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Abstract. Rural mobility research has been left aside in favor of urban transporta-
tion. Rural areas’ low demand, the distance among settlements, and an older pop-
ulation on average make conventional public transportation inefficient and costly.
This paper assesses the contribution that on-demand mobility has the potential to
make to rural areas. First, demand-responsive transportation is described, and the
related literature is reviewed to gather existing system configurations. Next, we de-
scribe and implement a proposal and test it on a simulation basis. The results show
a clear potential of the demand-responsive mobility paradigm to serve rural demand
at an acceptable quality of service. Finally, the results are discussed, and the issues
of adoption rate and input data scarcity are addressed.
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1. Introduction

Demand-responsive transportation (DRT) was first developed in the UK in the 1960s as
a means of rural transportation [22] with a flexible route and dial-a-ride program. In the
past, it has been utilized to provide on-demand transportation services for those who are
physically disabled. These early initiatives depended on government money, and if that
funding was cut off, they eventually ceased to exist. In fact, funding has always been a ma-
jor problem in DRT because, typically, a transportation mode’s flexibility results in greater
operational costs [8,10]. Public transportation companies have rekindled their interest in
DRT systems in today’s environment of dial-a-ride private transportation [11] (taxi, Uber,
Cabify) powered by smartphones and applications. The reason is twofold: On the one
hand, the technological advancements in computation and electronics make it possible to
solve complex problems such as online vehicle scheduling, routing and detouring in brief
computational times. Moreover, the popularization of smartphones has made on-demand
mobility more accessible than ever for the newer generations. Finally, the advances in
autonomous mobility made demand-responsive transportation more promising. On the
other hand, the flexibility and responsiveness of DRT are intuitively good attributes for
an environmentally conscious, more sustainable transportation mode that may be able to
reduce empty-vehicle displacement, thus reducing energy consumption and greenhouse
gas emissions.

The interest of the research community in DRT has been rising in the last few years,
although most of the studied and proposed systems are developed for high-density urban
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areas. In contrast, the application of DRT solutions to rural settlements or areas is less ex-
plored. Rural areas count with scattered residents, a low level of transportation demand,
and, