Always” is calculated based on effective answers.

With the analysis of graph is clear that the critical issues on the interface
are the lack of help, documentation and poor flexibility. These problems are re-
inforced by the evaluators in the comments ”Insufficient help menus and still
arise many errors that are not comprehended”, ”Integrate the help in tutorial
format, improve ergonomics and clarity of controls and functions”. We can ver-
ify that the heuristics better accomplish are ”Compatibility” and ”Recognition
rather than recall”. Despite a better classification, some comments made on
these heuristics suggest some improvements on some specific components
”Improve the way to confirm the selection of data”, ”Improve interactivity with
the data from participants” and ”Transparency for the user’s project idea and
its management”. The comments clearly show that project management is the
feature that deserves more improvements on usability. Despite having quite a
few negative points the interface meets satisfactorily the usability heuristics.

The answer to, an overall evaluation of the system, ”Considering all the pa-
rameters that you analyzed how would you rank HandSpy?” was unanimous, all
evaluaters answer that the system is ”Merely Adequate”. Despite some severe
faults on the interface this evaluation showed that HandSpy has potential to be
a reference in this field, improving some aspects on the user experience.

7. Conclusion

With the use of new devices capable of recording hand gestures, the use of dig-
ital handwriting as a transferable data is becoming more common. These new

1770 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Flexibility and efficiency of use

Help and documentation

Help users recognize

User control and freedom

Performance

Ease

Reliability

Error prevention

Consistency and standards

Visibility of system

Recognition rather than recall

Compatibility

Almost Never/Never

Regular

Almost Always/Always

Fig. 11. Heuristic Evaluation

possibilities provide new ways of studying the cognitive processes involved in
the handwriting process. This paper describes the design, implementation and
evalution of a new tool, HandSpy, to support the study on cognitive processes
in writing.
HandSpy aims to manage and support handwriting research studies with large
amounts of data and enable collaborative work to speed up the analysis pro-
cess. Embedded in a web platform, HandSpy is a powerful tool to be used as
a cross platform environment. With the use of the web browser as the main
working tool, it obviates the need for installing various programs, on various
machines.

The collecting framework described in the Chapter 5 is a new tool for record-
ing writing productions. The use of a commercial product such as the Livescribe
smartpen to collect written productions results on a affordable, easy to use and
less intrusive compared to other tools for this purpose. This tool has already
raised interest among the social sciences research community.

7.1. Future Work

As future work the evolution of HandSpy will consist in user interface upgrades
and expanding the collection to new data elements. The evaluation of HandSpy

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1771

Carlos Monteiro and José Paulo Leal

defined the next steps in the user interface upgrades. Based on the outcome
of the questionnaire along with a series of suggestions made by the evalua-
tors, we present here some of the main future implementations to improve user
interaction.

– Incorporate user guides and tutorials on the interface, offering information
on the current screens.

– Improve error handling giving specific feedback of the error.
– Optimize interaction in the analysis screen giving a more accurate selection

and identification of the pauses.
– Create a real time animation playback of the written text.

The smartpen has a built-in microphone which enables collection extension with
audio data. This can be used to record information on what participants are
thinking, if they are asked to ”think out loud”, while writing. In this case synchro-
nizing the audio with the writing is eased as they are collected with the same
device. Collecting physiologic data such as heart rate or electric conductivity
of the skin can be useful to relate with the writing pauses. Video recording the
production is also an added value for the research but only if we manage to
retrieve the point of regard on the paper during the writing production. Never-
theless synchronizing video and physiologic data with the writing raises new
challenges.

Acknowledgments. This work is in part funded by the ERDF/COMPETE Programme
and by FCT within the projects FCOMP-01-0124-FEDER-022701 & PTDC/PSI-PCO/110708/2009.

References

1. D. Alamargot, D. Chesnet, C.D., Ros, C.: Eye and pen: A new device for studying
reading during writing. Behavior Research Methods (2006)

2. E.Guinet, Kandel, S.: Ductus: A software package for the study of handwriting pro-
duction. Behavior Research Methods (2010)

3. Ioannidis, Y.E., Livny, M.: Conceptual schemas: Multi-faceted tools for desktop sci-
entific experiment management. Journal of Intelligent and Cooperative Information
Systems 1, 451–474 (1992)

4. Meier, W.: e[x]ist: An open source native xml database. Web, Web-Services, and
Database Systems (2003)

5. Nielsen, J.: Enhancing the explanatory power of usability heuristics. In: Proceedings
of the SIGCHI conference on Human factors in computing systems: celebrating inter-
dependence. pp. 152–158. ACM, New York, NY, USA (1994)

6. Nielsen, J., Molich, R.: Heuristic evaluation of user interfaces. In: Proceedings of the
SIGCHI conference on Human factors in computing systems: Empowering people.
pp. 249–256. ACM, New York, NY, USA (1990)

7. Olive, T., Alves, R.A., Castro, S.L.: Cognitive processes in writing during pause and
execution periods. European Journal of Cognitive Psychology 21(5), 758–785 (2009)

1772 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

Carlos Monteiro is currently a Telecommunications Engineer at Inmarsat, a
satellite telecommunications company. During his master’s degree he was in-
volved in a research project that was focused on digital handwriting formats and
analysis, based on XML.

José Paulo Leal is assistant professor at the department of Computer Sci-
ence of the Faculty of Sciences of the University of Porto (FCUP) and asso-
ciate researcher of the Center for Research in Advanced Computing Systems
(CRACS). His main research interests are eLearning system implementation,
structured document processing and software engineering. He has a special
interest on automatic exercise evaluation, in particular on the evaluation of pro-
gramming exercises, on ontology processing and on web adaptability. He has
participated in several research projects in his main research areas, including
technology transfer projects with industrial partners. He has over 60 publica-
tions in conference proceedings, journals and book chapters.

Received: November 30, 2012; Accepted: July 9, 2013.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1773

DOI: 10.2298/CSIS121129066A

Batched Evaluation of
Linear Tabled Logic Programs

Miguel Areias and Ricardo Rocha

CRACS & INESC TEC and Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

{miguel-areias,ricroc}@dcc.fc.up.pt

Abstract. Logic Programming languages, such as Prolog, provide a high-
level, declarative approach to programming. Despite the power, flexibility
and good performance that Prolog systems have achieved, some defi-
ciencies in Prolog’s evaluation strategy - SLD resolution - limit the po-
tential of the logic programming paradigm. Tabled evaluation is a rec-
ognized and powerful technique that overcomes SLD’s susceptibility in
dealing with recursion and redundant sub-computations. In a tabled eval-
uation, there are several points where we may have to choose between
different tabling operations. The decision on which operation to perform is
determined by the scheduling algorithm. The two most successful tabling
scheduling algorithms are local scheduling and batched scheduling. In
previous work, we have developed a framework, on top of the Yap Prolog
system, that supports the combination of different linear tabling strate-
gies for local scheduling. In this work, we propose the extension of our
framework to support batched scheduling. In particular, we are interested
in the two most successful linear tabling strategies, the DRA and DRE
strategies. To the best of our knowledge, no other Prolog system supports
both strategies simultaneously for batched scheduling. Our experimental
results show that the combination of the DRA and DRE strategies can
effectively reduce the execution time for batched evaluation.

Keywords: logic programming, linear tabling, scheduling.

1. Introduction

Logic programming provides a high-level, declarative approach to program-
ming. Arguably, Prolog is one of the most popular and powerful logic program-
ming languages. Ideally, one would want Prolog programs to be written as logi-
cal statements first, and for control to be tackled as a separate issue. In practice,
the operational semantics of Prolog is given by SLD resolution [9], an evalua-
tion strategy particularly simple but that suffers from fundamental limitations,
such as in dealing with recursion and redundant sub-computations. Unfortu-
nately, the limitations of SLD resolution mean that Prolog programmers must
be concerned with SLD semantics throughout program development.

Tabling [4] is a proposal that overcomes SLD limitations in dealing with re-
cursion and redundant sub-computations. Tabling based models are able to

M. Areias, R. Rocha

reduce the search space, avoid looping, and always terminate for programs
with the bounded term-size property1. In a nutshell, tabling consists of storing
intermediate solutions for subgoals so that they can be reused when a similar
subgoal appears during the execution of a program and, for that, the calls and
the solutions to tabled subgoals are stored in a global data structure called the
table space. Work on tabling, as initially implemented in the XSB system [11],
proved its viability for application areas such as Natural Language Processing,
Knowledge Based Systems, Model Checking, Program Analysis, among others.

In a tabled evaluation, there are several points where we may have to choose
between continuing forward execution, backtracking, consuming solutions from
the table, or completing subgoals. The decision on which operation to perform
is determined by the scheduling strategy. Whereas a strategy can achieve very
good performance for certain applications, for others it might add overheads and
even lead to unacceptable inefficiency. The two most successful strategies are
local scheduling and batched scheduling [7]. Local scheduling tries to complete
subgoals as soon as possible. When new solutions are found, they are added
to the table space and the evaluation fails. Solutions are only returned when
all program clauses for the subgoal at hand were resolved. Batched scheduling
favors forward execution first, backtracking next, and consuming solutions or
completion last. It thus tries to delay the need to move around the search tree by
batching the return of solutions. When new solutions are found for a particular
tabled subgoal, they are added to the table space and the evaluation continues.

The main difference between the two strategies is that in batched schedul-
ing, variable bindings are immediately propagated to the calling environment
when a solution is found. For some situations, this may result in creating com-
plex dependencies between subgoals and in having more memory space re-
quirements. On the other hand, since local scheduling delays solutions, it does
not benefit from binding propagation, and instead, when explicitly returning the
delayed solutions, it incurs an extra overhead for copying them out of the table.

Currently, the tabling technique is widely available in systems like XSB Pro-
log [14], Yap Prolog [12], B-Prolog [15], ALS-Prolog [8], Mercury [13] and Ciao
Prolog [5]. In these implementations, we can distinguish two main categories of
tabling mechanisms: suspension-based tabling and linear tabling. Suspension-
based tabling mechanisms need to preserve the computation state of sus-
pended tabled subgoals in order to ensure that all solutions are correctly com-
puted. A tabled evaluation can be seen as a sequence of sub-computations
that suspend and later resume. Linear tabling mechanisms use iterative com-
putations of tabled subgoals to compute fix-points and, for that, they maintain
a single execution tree without requiring suspension and resumption of sub-
computations. For that reason, linear tabling mechanisms have less memory
space requirements and can be implemented with less disruption of an existing
Prolog engine. On the other hand, linear tabling mechanisms can be arbitrarily

1 A logic program has the bounded term-size property if there is a function f : N → N
such that whenever a query goal Q has no argument whose term size exceeds n,
then no term in the derivation of Q has size greater than f(n).

1776 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Batched Evaluation of Linear Tabled Logic Programs

slower than suspension-based tabling. However, they are still very competitive
on a large number of examples. In particular, for batched scheduling, they may
have an additional advantage since, with suspension-based tabling, some eval-
uations may require very large amounts of space.

In previous work, we have developed a framework, on top of the Yap Pro-
log system, that supports the combination of different linear tabling strategies
for local scheduling [1, 2]. As these strategies optimize different aspects of the
evaluation, they were shown to be orthogonal to each other for local scheduling.
In this work, we propose the extension of our framework, to combine different
linear tabling strategies, but for batched scheduling. In particular, we are inter-
ested in the two most successful linear tabling strategies, the DRA and DRE
strategies [2]. To the best of our knowledge, no other Prolog tabling system
supports both strategies simultaneously for batched scheduling. Extending our
framework from local scheduling to batched scheduling should be, in principle,
smooth but, as we will see, there are some relevant details that have to be
considered in order to ensure a correct and efficient integration of the DRA and
DRE strategies with batched scheduling. In more detail, this integration required
changes to the table space data structures, to the tabling operations and a new
mechanism to support the propagation of solutions in reevaluation rounds.

Our experimental results show that the combination of the DRA and DRE
strategies can effectively reduce the execution time for batched evaluation.
When compared with Yap’s suspension-based mechanism, the commonly re-
ferred weakness of linear tabling of doing a huge number of redundant compu-
tations for computing fix-points was not such a problem in our experiments. We
thus argue that an efficient implementation of linear tabling can be a good and
first alternative to incorporate tabling into a Prolog system without such support.

The remainder of the paper is organized as follows. First, we briefly intro-
duce the basics of tabling and describe the execution model for standard linear
tabled evaluation using batched scheduling. Next, we present the DRA and
DRE strategies and discuss how they optimize different aspects of the evalua-
tion. We then describe the most relevant implementation details regarding the
integration of the two strategies on top of the Yap Prolog system. Finally, we
present experimental results and we end by outlining some conclusions.

2. Standard Linear Tabled Evaluation

Tabling works by storing intermediate solutions for tabled subgoals so that they
can be reused when a similar2 (or repeated) call appears. In a nutshell, first calls
to tabled subgoals are considered generators and are evaluated as usual, us-
ing SLD resolution, but their solutions are stored in a global data space, called
the table space. Similar calls to tabled subgoals are considered consumers and

2 For the sake of simplicity, we are assuming a variant-based tabling mechanism, where
two terms are considered to be similar if they are the same up to variable renaming.
Alternatively, subsumption-based tabling mechanisms consider that two terms are
similar if one term subsumes (is more general than) the other [6].

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1777

M. Areias, R. Rocha

are not reevaluated against the program clauses because they can potentially
lead to infinite loops, instead they are resolved by consuming the solutions al-
ready stored for the corresponding generator. During this process, as further
new solutions are found, we need to ensure that they will be consumed by all
the consumers, as otherwise we may miss parts of the computation and not
fully explore the search space.

A generator call C thus keeps trying its matching clauses until a fix-point is
reached. If no new solutions are found during one round of trying the match-
ing clauses, then we have reached a fix-point and we can say that C is com-
pletely evaluated. However, if a number of subgoal calls is mutually dependent,
thus forming a Strongly Connected Component (SCC), then completion is more
complex and we can only complete the calls in a SCC together [11]. SCCs are
usually represented by the leader call, i.e., the generator call which does not de-
pend on older generators. A leader call defines the next completion point, i.e., if
no new solutions are found during one round of trying the matching clauses for
the leader call, then we have reached a fix-point and we can say that all subgoal
calls in the SCC are completely evaluated.

We next illustrate in Fig. 1 the standard execution model for linear tabling us-
ing batched scheduling. At the top, the figure shows the program code (the left
box) and the final state of the table space (the right box). The program defines
two tabled predicates, a/1 and b/1, each defined by two clauses (clauses c1 to
c4). The bottom sub-figure shows the evaluation sequence, numbered in order
of evaluation, for the query goal a(X). Generator calls are depicted by black oval
boxes and consumer calls by white oval boxes.

c3 c4

c1

c2

8,18,28: fix-point check

6: fix-point check

 :- table a/1, b/1.

c1) a(X) :- b(X).
c2) a(2).
c3) b(X) :- a(X).
c4) b(1).

1: a(X)

2: b(X)
 4: X=1
13: X=2
28: complete

Call Solutions

1: a(X)

 5: X=1
 7: X=2
28: complete

7: X=2

2: b(X)

4: X=13: a(X)

2: b(X)

5: X=1

c3 c4

16: fix-point check9: b(X)

15: X=1
(repeated)

11: a(X)

12: X=1
(repeated)

 13: X=2

9: b(X)

10: X=1
(repeated)

14: X=2
(repeated)

c2

17: X=2
(repeated)

c1

19-27: ...

Fig. 1. A standard linear tabled evaluation using batched scheduling

1778 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Batched Evaluation of Linear Tabled Logic Programs

The evaluation starts by inserting a new entry in the table space represent-
ing the generator call a(X) (step 1). Then, a(X) is resolved against its first match-
ing clause, clause c1, calling b(X) in the continuation. As this is a first call to
b(X), we insert a new entry in the table space representing b(X) and proceed
as shown in the bottom left tree (step 2). Subgoal b(X) is also resolved against
its first matching clause, clause c3, calling again a(X) in the continuation (step
3). Since a(X) is a repeated call, we try to consume solutions from the table
space, but at this stage no solutions are available, so execution fails.

We then try the second matching clause for b(X), clause c4, and a first
solution for b(X), {X=1}, is found and added to the table space (step 4). We then
follow a batched scheduling strategy and the evaluation continues with forward
execution [7]. With batched scheduling, new solutions are immediately returned
to the calling environment, thus the solution for b(X) should now be propagated
to the context of the previous call, which also originates a first solution for a(X),
{X=1} (step 5).

The execution then fails back to node 2 and we check for a fix-point (step
6), but b(X) is not a leader call because it has a dependency (consumer node
3) to an older call, a(X). Remember that we reach a fix-point when no new
solutions are found during the last round of trying the matching clauses for the
leader call. Then, we try the second matching clause for a(X) and a second
solution for it, {X=2}, is found and added to the table space (step 7). We then
backtrack again to the generator call for a(X) and because we have already
explored all matching clauses, we check for a fix-point (step 8). We have found
new solutions for both a(X) and b(X) in this round, thus the current SCC is
scheduled for reevaluation.

The evaluation then repeats the same sequence as in steps 2 to 3 (now
steps 9 to 11), but since we are following a batched scheduling strategy, we first
consume the solutions already available for b(X) (this will be further explained
later in section 4), which leads to a repeated solution for a(X) (step 10). Tabling
does not store duplicate solutions in the table space. Instead, repeated solu-
tions fail. Next, the evaluation moves to the consumer call of a(X) (step 11).
Solution {X=1} is first forwarded to it, which originates a repeated solution for
b(X) (step 12) and thus execution fails. Then, solution {X=2} is also forward to
it and a new solution for b(X) is found (step 13) and propagated to a(X), which
leads to a repeated solution for a(X) (step 14).

In the continuation, we find another repeated solution for b(X) (step 15) and
we fail a second time in the fix-point check for b(X) (step 16). Again, as we are
following a batched scheduling strategy, the solutions for b(X) were already all
propagated to the context of a(X), thus we can safely backtrack to the gener-
ator call for a(X). Because we have found a new solution for b(X) during this
last round, the current SCC is scheduled again for reevaluation (step 18). The
reevaluation of the SCC does not find new solutions for both a(X) and b(X)
(steps 19 to 27). Thus, when backtracking again to a(X) we have reached a
fix-point and because a(X) is a leader call, we can declare the two subgoal calls
to be completed (step 28).

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1779

M. Areias, R. Rocha

3. Linear Tabling Strategies

The standard linear tabling mechanism uses a naive approach to evaluate
tabled logic programs. Every time a new solution is found during the last round
of evaluation, the complete search space for the current SCC is scheduled for
reevaluation. However, some branches of the SCC can be avoided, since it is
possible to know beforehand that they will only lead to repeated computations,
hence not finding any new solutions. Next, we present two different strategies
for optimizing the standard linear tabled evaluation. The common goal of both
strategies is to minimize the number of branches to be explored, thus reducing
the search space, and each strategy tries to focus on different aspects of the
evaluation to achieve it.

3.1. Dynamic Reordering of Alternatives

The key idea of the Dynamic Reordering of Alternatives (DRA) strategy, as
originally proposed by Guo and Gupta [8], is to memoize the clauses (or al-
ternatives) leading to consumer calls, the looping alternatives, in such a way
that when scheduling an SCC for reevaluation, instead of trying the full set of
matching clauses, we only try the looping alternatives.

Initially, a generator call C explores the matching clauses as in standard lin-
ear tabled evaluation and, if a consumer call is found, the current clause for C
is memoized as a looping alternative. After exploring all the matching clauses,
C enters the looping state and from this point on, it only tries the looping alter-
natives until a fix-point is reached. Figure 2 uses the same program from Fig. 1
to illustrate how DRA evaluation works.

The evaluation sequence for the first SCC round (steps 2 to 7) is identical to
the standard evaluation of Fig. 1. The difference is that this round is also used to
detect the alternatives leading to consumers calls. We only have one consumer
call at node 3 for a(X). The clauses in evaluation up to the corresponding gen-
erator, call a(X) at node 1, are thus marked as looping alternatives and added
to the respective table entries. This includes alternative c3 for b(X) and alterna-
tive c1 for a(X). As for the standard strategy, the SCC is then scheduled for two
extra reevaluation rounds (steps 9 to 15 and steps 17 to 23), but now only the
looping alternatives are evaluated, which means that the clauses c2 and c4 are
ignored.

3.2. Dynamic Reordering of Execution

The second strategy, that we call Dynamic Reordering of Execution (DRE), is
based on the original SLDT strategy, as proposed by Zhou et al. [16]. The key
idea of the DRE strategy is to give priority to the program clauses and, for that,
it lets repeated calls to tabled subgoals execute from the backtracking clause of
the former call. A first call to a tabled subgoal is called a pioneer and repeated
calls are called followers of the pioneer. When backtracking to a pioneer or a
follower, we use the same strategy and we give priority to the exploitation of the

1780 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Batched Evaluation of Linear Tabled Logic Programs

c3 c4

c1

c2

8,16,24: fix-point check

6: fix-point check

1: a(X)

7: X=2

2: b(X)

4: X=13: a(X)

2: b(X)

c3

15: fix-point check9: b(X)

11: a(X)

12: X=1
(repeated)

 13: X=2

9: b(X)

10: X=1
(repeated)

14: X=2
(repeated)

c1

17-23: ...

1: a(X)

2: b(X)
 4: X=1
13: X=2
24: complete

Call Solutions

 5: X=1
 7: X=2
24: complete

Looping Alternatives

 3: c1

 3: c3

5: X=1

 :- table a/1, b/1.

c1) a(X) :- b(X).
c2) a(2).
c3) b(X) :- a(X).
c4) b(1).

Fig. 2. A linear tabled evaluation using batched scheduling with DRA evaluation

remaining clauses. The fix-point check operation is still performed by pioneer
calls. Figure 3 uses again the same program from Fig. 1 to illustrate how DRE
evaluation works.

As for the standard strategy, the evaluation starts with (pioneer) calls to a(X)
(step 1) and b(X) (step 2), and then, in the continuation, a(X) is called repeatedly
(step 3). With DRE evaluation, a(X) is now considered a follower and thus we
steal the backtracking clause of the former call at node 1, i.e., clause c2. The
evaluation then proceeds as for a generator call (right upper tree in Fig. 3),
which means that new solutions can be generated for a(X). We thus try clause
c2 and a first solution for a(X), {X=2}, is found and added to the table space
(step 4). Then, we follow a batched scheduling strategy and the solution {X=2}
is propagated to the context of b(X), which originates the solution {X=2} (step
5), and to the context of a(X), which leads to a repeated solution (step 6).

As both matching clauses for a(X) were already taken, the execution back-
tracks to the pioneer node 2. Next, we find a second solution for b(X) (step 7),
which is then propagated, leading also to a second solution for a(X) (step 8). In
step 9, we check for a fix-point, but b(X) is not a leader call because it has a
dependency (follower node 3) to an older call, a(X). We then backtrack to the pi-
oneer call for a(X) and because we have already explored the matching clause
c2 in the follower node 3, we check for a fix-point. Since we have found new
solutions during the last round, the current SCC is scheduled for reevaluation
(step 10). As the full set of solutions was already found during the first round,
the reevaluation of the SCC does not find any further solutions (steps 11 to 19),
and thus the evaluation can be completed at step 20.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1781

M. Areias, R. Rocha

c1 c2

10,20: fix-point check

1: a(X)

2: b(X)
 5: X=2
 7: X=1
20: complete

Call Solutions

1: a(X)

 4: X=2
 8: X=1
20: complete

4: X=22: b(X)

6: X=2
(repeated)

8: X=1

c3 c4

9: fix-point check2: b(X)

7: X=13: a(X)

3: a(X)

11-19: ...

5: X=2

 :- table a/1, b/1.

c1) a(X) :- b(X).
c2) a(2).
c3) b(X) :- a(X).
c4) b(1).

Fig. 3. A linear tabled evaluation using batched scheduling with DRE evaluation

4. Propagation of Solutions in Reevaluation Rounds

In the previous sections, one could observe that tabling does not store duplicate
solutions in the table space and, instead, repeated solutions fail. This is how
tabling avoids unnecessary computations and looping for duplicate solutions.
However, since repeated solutions also fail in reevaluation rounds, this means
that, in fact, a solution is only propagated once, i.e., in the round it is first found,
which might be not sufficient to ensure the completeness of the evaluation. To
solve this problem, in a reevaluation round, we start by propagating (consuming)
the solutions already available for the subgoal call at hand. Alternatively, we
could propagate the solutions at the end, after the fix-point check procedure,
but by doing that some solutions will be propagated more than once in the
same round, which is worthless.

In the previous examples, for simplicity of explanation, we have omitted
some steps regarding the propagation of solutions in the leader call since, for
all the examples, one propagation per solution was enough to correctly com-
pute the corresponding evaluations. To better illustrate the importance of the
propagation of solutions in reevaluation rounds and, in particular, for the leader
call, Fig. 4 shows a new example, using again the same program from Fig. 1,
but for the query goal a(X1), b(X2). For simplicity of explanation, we consider
a standard linear tabled evaluation, i.e., without DRA and DRE support. In or-
der to have a common representation of variables between the program code,
the evaluation and the table space, the different calls to both a/1 and b/1 are
presented using a generic variable X, instead of the real variables X1 and X2.

In the first round of the evaluation (steps 1 to 12), the solutions found for
a(X), at steps 5 and 9, are propagated to the context of a(X1) and, in the
continuation, b(X2) consumes (note that at this point b(X2) is a repeated call

1782 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Batched Evaluation of Linear Tabled Logic Programs

c3 c4

c1 c2

12: fix-point check

8: fix-point check

1: a(X)

9: X=2

2: b(X)

4: X=13: a(X)

2: b(X)

5: X=1

c3 c4

19: fix-point check13: b(X)

18: X=1
(repeated)

15: a(X)

16: X=1
(repeated)

 17: X=2

23-...

1: a(X1), b(X2)

X1=1

6: b(X2)

X1=2

7: X1=1,
 X2=1

10: b(X2)

11: X1=2,
 X2=1

 :- table a/1, b/1.

c1) a(X) :- b(X).
c2) a(2).
c3) b(X) :- a(X).
c4) b(1).

1: a(X)

2: b(X)
 4: X=1
17: X=2
 : complete

Call Solutions

 5: X=1
 9: X=2
 : complete

X1=1

13: b(X2)

X1=2

20: b(X2)

14: X1=1,
 X2=1

 17: X1=1,
 X2=2

21: X1=2,
 X2=1

 22: X1=2,
 X2=2

...

Fig. 4. Propagation of solutions in reevaluation rounds using batched scheduling

to b(X)) the available solution found at step 4, which originates the solutions
{X1=1, X2=1} (step 7) and {X1=2, X2=1} (step 11) for the top query goal.

Next, in the second round of the evaluation, the leader call starts by prop-
agating its first solution, calling b(X2) in the continuation (step 13). Since this
is the first call to b(X) in this round, b(X2) also starts by propagating its current
solution (step 14). Then, when reevaluating the program clauses for b(X) (steps
15 to 18), a new solution {X=2} is found (step 17). The combination of this
new solution with the previous solutions for a(X1) originates two new solutions,
{X1=1, X2=2} (step 17) and {X1=2, X2=2} (step 22), for the top query goal.

Notice that without the propagation of solutions for the leader call (steps 13
and 20), no further solutions had been found for the top query goal. In particular,
the solution {X=2} for b(X) would have been found in the context of a(X) (simi-
larly to the solution {X=1} found at step 4) but, since this originates a repeated
solution for a(X), the computation will fail. By failing for a(X), we cannot combine
the new solution for b(X) with the previous solutions for a(X1) at the top query
goal. Hence, this fact, i.e., the fact that tabling fails for repeated solutions, can
lead to a collateral effect where it can be blocking forward execution. To solve
this problem, in a reevaluation round, we start by propagating all the available
solutions.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1783

M. Areias, R. Rocha

5. Implementation Details

This section describes the implementation details regarding the extension of
our framework to support batched scheduling, with particular focus on the table
space data structures and on the tabling operations.

5.1. Table Space

To implement the table space, Yap uses tries which is considered a very efficient
data structure to implement the table space [10]. Tries are trees in which com-
mon prefixes are represented only once. Tries provide complete discrimination
for terms and permit look up and insertion to be done in a single pass.

In more detail, a trie is a tree structure where each different path through the
trie nodes corresponds to a term described by the tokens labeling the traversed
nodes. For example, the tokenized form of the term p(X,1,f(Y)) is the sequence
of 5 tokens p/3, VAR0, 1, f/1 and VAR1, where each variable is represented as a
distinct VARi constant [3]. Two terms with common prefixes will branch off from
each other at the first distinguishing token. Consider, for example, a second
term p(Z,1,b). Since the main functor, token p/3, and the first two arguments,
tokens VAR0 and 1, are common to both terms, only one additional node will
be required to fully represent this second term in the trie, thus allowing to save
three trie nodes in this case.

As other tabling engines, Yap uses two levels of tries: one for the subgoal
calls and other for the computed solutions. A tabled predicate accesses the ta-
ble space through a specific table entry data structure. Each different subgoal
call is represented as a unique path in the subgoal trie and each different so-
lution is represented as a unique path in the solution trie. Contrary to subgoal
tries, solution trie paths hold just the substitution terms for the free variables that
exist in the argument terms of the corresponding subgoal call [10]. An example
for a tabled predicate p/3 is shown in Fig. 5.

Initially, the table entry for p/3 points to an empty subgoal trie. Then, the
subgoal p(X,1,Y) is called and three trie nodes are inserted to represent the
arguments in the call: one for variable X (VAR0), a second for integer 1, and
a last one for variable Y (VAR1). Since the predicate’s functor term is already
represented by its table entry, we can avoid inserting an explicit node for p/3
in the subgoal trie. Then, the leaf node is set to point to a subgoal frame, from
where the answers for the call will be stored. The example shows two answers
for p(X,1,Y): {X=VAR0, Y=f(VAR1)} and {X=VAR0, Y=b}. Since both answers
have the same substitution term for argument X, they share the top node in the
answer trie (VAR0). For argument Y, each answer has a different substitution
term and, thus, a different path is used to represent each.

When adding answers, the leaf nodes are chained in a linked list in insertion
time order, so that the recovery may happen the same way. In Fig. 5, we can ob-
serve that the leaf node for the first answer (node VAR1) points (dashed arrow)
to the leaf node of the second answer (node b). To maintain this list, two fields in
the subgoal frame data structure point, respectively, to the first and last answer

1784 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Batched Evaluation of Linear Tabled Logic Programs

f/1

VAR1

VAR0

1

VAR1

subgoal
trie

subgoal frame for
p(VAR0,1,VAR1)

VAR0

b

solution
trie

1st argument

2nd argument

3rd argument

substitution term for
1st argument

substitution term for
3rd argument

table entry for
p/3

Fig. 5. Table space organization

of this list (for simplicity of illustration, these pointers are not shown in Fig. 5).
When consuming answers, a consumer node only needs to keep a pointer to
the leaf node of its last loaded answer, and consumes more answers just by
following the chain. Answers are loaded by traversing the trie nodes bottom-up
(again, for simplicity of illustration, such pointers are not shown in Fig. 5).

A key data structure in this organization is the subgoal frame. Subgoal
frames are used to store information about each tabled subgoal call, namely:
the entry point to the solution trie; the state of the subgoal (ready, evaluating
or complete); support to detect if the subgoal is a leader call; and support to
detect if new solutions were found during the last round of evaluation. The DRA
and DRE strategies extend the subgoal frame data structure with the following
extra information [2]: support to detect, store and load looping alternatives; two
new states used to detect generator and consumer calls in reevaluating rounds
(loop ready and loop evaluating); the pioneer call; and the backtracking clause
of the former call. In more detail, the most relevant subgoal frame fields in our
implementation are:

SgFr dfn: is the depth-first number of the call. Calls are numbered incremen-
tally and according to the order in which they appear in the evaluation.

SgFr state: indicates the state of the subgoal. A subgoal can be in one of the
following states: ready, evaluating, loop ready, loop evaluating or complete.

SgFr is leader: indicates if the call is a leader call or not. New calls are by
default leader calls.

SgFr prev on scc: points to the subgoal frame corresponding to the previous
call in evaluation (i.e., with SgFr state as evaluating or loop evaluating) in
the current SCC. It is used by the leader call to traverse the subgoal frames

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1785

M. Areias, R. Rocha

in order to mark them for reevaluation or as completed. A global variable
TOP SCC always points to the youngest subgoal frame in evaluation in the
current SCC.

SgFr prev on branch: points to the subgoal frame corresponding to the previ-
ous call in the current branch that is in the first round (i.e., with SgFr state as
evaluating) or that is a leader call. It is used to traverse the subgoal frames
in order to detect looping alternatives and to detect non-leader calls. A
global variable TOP BRANCH always points to the youngest subgoal frame
in the current branch.

SgFr new solutions: indicates if new solutions were found during the execu-
tion of the current round.

SgFr first solution: points to the leaf trie node corresponding to the first avail-
able solution.

SgFr last solution: points to the leaf trie node corresponding to the last avail-
able solution.

SgFr last consumed: marks the last solution consumed in a generator (pio-
neer or follower) call (supports the propagation of solutions, as discussed
in section 4).

5.2. Tabling Operations

We next introduce the pseudo-code for the main tabling operations required to
support batched scheduling with DRA and DRE evaluation.

We start with Algorithm 1 showing the pseudo-code for the new solution
operation. Initially, the operation simply inserts the given solution SOL in the
solution trie structure for the given subgoal frame SF (line 1) and, if the solution
is new, it updates the SgFr new solutions subgoal frame field to TRUE (line
2) and proceeds with forward execution as usual. Otherwise, the solution is
repeated and execution fails (line 4).

Algorithm 1 new solution(solution SOL, subgoal frame SF)

1: if solution check insert(SOL, SF) = true then {new solution}
2: SgFr new solutions(SF)← true
3: else
4: fail()

Next, in Algorithm 2, we show the pseudo-code for the tabled call opera-
tion. Initially, the operation starts by inserting the given subgoal call SC in the
subgoal trie structure, from where a subgoal frame SF, representing the given
call, is obtained (line 1). New calls to tabled subgoals are inserted into the ta-
ble space by allocating the necessary data structures, which includes a new
subgoal frame (this is the case where the state of SF starts to be ready). In

1786 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Batched Evaluation of Linear Tabled Logic Programs

such case, the tabled call operation then stores a new generator node3 (line
3); updates the state of SF to evaluating (line 4); defines a new SCC (lines
5-6); adds SF to the current branch (lines 7-8); and proceeds by executing the
current alternative (line 9).

Algorithm 2 tabled call(subgoal call SC)

1: SF ← subgoal check insert(SC) {SF is the subgoal frame for the subgoal call SC}
2: if SgFr state(SF) = ready then {new call}
3: store generator node()
4: SgFr state(SF)← evaluating
5: SgFr prev on scc(SF)← TOP SCC {new SCC}
6: TOP SCC ← SF
7: SgFr prev on branch(SF)← TOP BRANCH {add to current branch}
8: TOP BRANCH ← SF
9: goto evaluate(current alternative())

10: else if SgFr state(SF) = complete then {already evaluated}
11: goto completed table optimization(SF)
12: else if SgFr state(SF) = loop ready then {first call in reevaluation round}
13: store generator node()
14: SgFr state(SF)← loop evaluating
15: SgFr prev on scc(SF)← TOP SCC {new SCC}
16: TOP SCC ← SF
17: SgFr last consumed(SF)← SgFr first solution(SF)
18: if DRA mode(SF) then
19: goto consume solutions and reevaluate(SF, first looping alternative())
20: else
21: goto consume solutions and reevaluate(SF, first alternative())
22: else if SgFr state(SF) = evaluating or SgFr state(SF) = loop evaluating then
23: mark current branch(SF)
24: if DRE mode(SF) and has unexploited alternatives(SF) then
25: store follower node()
26: if DRA mode(SF) and SgFr state(SF) = loop evaluating then
27: goto consume solutions and reevaluate(SF, next looping alternative())
28: else
29: goto consume solutions and reevaluate(SF, next alternative())
30: else
31: store consumer node()
32: goto consume solutions(SF)

On the other hand, if the subgoal call is a repeated call, then the subgoal
frame SF is already in the table space, and three different situations may occur.
First, if the call is already evaluated (this is the case where the state of SF is
complete), the operation consumes the available solutions by implementing the

3 Generator, consumer and follower nodes are implemented as regular choice points
extended with some extra fields related to the table space data structures.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1787

M. Areias, R. Rocha

completed table optimization [10] which executes compiled code directly from
the solution trie structure associated with the completed call (line 11).

Second, if the call is a first call in a reevaluating round (this is the case where
the state of SF is loop ready), the operation stores a new generator node (line
13); updates the state of SF to loop evaluating (line 14); defines a new SCC
(lines 15-16); and resets the SgFr last consumed field to the first solution (line
17). Then, it executes the consume solutions and reevaluate() procedure in or-
der to consume the available solutions before reevaluate the matching alter-
natives. This procedure, consumes all the available solutions for the subgoal,
starting from the first solution, and, when no more solutions are to be con-
sumed, it starts with the evaluation of the first matching alternative, which for
DRA is the first looping alternative (lines 18-21).

Third, if the call is a repeated call (this is the case where the state of SF is
evaluating or loop evaluating), the operation first calls the mark current branch()
procedure (please see Algorithm 3 next) in order to mark the current branch as
a non-leader branch and, if in DRA mode, also mark the current branch as a
looping branch (line 23). Next, if DRE mode is enabled and there are unex-
ploited alternatives (i.e., there is a backtracking clause for the former call), it
stores a follower node (line 25) and proceeds by consuming the available solu-
tions before executing the next looping alternative or the next matching alterna-
tive, according to whether the DRA mode is enabled or disabled for the subgoal
(lines 26-29). Otherwise, it stores a new consumer node and starts consuming
the available solutions (lines 31-32).

Algorithm 3 shows the details for the mark current branch() procedure. To
mark the current branch as a non-leader branch and, if in DRA mode, as a
looping branch, we follow the TOP BRANCH chain and for all intermediate
generator calls in evaluation up to the generator call for SF, we mark them
as non-leader calls (note that the call at hand defines a new dependency for
the current SCC) and we mark the alternatives being evaluated by each call as
looping alternatives.

Algorithm 3 mark current branch(subgoal frame SF)

1: aux sf ← TOP BRANCH
2: while SgFr dfn(aux sf) > SgFr dfn(SF) do
3: SgFr is leader(aux sf)← false
4: if DRA mode(aux sf) then
5: mark current alternative as looping alternative(aux sf)
6: aux sf ← SgFr prev on branch(aux sf)
7: if DRA mode(aux sf) then
8: mark current alternative as looping alternative(aux sf)

Finally, we discuss in more detail how completion is detected with batched
scheduling. Remember that after exploring the last matching clause for a tabled

1788 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Batched Evaluation of Linear Tabled Logic Programs

call, we execute the fix-point check operation. Algorithm 4 shows the pseudo-
code for its implementation.

Algorithm 4 fix point check(subgoal frame SF)

1: if (SgFr is leader(SF) then
2: if SgFr new solutions(SF) then {start a new round}
3: for all SG such that SG in current SCC do
4: SgFr state(SG)← loop ready
5: SgFr state(SF)← loop evaluating
6: TOP SCC ← SF
7: SgFr new solutions(SF)← false
8: SgFr last consumed(SF)← SgFr first solution(SF)
9: if DRA mode(SF) then

10: goto consume solutions and reevaluate(SF, first looping alternative())
11: else
12: goto consume solutions and reevaluate(SF, first alternative())
13: else {reached a fix-point}
14: for all SG such that SG in current SCC do {complete all subgoals in SCC}
15: SgFr state(SG)← complete
16: TOP SCC ← SgFr prev on scc(SF)
17: fail()
18: else {not a leader call}
19: if SgFr state(SF) = evaluating then {first round}
20: TOP BRANCH ← SgFr prev on branch(SF)
21: if SgFr new solutions(SF) then {propagate new solutions}
22: SgFr new solutions(current leader(SF))← true
23: SgFr new solutions(SF)← false
24: fail()

The fix-point check operation starts by verifying if the subgoal at hand is a
leader call. If it is leader and has found new solutions during the last round, then
the current SCC is scheduled for a reevaluation round (lines 3-12). This includes
updating the state for all subgoals in the current SCC, updating the TOP SCC
variable to the current subgoal frame and resetting the SgFr new solutions field
to FALSE (lines 3-7). Then, as for a first call in a reevaluating round in the tabled
call operation, it also resets the SgFr last consumed field to the first solution
(line 8) and executes the consume solutions and reevaluate() procedure (lines
9-12).

On the other hand, if the subgoal is leader but no new solutions were found
during the current round, then we have reached a fix-point. All subgoals in the
current SCC are thus marked as completed, the TOP SCC variable is updated
to the next subgoal frame and the evaluation fails (lines 14-17).

Otherwise, the subgoal is not a leader call. Then it removes itself from the
TOP BRANCH chain (lines 19-20), propagates the new solutions information to
the current leader of the SCC (lines 21-22), resets the SgFr new solutions field

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1789

M. Areias, R. Rocha

to FALSE (line 23) and then fails (line 24). Note that, with batched scheduling,
we can safely fail since all the solutions were already propagated to the context
of the calling environment. Moreover, since the SgFr new solutions flag is prop-
agated to the leader of the SCC, the leader will mark the SCC for a reevaluation
round, which means that the current subgoal will be called again, and so it will
start by consuming its solutions.

As an optimization, a non-leader call C executing the fix-point check opera-
tion can be removed beforehand from the TOP BRANCH chain (lines 19-20 in
Algorithm 4) since we already know that it is a non-leader call and have marked
its looping alternatives. Thus, when we execute the mark current branch() pro-
cedure in a reevaluation round for a call C, then C might have been removed
from the chain in a previous fix-point check operation. This is the reason why
we need to follow the subgoal frames in the TOP BRANCH chain up to the first
subgoal frame with a smaller SgFr dfn value than C (while loop on Algorithm 3).

6. Experimental Results

To the best of our knowledge, Yap is now the first tabling engine that inte-
grates and supports the combination of different linear tabling strategies using
batched scheduling. We have thus the conditions to better understand the ad-
vantages and weaknesses of each strategy when used solely or combined. In
what follows, we present experimental results comparing linear tabled evalu-
ation with and without DRA and DRE support, using batched scheduling. To
put our results in perspective, we have also included experiments for the B-
Prolog linear tabling system [15] and for the YapTab suspension-based tabling
system [12], both using batched scheduling. In fact, for B-Prolog, we used its
eager scheduling mode, which is similar to batched scheduling. The environ-
ment for our experiments was a PC with a 2.83 GHz Intel(R) Core(TM)2 Quad
CPU and 8 GBytes of memory running the Linux kernel 3.0.0-16-generic. We
used B-Prolog version 7.5 and Yap version 6.0.74.

For benchmarking, we used three sets of programs. The Model Checking
set includes three different specifications and transition relation graphs usually
used in model checking applications: IProto, the transition relation graph for the
i-protocol specification defined for a correct version (fix) with a huge window size
(w = 2); Leader, the transition relation graph for the leader election specification
defined for 5 processes; and Sieve, the transition relation graph for the sieve
specification defined for 5 processes and 4 overflow prime numbers. The Path
Right set implements the right recursive definition of the well-known path/2
predicate, that computes the transitive closure in a graph, using three different
edge configurations. Figure 6 shows an example for each configuration. We ex-
perimented the Pyramid and Cycle configurations with depths 1000, 2000 and
3000 and the Grid configuration with depths 20, 30 and 40. We chose this set
of experiments because the path/2 predicate implements a relatively easy to

4 Source code available from http://cracs.fc.up.pt/node/5121

1790 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Batched Evaluation of Linear Tabled Logic Programs

understand pattern of computation and its right recursive definition creates sev-
eral inter-dependencies between tabled subgoals. The Warren set is a variation
of the left recursive definition of the path problem for a linear graph (see Fig. 6),
where the path/2 clauses are duplicated to be used with the labels a and b.
This problem was kindly suggested by David S. Warren as a way to stress the
performance of a linear tabling system. All benchmarks find all the solutions for
the problem.

Cycle
(depth 4)

Grid
(depth 4)

Pyramid
(depth 4)

Warren
(depth 4)

a

b

a

Fig. 6. Edge configurations used with the second and third set of problems

In Table 1, we show the execution time, in milliseconds, for standard linear
tabling (column Std) and the respective execution time ratios for DRA and DRE
evaluation, solely and combined (column DRA+DRE), B-Prolog and YapTab,
using batched scheduling, for the Model Checking, Path Right and Warren
sets of problems. Ratios higher than 1.00 mean that the respective strategy
has a positive impact on the execution time, when compared with standard
linear tabling. The ratio marked with n.c. for B-Prolog means that we are not
considering it in the average results (for some reason, we failed in executing
this benchmark). The results are the average of five runs for each benchmark.

In addition to the results presented in Table 1, we also collected several
statistics regarding important aspects of the evaluation. In Table 2, we show
some of these statistics for standard linear tabling and the respective perfor-
mance ratios when compared with the other models, for a subset of the bench-
marks. We used the Leader specification for the Model Checking set, the con-
figurations Pyramid and Cycle with depth 2000 and Grid with depth 30 for the
Path Right set, and the configuration with depth 600 for the Warren set.

The statistics in Table 2 measure how the mixing with SLD (non-tabled)
computations can affect the base performance of our benchmarks. For that,
we extended the tabled predicates, at the beginning and at the end of each
clause, with dummy SLD (non-tabled) predicates, which we named sldi/0, with
0 < i ≤ 2n, where n is the number of clauses defining the tabled predicate. For
example, the extended definition for the path/2 predicate is:

path(X,Z) :- sld1, edge(X,Y), path(Y,Z), sld2.
path(X,Z) :- sld3, edge(X,Z), sld4.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1791

M. Areias, R. Rocha

Table 1. Execution time, in milliseconds, for standard linear tabling and the respective
execution time ratios for DRA and DRE evaluation, solely and combined, B-Prolog and
YapTab, using batched scheduling (for the linear tabling models, best ratios are in bold)

Benchmark Std DRA DRE DRA+DRE B-Prolog YapTab
Model Checking
IProto 2,874 1.00 0.50 0.93 0.36 2.39
Leader 5,355 1.01 0.40 0.99 0.13 2.83
Sieve 35,218 1.00 0.46 0.93 0.16 3.19

Average ratio 1.00 0.45 0.95 0.22 2.80
Path Right - Pyramid
1000 983 1.87 0.89 1.49 1.04 1.90
2000 3,897 1.88 0.89 1.49 0.69 1.94
3000 9,043 1.91 0.89 1.53 n.c. 1.98
Path Right - Cycle
1000 687 1.27 0.96 1.22 1.27 1.89
2000 2,793 1.27 0.97 1.22 0.91 1.82
3000 6,048 1.29 0.95 1.22 0.70 2.05
Path Right - Grid
20 221 1.33 0.97 1.27 1.09 2.10
30 1,344 1.32 0.99 1.30 1.02 2.22
40 4,578 1.31 0.97 1.26 0.76 2.34

Average ratio 1.50 0.94 1.33 0.93 2.03
Warren
400 2,673 1.02 64.26 64.26 0.34 126.09
600 9,496 0.99 87.28 87.28 0.35 162.61
800 23,163 1.00 112.88 116.98 0.35 216.88

Average ratio 1.00 87.93 89.51 0.35 168.53

The rows in Table 2 show the number of times each dummy SLD predicate
is called for the corresponding benchmark. We can read these numbers as an
estimation of the performance ratios that we will obtain if the execution time of
the corresponding SLD predicate clearly overweights the execution time of the
other computations. Note that the odd SLD predicates (such as sld1 and sld3)
correspond to re-executions of a clause and that the even SLD predicates (such
as sld2 and sld4) correspond to new solution operations. In our experiments,
the sld2 predicate (placed at the end of the first tabled clause) is the one that
can potentially have a greater influence in the performance ratios as it clearly
exceeds all the others in the number of times it is called (see Table 2).

7. Discussion

Analyzing the general picture of Table 1, the results show that DRA evaluation
is able to reduce the execution time for the Path Right problem set (1.50 times
faster, on average) but has no impact for the other two sets, when compared
with standard evaluation. The results also indicate that DRE evaluation has a
negative impact in the execution time for the Model Checking and Path Right

1792 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Batched Evaluation of Linear Tabled Logic Programs

Table 2. Number of calls to the dummy SLD predicates for standard linear tabling and
the respective ratios for DRA and DRE evaluation, solely and combined, B-Prolog and
YapTab, using batched scheduling (for the linear tabling models, best ratios are in bold)

Benchmark Std DRA DRE DRA+DRE B-Prolog YapTab
Model Checking - Leader
sld1 3 1.00 0.75 1.00 1.00 3.00
sld2 1,153,026 1.00 0.40 1.00 1.00 2.00
sld3 3 3.00 0.75 3.00 3.00 3.00
sld4 3 3.00 0.75 3.00 3.00 3.00
Path Right - Pyramid 2000
sld1 7,999 2.00 1.00 2.00 2.00 2.00
sld2 37,951,017 2.38 0.86 1.73 2.38 2.38
sld3 7,999 2.00 1.00 2.00 2.00 2.00
sld4 23,988 2.00 1.00 2.00 2.00 2.00
Path Right - Cycle 2000
sld1 6,002 1.00 1.00 1.00 1.00 3.00
sld2 18,003,000 1.29 1.00 1.29 1.29 2.25
sld3 6,002 3.00 1.00 3.00 3.00 3.00
sld4 10,000 2.50 1.00 2.50 2.50 2.50
Path Right - Grid 30
sld1 2,702 1.00 1.00 1.00 0.18 3.00
sld2 13,851,534 1.29 1.00 1.30 0.30 2.21
sld3 2,702 3.00 1.00 1.02 3.00 3.00
sld4 17,400 2.50 1.00 1.27 2.50 2.50
Warren - 600
sld1/sld3 302 1.00 100.67 100.67 1.00 302.00
sld2/sld4 18,044,650 1.00 66.98 100.42 1.00 201.17
sld5/sld7 302 302.00 100.67 302.00 302.00 302.00
sld6/sld8 90,600 302.00 100.67 302.00 302.00 302.00

sets but, on the other hand, it can significantly reduce the execution time for the
Warren set (more than 80 times faster, on average). We next discuss in more
detail each strategy.

DRA: the results for DRA evaluation show that the strategy of avoiding the ex-
ploration of non-looping alternatives in reevaluation rounds is quite effective
in general and does not add extra overheads when not used. The results
also show that, for the Path Right set, DRA is more effective for programs
without loops, like the Pyramid configurations, than for programs with larger
SCCs, like the Cycle and Grid configurations. On Table 2, we can observe
that the number of dummy SLD computations is, in fact, effectively reduced
with DRA evaluation.

DRE: for the Model Checking set, DRE evaluation is around two times slower
than standard evaluation and, for the Path Right set, DRE has no signifi-
cant impact for all the configurations. Table 2 confirms that, the strategy of
allocating follower nodes, adds an extra complexity to the evaluation for the
Model Checking set (the number of dummy SLD calls is higher) and that

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1793

M. Areias, R. Rocha

it has no impact for the Path Right set (the number of dummy SLD calls is
identical to standard evaluation). For the Warren set, DRE evaluation pro-
duces the most interesting results. Note that, this is the set of benchmarks
where suspension-based tabling (the YapTab system) is far more faster than
standard linear tabling (168.53 times faster, on average) and the difference
increases as the depth of the problem also increases. However, DRE evalu-
ation is able to reduce this huge difference to a minimum. On average, DRE
evaluation is 87.93 times faster than standard evaluation and the scalabil-
ity, as the depth of the problem increases, is similar to the one observed
for YapTab. Table 2 confirms this behavior for DRE and YapTab evaluations
(the number of dummy SLD calls is clearly lower than standard evaluation).

Regarding the combination of both strategies (DRA+DRE), our experiments
show that, in general, the best of both worlds is always present in the com-
bination. The results in Table 1 show that, by combining both strategies, DRA
is able to avoid DRE behavior for the Model Checking and Path Right sets.
Still, the results for DRA+DRE are slightly worst than DRA used solely. For the
Warren set, the results show that, by combining both strategies, it is possible to
reduce even further the execution time when compared with DRE used solely.
In particular, one can observe that, for depths 400 and 600, the execution times
are the same but, for depth 800, DRA+DRE evaluation outperforms DRE used
solely.

The statistics on Table 2 confirm that, in general, the best of both worlds
is always present in the combination. The exceptions are the sld2 predicate,
for the Pyramid 2000 configuration, and the sld3 and sld4 predicates, for the
Grid 30 configuration. On the other hand, for the Warren 600 configuration, the
sld1/sld3 predicates are executed the same number of times as for DRE used
solely, the sld5 to sld8 predicates are executed the same number of times as
for DRA used solely, and the sld2 and sld4 predicates are executed less times
than both strategies used solely, which is explained by the fact that the fix-point
is achieved in less rounds (statistics not shown here).

Regarding the comparison with the B-Prolog linear tabling system, the re-
sults in Table 2 suggest that B-Prolog implements a DRA-based evaluation
strategy since the statistics for B-Prolog and DRA evaluation are all the same,
except for the sld1 and sld2 predicates in the Grid 30 configuration. However,
the execution times in Table 1 show that our DRA implementation is always
faster than B-Prolog in these experiments and that, for almost all configura-
tions, the ratio difference shows a generic tendency to increase as the depth of
the problem also increases.

For all experiments, the results obtained for the YapTab suspension-based
system clearly outperform the standard linear tabled evaluation but, for our
DRA+DRE implementation, they are globally comparable. On average, YapTab
is around 2 times faster than DRA+DRE evaluation, including the Warren prob-
lem set, where YapTab shows a huge difference for standard linear tabling. The
results also indicate that our implementation scales as well as YapTab when we
increase the depth of the problem being tested.

1794 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Batched Evaluation of Linear Tabled Logic Programs

8. Conclusions

We have presented a new linear tabling framework that integrates and supports
batched scheduling with DRA and DRE evaluation, solely or combined. We
discussed how these strategies can optimize different aspects of a tabled eval-
uation and we presented the relevant implementation details for their integration
on top of the Yap system.

Our experimental results were very interesting and very promising. In partic-
ular, the combination of DRA with DRE showed the potential of our framework
to effectively reduce the execution time of the standard linear tabled evaluation.
When compared with YapTab’s suspension-based mechanism, the commonly
referred weakness of linear tabling of doing a huge number of redundant com-
putations for computing fix-points was not such a problem in our experiments.
We thus argue that an efficient implementation of linear tabling can be a good
and first alternative to incorporate tabling into a Prolog system without such
support.

Further work will include adding new strategies/optimizations to our frame-
work, and exploring the impact of applying our strategies to more complex prob-
lems, seeking real-world experimental results, allowing us to improve and con-
solidate our current implementation.

Acknowledgments. This work is partially funded by the ERDF (European Regional De-
velopment Fund) through the COMPETE Programme and by FCT (Portuguese Foun-
dation for Science and Technology) within projects LEAP (FCOMP-01-0124-FEDER-
015008) and PEst (FCOMP-01-0124-FEDER-022701). Miguel Areias is funded by the
FCT grant SFRH/BD/69673/2010.

References

1. Areias, M., Rocha, R.: An Efficient Implementation of Linear Tabling Based on Dy-
namic Reordering of Alternatives. In: International Symposium on Practical Aspects
of Declarative Languages. pp. 279–293. No. 5937 in LNCS, Springer-Verlag (2010)

2. Areias, M., Rocha, R.: On Combining Linear-Based Strategies for Tabled Evaluation
of Logic Programs. Journal of Theory and Practice of Logic Programming, Interna-
tional Conference on Logic Programming, Special Issue 11(4–5), 681–696 (2011)

3. Bachmair, L., Chen, T., Ramakrishnan, I.V.: Associative Commutative Discrimina-
tion Nets. In: International Joint Conference on Theory and Practice of Software
Development. pp. 61–74. No. 668 in LNCS, Springer-Verlag (1993)

4. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43(1), 20–74 (1996)

5. Chico, P., Carro, M., Hermenegildo, M.V., Silva, C., Rocha, R.: An Improved Contin-
uation Call-Based Implementation of Tabling. In: International Symposium on Prac-
tical Aspects of Declarative Languages. pp. 197–213. No. 4902 in LNCS, Springer-
Verlag (2008)

6. Cruz, F., Rocha, R.: Retroactive Subsumption-Based Tabled Evaluation of Logic
Programs. In: European Conference on Logics in Artificial Intelligence. pp. 130–142.
No. 6341 in LNAI, Springer-Verlag (2010)

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1795

M. Areias, R. Rocha

7. Freire, J., Swift, T., Warren, D.S.: Beyond Depth-First: Improving Tabled Logic Pro-
grams through Alternative Scheduling Strategies. In: International Symposium on
Programming Language Implementation and Logic Programming. pp. 243–258. No.
1140 in LNCS, Springer-Verlag (1996)

8. Guo, H.F., Gupta, G.: A Simple Scheme for Implementing Tabled Logic Program-
ming Systems Based on Dynamic Reordering of Alternatives. In: International Con-
ference on Logic Programming. pp. 181–196. No. 2237 in LNCS, Springer-Verlag
(2001)

9. Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag (1987)
10. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access

Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38(1), 31–
54 (1999)

11. Sagonas, K., Swift, T.: An Abstract Machine for Tabled Execution of Fixed-Order
Stratified Logic Programs. ACM Transactions on Programming Languages and Sys-
tems 20(3), 586–634 (1998)

12. Santos Costa, V., Rocha, R., Damas, L.: The YAP Prolog System. Journal of Theory
and Practice of Logic Programming 12(1 & 2), 5–34 (2012)

13. Somogyi, Z., Sagonas, K.: Tabling in Mercury: Design and Implementation. In: Inter-
national Symposium on Practical Aspects of Declarative Languages. pp. 150–167.
No. 3819 in LNCS, Springer-Verlag (2006)

14. Swift, T., Warren, D.S.: XSB: Extending Prolog with Tabled Logic Programming. The-
ory and Practice of Logic Programming 12(1 & 2), 157–187 (2012)

15. Zhou, N.F.: The Language Features and Architecture of B-Prolog. Journal of Theory
and Practice of Logic Programming 12(1 & 2), 189–218 (2012)

16. Zhou, N.F., Shen, Y.D., Yuan, L.Y., You, J.H.: Implementation of a Linear Tabling
Mechanism. In: Practical Aspects of Declarative Languages. pp. 109–123. No. 1753
in LNCS, Springer-Verlag (2000)

Miguel Areias received his B.Sc. and M.Sc. degrees in Computer Science
from Faculty of Science of the University of Porto, in 2008 and 2010, respec-
tively. He is currently pursuing the Ph.D. degree at the University of Porto. He
is a Researcher in the Center for Research in Advanced Computing Systems
(CRACS), where he has been since 2008 under the supervision of Prof. Dr.
Ricardo Rocha. His research interests lie on Parallelism, Concurrency, Multi-
threading and Tabling mechanisms applied to Logic Programs.

Ricardo Rocha is an Assistant Professor at the Department of Computer Sci-
ence, Faculty of Sciences, University of Porto, Portugal and a researcher at the
CRACS & INESC-Porto LA research unit. He received his PhD degree in Com-
puter Science from the University of Porto in 2001 and his main research topics
are the Design and Implementation of Logic Programming Systems, Tabling in
Logic Programming and Parallel and Distributed Computing. Another areas of
interest include Inductive Logic Programming, Probabilistic Logic Programming
and Deductive Databases. He is also one of the main developers of Yap Prolog
system, and in particular of the execution models that support tabling and par-
allel evaluation. He has published more than 50 refereed papers in journals and
international conferences, has supervised 11 MSc students and has leading

1796 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Batched Evaluation of Linear Tabled Logic Programs

role in two national projects: project STAMPA, funded with 150,000 Euros, and
project LEAP, funded with 115,000 Euros. Currently, he also serves the ALP
Newsletter as area co-editor for the topic on Implementation.

Received: November 29, 2012; Accepted: August 12, 2013.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1797

DOI: 10.2298/CSIS130224072R

Multi-Agent Systems’ Asset for Smart Grid

Applications

Gregor Rohbogner1, Ulf J.J. Hahnel
1
, Pascal Benoit

1
,

and Simon Fey

1,2

1
 Fraunhofer Institute for Solar Energy Systems ISE, Division Electrical Energy

Systems, Heidenhofstraße 2
79110 Freiburg, Germany

{Gregor.Rohbogner, Ulf.Hahnel, Pascal.Benoit}@ise.fraunhofer.de
2
 Offenburg University of Applied Sciences, Badstraße 24

77652 Offenburg, Germany
Simon.Fey@hs-offenburg.de

Abstract. Multi-agent systems are a subject of continuously increasing
interest in applied technical sciences. Smart grids are one evolving field
of application. Numerous smart grid projects with various
interpretations of multi-agent systems as new control concept arose in
the last decade. Although several theoretical definitions of the term
‘agent’ exist, there is a lack of practical understanding that might be
improved by clearly distinguishing the agent technologies from other
state-of-the-art control technologies. In this paper we clarify the
differences between controllers, optimizers, learning systems, and
agents. Further, we review most recent smart grid projects, and
contrast their interpretations with our understanding of agents and
multi-agent systems. We point out that multi-agent systems applied in
the smart grid can add value when they are understood as fully
distributed networks of control entities embedded in dynamic grid
environments; able to operate in a cooperative manner and to
automatically (re-)configure themselves.

Keywords: computer science, information systems, multi-agent
systems, smart grid, power systems, agent-based control systems

1. Introduction

Agent-based systems have been implemented in the field of technical
engineering, having been adopted as new concepts for control systems
during the last few decades [25], [28]. Derived from the computer sciences
[9], [14], [35] the broad usage of agent technology in the technical domain
has resulted in an ambiguous use and interpretation of the notions ‘agent’ and
‘multi-agent systems’; this is especially apparent in current smart grid
research projects. The common understanding of the term smart grid in
research projects encompasses the development of new power control
strategies and communication systems to face the challenges (e.g.

Gregor Rohbogner et al.

1800 ComSIS Vol. 10, No. 4, Special Issue, October 2013

fluctuating power generation, higher dynamics in grid frequency and grid
voltage) which arise from the expansion of renewable energies (e.g.
photovoltaic systems, wind turbines, and combined heat and power systems)
and new electrical loads (e.g. heat pumps and electrical vehicles) [8], [38].
Numerous smart grid projects labeled with the term ‘agent’ sprouted up in the
last few years, exhibiting various interpretation of when and how to apply the
term ‘agent’ [19], [24]. It seems that engineers use the term ‘agent’ without a
common understanding of what it actually embodies.

In the present paper, we aim at providing a clear definition of multi-agent
systems in the realm of smart grid distributed control applications

1
. We do so

by first identifying the characteristics that a control system should posses to
be appropriately labeled as an agent system by emphasizing the differences
between agents, optimizers, closed-loop controls, and learning systems.
Second, we systematically analyze the interpretations and implementations
of multi-agent systems in recent smart grid projects. We then contrast our
understanding of agents and multi-agent systems with the existing multi-
agent based smart grid projects and discuss which systems can be really
understood as such. Finally, we describe the extent to which agent
technologies may be of further value in improving smart grid applications,
and give directions for future research and practice in the realm of agent-
based systems.

2. Smart Grid – Definition and Applications

In accordance with the goals defined by the European Union, central Europe
is striving for an energy supply powered by renewable energies [7]. With a
rising share of distributed fluctuating renewable energy resources, it will
become more and more challenging to ensure a secure and reliable energy
supply in the future. This is due to:

Firstly, weather dependent fluctuation of the power supply of renewable
energies (e.g. wind turbines or photovoltaic systems) makes the
indispensable balancing of power generation and consumption more
challenging.

Secondly, the generated renewable electricity is fed mainly into distribution
and low-voltage grids. In the past, energy was only consumed in these grids
while it was produced by large fossil power plants connected to the
transmission and sub-transmission grids (see Fig. 1). Thus, the recent
primary grid infrastructure (e.g. local transformers, circuit breakers, lines) is
designed and parameterized for these unidirectional flows. In combination
with the rising electricity generation in distribution grids, problems (e.g. over-
voltage and over-currents) are to be assumed.

1
 [24] identifies four different power engineering domains where recent multi-agent
systems are applied. These are: Protection, Modeling & Simulation, Distributed
Control, and Monitoring & Diagnostics

Multi-Agent Systems’ Asset for Smart Grid Applications

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1801

Thirdly, the rising amount of distributed energy generation affects the grid
frequency today already. Since the frequency is a grid-wide value, it is also
necessary to ensure that the controllers of distributed energy resources are
parameterized properly to ensure a stable grid. European standardization
committees are currently addressing the 50.2 Hz problem, which occurs with
a common switching threshold of 50.2 Hz in current inverters. This
parameterization involves the danger of a major disturbance in the main grid
when suddenly several gigawatt of generation disconnect in case of an
underload (frequency above 50.2 Hz) and cause thereby an overload [17].

Fourthly, new applications and business models such as consumption of
self-produced energy, electric vehicles, or the bundling of distributed
generation to virtual power plants, will change the current static time-invariant
behavior of grids to a more dynamic one.

Fig. 1. Structure of today’s (centralized) electricity supply system

One approach to handle these new challenges is the extension of recent
grids to “Smart Grids”. Various interpretations of what the term “Smart Grid”
subsumes exist. For example, the European Technology Platform for Smart
Grids defines a smart grid as, “an electricity network that can intelligently
integrate the actions of all users connected to it - generators, consumers and
those that do both – in order to efficiently deliver sustainable, economic and
secure electricity supplies” [8]. Slightly variegated, and with an emphasis on
the communication systems, the International Electrotechnical Commission
(IEC) understands a smart grid as integration of “electrical and information
technologies in between any point of generation and any point of
consumption” [38]. Thus, the core idea of smart grid is the development of
new control strategies and systems – using information and communication
technologies – which are necessary, particularly nowadays, due to the

Gregor Rohbogner et al.

1802 ComSIS Vol. 10, No. 4, Special Issue, October 2013

injection of renewable and fluctuating energy (e.g. by wind turbines and
photovoltaic systems). The complexity of smart grids’ applications arises
from their interdisciplinary character, requiring the joint work of various
research disciplines: electrical engineering, control theory, information
technology, jurisprudence, economics and psychology. In this paper we focus
mainly on control issues while briefly describing necessary interdisciplinary
background.

Numerous different smart grid control systems have been developed to
find cost-efficient solutions and to approach the above-mentioned problems.
One of the most popular concepts to encourage users or systems to consume
power when it is produced by the fluctuating energy resources is known as
Demand Side Management (DMS). Mainly based on dynamic pricing, DMS
encounters users or devices to redistribute electric demand over a certain
period of time [36]. Another example for a smart grid control concept is the
pooling of distributed generation and loads that are collectively controlled by
a central control entity. These systems are known as virtual power plants [31],
[41]. Furthermore, various projects can be found which take the control of so-
called ‘micro-grids’ into consideration. Here, micro-grids are understood as
small, local distribution grids containing electric generation and loads, which
can be totally separated from, or (re-)connected to, the main distribution grid
[30]. Among these examples numerous other smart grid control concepts
have been developed. [12] gives a broad overview about recent smart grid
projects in Europe.

3. State-of-the-Art versus Agent Technology

In this section we discuss and define an agent from an engineer's
perspective. Agents are first defined in an independent application way and
then discussed in the context of smart grid applications in section 5. While
[9], [14], and [44] discuss the difference between agent technology and
various IT domains (e.g. artificial intelligence, web-services and expert
systems and grid computing) we analyzed the differences between well
established engineering control technologies and agent technology. This
section begins with computer science’s definition of agents. Based on that,
we differentiate in detail between an optimizer, a closed-loop controller,
learning systems, and an agent.

While numerous definitions of agents have been discussed in the past, we
here post the definition of Jennings and Wooldridge [44], [45]. We consider
their approach a good balance between an overly-restrictive and a too-loose
definition. A survey of ‘agent’ definitions can be found in [11]. Jennings and
Wooldridge understand an autonomous intelligent agent to be a software
artifact which exhibits the following capabilities:

Multi-Agent Systems’ Asset for Smart Grid Applications

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1803

“Reactivity Intelligent agents are able to perceive their environment, and
respond in a timely fashion to changes that occur in it in order to
satisfy their design objectives.

Proactiveness Intelligent agents are able to exhibit goal-directed behavior

by taking the initiative in order to satisfy their design objectives.

Social ability Intelligent agents are capable of interacting with other

agents (and possibly humans) in order to satisfy their design
objectives.”

It seems that these attributes are to some extent also manifested in

engineers’ state-of-the-art control technologies. To a certain degree this
assumption is valid. For the sake of clarity, we work out how an agent can be
distinguished from other control technologies, and why that makes sense.

In the rest of the paper we use the term ‘agent’ instead of ‘intelligent
agent’. We do so because we believe that labeling a software artifact as
‘agent’ only offers added value if agents at least constitute a certain degree of
intelligence, thus exhibiting the above listed attributes. Hence, the adjective
‘intelligent’ is dispensable.

3.1. Why Is an Agent More Than Just an Optimizer?

The classic mathematical definition describes optimization as the task of

finding a Ff  for which

)()(xcfc  for all Fx (1)

while

 Fc : ℝ

Thereby f is the global optimum from the domain of feasible alternatives

(feasible points) F and c the objective function [27]. Thus, an optimizer is a

software tool which finds the optimal solution f . The optimizer’s objective

function is formulated once for a specific system with specific constraints.
Systems can be of any kind, such as an economic system or a technical
system. An example of a technical smart grid system is the cost-optimal
operation of a grid-connected Combined Heat and Power Plant (CHP) [13].
Optimizers are not aware of, or in touch with, their system in terms of sensing
system behavior or maintaining it like a controller does. This is of paramount
importance for reaction, however. Thus, the optimizer example given above
calculates the optimal set points for the CHP’s operation once, and delivers
these set points to a controller which is then responsible for reacting to
system changes. Although we consider optimizers as non-reactive entities, it

Gregor Rohbogner et al.

1804 ComSIS Vol. 10, No. 4, Special Issue, October 2013

could be said that optimizers are to some extent goal-oriented and therefore
proactively. Even if they try to find the best solution out of many, they are not
acting proactive in terms of taking the initiative. Normally, optimizers do not
automatically adapt their objective function when the system’s behavior
changes. Thus, the program will fail to reach its goal (i.e. finding a valid
optimum). But proactive self-configuration, as we shall see in section 5, is
essential for smart grid control systems.

Furthermore, optimizers are neither programmed to converse with a
human, nor with other computer programs, hence they exhibit no social
behavior.

3.2. Why Is an Agent More Than Just a Digital Closed-Loop Control?

Regarding the core definition of closed-loop controllers, it seems they are
fairly similar to an agent. Indeed, closed-loop controllers exhibit a reactive
behavior through their feedback loop. Figure 2. depicts the basic structure of
a closed-loop control. The control variable y is measured and compared with

the defined set point value w . Error e is fed to the controller, which then

calculates actuating variable u as reaction to the control path’s changes.

Although conventional closed-loop controllers react to small changes in their
control path (environment), they are not able to handle changes beyond the
assumed system behavior of the path or an unpredicted situation. This is
because closed-loop controller parameters (e.g. the integral part of a PID-
controller) are tailored for the specific control path. When designing
conventional controllers, it is assumed that control path behavior is time-
invariant, completely known, and mathematically describable. However,
conventional closed-loop controller robustness fails when the control path
exhibits a time-variant dynamic.

Fig. 2. Basic structure of a conventional closed-loop control

Adaptive controllers appear to approximate an agent’s proactive behavior.
Adaptive controllers can adjust their control parameters during run time by
measuring the current actuating and control variables. Adaptive controllers do
this directly or indirectly, and they decide how to adjust their parameters from
these measurements [20]. Figure 3 shows the Model Reference Adaptive
Control (MRAC) as an example for illustrating the main principle of adaptive
controllers. In contrast to the conventional controller, the MRAC exhibits a
reference model of the control path. As an indirect adaptive control system, it

Multi-Agent Systems’ Asset for Smart Grid Applications

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1805

calculates the difference 2e between the reference model’s behavior and the

control path. Based on 2e andu , the adjustment mechanism calculates new

control parameters [40].

Fig. 3. Basic structure of a Model Reference Adaptive Control (MRAC)

Thus, adaptive controllers recognize environmental changes and react
proactively in the sense that they adapt their initial parameters. Nevertheless,
the controller is a “functional system” rather than a goal-oriented system
aware of alternative ways to reach its goal. This can be illustrated with a
simple logistic system:

Imagine a transport unit responsible for transporting a product from one
work station to another, which has two alternative tracks available. Equipped
with an adaptive control, the transport unit might be able to deliver the
product in time, even when there are small obstacles on the track. But the
adaptive control is not capable of choosing an alternative path through the
production hall, should the track be blocked by other transport units. That is
because the adaptive control is not aware of itself, what it actually performs,
or the environment in which it operates. It processes the task of ensuring a
stable steady state purely. In regard to the example, the controller does not
know that it is operating in a production hall which features different corridors
to arrive at a destination workstation. For similar reasons, the Model
Predictive Control (MPC) can not be understood as proactive. MPCs predict
the control path’s behavior by using a reference model, but they are not
capable of adapting their model to time-variant environments, nor do they
have knowledge of themselves and the surrounding environment.

Thus, neither adaptive controllers nor model-predictive controllers can be
deemed proactive in the manner agents are proactive. Furthermore, normally
controllers are not designed to get in social contact with other controllers,
technical systems, or humans. Doubtless, controllers can receive set points
and communicate (actual) values of their actuating or controlled value, but

Gregor Rohbogner et al.

1806 ComSIS Vol. 10, No. 4, Special Issue, October 2013

they can not interact with other devices in the sense of cooperation or
negotiation. This is of prime importance when several distributed controllers
influence the same control path, such as in an electricity distribution grid.

3.3. Why Is an Agent More Than Solely a Learning System?

Learning systems are computer programs that use machine learning
techniques. Learning as such, is described as a task which “[…] denotes
changes in the system that are adaptive in the sense that they enable the
system to do the same task or tasks […] more efficiently and more effectively
the next time” [37]. Learning systems exhibit neither reactiveness nor
proactiviness. This is because, in contrast to controllers or agents, they are
not designed to control a system. First and foremost they are software
artifacts which facilitate other computer programs or control systems
adjustment in response to environmental changes, or the discovery of new
patterns in measured data. To do so, they maintain an interaction with their
environment, but only in the sense of; a) measuring data (passive
unsupervised learning) or; b) experience with the environment while
measuring the resulting effects (active unsupervised learning). Furthermore,
learning systems have no real social ability. If social ability is exhibited, they
are part of distributed problem solving systems which are commonly
implemented as multi-agent system.

3.4. Functionalities of Agents

We pointed out that none of the analyzed technologies incorporate all
attributes of an agent as described by Jennings and Wooldridge [16]:
Reactiveness, proactiveness, and social ability. However, the functionalities
of the above described technologies are joined together within an agent.
Thus, an agent should not be conceived as synonym for the above
mentioned state-of-the-art control technologies. Instead, the term ‘agent’
expresses a specific software artifact that joins together functionalities of
optimizers, controllers, and learning systems.

In contrast to the agent definition of [35], we do not view “anything that […]
[is] perceiving its environment through sensors and acting upon environment
through actuators” as an agent. As said before, we base our understanding of
agents on the definition of Wooldridge and Jennings. Thus, we claim that a
software artifact labeled as a (holistic) agent must exhibit, in addition to
optimization and controlling the following functionalities; i) some kind of
reasoning; and ii) a communication system which allows a high-level agent-
to-agent interaction flexible enough to achieve social speech acts as humans
do. Therefore, we understand multi-agent based control systems as systems
consisting of distributed agents capable of coordination, cooperation and
negotiation to gain a stable common control path (environment) while

Multi-Agent Systems’ Asset for Smart Grid Applications

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1807

reaching their individual goals. Figure 4 depicts the five functionalities that a
holistic agent should exhibit and which impart the attributes of autonomous
agents as defined by Wooldridge and Jennings: reactiveness, proactiveness,
and social ability. Since the extent of the functionality “Learning” can vary
from one application to the other and is in some application even undesirable
we marked “Learning” in Figure 4 with a dashed frame as an optional
functionality for agents. The five functionalities are described in detail in turn.

Fig. 4. Functionalities of an agent: reasoning, optimizing, controlling, and high-level
communication as well as learning as optional functionality (marked with a dashed
frame) imparting the mentioned attributes reactiveness, proactiveness and social
ability.

Reasoning
In contrast to optimizers and controllers, agents should be able to perform
tasks that were not explicitly defined and programmed at design time. Thus,
agents are capable of reaching the programmer’s defined goals by
processing sequentially different tasks that they develop from a knowledge
base of their environments. This process can be illustrated with a real-life
scenario: suppose you have a meeting on the other side of city and that you
usually take your bike. How would you behave if your bike was broken? You
would think (reason) about other vehicles you might be able to use by
checking the logical relation between bikes and other known objects, such as
cars, tricycles, and walls. Understanding that walls are not vehicles is
something taken for granted by humans. For computers, this is a non-trivial
task. However, “practical reasoning” [2] enables agents to explore tasks or
actions from a logical knowledge of their environments that suit the situation

Gregor Rohbogner et al.

1808 ComSIS Vol. 10, No. 4, Special Issue, October 2013

to be solved. After finding a set of possible alternatives, which can also stem
from cooperation with other agents, the agents need to make the decision of
which task or action they want to perform to reach their goals.

Optimization
Usually, agents make this decision by some sort of performance
measurement. [44] describes the idea of associating “utilities with states of
the environments”. Utility is a numeric value which shows how “good” an
agent’s envisaged task/alternative is. Thus, the agent tries to find one
alternative out of the set of explored alternatives that promises the highest
utility. This does not imply that agents always act on basis of a single utility
function to reach their goals. Sometimes they act on zero or multiple
coexisting utility functions. This is illustrated in the above example: through
reasoning you figured out that you have three alternative transportation
options that will get you to your meeting: by car, by tricycle, or by foot. Thus,
you can reach your goal either by choosing the cheapest (by foot) or the most
comfortable alternative (the car). But if you have no preference it is irrelevant
which vessel (task/alternative) you choose unless you reach your goal
“arriving at the meeting place”. This is similar to agents. Agents can either
realize the optimal task or choose a task randomly. Expressing this example
in a mathematical form, the parallels between optimizers and “decision
making”, as it is usually entitled by agent scientists becomes apparent (cf.
section 3.1):

)()(21 vuvu  for all Vv

(2)

while

Vu : ℝ

and

2,1v = vehicle one/two, V = Pool of alternative vehicles, u = Cost of

transport

Learning
Based on this example, we further want to illustrate the learning ability of
agents. Agents, like humans, can recognize changes to their environmental
constraints. They can identify new alternatives, such as vehicles that are
faster, cheaper, or both. The ability to recognize changes in the environment
is vital for reaching the agent’s goal, but also proves to be very difficult. This
is because such learning requires - much like reasoning - knowledge about
the logical relations of objects in the environment in which the agent is
embedded. However, the learning system of an agent modifies the number of
alternatives which the reasoning functionality can process and thereby it also

modifies the optimizer’s pool of alternativesV , indirectly. As mentioned

before, the agent’s ability to expand and modify its behavior via learning is

Multi-Agent Systems’ Asset for Smart Grid Applications

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1809

not a mandatory functionality for an agent but it constitutes – when
implemented – an essential distinguishing feature of an agent compared with
controllers or optimizers.

Controlling
After determining which tasks should be realized, agents give commands (set
points) to their technical system for which they are responsible (considering
the car as technical system in our example, a command could be “start the
motor and drive at a certain velocity”). Furthermore, agents need to check if
the command is performed correctly and, if not, to take corrective actions.
This is what closed-loop controls do, roughly. As mentioned before, closed-
loops try to arrange a given set point by reacting based on the control
variable’s feedback.

High-level Communication
The most distinctive attribute of agents compared to other technical control
systems is really an agent’s social ability. Social ability does not only include
the interaction with humans as done with expert systems [44], it also
encompasses the freedom to interact with any valuable communication
partner, be it a human, superior entity (e.g. server, market), or other agents.
This freedom to automatically and flexibly establish communication at run-
time makes a high-level communication interface and language necessary.
Such a language is specified by the Foundation for Intelligent Physical
Agents (FIPA). Within the FIPA-Specification a high-level communication
language is formalized and specified. FIPA-Agents Communication
Language (ACL) comprises generic messages classes, so called
performatives. These performatives express the type or class of a message
without specifying the content and the content language (e.g. the
performative “request” is used by agents asking other agents to submit any
information) [10]. Thus, agents can establish communication with any kind of
content at run-time and are not limited to communication interfaces defined
at design time (e.g. web-services) [14], [33]. As described in section 5, this
functionality will likely bring valuable advantages and it is indispensable when
agents are part of a multi-agent based control systems.

4. “Multi-Agent Systems” in Recent Smart Grid Projects

In this section, we review the most recent smart grid research projects
labeled with the term ‘agent’ or ‘multi-agent’. We do not claim to provide a
complete listing of all smart grid multi-agent systems. Rather, we intend to
carve out common interpretations and implementations of the agent
technology by illustrating some representative examples. Therefore, we only
considered the domain of distributed agent-based control systems (as defined
in [24]). Furthermore, we refer to the more general term ‘control entity’ (CE)

Gregor Rohbogner et al.

1810 ComSIS Vol. 10, No. 4, Special Issue, October 2013

to describe the diverse systems (and their differing interpretations of agent
systems) instead of using the term ‘agent’. Subsequently, in section 5, we
discuss under which circumstances CEs and control systems can be
understood as multi-agent control systems.

The majority of previous multi-agent labeled systems consist of distributed
CEs, which are responsible for trading energy on local electricity markets
(LEM) by sending bids. In distributed CEs scenarios, CEs calculate energy
sales or energy purchase prices based on their individual cost functions. The
cost functions for CEs are composed of the specific power device’s (e.g.
combined heat and power plant, photovoltaic system, or simply a dwelling
with different loads) cost function for which the CE is responsible. After
calculating the cost-minimal operation of the power equipment, the CEs send
bids to their dedicated LEMs. The LEMs subsequently match the CEs’ energy
offers and demands and send the auctions outcome. CEs can either act as
sellers or buyers at the local energy market [4], [5], [18], [21], [23], [34], [42].

The general structure of these systems is depicted in Figure 5. In addition
to the descripted basic market-oriented structure (continuous lines) a further
upper trading level is visualized in the figure (dashed lines). In this level,
LEMs can trade energy at an upper electricity market (EM). However, they
only do so if they were not able to locally match all supplies and demands of
the CEs. Such a cascading system can be found in [18] and [43]. With few
exceptions, such as [22], these market-oriented systems usually are non-
predictive systems. Thus, they only calculate energy for the next time
intervals that range between 500 milliseconds [42], [43] and several minutes
[22], and do not calculate a cost optimal schedule (e.g. for the next 24 hours).
In most all market-oriented systems labeled as MAS, control entities are only
connected to their dedicated local energy market. Hence, these MAS are not
programmed to search or adapt their strategies to other local or global
markets. Furthermore, current market-oriented multi-agent systems are
mainly programmed for one dedicated market type. For example, the above-
mentioned systems can handle only bids within an auction based, active
power market. However, an agent should be capable of handling all types of
markets (e.g. active, reactive, and spinning reserve markets) and all offered
products (e.g. spot deals or forward transactions).

Grid-oriented systems constitute the second important application field of
multi-agent based distributed control systems in the smart grid. These control
systems are primarily responsible for ensuring a grid operation in a normal
state, which implies an operation within the standardized voltage, power, and
frequency limitations of the grid. For example, [21] extends the market-
oriented approach of [43] with a local frequency measurement and
adjustment. [32] developed a voltage control system implementing a central
CE that optimizes reactive power injection of distributed energy systems
(DES). Therefore, the CEs are responsible for the DESs only receiving a set
point from the central CE.

Furthermore, in previous grid-oriented projects, distributed control systems
capable of performing an automatic reconfiguration of their control

Multi-Agent Systems’ Asset for Smart Grid Applications

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1811

parameters in case of grid topology changes were developed. Grid topology
2

changes can arise either by an activation of circuit breakers and (e.g. to
increment or decrement the voltage level), or from connection, or
disconnection, from the main grid:

a) of either single Distributed Energy Resources (DER) at any
instant or

b) of entire grid sections, due to an occurring fault like a short
circuit. [30]

Local
Electricity Market

Control Entity Control Entity Control Entity

Electricity Market

Local
Electricity Market

Local
Electricity Market

Local offers to buy/ for sale

Offers to buy/ for sale on a possible next hierarchic

Fig. 5. Common structure of systems labeled as MAS applying an auction based
active power spot market.

While the activation of circuit breakers, and the connection and
disconnection of DERs, require “solely” the reconfiguration of distributed
control entities, the control of separated grid sections is particularly
challenging. These so called micro-grids require several non-trivial tasks like
fault detection and localization, coordination of the islanded grid section’s
voltage, and frequency control as well as synchronization when reconnecting
to the main grid [30]. [26] and [29] developed distributed control systems,
responsible for reliable operation in the normal grid state as well as for
automatic and secure transition from the normal grid state, to the island state

2
 Within this paper grid topology is understood as defined in electrical engineering.
Thus, a change of any grid parameter (e.g. change of a load, change of
impedances, and activation of switches) is regarded as topology change. It
encompasses not only the restructuring of electrical grids.

Gregor Rohbogner et al.

1812 ComSIS Vol. 10, No. 4, Special Issue, October 2013

and back. Switches and distributed energy systems (e.g. photovoltaic system,
electricity storages, loads, etc.) equipped with interconnected CEs are
capable of communicating in a many-to-many manner, and thus may
coordinate the grid in every state without passing information via a dedicated
central control entity.

5. Agents’ Assets and Suitable Application Fields

Comparing the distinction of agents developed in this paper (Section 3) and
recent smart grid projects labeled as multi-agent systems (Section 4), we
claim that most projects implemented control systems exhibiting some, but
not all, agent functionalities in a stricter sense. Although these multi-agent
control systems have proved to be very effective, some smart grid
applications do not necessitate multi-agent systems as a control system. In
the following, we discuss where the usage of (the notion of) multi-agent
systems and the application of holistic agents might be valuable assets in the
smart grid. We structured this section according to the main smart grid
domains: grid-oriented and economic-oriented approaches. While grid-
oriented approaches control DERs in a way that reliable grid operation is
ensured (e.g. distributed voltage control via reactive power injection), the
economic-oriented approaches control DERs grid independently (e.g. virtual
power plants).

5.1. Economic-oriented Control Systems

As mentioned above and posed by Jennings and Bussmann, multi-agent
systems should demonstrate CEs which have the capability “to initiate (and
respond to) interactions that were not foreseen at design time” [15]. Although,
the investigated market-oriented systems (in section 4, paragraph 2)
constitute decentralized and negotiating CEs, the systems cannot be deemed
agent systems in a stricter sense (cf. section 3). This is because:

First, the negotiation of CEs in market-oriented MAS is mainly limited to
only one negotiation partner, the local electricity market. Second, the
investigated market-oriented MASs demonstrate CEs which are dedicated to
only one market type (e.g. real time markets or active energy spot markets)
and they are not capable of automatically initiating contracts (for example)
on other market types (e.g. forward-markets and reactive energy (spot)
markets) or to conclude a direct, bilateral, over-the-counter contract. Both
seem to contradict the agent definition and somehow also the legal
requirement of being able to freely choose any energy supplier

3
. In contrast,

a multi-agent system, in a stricter sense, should allow agents to negotiate
energy with any other agent, and thereby enter into any contracts with any

3
 Based on the Liberalization of EU’s electricity supply system

Multi-Agent Systems’ Asset for Smart Grid Applications

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1813

partner, either of a local energy market or a gird neighbor who offers or sells
energy bidirectionally over the counter.

Further, CEs in economic-oriented systems labeled as multi-agent system
should have the freedom to cooperate and to dynamically form subgroups
(“holons”) with other CEs. Applied in the smart grid, this would enable
dynamic and automatic composition (and decomposition) of energy
communities. These communities would, for example, try to match electricity
production and consumption within their community first, before entering
negotiations with external agents or other electricity communities. In addition,
it is conceivable that agents would form groups with the purpose of acting as
a virtual power plant that appears as a whole, such as when trading energy at
the operating reserve market [6], [39].

However, the flexibility to interact at unpredictable times, for unforeseen
reasons with other unpredictable CEs makes what social ability embodies
evident. CEs, like those mentioned above (cf. section 4), are bound to a

single web-service enabling bidding at a dedicated LEM, cannot be deemed

“social” and proactive. (cf. [14]). In combination with a single possibility to
modify the bids - which makes reasoning needless - the alleged agents
demonstrate more of the characteristics of communicating optimizers.
However, what social ability and proactiviness applied in economic-oriented
MAS should imply is illustrated by an example: Imagine a rural low-voltage
grid with four nodes representing four households with different energy
systems. As depicted in Figure 6., the first household is equipped with a
combined heat and power plant (CHP), the second and fourth with a
photovoltaic system (PV), and the third with a heat pump (HP). All energy
systems are controlled by agents responsible for the technical and
economical efficient operation. The agent goals, which are usually cost-
minimal energy supply and profit-oriented generation, are defined at design
time. Other than current control systems, agents are not bound to one control
strategy in achieving these goals. Thus, the HP agent might proactively ask
the CHP agent and the PV Agent – without dedicate command of a human –
if they are interested in cooperating within an energy community. If the other
agents agree in that cooperation, all agents need to adapt their control
parameters in order to achieve the joint objective of the energy community
(social ability): profit maximization while ensuring a reliable energy supply.
Further, it is conceivable that the community may decide proactively to
participate in the operating reserve market because they assume a higher
profit. Such a machine-to-machine decision makes a social interaction and an
automatic adjustment of the control parameters indispensable. Figure 6.
shows examples of different possibilities through which agents can achieve
their goals. While (a) depicts agents that fend for themselves, in (b) and (c)
agents are cooperating for either the purpose of self-consumption or to
appear as one party on energy markets.

Gregor Rohbogner et al.

1814 ComSIS Vol. 10, No. 4, Special Issue, October 2013

20kV Grid
CHP PV HP PV

Agent Agent Agent Agent(b) Energy Community
(Self-Consumption)

20kV Grid
CHP PV HP PV

Agent Agent Agent Agent
(c) Energy Community

(Market-Oriented)

Low-Voltage Grid

Low-Voltage Grid

Active Energy
Spot Market

Agent

Operating
Reserve
Market

Agent

20kV Grid
CHP PV HP PV

Agent Agent Agent Agent
(a) Market-Oriented „MAS“

Low-Voltage Grid

Active Energy
Spot Market

Agent

Fig. 6. Examples of how agents (in a low-voltage grid) can organize themselves.

Multi-Agent Systems’ Asset for Smart Grid Applications

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1815

5.2. Grid-oriented Multi-Agent Systems

The development of distributed renewable systems obliges network operators
to extend their (sub-)transmission control systems to the distribution and low-
voltage grids. To preserve operational personal from workload increase,
which even today necessitates automation [15], multi-agent systems could be
a suitable solution. Industrial manufacturing and industrial process
automation already demonstrate that agent-based systems bring sizable
advantages when applied as a control system for uncertain, difficult to predict
and varying environments. Biological wastewater treatment plants or
production systems with repetitive plugging of equipment are the most
noteworthy example which Metzger et al. surveyed [25]. These conditions
seem – in a weakened form – also present in future electricity distribution
grids. The following paragraphs discuss where agent technology in grid-
oriented control is of value. Since voltage and frequency control demonstrate
the most important and most discussed grid values in smart grid research, we
have subdivided this section accordingly. Further, we discuss micro-grid
control systems within a separate paragraph, since it is responsible for all
values which are important for stable and reliable grid operation.

Voltage Control in Distribution Grids

In addition to frequency control, network operators are responsible for
controlling grid voltage. In contrast to the grid frequency, the voltage depends
on the grid’s topology, encompassing the grid impendency, grid structure, and
the active and reactive energy flows of consumers and generators connected
to the grid. Voltage control in distributed and low-voltage grids was not
important in the past due to the unidirectional energy flows and the
associated static drop of voltage along the power line. The transformers in
low-voltage grids were adjusted in the way that the voltage was high enough
even at the end of the grid. Over-voltage problems are assumed when the
current static transformer parameterization remains unchanged while the
number of distributed generators (e.g. photovoltaic systems or combined heat
and power plants) rises. In order to keep the voltage in the permitted ranges,
one approach is to involve the distributed systems in grid stabilization by
means of dynamic adaptation of the active (P) and reactive power (Q)
depending on the grid voltage. These distributed systems need to be
coordinated to avoid voltage oscillation in the grid and to ensure a maximal
production of renewable active energy. For this purpose, the controllers can

be extended to agents, capable of coordinating and negotiating

injection of power. To reduce the configuration efforts of the agents and to
allow automatic adaptation when the grid structures change, agents should be
capable of detecting grid position. These changes in grid structure can
develop because, first, short circuits or earth faults need to be recovered, or,
second due to an islanding of the grid section in which the agent is located. In
both cases manual reconfiguration and coordination of the distributed

Gregor Rohbogner et al.

1816 ComSIS Vol. 10, No. 4, Special Issue, October 2013

controllers’ parameters seems inappropriate. Thus, agents which realize
automatic configuration may be valuable assets in this scenario. Especially in
regions with a high percentage of overhead lines (as in the United States)
automatic troubleshooting of electricity grid is of paramount interest.

Grid Frequency Control

The gradual substitution of conventional power plants with distributed
renewable energy systems compulsorily increase the influence of distributed
systems on the frequency. To ensure a stable and reliable grid in the future
frequency control need to be coordinated among those millions of distributed
systems, since large frequency changes can lead to an unstable power
system.

In today’s central European electricity grid (ENTSO–E
4
 grid), the

transmission grid operators are responsible for the frequency control. The
frequency control is divided in three control levels which differ in their time of
activation: a) primary control (frequency-response reserve), b) secondary
control (spinning reserve), and c) tertiary control (replacement reserve). In
case of a frequency deviation, the control levels are activated step-wise,
beginning with the primary control, via the secondary control and ending at
tertiary control (if the deviation still exists). The primary control reacts within a
few seconds (max. 30 seconds) to frequency deviation by automatically
adapting the power of some generation units in the electricity grid according
to a given static. After one minute, the secondary control replaces the
primary control and tries to restore the frequency to the nominal value (in
Europe 50 Hz). If it is not possible to restore the frequency with the secondary
control after five minutes, tertiary control is manual (e.g. via phone)
requested by transmission operators. All forms of operating reserve
(frequency-response reserve, spinning reserve and replacement reserve) are
traded on the operating reserve market. Currently only larger power plants
are allowed to participate on the operating reserve markets.

Assuming that the current operating reserve mechanism remains
unchanged, while in the future small distributed generation units are also
allowed to trade replacement reserve, agents might be of value when

enabling automated participation of distributed energy systems at the

operating reserve market. As a control entity for a distributed energy
system (e.g. a combined heat and power plant) the agent would
autonomously negotiate at the operating reserve market in order to operate
its distributed energy system cost-optimally. [21] describes such a multi-agent
system which controls the frequency via a market-oriented multi-agent
system. A Balancing-Agent, which is responsible for the frequency, offers
active energy for consumption when the frequency is about to drop and buys
energy - which is left unused - when the frequency rises. Here, the Balancing-
Agent appears as a central coordinating unit to which the other agents are

4
 European Network of Transmission System Operators

Multi-Agent Systems’ Asset for Smart Grid Applications

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1817

dedicated. As mentioned above, it is questionable if a control entity which is
slowly connected to the operating reserve market server shall be deemed an
agent in strictest sense. The automatic negotiation can also be implemented
using web-services. But as described by [14] web-services are not agents.
Hence, labeling negotiating control entities as agents would only make sense
when they demonstrate proactiviness and social behavior as described in
section 3. Consistently, proactiviness and social behavior are only feasible if
alternative courses of action exist. It is the control entity which is capable of
deciding, for example, to either offer at the operating reserve market or to
any other energy market (cf. section 5.1), which would constitute a freedom,
on the basis of which a control entity may develop its proactiviness.
Furthermore, social behavior only evolves if other control entities and, with
that, possibilities of cooperation (e.g. as virtual power plant) exist.

Besides the question of how distributed energy resources can participate
passively at the frequency control via a replacement reserve market, it still
remains unclear how they can participate actively

5
, without causing grid

destabilization. As mentioned above, recent photovoltaic inverters were
configured to disconnect from the grid if the frequency reached the limit of
50.2 Hz. If a large amount of systems would react accordingly, this would
cause serious grid problems [17]. Thus, the parameterization of the
distributed energy system via cooperating agents – as applied for voltage
control – would be conceivable. But other than the voltage, the frequency
constitutes a grid-wide value. This would imply the coordination of millions of
energy systems, which seems unrealistic mainly due the associated high
communication traffic. Assuming that, in the future, only some power units
are responsible for the supply of frequency-response and spinning reserve
power, a multi-agent system might be an appropriate solution for an
automatic, autonomous, and self-parameterizing control system of the power
plants control, as described in [1].

Micro-Grid Control

Micro-grids seem to be the most appropriate smart grid domain for the
applications of multi-agent based control systems regarding the recent
numerous micro-grid projects [19]. [3] defines micro-grids as small, local
distribution systems containing generation and loads that can be separated
totally from the distribution grid. Micro-grids constitute, indeed, perfect
environments for the application of MAS, for the following reasons: First,
other than the main grid, the micro-grid demonstrates a small separate
system comprising of a limited number of control entities. That makes the
coordination and the assigned communication efforts manageable. Other
than in the smart grid parameterization, for example, of the frequency

5
 Actively implies that the control units measure the frequency at their dedicated grid
node and react directly to frequency deviations by adapting the injected active
power, or reactive power.

Gregor Rohbogner et al.

1818 ComSIS Vol. 10, No. 4, Special Issue, October 2013

controllers becomes feasible. Second, micro-grids in disconnected mode are
fully responsible for the stable and reliable operation of the grid. That
encompasses, besides the voltage control, the frequency control and
protection issues as well. The indispensable energy balance needs to be
ensured, while, caused by disconnection, only a reduced number of devices
that can provide reserves exist. Likewise, the micro-grid control system
needs to react to regular changes in the grid topology (e.g. disconnection of
distributed energy resources or loads). Hence, as described in [30], MAS
would be a valuable asset, because other than in a centralized micro-grid
control system, no manual adaption of the central control algorithms/models
is necessary. Within a MAS automatic adaption of the distributed control
parameters takes place if topology changes occur. Numerous multi-agent
based micro-grid control systems can be found in literature. [19] and [30] give
a broad overview about recent multi-agent based micro-grid controls.

In this section we illustrated that the terms ‘agent’ and ‘multi-agent’
systems applied in the smart grid are of value when automatic, cooperative,
and coordinated reconfiguration of distributed devices (e.g. distributed energy
systems or grid equipment) is required during runtime. We discussed the
application of multi-agent systems for frequency control, voltage, micro-grid
control (grid-oriented), and economic-oriented control systems, since they
constitute the major smart grid control domains. Further applications, such as
the optimal coordination of an electric vehicle fleet or substation monitoring
and diagnostic systems, can be considered as further possible applicable
fields for multi-agent systems. However, it is recommended to carefully
consider if either multi-agent systems or current state-of-the-art control
technology should be applied, as the case pops up on a case by case basis.
Furthermore, the term ‘agent’ should only be used if the control systems
evince the above mentioned abilities: proactivity, reactivity and social
behavior, and not only as a synonym for state-of-the-art control technologies.

6. Conclusion

This article has sought to justify why and when multi-agent systems are
suited for smart grid applications. First, we have posed that state-of-the-art
control technologies should not be understood as agents, but, in turn, agents
should be understood as software artefacts that exhibit the functionalities of
optimizers, controllers, and learning systems, accompanied by the
capabilities of practical reasoning and social interaction. Second, we
contrasted our understanding of agents with interpretations of recent smart
grid projects labelled as multi-agent control systems. These projects have
already demonstrated the effectiveness of multi-agent systems, although they
implement agents only in the broadest senses: due to the decentralized
structure, data is locally processed where it is produced and local negotiation
effects a coordination of the distributed systems. However, to explore all
agent benefits and to sharpen the notion, we suggest terming control entities

Multi-Agent Systems’ Asset for Smart Grid Applications

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1819

as agents when they encompass all of the above mentioned functionalities.
The assets are: i) automatic reconfiguration in case of time-invariant
environment changes (e.g. grid topology changes); ii) automatic initiation of
and participation in (economic) interest groups (virtual power plants); and iii)
automatic adaption to changing control strategies (e.g. in case of grid
islanding). Coordination of thousands of distributed, fluctuating, electricity
generators and a robust operation of our electricity grids constitutes an
enormous future control challenge. This dynamic, distributed, and widespread
environment seems to be perfectly suited for the application of agent-based
control systems.

References

1. Bevrani, H. (ed.): Agent-based robust frequency regulation. In: Robust Power
System Frequency Control, pp. 1–17. Power Electronics and Power Systems,
Springer US (2009)

2. Bratman, M.E.: What is intention? pp. 15–32. The MIT Press, Cambridge, MA
(1990)

3. Chicco, G., Mancarella, P.: Distributed multi-generation: a comprehensive view.
Renewable and Sustainable Energy Reviews 13, 535–551 (2009)

4. Chung, I.Y., Yoo, C.H., Oh, S.J.: Distributed intelligent microgrid control using
multi-agent systems. Engineering 5 (2013)

5. Dimeas, A., Hatziargyriou, N.: Operation of a multiagent system for microgrid
control. IEEE Transactions on Power Systems 20(3), 1447–1455 (2005)

6. Dimeas, A., Hatziargyriou, N.: Agent based control of virtual power plants. In:
Intelligent Systems Applications to Power Systems, 2007. ISAP 2007.
International Conference on. pp. 1–6 (2007)

7. European Parliament: EU Directive 2009/28/EG. Official Journal of the European
Union (2009)

8. European Technology Platform Smart Grids: Smartgrids strategic deployment
document for europe's electricity networks of the future (2010)

9. Foster, I.T., Jennings, N.R., Kesselman, C.: Brain meets brawn: Why grid and
agents need each other. In: Autonomous Agents & Multiagent
Systems/International Conference on Autonomous Agents. pp. 8–15 (2004)

10. Foundation for Intelligent Physical Agents: FIPA ACL Message Structure
Specification., http://www.fipa.org/repository/aclspecs.html, available at
http://www.fipa.org/repository/aclspecs.html. Accessed on 23th February 2013

11. Franklin, S., Graesser, A.: Is it an agent, or just a program?: A taxonomy for
autonomous agents. In: Müller, J.P., Wooldridge, M., Jennings, N.R. (eds.)
Intelligent Agents III Agent Theories, Architectures, and Languages, Lecture
Notes in Computer Science, vol. 1193, pp. 21–35. Springer Berlin Heidelberg
(1997)

12. Giordano, V., Gangale, F., Fulli, G.: Smart grid projects in europe: lessons
learned and current developments (2011)

13. Hollinger, R., Hamperl, S., Erge, T., et al.: Simulating the optimized participation
of distributed controllable generators at the spot market for electricity considering
prediction errors. In: Innovative Smart Grid Technologies (ISGT), 2012 IEEE
PES (2012)

Gregor Rohbogner et al.

1820 ComSIS Vol. 10, No. 4, Special Issue, October 2013

14. Huhns, M.N.: Agents as web services. IEEE Internet Computing 6, 93–95 (2002)
15. Jennings, N., Bussmann, S.: Agent-based control systems. IEEE control systems

23(3), 61–74 (2003)
16. Jennings, N., Wooldridge, M.: Agent Technology: Foundations, Applications, and

Markets. Springer-Verlag, Berlin (1998)
17. Kaestle, G., Vrana, T.K.: Das 50,2 hz-problem im kontext verbesserter

netzanschlussbedingungen. In: Internationaler ETG-Kongress 2011 (ETG-FB
130) (2011)

18. Kamphuis, R., Roossien, B., Bliek, F., et al.: Architectural design and first results
evaluation of the powermatching city field test. In: 4th International Conference
on Integration of Renewable and Distributed Energy Resources. EPRI (2010)

19. Kulasekera, A.L., Gopura, R.A.R.C., Hemapala, K.T.M.U., et al.: A review on
multi-agent systems in microgrid applications. In: Innovative Smart Grid
Technologies - India (ISGT India). pp. 173–177 (2011)

20. Landau, I.D., Lozano, R., M'Saad, M., et al.: Adaptive Control Algorithms,
Analysis and Applications. Springer Verlag London Limited (2011)

21. Linnenberg, T., Wior, I., Schreiber, S., et al.: A market-based multi-agent-system
for decentralized power and grid control. In: Emerging Technologies & Factory
Automation (ETFA), 2011 IEEE 16th Conference on (2011)

22. Logenthiran, T., Srinivasa, D., Khambadkone, A.M.: Multi-agent system for
energy resource scheduling of integrated microgrids in a distributed system.
Electric Power Systems Research 81(1), 138–148 (January 2011)

23. Logenthiran, T., Srinivasan, D., Khambadkone, A., et al.: Multiagent system for
real-time operation of a microgrid in real-time digital simulator. Smart Grid, IEEE
Transactions on 3(2), 925 –933 (2012)

24. McArthur, S.D.J., Davidson, E.M., Catterson, V., et al.: Multi-Agent Systems for
Power Engineering Applications – Part I: Concepts, Approaches, and Technical
Challenges (2007)

25. Metzger, M., Polakow, G.: A survey on applications of agent technology in
industrial process control. Industrial Informatics, IEEE Transactions on 7(4), 570
–581 (2011)

26. Nguyen, C., Flueck, A.: Agent based restoration with distributed energy storage
support in smart grids. IEEE Transactions on Smart Grid 3(2), 1029 –1038
(2012)

27. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization Algorithms and
Complexity. Dover Publications Inc. (2000)

28. Parunak, H.V.D., Sauter, J., Fleischer, M.: The rappid project: Symbiosis
between industrial requirements and mas research. Autonomous Agents and
Multi-Agent Systems 2, 11–140 (1999)

29. Pipattanasomporn, M., Feroze, H., Rahman, S.: Multi-agent systems in a
distributed smart grid: Design and implementation. In: Power Systems
Conference and Exposition, 2009. PSCE '09. IEEE/PES. pp. 1–8 (2009)

30. Planas, E., de Muro, A.G., Andreu, J., et al.: General aspects, hierarchical
controls and droop methods in microgrids: A review. Renewable and Sustainable
Energy Reviews 17(0), 147 – 159 (2013)

31. Pudjianto, D., Ramsay, C., Strbac, G.: Virtual power plant and system integration
of distributed energy resources. Renewable Power Generation, IET 1(1), 10–16
(2007)

32. Richardot, O.: Réglage Coordonné de Tension dans les Réseaux de Distribution
à l'aide de la Production Décentralisée. Phd thesis, Grenoble, France (2006)

Multi-Agent Systems’ Asset for Smart Grid Applications

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1821

33. Rohbogner, G., Fey, S., Hahnel, U.J., et al.: What the term agent stands for in
the smart grid. definition of agents and mulitagent systems from an engineer's
perspective. In: Computer Science and Information Systems (FedCSIS), 2012
Federated Conference (2012)

34. Roossien, B.: Field-test upscaling of multi-agent coordination in the electricity
grid. In: Electricity Distribution - 20th International Conference and Exhibition on.
pp. 1–4 (2009)

35. Russell, S., Norvig, P.: Artificial Intelligence: A modern Approach. Pearson
Education Inc. (2010)

36. Samadi, P., Mohsenian-Rad, H., Schober, R., et al.: Advanced demand side
management for the future smart grid using mechanism design. Smart Grid,
IEEE Transactions on 3(3), 1170–1180 (2012)

37. Simon, H.: Machine Learning: An Artificial Intelligence Approach, chap. Why
should machines learn? Morgen Kaufmann (1983)

38. SMB Smart Grid Strategic Group (SG3): IEC smart grid standardization roadmap
(2010)

39. Tröschel, M., Appelrath, H.J.: Towards reactive scheduling for large-scale virtual
power plants. In: Braubach, L., Hoekand, W., Petta, P., et al. (eds.) Multiagent
System Technologies, Lecture Notes in Computer Science, vol. 5774, pp. 141–
152. Springer Berlin Heidelberg (2009)

40. Unbehauen, H.: Regelungstechnik III Identification, Adaption, Optimierung.
Springer Vieweg (2011)

41. Vasirani, M., Kota, R., Cavalcante, R.L., et al.: Virtual power plants of wind
power generators and electric vehicles. Tech. rep. (2012)

42. Wedde, H., Lehnhoff, S., Handschin, E., et al.: Real-time multi-agent support for
decentralized management of electric power. In: Real-Time Systems, 2006. 18th
Euromicro Conference on (2006)

43. Wedde, H., Lehnhoff, S., Moritz, K., et al.: Distributed learning strategies for
collaborative agents in adaptive decentralized power systems. In: Engineering of
Computer Based Systems, 2008. ECBS 2008. 15th Annual IEEE International
Conference and Workshop on the. pp. 26 –35 (2008 2008)

44. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons Ltd
(2009)

45. Wooldridge, M., Jennings, N.R.: Agent theories, architectures, and languages: A
survey. Lecture Notes in Computer Science 890, 1–39 (1995)

Gregor Rohbogner studied industrial engineering at the RWTH Aachen
University. He received his Diploma in July 2011. Since 2010 he is a
researcher within the Institute for Solar Energy Systems ISE in Freiburg
(Germany). First he focused on topics of in-house and Smart Grid
communication. Since mid 2011 he works as research fellow on multi-agent
systems for Smart Grid applications. Further interest includes Peer-to-Peer
networks, Smart Home technologies, optimization of decentralized energy
resources and electrical grid control technologies.

Gregor Rohbogner et al.

1822 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Ulf J.J. Hahnel studied psychology at the University of Mainz, Germany and
the University of Auckland, New Zealand. Currently, he works in the
department of Cognition, Emotion, and Communication at the Institute of
Psychology of the Albert-Ludwigs University Freiburg and in the department
of Intelligent Energy Systems at the Fraunhofer Institute for Solar Energy
Systems (ISE). His research focuses on sustainable consumer behavior,
human factors psychology and consumer acceptance of innovative
technologies. He published his works in international journals such as
Transportation Research Part A and Ergonomics.

Pascal Benoit graduated in electrical and information engineering at
Karlsruhe Institute of Technology (KIT) where he specialized in renewable
energies and information technologies. During his studies he stayed abroad
for several student research projects at Institute of Energy Engineering of the
Politécnical University of Valencia, Spain. Since 2010 he is working at
Fraunhofer Institute for Solar Energy Systems (ISE) in the department of
Smart Grids. There he is active in the field of smart integration of electric
vehicles and communication technologies for distributed energy systems.
Since 2011 he is working on a PhD thesis focusing on new approaches for
control and communication systems of large-scale concentrator photovoltaic
(CPV) power plants.

Simon Fey finished his Master Degree in Electrical Engineering / Information
Technology at the Offenburg University of Applied Science in 2010. He wrote
his diploma thesis at the Fraunhofer Institute for Solar Energy Systems (ISE)
on acquisition and storage of measurement data from power plants. Simon
Fey is member of the graduate school Small Scale Renewable Energy
Systems (KleE) and is currently writing his PhD thesis under the supervision
of Prof. Dr. Andreas H. Christ. His thesis is on IT-based communication
structures and system architectures for renewable energy systems.

Received: February 24, 2013; Accepted: June 24, 2013

DOI:10.2298/CSIS130304073B

Model-based Integration of Constrained Search
Spaces into Distributed Planning of Active Power

Provision

Jörg Bremer1 and Michael Sonnenschein1

Department of Computing Science, University of Oldenburg
26129 Oldenburg, Gemany

{Joerg.Bremer, Michael.Sonnenschein}@uni-oldenburg.de

Abstract. The current upheaval in the electricity sector demands dis-
tributed generation schemes that take into account individually configured
energy units and new grid structures. At the same time, this change is
heading for a paradigm shift in controlling these energy resources within
the grid. Pro-active scheduling of active power within a (from a control-
ling perspective) loosely coupled group of distributed energy resources
demands for distributed planning and optimization methods that take into
account the individual feasible region in local search spaces modeled by
surrogate models. We propose a method that uses support vector based
black-box models for re-constructing feasible regions for automated, local
solution repair during scheduling and combine it with a distributed greedy
approach for finding an appropriate partition of a desired target schedule
into operable schedules for each participating energy unit.

Keywords: constrained optimization, support vector machines, smart grid,
decoder-based optimization.

1. Introduction

In order to allow for a transition of the current central market and network struc-
ture of today’s electricity grid to a decentralized smart grid, an efficient man-
agement of numerous distributed energy resources (DER) will become more
and more indispensable. Integrating a continuously rising number of renewable
resources means controlling individually configured and rather small devices
in order to cope with stochastic feed-in effects. At the same time, more and
more electricity is generated by wind energy converters and photovoltaic pan-
els. A forecast on this generation highly depends on only fairly foreseen weather
conditions and thus puts an additional challenge on planning the electricity pro-
vision and calls for additional operating reserve.

Within an electricity grid, electricity generation and consumption have to
be balanced at every moment in time for physical reasons. In the past, only
the generated part used to be planned according to anticipated consumption.
Only few and large power plants had to be taken into account. As in future a
larger share of the generation becomes hardly controllable (e. g. wind energy

Jörg Bremer & Michael Sonnenschein

conversion or photovoltaics), parts of the demand have to be integrated into the
planning process.

We consider in general producers that are supposed to pool together with
likewise distributed electricity consumers and prosumers (like batteries) in order
to jointly gain more degrees of freedom in choosing load schedules. In this way,
they become a single controllable entity with sufficient market power. In order to
manage such a pool of DERs in a self-organized way, the following distributed
optimization problem has to be frequently solved: A partition of a demanded (by
market) aggregate schedule has to be determined in order to fairly distribute the
load among all participating DERs. Optimality usually refers to local (individual
cost) as well as to global (e.g. environmental impact) objectives in addition to
the main goal: Resemble the wanted overall load schedule as close as possible.

In order to choose an appropriate schedule for each participating DER, an
optimization algorithm must know from each DER, which schedules are actually
operable and which are not. Depending on the type of DER, different constraints
restrict possible operations. The information about individual local feasibility of
schedules has to be spread appropriately in (distributed) optimization scenar-
ios, in order to evaluate objectives globally in distributed search spaces. For
this purpose, meta-models of constrained spaces of operable schedules have
been shown indispensable for efficient communication [10]. Such models can
be seen as black-box representations of the feasible region of an optimization
problem related to scheduling scenarios. Such models are also used for effi-
ciently evaluating constraints during the optimization procedure for cases where
determining the feasible region has comparably high computational costs.

Real world problems like this scheduling problem often face nonlinear and/
or combined constraints. The set of constraints defines the shape of a region
within the search space (the hypercube defined by operation parameter limits)
that contains all feasible solutions. This region is called feasible region and
might be arbitrary shaped or even be discontinuous. It is this region that defines
feasibility and that has to be modeled. Such a surrogate model then allows
distinguishing operable and not operable schedules when integrated into the
optimization process.

At the same time, support vector machines and related approaches have
been shown to have excellent performance when trained as classifiers for mul-
tiple purposes, especially real world problems. As a use case related to describ-
ing the region where some given data resides in, Tax and Duin developed the
support vector domain description (SVDD) as a one-class support vector clas-
sification approach that is capable of learning the region that is defined by some
given training data [43] and that has therefore been harnessed for example by
[7] as a model for the feasible region in the smart grid domain.

What we will now add is a new approach for integrating constraints that are
modeled by a support vector classifier into distributed optimization in a way, that
allows for an efficient navigation within the feasible region. The basic idea is to
construct a mapping from the whole, unconstrained domain of the problem (the
hypercube) to the feasible region to be able to automatically repair an infeasible

1824 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Distributed Greedy Planning

solution during optimization. In this way, the problem is transferred into an un-
constrained one by mapping any arbitrary solution onto a nearby feasible one.
What we will need for constructing this mapping is the set of support vectors
together with the associated weights that make up the black-box model.

The rest of the paper is organized as follows: We start with a discussion
of related approaches and the background of the optimization problem that is
considered throughout this paper. We describe a model of individual search
spaces of arbitrary energy resources based on a support vector approach and
the behaviour model based method for learning it. Then, we define the mapping
function that is used as solution repair mechanism within our greedy algorithm
for scheduling. Finally, we conclude with results from several simulation runs
and with a discussion of a possible extension to an asynchronous execution of
the optimization.

2. Related work and problem background

Within the framework of today’s (centralized) operation planning for power sta-
tions, different heuristics are already harnessed. Examples from the research
sector are for instance shown in [28] or in [47]. The task of (short-term) schedul-
ing of different generators is also known as unit commitment problem and as-
signs (in its classical interpretation) discrete-time-varying production levels to
generators for a given planning horizon [36]. It is known to be an NP-hard prob-
lem [17]. Determining an exact global optimum is, in any case, not possible until
ex post due to uncertainties and forecast errors. In practice the software pack-
age BoFIT is often used, harnessing a mixed integer model with operational
constraints as an integral part of the implementation of the model [14]. This fact
makes it hard to exchange operational constraints in case of a changed setting
(e.g. a new composition of energy resources) of the whole generation system.

Coordinating a pool of distributed generators and consumers with the in-
tent to provide certain aggregated load schedules for active power has some
objective similarities to controlling a virtual power plant (VPP) [46, 27]. Within
the smart grid domain the volatile character of such a group has additionally
to be taken into account. On an abstract level, approaches to control groups
of distributed devices can be roughly divided into centralized and distributed
scheduling algorithms.

Centralized approaches have long time dominated the discussion [46], not
least because a generator may achieve slightly greater benefit if optimization
is done from a global, omniscient perspective [16]. Centralized methods are
discussed in the context of static pools of DERs with drawbacks and restrictions
regarding scalability and particularly flexibility.

Recently, distributed approaches gained more and more importance. Dif-
ferent works proposed hierarchical and decentralized architectures based on
multi-agent systems and market based computing [21, 22]. Newer approaches
try to establish self-organization between actors within the grid [20, 29, 38].

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1825

Jörg Bremer & Michael Sonnenschein

Especially for optimization approaches in smart grid scenarios, black-box
models for encoding the feasible region with the set of operable schedules have
been developed [10]. The encoding of a schedule’s individual cost may also be
easily embedded into such model [8].

This quite new support vector approach uses support vector meta-models
for black-box optimization scenarios with no explicitly given constraint bound-
aries. In general, various classification or regression methods could be har-
nessed for creating such models for the boundary [23], but not all of them allow
for a good integration into optimization. In general, there are three main reasons
for using such a model-based approach:

1. Substituting computational costs for evaluating the constraints by a compar-
atively easy check on feasibility through the model.

2. Efficient communication in distributed environments due to the small foot-
print of the model.

3. Unification of access to the information on feasibility.

Besides, the smart grid domain serves also as an example for scenarios with
(at least partly) unknown functional relationships of the constraints. The feasi-
ble region can sometimes only be derived with lacking full knowledge on hidden
variables or intrinsic relations that determine the operability of an electric de-
vice and therewith the feasible region. The authors therefore have their model
learned by a support vector data description approach from a set of operable
(feasible) examples.

In a related approach for another use-case, [4] used a two-class SVM for
learning operation point and bias of a line in a power grid for easier determining
an optimal way back to stable grid conditions in case of a failure.

Surrogate modeling (also known as surface or meta modeling) is often used
for replacing expensive and time consuming evaluations of simulations by a
model that mimics system behavior on a local or global level [11] with a min-
imum of known samples from the original (simulation) model. For this reason,
active sampling is often applied, i.e. the sample that makes up the model is con-
tinuously adapted and iteratively improved as analysis or optimization evolves.
Several different techniques for surrogate modeling have been developed. Com-
monly used examples are: Datascape, Kriging, first and second order regres-
sion, response surfaces, or artificial neural networks [15, 31]. Using surrogate
modeling like surface modeling in optimization, usually, all constraints are di-
rectly known in contrast to the function that is to be optimized along [32]. In
our problem, we want to abstract from certain given constraint formulations and
do (at optimization time) not have access to the individual simulations of the
distributed resources.

For our optimization problem, we need a model that serves as a stencil for
the set of (technically) operable schedules for a DER. We regard the respective
simulation model as a characteristic function that is able to indicate whether
an arbitrary, given schedule is operable by the DER or not. We want to build a
model that is able to guide an optimization algorithm towards feasible solutions.
Thus, we need a model that is able to capture the characteristic function that

1826 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Distributed Greedy Planning

indicates operability of schedules. As we do not have access to the simulation
model at optimization time anymore, we have to build the model completely in
advance and are not able to come back to iteratively improving modeling tech-
niques like active learning. A support vector model can do this and an important
advantage of such a model for our use case is the internal representation that
can easily and directly be used for further calculations.

In this paper, we will consider the following optimization problem for a given
group (consumers, producers and/ or prosumers) of DERs: A schedule for a
given future time horizon is requested (e.g. via an electricity market mech-
anism) and is supposed to be jointly operated by the group. We developed
a general method for arbitrarily composed groups of different types of DER.
As the method will abstract from precise modeling of each DER as well as
from constraint modeling, it is suitable especially for groups that dynamically re-
formate frequently in a self-organizing system. For an (not necessarily known
in advance) group, a partition has to be found. Thus, we do not assume a cer-
tain size or composition of different DERs. A partition of the requested target
schedule has to be determined in order to fairly distribute the load among all
participants.

With the term load, we denote the mean electrical active power that is pro-
duced or consumed by a DER within a certain time interval (today: usually 15
minutes). A schedule then is a vector that determines the loads for a given
number of subsequent time intervals. This definition is equivalent to defining
a schedule by using the respective amounts of energy produced or consumed
within a time interval.

For the sake of simplicity, we will consider optimality as a close as possible
adaption of the aggregated schedule (sum of individual loads) to the requested
one during this paper. Optimality usually refers to additional local (individual
cost) as well as to global (e.g. environmental impact) objectives. As we present
a general approach that is independent of a certain optimization objective, we
have chosen this simple version for demonstration purposes. When coming into
operation, one would use a more sophisticated objective; and usually a many-
objective approach that takes into account local (individual user-specific) op-
timality as well as additional global objectives like minimizing the coincidence
factor [1].

When determining an optimal partition of the target schedule for load dis-
tribution, exactly one alternative schedule is taken from each DER’s search
space of individual operable schedules in order to assemble the desired aggre-
gate schedule. Therefore, the optimization problem is to find any combination
of schedules (one from each DER with Fi as the set of possible choices, i.e. the
individual feasible region) that resembles the target schedules starget as close
as possible, i.e. minimize the Euclidean distance (‖·‖) between aggregated and
target schedule:

‖
∑
i

xi − starget‖ → min, (1)

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1827

Jörg Bremer & Michael Sonnenschein

such that each schedule is taken from the respective feasible region Fi of op-
erable schedules

xi ∈ Fi

of unit i. The term unit in this context denotes a single DER or an aggrega-
tion of commonly controlled energy resources, e.g. the set of all controllable
appliances in a household that (from an outside position) can be seen as a
single controllable unit. The individual schedules as well as the wanted target
schedule are each given as a vector xi, starget ∈ Rd that represents with its
elements the mean active power during the respective time period (usually but
not necessarily a 15-minute interval). Usually the problem consist of additional
objective functions and results in an many objective problem. For demonstration
purposes, we will stick with the single objective problem throughout the rest of
the paper.

Moreover, the choice of using the Euclidean distance as metric would have
to be reconsidered according to the given problem at hand as it is known that
the distance of two arbitrarily chosen points tends to approach 1 with growing
dimensionality. The same problem holds true when learning a model. For ker-
nel based approaches, [13] proposes methods to overcome this problem. For
planning periods of one day with 96 intervals of 15-minutes, the choice will be
sufficient for the case of the objective function. As an alternative distance, for
example [18] uses the L1-distance. Depending on special objectives that one
wants to achieve (e.g. minimizing surplus production), maybe also metrics like
excess supply, are appropriate. An overview on methods to assess the match
between schedules can for example be found in [5].

The following section will explain our approach for solving this optimization
problem with individually acting DER as part of a coalition of DERs in a dis-
tributed approach. Although the problem is defined on a group of DERs, we will
first have to look at a single unit and on how to model its abilities before putting
together the models from each DER into a jointly solved optimization approach
for the multi DER problem.

If such a group of DERs consists of individually operated units, we first have
to determine which set of alternative schedules each unit has to offer for the
afterwards optimization step. A schedule for d time intervals will be geometri-
cally interpreted as a point in Rd. The model that we present will be applicable
to arbitrary types of DER but we will restrict our explanations to the example of
a co-generation plant.

3. The model-based optimization approach

3.1. The feasible region

Each DER has to serve the purpose it has been built for and this purpose may
usually be achieved in different alternative ways. For example, it is the main pur-
pose of a µCHP (combined heat and power generator) to deliver enough heat

1828 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Distributed Greedy Planning

for varying heat demands in a household at every moment in time. Neverthe-
less, heat usage is usually decoupled from heat production by using a thermal
buffer store. Thus, different production profiles may be used for generating the
heat. This leads, in turn, to different respective electric load profiles that may be
offered as alternatives to a scheduling controller.

Each DER offers a set of operable schedules for a given (future) time hori-
zon. We see a schedule as a data vector x ∈ Rd, with the number of periods d.
For each period the i-th element of x describes the respective amount of elec-
tric energy produced or consumed in this period or respectively the mean active
power output or input during this period.

The term operable in this context means that such a schedule might be
operated by the DER without violating any technical constraint. Moreover, we
consider additional non-technical constraints that may restrict the possible op-
erations of a DER. Constraints can be distinguished into hard (usually techni-
cally rooted) and soft constraints (often economically or ecologically rooted or
subject to personal preferences).
Examples for hard constraints are:

– Minimum and/or maximum power input/output
– Integrated amount of energy produced over the given time frame
– Restrictions on thermal buffer storage
– Achieve intended purpose

Examples for soft constraints are:

– Costs (e.g. fuel costs) for operating a certain schedule
– Environmental performance
– Personal preferences (e.g. noise pollution in the evening)

These constraints can be interpreted geometrically. Without any constraint, the
whole hypercube [0, 1]d (active power between 0 and 100%) would be a model
for the region of feasible schedules. With each constraint, a different part (re-
gion) of the hypercube falls off the feasible region, because the respective
schedules are not operable due to the constraint. Only the finally remaining
region (hypercube minus superposition of all regions prohibited by constraints)
is the feasible region of the DER. Only from this region, schedules might be
taken during optimization.

It has been shown in [10] that the feasible region of operable schedules of
a DER is not necessarily a convex polytope nor a single and connected re-
gion. For this reason, concavity and clusters have to be taken into account, too.
Such considerations have led to black-box models based on machine learning
approaches that may

– capture the topological traits of the feasible region as a compact description
of the set of all operable schedules.

– be easily communicated as a standardized description within distributed
optimization scenarios.

– ease the calculation of the feasibility of a solution during optimization.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1829

Jörg Bremer & Michael Sonnenschein

Before we discuss a new way of integrating this model directly into optimization,
we will briefly discuss the basic idea of the model approach.

3.2. Support vector black-box model for constraints

We will describe the black-box model for the set of feasible schedules for a
DER as it has been developed in [10] based on a one-class support vector
data description (SVDD) [44]. The goal of building such a model is to learn the
feasible region of the schedules of a DER by learning the enclosing boundary
around the set of operable schedules. This task is achieved by determining a
mapping Φ : X ⊂ Rd → H, x 7→ Φ(x) such that all data from a given region
X is mapped to a minimal hypersphere in some high- or indefinite-dimensional
space H. Originally, the use case was to use this model as a classifier that al-
lows for distinguishing operable and not operable schedules during optimization
without explicit knowledge about the constraints that restrict the operations of
the DER.

The minimal sphere with radius R and center a in H that encloses {Φ(xi)}N
can be derived from

‖Φ(xi)− a‖2 ≤ R2 + ξi ∀i (2)

with ‖·‖ denoting the Euclidean norm and incorporating slack variables ξi ≥ 0
that introduce soft constraints for sphere determination.

After introducing Lagrangian multipliers and further relaxing to the Wolfe
dual form, the well known Mercer’s theorem [39] may be harnessed for calcu-
lating dot products in H by means of a Mercer kernel in data space:

Φ(xi) · Φ(xj) = k(xi, xj). (3)

In order to gain a more smooth adaption, it is known [3] to be advantageous to
use a Gaussian kernel:

kG(xi, xj) = e−
1

2σ2
‖xi−xj‖2 (4)

instead of for instance polynomial kernels.
Putting it all together, the equation that has to be maximized in order to

determine the desired sphere is:

W (β) =
∑
i

k(xi, xi)βi −
∑
i,j

βiβjk(xi, xj). (5)

Maximizing (5) is a problem of quadratic programming (QP) [42], which is
known to be of cubic computational complexity O(N3) with sample size N [12].
For this reason, the adoption of a technique called sequential minimal opti-
mization [37] (SMO) is used for solving Eq. (5). SMO breaks up the large QP
problem for SVM training into a series of smallest possible subproblems which
can be solved analytically. In future, if real-time constraints might be involved,
SVM training may be done incrementally with an online learning algorithm [25].

1830 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Distributed Greedy Planning

In this way, working on the data points one by one, it becomes possible to
break the process with the so far reached result if a deadline for answering is
approaching.

The result (weight vector β) represents the center a of the sphere in terms
of an expansion into H:

a =
∑
i

βiΦ(xi). (6)

The distance R of the image of an arbitrary point x ∈ Rd from a ∈ H can be
calculated in Rd by:

R2(x) = 1− 2
∑
i

βikG(xi, x) +
∑
i,j

βiβjkG(xi, xj). (7)

Finally, the radius RS of the sphere S is determined by the distance to a of an
arbitrary support vector as these are mapped right onto the surface. Thus the
original feasible region is now modeled as

{x ∈ Rd|R(x) ≤ RS}. (8)

3.3. The model of the search space

The model of the feasible region of an arbitrary DER consists of the set s of
support vectors and respective weights from β as this is all that is needed for
reconstructing the boundary that encloses the feasible region. From β only the
non zero components for the support vectors are necessary. We denote this
reduced weight vector with w. Formally, the model consists of:

– Set of support vectors (example schedules) SV = {xi ∈ X | βi 6= 0}
– Associated weights: w = (β1, . . . , βn) ∀β 6= 0

– Some additional parameters: e.g. max. power, cost factor, . . .
– Decision function: R2(x) = 1−2

∑
i wikG(si, x)+

∑
i,j wiwjkG(si, sj) for de-

ciding on feasibility of a given schedule on for comparing two given sched-
ules and deciding on which is nearer to feasibility.

– Feasible region : {x|R(x) ≤ RS}

Sampling / SVDD planning algorithm

model of energy unit

x1

x2

x3

x4

x6

x5

x7

Black-Box

Fig. 1. Integrating the different models into an agent-based energy planning process.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1831

Jörg Bremer & Michael Sonnenschein

The model-based planning approach that is described later, is currently in-
tegrated into a multi-agent simulation of large, future smart grid scenarios. Fig-
ure 2 shows the interplay of the involved models from an architectural point
of view. As we aim at a system that enables self-organized and market-based
control of distributed energy production [34], we go for an agent-based system.
The whole system [33, 41, 2] will comprise several types of agents for differ-
ent tasks. Among them are: market agents for different markets (real power,
ancillary services, operating reserve, etc.), agents representing a DER during
coalition forming and negotiation at market, or grid agents in charge of check-
ing and assuring grid compatibility. For the rest of the paper, we will focus on
the type of agent in charge of controlling a DER. In this way, the search space
model represents the feasible part of the possible future behaviour of an energy
unit as it is learned from a behaviour model that simulates actual device. On an
agent interaction level, only the search space model is used as a surrogate for
the unit’s behaviour.

physical
unit

unit
simulation

sampler encoder

physical
layer

agent
layer

MAS
layer

parameterize
calculate,

estimate, predict

use

sample

search space
model

behavior model

Fig. 2. Using the model inside the multi-agent system hierarchy.

Prior to determining the describing support vectors, the set of training data
points X itself has to be determined. We do this by means of a mathematical
model of a DER that can be parameterised with the current (measured) state
of the device. This model must be at least able to verify (compliant with all
constraints) or falsify (can not be operated) given schedules.

In many cases, it is far too complex to enumerate all possible schedules and
to check them against the model. An example with 100 discrete power levels
would lead to 10096 schedules that would have to be checked for a conventional

1832 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Distributed Greedy Planning

day-ahead (horizon with 96 periods) scenario. For this reason, one would draw
a comparatively small random sample from the set of all schedules.

However, feasible schedules reside in a region that is extremely small com-
pared with [0, pmax]

d. This fact applies in particular to high dimensional sched-
ules. If, for example, for each period one third of the alternatives is prohibited
by constraints, then the ratio of feasible solutions to all solutions amounts to
(23)

96 ≈ 1.25× 10−17 for the general case of d = 96 periods.
Considering load profiles for a whole day, an investigation of our simulation

models has shown a proportion of valid load profiles below 10−23. For this rea-
son, it is impossible just to draw random load profiles and check their validity
with the model in acceptable time. Hence, we currently draw samples as an
successive drawing of period wise guessing.

1. Guess a random power level for just one period.
2. Validate this 1-dimensional schedule with the help of the DER model.
3. If it is valid: Simulate the follow-up state of the DER, re-parameterize the

model and goto 1. for determination of the next period.

This approach has the advantage of leading far more likely to guesses of valid
schedules. The probability P for guessing a valid schedule for a single period
is already rather high. Allowing for multiple guessing (with number of tries n)
results in the even higher probability

P(n) =

n∑
i=1

B(i|P , n) =
n∑
i=1

(
n

i

)
P i(1− P)n−i, (9)

where P(n) is the probability for at least one successful guess within n tries. Suc-
cessive guessing then results in an overall probability for successfully guessing
a complete schedule of d periods of

Pd(n) =

(
n∑
i=1

B(i|P , n)

)d
. (10)

As an example, let the probability of correctly guessing a valid power load level
for a single period be 0.05. Allowing for 100 guesses for each period, then the
overall probability for guessing a schedule of 96 periods correctly is still P96

(100) =

0.5655, which is sufficiently high in contrast to 10−23 (as had been estimated for
some of our models).

A major drawback of this approach is that in this way we get a set of sched-
ules that is dominated by the first periods. That means, schedules do not have
equal probability for being chosen. This disadvantage is currently deferred for
two reasons:

1. We are not primarily interested in statistical properties of the sample or the
underlying density. Instead, we want to sound the geometric region where
valid schedules reside in.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1833

Jörg Bremer & Michael Sonnenschein

2. Simulation runs have shown that the principle structures of the scopes of
action are nevertheless revealed with this method - as long as merely geo-
metric properties are considered.

An interactive method for a sampler that uses a simulation model that imple-
ments the behaviour of an energy unit (c.f. figure 2) is shown in figure 3.

Fig. 3. Sampling process for the training sample prior to learning the search space
model.

This process makes use of equation (10) and guesses for a given number
of tries a short schedule (usually one period) for the near future until one is
found that is actually operable. The behaviour model checks the validity and
conditionally calculates the follow-up state resulting from operating the guessed
schedule. This step is repeated until a schedule of sufficient length is found. In
order to use an appropriate likelihood distribution for our guesses, we a priori
make a kernel density estimation of the distribution of operable parts of the
schedule [35].

1834 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Distributed Greedy Planning

3.4. Constructing solutions from the model

We will now show a way to use this model in a more sophisticated way than as a
mere black-box model. We are interested in having a means of finding a nearby
feasible schedule next to an arbitrary given schedule. For this purpose, we will
harness a function that maps the d-dimensional unit hypercube (representing
arbitrary schedules in a scaled scenario) onto the feasible region. In this way,
any (in-)feasible schedule will be converted into a feasible one. The construction
of this mapping is described in this section.

For our use case, we need a procedure that generates a nearby and feasible
solution from any given (likely not feasible) schedule. Nearby in this context
means that the distance in solution space between given and near feasible
solution is small. This task can be achieved by constructing a mapping that
maps every infeasible point from input space into or onto the feasible region.
We have tested both approaches. Here, we describe the more general case of
mapping into the feasible region that includes the specialized case. In general,
this mapping can also be used for transforming the whole optimization problem
into an unconstrained one.

Let F denote the feasible region within the domain of some given optimiza-
tion problem bounded by an associated set of constraints. It is known, that pre-
processing the data by scaling it to [0, 1]d leads to better adaption [19]. Con-
sidering optimization problems in the energy sector, rescaling of the domain to
[0, 1]d leads to some advantages [7]. For this reason, we here consider scaled
domains, too, and denote with F[0,1] the likewise scaled region of feasible solu-
tions. We want to construct a mapping

γ : [0, 1]d → F[0,1] ⊆ [0, 1]d

x 7→ γ(x)
(11)

that is able to map the unit hypercube [0, 1]d onto the d-dimensional region
of feasible solutions that is bounded by a set of arbitrary (maybe nonlinear)
constraints. But, instead of directly mapping to F[0,1] we will go through the
kernel space as shown in the following commutative diagram (12).

x ∈ [0, 1]d
Φ̂` - Ψ̂x ∈ H(`)

x∗ ∈ F[0,1] ⊆ [0, 1]d

γ

?
�

Φ1
`

Ψ̃x ∈ H(`)

Γa

?

(12)

We start with an arbitrary point x ∈ [0, 1]d from the unconstrained d-dimen-
sional hypercube and map it to an `-dimensional manifold in kernel space that
is spanned by the images of the support vectors s1 . . . s`. After drawing this
mapped point towards the sphere in order to pull it into the image of the feasible

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1835

Jörg Bremer & Michael Sonnenschein

region, we look for the pre-image of the moved image to get a point from F[0,1].
Thus, we achieve the wanted mapping as a composition of three functions:

γ = Φ1
` ◦ Γa ◦ Φ̂`. (13)

We will now look at each step in more detail.

Mapping x to the support vector induced subspace H(`) with an empirical
kernel map Let

Φ` : Rd → R`,
x 7→ k(., x)|{s1,...,s`}
= (k(s1, x), . . . , k(s`, x))

(14)

be the empirical kernel map w.r.t. the set of support vectors {s1, . . . , s`}. If Φ` is
modified to

Φ̂` : x 7→ K−
1
2 (k(s1, x), . . . , k(s`, x)) (15)

with Kij = k(si, sj) being the kernel Gram Matrix, then function Eq. 15 maps
points x, y from input space to R`, such that k(x, y) = Φ̂`(x) · Φ̂`(y) (cf. [39]).

With Φ̂` we are able to map arbitrary points from [0, 1]d to some `-dimensional
spaceH(`) that contains a projection of the sphere. Again, points from F[0,1] are
mapped into or onto the projected sphere, outside points go outside the sphere
and must be moved in H(`) towards the center in the next step in order to draw
them into the image of the feasible region.

Re-adjustment in kernel space In general, in kernel spaceH the image of the
region is represented as a hypersphere S with center a and radius RS (Eq. 7).
Points outside this hypersphere are not images of points from X , i.e. in our case,
points from F[0,1] are mapped (by Φ) into the sphere or onto its surface (support
vectors), points from outside F[0,1] are mapped outside the sphere. Actually,
using a Gaussian kernel, Φ maps each point into an at most n-dimensional
manifold (with sample size n) embedded into infinite dimensionalH. In principle,
the same holds true for a lower dimensional embedding spanned by ` mapped
support vectors and the `-dimensional projection of the hypersphere therein.

We now want to pull points from outside the feasible region into that region.
As we do have rather a description of the image of the region, we draw images
of outside points into the image of the region, i.e. into the hypersphere; precisely
into its `-dimensional projection. For this purpose we use

Ψ̃x = Γa(Ψ̂x) = Ψ̂x + µ · (a− Ψ̂x) ·
Rx −RS
Rx

(16)

to transform the image Ψ̂x produced in step 1) into Ψ̃x ∈ Φ̂`(F[0,1]) by drawing
Ψ̂x into the sphere. Alternatively, the simpler version

Ψ̃x = a+
(Ψ̂x − a) ·RS

Rx
(17)

1836 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Distributed Greedy Planning

may be used for drawing Ψ̂x just onto the sphere but with the advantage of
not having to estimate parameter µ ∈ [1, Rx]. Parameter µ allows us to control
how far a point is drawn into the sphere (µ = 1 is equivalent to Eq. (17), µ =
Rx draws each point onto the center). In this way, each image is re-adjusted
proportional to the original distance from the sphere and drawn into the direction
of the center.

Points from the interior are also moved under mapping gamma in order to
compensate for additional points coming from the exterior. In this way, the whole
unit hypercube is literally squeezed to the form of the feasible region without a
too large increasing of the density at the boundary. Though, if the feasible region
is very small compared with the hypercube, density at the boundary increases
(depending on the choice of µ). On the other hand, the likelihood of an optimum
being at the boundary increases likewise. So, this might be a desired effect.

After this procedure we have Ψ̃x which is the image of a point from F[0,1] in
terms of a modified weight vector w̃Γa .

Finding an approximate pre-image As a last step, we will have to find the
pre-image of Ψ̃x in order to finally get the wanted mapping. A major problem in
determining the pre-image of a point from kernel space is that not every point
from the span of Φ is the image of a mapped data point [39]. As we use a
Gaussian kernel, actually none of our points from kernel space can be related
to an exact pre-image except for trivial expansions with only one term [24].
For this reason, we will look for an approximate pre-image whose image lies
closest to the given image using an iterative procedure after [30]. In our case
(Gaussian kernel), we iterate x∗ to find the point closest to the pre-image and
define approximation Φ1

` by equation

x∗n+1 =

∑`
i=1(w̃

Γa
i e−‖si−x

∗
n‖

2/2σ2

si)∑`
i=1(w̃

Γa
i e−‖si−x

∗
n‖2/2σ2

)
. (18)

As an initial guess for x∗ we take the original point x and iterate it towards F[0,1].
As this procedure is sensitive to the choice of the starting point, it is important to
have x as a fixed starting point in order to ensure determinism of the algorithm.
This is an essential requirement at least for integration into evolutionary algo-
rithms since the same schedule has to be mapped several times, e.g. during
search and again after optimization when the best found solution configuration
is finally converted into the solution. Empirically, x has showed up to be a useful
guess.

Eventually, we have achieved our goal to map an arbitrary point from [0, 1]d

into the region of feasible solutions described merely by a given set of support
vectors and associated weights: x∗n is the sought after image under mapping γ
of x that lies in F[0,1].

This model and mapping may be used in different ways during optimization.
Among these use cases are:

– Repair of infeasible solutions.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1837

Jörg Bremer & Michael Sonnenschein

– Transformation of an constrained to an unconstrained optimization problem
by mapping the whole search space into the feasible region.

– Computational easy classification of an solution’s feasibility.
– Compact communication of large sets of operable schedules.

Here, we will harness the capability of repairing infeasible solutions for a
distributed optimization approach.

3.5. The distributed greedy algorithm

With the above sketched preliminaries, we are now able to define our optimiza-
tion algorithm. In order to pay attention to the ongoing decentralization of elec-
tricity grid control, it seems way more promising to design the optimization pro-
cess distributed, too. In addition, the chances for success in finding an exact
solution are rather low due to problem size, what makes a heuristic most suit-
able.

In this sense, we propose the following greedy algorithm for approximately
solving optimization problem equation (1). In our optimization scenario, we as-
sume one type of agent: one control agent for each a single energy resource
with the following responsibilities/ capabilities:

– Simulating the underlying physical device in order to determine operable
example schedules.

– Calculation of the support vector based black-box model.
– Calculation of mapping γ.
– Determining the schedule for the agent’s own physical device that minimizes

the overall loss.
– Participation in some joint optimization process.

The procedure for optimizing the aggregated schedule is now the one depicted
in Fig. 4. Within a group of agents A, one agent is randomly chosen to start the
procedure. Here, we assume an agent to be in charge of controlling a DER and
to participate in the distributed procedure of determining schedules for each
DER such that the aggregated schedule best fits a given objective schedule.
An elected initiator initializes the solution with all values to zero. Then, solution
improvement begins. The agent adds up all schedules (known from the solu-
tion object) from all other agents. This is equivalent to subtracting one’s own
schedule from the aggregated solution. In a next step, the difference vector ∆x
of this sum to the desired target schedule is determined. This difference vector
∆x represents the optimal schedule for the current agent in the following sense:
if the agent would be able to deliver this schedule, the target could be reached
exactly. Therefore, the agent now determines the nearest schedule to ∆x that is
actually operable by the device. This nearby schedule can be easily calculated
with the help of the mapping γ that has been described in the previous section.
Function γ maps an arbitrary schedule (in our case difference schedule∆x) into
the region of feasible schedules and delivers the respective operable schedule
that is close to ∆x, because it uses the shortest trace to the feasible region to

1838 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Distributed Greedy Planning

A ← List of all agents
if is initiator then
S ← zeros(n, d)

else
S ←aggregated schedule
Snew ← γ(T − (S − Sa))
S ← S − Sa + Snew

if no stop criterion met then
choose random agent A ∈ A
send message with S to A

else
publish solution S

end if
end if

Fig. 4. Greedy algorithm (c.f. [9]) that each agent repeatedly executes for successive
solution improvement starting from a zero solution S with S denoting the aggregated
overall solution and Sa denoting the individual current contribution of the agent.

move a point. Please note that the distance between sum and target schedule
that we minimize by this approach is the Euclidean distance L2.

Figure 5 illustrates the approach with showing the situation at two succes-
sive iterations. The figure shows a 2-dimensional example problem. In the first
step (fig. 5(a)) it is the turn of agent no. 3. Point xother denotes the sum of cur-
rent schedules of all other agents (from the perspective of agent 3). Vector ∆x
denotes the difference that is necessary to achieve the target schedule straget
exactly. Because it is usually not necessarily the case that the difference ∆x
is feasible for the agent’s energy unit, ∆x is mapped to the feasible region by
mapping γ resulting in the nearby schedule ∆x∗ that is feasible for agent 3. This
schedule ∆x∗ is then taken as the best what agent 3 currently can do and is
set as the agent’s current schedule.

In the next step (fig. 5(b)) agent 2 becomes active. The sum of all other
agents now is different because of the different perspective and due to new
schedule of agent 3 from the previous step. Agent 2 does the same steps as
previously agent 3 resulting in an updated schedule for agent 3 with a degrada-
tion ∆E of the overall error E. The figure also shows how individual schedules
are moved to the respective feasible regions (grey areas) to ensure operability
of the solution.

In this way, each DER chooses a schedule that is a compromise of being
feasible (automatically ensured by mapping γ) and doing one’s own best in
bringing forth the overall solution towards the wanted adaption to the target
schedule as much as possible each time when it is the respective agents turn.

As a stop criterion, we chose a maximum number of iterations at which the
term iteration refers to one execution of the procedure in Fig. 4 by one agent.

Additional objectives could for example be integrated by having different cost
indicators added as additional elements to the electrical schedule (in this way,

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1839

Jörg Bremer & Michael Sonnenschein

p1: el. power during period 1

p
2
: e

l.
po

w
er

du
rin

g
pe

rio
d

2

γ
3

F1

F2

F3

∑n
i=4 xi

xothers

starget

∆x

∆x∗

(a)

p1: el. power during period 1

p
2
: e

l.
po

w
er

du
rin

g
pe

rio
d

2

γ
2

∆
E

F1

F3

F2

∑n
i=4 xi

xothers

(b)

Fig. 5. Base principle of the greedy approach. Part (a) shows an optimization step with
an active agent no. 3 doing an improvement by mapping the residual∆x onto his feasible
region (grey area). Part (b) shows the follow-up step with an active agent no. 2.

1840 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Distributed Greedy Planning

combining schedule and evaluation criteria to a feature vector) and have the
relation of schedule and evaluation criteria learned concurrently with the same
approach as described here. As an example, this has been done with environ-
mental criteria [6]. Each agent in the greedy optimization approach would then
try to reach the electric active power target and a good value for each indicator
at the same time, trying to reach a value of 0 for each criterion that has to be
minimized and 1 else (provided that all criteria are likewise scaled to [0, 1]) by
taking these additional targets into account when calculating ∆x.

By one after another, the overall solution (the aggregated schedule) is suc-
cessively improved. We have chosen to activate the agents in a random order,
but a round robin approach may also do if each agent knows about his succes-
sor. In this way, the algorithm is distributed and sequential as only one agent
has the token to work at a time. If the objective is to adapt to a given target
schedule, the only information that has to be passed around (or made globally
available) is the aggregated overall solution (as sum of all local solutions) and
the desired target schedule. This is sufficient as each agent may remember his
own local schedule that has been determined previously. All other information
can be determined by local information.

Clearly, the actual optimization is distributed but sequential. But, the most
time consuming part – namely learning the model for the computation of map-
ping γ – can be done in advance and fully parallel, what in turn allows for faster
optimization afterwards without a need for considering constraints anymore.

Finally, we will discuss the ability of the whole algorithm to be run in parallel.
In this case, two realizations are possible. First, the process as described above
could be further parallelized by making the update calculation asynchronously
run. In this way, an agent would first choose and trigger a successive agent
and then calculate his own update. A problem here lies in the responsibility for
detecting sufficient convergence.

Another approach would be a realization with a central instance that holds
the current solution and provides it to all agents. Then, each agent could asyn-
chronously and without any further trigger repeatedly query for the current solu-
tion and update the own solution part. Storing the new overall solution should of
course be an atomic operation. In this case, the central instance (e.g. the coali-
tion leader) that holds the current solution would also be in charge of deciding
on convergence and on bringing the process to a hold.

4. Simulation results

So far, we have tested our approach with several simulated energy resources in
different groupings. Among them are: co-generation devices with thermal buffer
store and a simulated residential thermal energy demand as well as simulated
controllable cooling devices. We will here focus on results from CHP genera-
tion. All simulations have been done with power scaled to [0, 1]. All simulations
incorporating a µCHP also encompass the simulation of the respective house-
hold that is heated by this µCHP. This implies a simulation of the respective

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1841

Jörg Bremer & Michael Sonnenschein

heat demand, heat use, different weather conditions or heat losses by thermal
diffusion processes.

For our simulations, we used the model of a modulating µCHP-plant with the
following specification:

– Minimum electrical power: 1.3 kW,
– Maximum electrical power: 4.7 kW,
– Minimum thermal power: 4 kW,
– Maximum thermal power: 12.5 kW,
– After shut down, a device has to stay off for at least 2 h.

A modulating CHP is a generator that may vary the level of electrical power
output within a certain range resulting in different thermal power output respec-
tively. The relationship between electrical (active) power and thermal power was
modeled after Fig. 6. In order to gain more degrees of freedom for varying active
power, each CHP is equipped with an 800 ` thermal buffer store. Thermal en-
ergy consumption is simulated by a model of a detached house with its several
heat losses (heater is supposed to keep the indoor temperature on a constant
level) and randomized warm water drawing for gaining more diversity among
the devices.

For each simulated household, we implemented an agent capable of simu-
lating the CHP (and surroundings and auxiliary devices) on a meso-scale level
with energy flows among different model parts but with no technical details. All
implementations have been done using the Java programming language. For
the implementation of the multi-agent system prototype we used the MASON
multi-agent simulator toolkit [26]. The support vector algorithm has been imple-
mented using an adaption of the sequential minimization technique from [37].

All simulations have so far been done with a time resolution of 15 minutes
for different forecast horizons. For each simulation, we have run 200 test series
with each CHP randomly initialized with different buffer charging levels, temper-
atures and water drawing profiles. We tested schedules with dimension 8, 16,
32, 48, 64, and 96 periods with groups of 5, 10, 30, 100, 500, 750, and 1000
CHP. For each simulation, we have chosen some random target schedule on a

Fig. 6. Relationship between electrical and thermal power for an EcoPower CHP; modi-
fied after test bench runs from [45].

1842 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Distributed Greedy Planning

Fig. 7. Optimization result for a winter day scenario with 10 CHP (EcoPower with ran-
domly initialized storage charging) for a time horizon of 48 15-minute intervals.

rather high level. This leads to a rather high charging of the thermal buffer stores
on the long run but on the other hand forces the units to go to their limit and
demonstrates that the method copes well with the buffer constraints as well.

Figure 7 shows a result (solid line in the top chart) for a group of 10 CHP that
try to reach a given objective schedule (dashed line). The resulting schedules
for each single CHP are depicted in the middle chart with the allowed active
power band for modulation highlighted in grey. The bottom chart shows the
temperatures in the thermal buffer store resulting from operating the respective
electrical schedules; again with the allowed range highlighted in grey.

The desired objective schedule has been randomly chosen. These sched-
ules have been generated in a way that they are of a reasonable magnitude
order according to the capabilities of the optimized CHP, but without any guar-
antee that a perfect adaption might be achievable.

Figure 8 shows a similar simulation run, but for a time horizon of a whole
day. Fig. 9 shows the result for optimizing a larger bunch of 30 CHP. As might
have been expected, the result schedule gets closer to the target schedule if

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1843

Jörg Bremer & Michael Sonnenschein

Fig. 8. Optimization result for a spring day scenario with 10 CHP (EcoPower with ran-
domly initialized storage charging) for a time horizon of a whole day in 15-minute inter-
vals.

more CHP are involved. This is mainly due to the availability of more degrees
of freedom for the system as a whole.

As a next step, we scrutinized the speed of convergence and convergence
behaviour of our algorithm. Figure 10 shows the result of some measuring se-
ries. It is noticeable that the fitness (the difference between aggregated and
target solution) almost decreases strictly notwithstanding the uncoordinated,
heuristic character of the approach. If the algorithm is conducted asynchronous-
ly, there are indeed more fluctuations that lead to temporarily degradations of
the fitness. This can be easily overcome if the agent in charge the solution
rejects solution updates that lead to degradation.

The number of necessary iterations is acceptably small, what can also be
seen in Table 1, where some mean CPU time results (Java implementation on
Core 2, 3 GHz) for different scenarios are listed. The simulation time tsim re-
flects the time that is necessary for the whole simulation including the preceding
calculations of the set of feasible schedules for each agent, for the calculation
of all support vector models and all mapping functions γ on a single machine.

1844 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Distributed Greedy Planning

Fig. 9. Optimization result for a scenario with 30 CHP for 96 15-minute intervals. This
amounts to a 2880-dimensional search space.

In a distributed productive system these calculations would be done in paral-
lel. Considering the additional complexity that is entailed on solution evaluation,
the number of support vectors that make up a model is decisive. Step 1 of cal-
culating the mapping grows quadratically with the number of support vectors
(matrix-vector multiplication). Additionally, the number of iterations necessary
for finding the pre-image in step 3 has to be considered. Empirically, during our
experiments, we observed for instance a mean number of 36.3 ± 26.4 for the
case of 8-dimensional schedules to reach convergence with 10−6 accuracy.

The time necessary for the mere optimization is comparably small. In order
to be able to simulate larger scenarios, we are currently thinking of distributing
the simulation, too. So far, we tested a scenario with a group of 50.000 CHP.
We parallelized all calculations (simulation of each CHP and optimization of the
whole group) on a system with Core i3 processor and were able to complete all
calculations (1 day planning horizon) within about 18 minutes. The optimization
resulted in a residual error of only about 0.8 percent (compared with the worst
case operation that the units could do).

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1845

Jörg Bremer & Michael Sonnenschein

(a) (b)

(c)

Fig. 10. Convergence for different scenarios: 10(a): 5 CHP and, 8 periods; 10(b): 100
CHP, 8 periods, 10(c): 10 CHP, 96 periods.

Table 1. CPU time for algorithm and simulation regarding different problem sizes. Qual-
ity as mean euclidean distance in kW for nA agents, k iterations and schedules of d
intervals of 15 min.

d nA k tsim / s topt / s QUALITY

8 10 75 4.71 ± 0.23 0.006±0.008 0.054±0.023
8 100 750 45.2 ± 0.74 0.061±0.009 0.045±0.02
32 100 250 382.59 ± 27.24 0.049±0.008 1.05±1.09
96 10 750 251.4 ± 4.5 0.498±0.127 0.049±0.08

Comparing the synchronously (randomized round robin) operated and the
fully parallel, asynchronously operated variant of the optimization part, figure 11
shows the convergence behaviour of both approaches by example. Depicted
are the results of 500 runs each (the darker the color the more results). The
iteration number on the x-axis denotes the number of solution update. Due to
the inherent stochasticity of the scenario (250 CHP, 8-dimensional schedule),
all errors have been scaled by the individual initial error of the randomly instan-
tiated problem in order to make them comparable. Although the synchronous
approach (bottom chart) performs slightly better in term of necessary solution
updates, the asynchronous approach takes advantage in (and thus overcom-
pensates this disadvantage by) parallel calculations of the mapping and should
thus be preferred.

Finally, figure 12 shows a result from a larger mixed scenario with two dif-
ferent types (in power magnitude) of CHP. Having different DERs in a scenario,

1846 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Distributed Greedy Planning

Fig. 11. Comparison of the convergence of synchronous (bottom) and asynchronous
(top) operation of the greedy algorithm.

often leads to a better adaption to the target schedule as has also been seen in
similar scenarios with a mixture of CHP and refrigerators e.g. in [7].

Another important issue is the question for the size of the search space
model that almost exclusively depends on the number of supporting schedules.
Figure 13 shows one example with the number of supporting schedules as a
function of the time horizon. This example shows that events like increased heat
demand in the morning (showering) or in the evening (heater) leads to an esca-
lating increase of information and therefore to a respectively increased number
of supporting schedules for appropriate encoding. So far, we have observed
that the size of necessary information in fact is a trade-off between accuracy,
size and calculation complexity and hence a matter of finding the optimal pa-
rameters.

A further issue is the consideration of possible errors that might occur in
encoding. It may happen that the enclosing contour adapts not good enough
to the point cloud [7]. This may additionally cause two (or more) subregions to
be misleadingly considered as one connected region, although they are actu-
ally topologically separated by regions of invalid schedules. In both cases, the

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1847

Jörg Bremer & Michael Sonnenschein

Fig. 12. Optimization result for a scenario with 750 CHP for 96 15-minute intervals. This
amounts to a 72000-dimensional search space.

search space model would reconstruct a too large feasible region and consider
some schedules incorrectly as operable. Whether this happens and how large
these errors are, depends on the choice of parameters.

It is mainly parameter σ in (4), the width of the Gaussian kernel, that deter-
mines how smooth the resulting boundary contour adapts to the data. As the
boundary adapts closer to the data with a shrinking value for σ, the enclosed
region starts separating into separate regions. A smaller value for σ thus leads
to a more precise description but on the other hand also to a higher number of
support vectors needed for description.

This effect might partly be overcome by fitting parameters of the energy unit
simulation model such that the feasible region of alternative schedules is deter-
mined too narrow in advance in order to compensate for a too wide description.
On the other hand this fact might lead to a too narrow description that misses
some schedules near the boundary.

1848 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Distributed Greedy Planning

Within the scenarios scrutinized here, most of the encoded schedules are at
least partially based on forecasts, i.e. on the anticipated heat demand, weather
conditions or similar, so that uncertainty is already inherent. If the error, that is
additionally induced by our method is small compared to the already prevalent
one, it can be neglected during the optimization process. Error minimization can
be achieved by parameter selection.

In any case, when a certain schedule has been chosen by the planning
algorithm, it has to be validated by the DER or respectively by the agent with
the help of the simulation model before actually operating it. Conditionally, it has
be mapped to the nearest valid schedule, where required.

Hence, a crucial point and a remaining open issue is the parameterization
of the method. For the previously described simulations, we experimentally de-
termined the best parameters. For this reason, one of our next steps will be to
develop a tuning algorithm that is able to (at least semi-) automatically derive
optimal parameters (sample size, kernel parameters, SMO parameters, etc.) for
an optimal encoding in the sense of the best trade-off between accuracy and
number of supporting schedules.

d=2d=4d=6d=8d=10d=12d=14d=16d=18d=20d=22d=24d=26d=28d=30d=32d=34d=36d=38d=40d=42d=44d=46d=48d=50d=52d=54d=56d=58d=60d=62d=64d=66d=68d=70d=72d=74d=76d=78d=80d=82d=84d=86d=88d=90d=92d=94d=96
horizon (number of 15 min. periods)

0

25

50

75

100

125

150

175

200

n
u

m
b

er
 o

f
su

p
p

o
rt

 s
ch

ed
u

le
s

Fig. 13. Number of supporting schedules as a function of the horizon, i.e. the data di-
mension.

5. Conclusion and further work

We have presented a new approach for distributed optimization and control of
distributed energy resources for smart grid scenarios with a large number of
controllable entities. This approach is based on two new methodologies:

– A model-based strategy for handling constraints in distributed optimization
scenarios that may also be used for finding nearby feasible solutions by
harnessing a learned model of the feasible region.

– A well scaling greedy algorithm for harnessing that strategy during the search
for an optimal partition of the requested schedule for different DERs.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1849

Jörg Bremer & Michael Sonnenschein

We have demonstrated that the greedy heuristics scales well with the number
of participating devices because the most expensive calculations may be done
in parallel in advance by each controllable device.

This work is part of the ongoing smart grid research association Smart Nord
(http://smartnord.de). This method is currently integrated into a simu-
lation environment for large smart grid scenarios with up to 50.000 electrical
units. One goal is to develop an integrated simulation environment based on
the mosaik framework [40] for scrutinizing scenarios for market-based plan-
ning of active power provision by self-organized coalitions with optimization and
re-scheduling capabilities [33]. At the same time ancillary services (e.g. for fre-
quency or voltage stability) are integrated.

Clearly, building such large and diverse scenarios involves the integration
of many more types of distributed energy resources. So far, we are planning
to integrate among others models for photovoltaic panels (limited controllabil-
ity), heat pumps, co-generation, night storage heater, white goods (fridge, dish-
washer, etc.), batteries, air condition as well as non controllable resources like
wind energy.

From this point of view it becomes clear that a model-based approach for the
integration of all these different energy units (and the integration of future, yet
unknown ones) is indispensable. So far, we paved the way from the automatic
conversion of the scope of action of an energy unit or its simulation model to
a standard search space model that can be easily integrated into planning and
optimization algorithms. In this way, it now becomes easy to commonly integrate
a diverse set of different models jointly into distributed algorithms.

Due to this abstraction by search space model and mapping, all energy units
become indistinguishable for algorithms and may thus be accessed always in
the same, standardized way.

Acknowledgments. The Lower Saxony research network ’Smart Nord’ acknowledges
the support of the Lower Saxony Ministry of Science and Culture through the Niedersächsisches
Vorab grant programme (grant ZN 2764).

References

1. Bary, C.: Coincidence-factor reationships of electric-service-load characteristics.
American Institute of Electrical Engineers, Transactions of the 64(9), 623–629
(1945)

2. Beer, S., Appelrath, H.J., Sonnenschein, M.: Towards a self–organization mecha-
nism for agent associations in electricity spot markets. In: Informatik 2011 - Work-
shop IT für die Energiesysteme der Zukunft (10 2011)

3. Ben-Hur, A., Siegelmann, H.T., Horn, D., Vapnik, V.: Support vector clustering. Jour-
nal of Machine Learning Research 2, 125–137 (2001)

4. Blank, M., Gerwinn, S., Krause, O., Lehnhoff, S.: Support vector machines for an
efficient representation of voltage band constraints. In: Innovative Smart Grid Tech-
nologies. IEEE PES (2011)

1850 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Distributed Greedy Planning

5. Born, F.: Aiding Renewable Energy Integration Through Complimentary Demand-
supply Matching. University of Strathclyde (2001), http://books.google.de/
books?id=w0BCHQAACAAJ

6. Bremer, J.: Ontology based description of der’s learned environmental performance
indicators. In: Donnellan, B., Lopes, J.P., Martins, J., Filipe, J. (eds.) Proceedings of
the 1st International Conference on Smart Grids and Green IT Systems – Smart-
Greens 2012. pp. 107–112. SciTePress, Porto, Portugal (04 2012)

7. Bremer, J., Rapp, B., Sonnenschein, M.: Encoding distributed search spaces for
virtual power plants. In: IEEE Symposium Series in Computational Intelligence 2011
(SSCI 2011). Paris, France (4 2011)

8. Bremer, J., Rapp, B., Sonnenschein, M.: Including Environmental Performance Indi-
cators into Kernel based Search Space Representations. Information Technologies
in Environmental Engineering (ITEE 2011) (2011)

9. Bremer, J., Sonnenschein, M.: A distributed greedy algorithm for constraint-based
scheduling of energy resources. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M.
(eds.) Federated Conference on Computer Science and Information Systems - Fed-
CSIS 2012, Wroclaw, Poland, 9-12 September 2012, Proceedings. pp. 1285–1292
(2012)

10. Bremer, J., Rapp, B., Sonnenschein, M.: Support vector based encoding of dis-
tributed energy resources’ feasible load spaces. In: IEEE PES Conference on Inno-
vative Smart Grid Technologies Europe. Chalmers Lindholmen, Gothenburg, Swe-
den (2010)

11. Brusan, A.: Very short literature survey from supervised learning to surrogate mod-
eling. CoRR abs/1203.4788 (2012)

12. Chu, C.S., Tsang, I.W., Kwok, J.T.: Scaling up support vector data description by
using core-sets. In: Proceedings of 2004 IEEE International Joint Conference on
Neural Networks. vol. 1, pp. 430–435 (2004)

13. Evangelista, P., Embrechts, M., Szymanski, B.: Taming the curse of dimensionality
in kernels and novelty detection. In: Abraham, A., de Baets, B., Kppen, M., Nickolay,
B. (eds.) Applied Soft Computing Technologies: The Challenge of Complexity, Ad-
vances in Soft Computing, vol. 34, pp. 425–438. Springer Berlin Heidelberg (2006),
http://dx.doi.org/10.1007/3-540-31662-0_33

14. Franch, T., Scheidt, M., Stock, G.: Current and future challenges for production plan-
ning systems. In: Kallrath, J., Pardalos, P.M., Rebennack, S., Scheidt, M., Pardalos,
P.M. (eds.) Optimization in the Energy Industry, pp. 5–17. Energy Systems, Springer
Berlin Heidelberg (2009)

15. Gano, S.E., Kim, H., Brown II, D.E.: Comparison of three surrogate modeling tech-
niques: Datascape, kriging, and second order regression. In: Proceedings of the
11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA-
2006-7048. Portsmouth, Virginia (2006)

16. Gatterbauer, W.: Economic efficiency of decentralized unit commitment from a gen-
erator’s perspective. In: Ilic, M. (ed.) Engineering Electricity Services of the Future.
Springer (2010)

17. Guan, X., Zhai, Q., Papalexopoulos, A.: Optimization based methods for unit com-
mitment: Lagrangian relaxation versus general mixed integer programming. vol. 2,
p. 1100 Vol. 2 (2003), http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=1270468

18. Hinrichs, C., Lehnhoff, S., Sonnenschein, M.: A Decentralized Heuristic for Multiple-
Choice Combinatorial Optimization Problems. In: Operations Research 2012 –
Selected Papers of the International Conference on Operations Research (OR

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1851

Jörg Bremer & Michael Sonnenschein

2012). Springer, Hannover, Germany (2013), http://www-ui.informatik.
uni-oldenburg.de/download/Publikationen/HLS12.pdf

19. Juszczak, P., Tax, D., Duin, R.P.W.: Feature scaling in support vector data descrip-
tion. In: Deprettere, E., Belloum, A., Heijnsdijk, J., van der Stappen, F. (eds.) Proc.
ASCI 2002, 8th Annual Conf. of the Advanced School for Computing and Imaging.
pp. 95–102 (2002)

20. Kamper, A., Esser, A.: Strategies for decentralised balancing power. In: A. Lewis,
S. Mostaghim, M.R. (ed.) Biologically-inspired Optimisation Methods: Parallel Algo-
rithms, Systems and Applications, pp. 261–289. No. 210 in Studies in Computational
Intelligence, Springer, Berlin, Heidelberg (Juni 2009), http://dx.doi.org/10.
1007/978-3-642-01262-4

21. Kamphuis, R., Warmer, C., Hommelberg, M., Kok, K.: Massive coordination of dis-
persed generation using powermatcher based software agents. In: 19th Interna-
tional Conference on Electricity Distribution (May 2007)

22. Kok, K., Derzsi, Z., Gordijn, J., Hommelberg, M., Warmer, C., Kamphuis, R., Akker-
mans, H.: Agent-based electricity balancing with distributed energy resources, a
multiperspective case study. Hawaii International Conference on System Sciences
0, 173 (2008)

23. Kramer, O.: A review of constraint-handling techniques for evolution strategies. Appl.
Comp. Intell. Soft Comput. 2010, 1–19 (January 2010)

24. Kwok, J., Tsang, I.: The pre-image problem in kernel methods. Neural Networks,
IEEE Transactions on 15(6), 1517–1525 (2004)

25. Laskov, P., Gehl, C., Krüger, S., Müller, K.: Incremental support vector learning:
Analysis, implementation and applications. Journal of Machine Learning Research
7, 1906–1936 (2006)

26. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: A multiagent
simulation environment. Simulation 81(7), 517–527 (Jul 2005), http://dx.doi.
org/10.1177/0037549705058073

27. Lukovic, S., Kaitovic, I., Mura, M., Bondi, U.: Virtual power plant as a bridge between
distributed energy resources and smart grid. Hawaii International Conference on
System Sciences 0, 1–8 (2010)

28. Mao, Y., Li, M.: Optimal reactive power planning based on simulated annealing parti-
cle swarm algorithm considering static voltage stability. In: Proceedings of the 2008
International Conference on Intelligent Computation Technology and Automation -
Volume 01. pp. 106–110. ICICTA ’08, IEEE Computer Society, Washington, DC,
USA (2008), http://dx.doi.org/10.1109/ICICTA.2008.427

29. Mihailescu, R.C., Vasirani, M., Ossowski, S.: Dynamic coalition adaptation for effi-
cient agent-based virtual power plants. In: Proceedings of the 9th German confer-
ence on Multiagent system technologies. pp. 101–112. MATES’11, Springer-Verlag,
Berlin, Heidelberg (2011)

30. Mika, S., Schölkopf, B., Smola, A., Müller, K.R., Scholz, M., Rätsch, G.: Kernel PCA
and de-noising in feature spaces. In: Proceedings of the 1998 conference on Ad-
vances in neural information processing systems II. pp. 536–542. MIT Press, Cam-
bridge, MA, USA (1999)

31. Myers, R.H., Montgomery, D.C.: Response Surface Methodology: Process and
Product in Optimization Using Designed Experiments. John Wiley & Sons, Inc., New
York, NY, USA, 1st edn. (1995)

32. Neddermeijer, H.G., van Oortmarssen, G.J., Piersma, N., Dekker, R.: A frame-
work for response surface methodology for simulation optimization. In: Proceed-
ings of the 32nd conference on Winter simulation. pp. 129–136. WSC ’00, So-

1852 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Distributed Greedy Planning

ciety for Computer Simulation International, San Diego, CA, USA (2000), http:
//dl.acm.org/citation.cfm?id=510378.510401

33. Nieße, A., Lehnhoff, S., Tröschel, M., Uslar, M., Wissing, C., Appelrath, H.J., Son-
nenschein, M.: Market–based self–organized provision of active power and ancillary
services. IEEE (06 2012)

34. Nieße, A., Lehnhoff, S., Tröschel, M., Uslar, M., Wissing, C., Appelrath, H.J., Son-
nenschein, M.: Market-based self-organized provision of active power and ancillary
services: An agent-based approach for smart distribution grids. In: COMPENG. pp.
1–5. IEEE (2012)

35. Parzen, E.: On estimation of a probability density function and mode. The Annals of
Mathematical Statistics 33(3), pp. 1065–1076 (1962), http://www.jstor.org/
stable/2237880

36. Pereira, J., Viana, A., Lucus, B., Matos, M.: A meta-heuristic approach to the unit
commitment problem under network constraints. International Journal of Energy
Sector Management 2(3), 449–467 (2008)

37. Platt, J.: Fast training of support vector machines using sequential minimal optimiza-
tion. In: Advances in Kernel Methods. pp. 185–208. MIT press (1999)

38. Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Agent-based control
for decentralised demand side management in the smart grid. In: Sonenberg, L.,
Stone, P., Tumer, K., Yolum, P. (eds.) AAMAS. pp. 5–12. IFAAMAS (2011)

39. Schölkopf, B., Mika, S., Burges, C., Knirsch, P., Müller, K.R., Rätsch, G., Smola,
A.: Input space vs. feature space in kernel-based methods. IEEE Transactions on
Neural Networks 10(5), 1000–1017 (1999)

40. Schütte, Steffen; Scherfke, S.S.M.: mosaik – smart grid simulation api. In: Don-
nellan, B., Lopes, J.P., Martins, J., Filipe, J. (eds.) Proceedings of the 1st Interna-
tional Conference on Smart Grids and Green IT Systems – SmartGreens 2012.
SciTePress, Porto, Portugal (04 2012)

41. Sonnenschein, M., Appelrath, H.J., Hofmann, L., Kurrat, M., Lehnhoff, S., Mayer,
C., Mertens, A., Uslar, M., Nieße, A., Tröschel, M.: Dezentrale und selbstorgan-
isierte koordination in smart grids. In: VDE-Kongress 2012 Smart Grid Intelligente
Energieversorgung der Zukunft. VDE (11 2012)

42. Tavakkoli, A., Nicolescu, M., Nicolescu, M., Bebis, G.: Incremental svdd training:
Improving efficiency of background modeling in videos. In: Cristea, P. (ed.) Signal
and Image Processing. Acta Press, Calgary, Canada (2008)

43. Tax, D.M.J., Duin, R.P.W.: Data domain description using support vectors. In:
ESANN. pp. 251–256 (1999)

44. Tax, D.M.J., Duin, R.P.W.: Support vector data description. Mach. Learn. 54(1), 45–
66 (2004)

45. Thomas, B.: Mini-Blockheizkraftwerke: Grundlagen, Gerätetechnik, Betriebsdaten.
Vogel Buchverlag (2007)

46. Tröschel, M., Appelrath, H.J.: Towards reactive scheduling for large-scale virtual
power plants. In: Braubach, L., van der Hoek, W., Petta, P., Pokahr, A. (eds.) MATES.
Lecture Notes in Computer Science, vol. 5774, pp. 141–152. Springer (Sep 2009)

47. Xiong, W., Li, M.j., Cheng, Y.l.: An improved particle swarm optimization algorithm
for unit commitment. In: Proceedings of the 2008 International Conference on Intel-
ligent Computation Technology and Automation - Volume 01. pp. 21–25. ICICTA ’08,
IEEE Computer Society, Washington, DC, USA (2008), http://dx.doi.org/
10.1109/ICICTA.2008.363

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1853

Jörg Bremer & Michael Sonnenschein

Jörg Bremer is research assistant at the Department for Computing Science at
the Carl von Ossietzky University Oldenburg, Germany. He recieved a Diploma
(Environmental Informatics) in the field of agent based simulations of household
energy consumption in decentralized scenarios (2006). He has been working
on several projects on energy management and computational intelligence in
smart grids. In addition, he has been working as a research assistant at the
Department for Business Information Systems and at the OFFIS Institute for
Information Technology in Oldenburg. He also teaches at the University of Old-
enburg in the field of decentralized energy systems. Currently, Mr Bremer is a
PhD Student at the chair of Prof. Sonnenschein.

Michael Sonnenschein is professor of Computer Science at the Carl von Ossi-
etzky University of Oldenburg, Germany. He studied Computer Science and
Mathematics at the Aachen University of Technology (Diploma 1979); PhD in
computer 1983, Habilitation in Computer Science 1991, both at Aachen Uni-
versity of Technology. Since 1991 he is professor for Computer Science at Old-
enburg University. As a member of the executive board energy of the OFFIS
Institute for Information Technology he headed several projects on energy man-
agement in smart grids. His research interests include techniques for modelling,
simulation, and heuristic optimization in environmental applications, particularly
in smart grids.

Received: March 4, 2013; Accepted: August 3, 2013.

1854 ComSIS Vol. 10, No. 4, Special Issue, October 2013

 ComSIS Vol. 10, No. 4, Special Issue, October 2013

CIP – Каталогизација у публикацији
Народна библиотека Србије, Београд

004

COMPUTER Science and Information

Systems : the International journal /
Editor-in-Chief Mirjana Ivanović. – Vol. 10,

No 4 (2013) - . – Novi Sad (Trg D. Obradovića

3): ComSIS Consortium, 2013 - (Belgrade
: Sigra star). –30 cm

Polugodišnje. – Tekst na engleskom jeziku

ISSN 1820-0214 = Computer Science and
Information Systems

COBISS.SR-ID 112261644

Cover design: V. Štavljanin
Printed by: Sigra star, Belgrade

	012 - G_SCLIT2-1301.pdf
	Extending Programming Language to Support Object Orientation in Legacy Systems
	Hemang Mehta cl@@auth, S J Balaji cl@@auth, Dharanipragada Janakiram

	013 - H_SCLIT4-1301.pdf
	Context Parsing (Not Only) of the Object-File-Format Description Language
	Jakub Kroustek cl@@auth, Dušan Kolár

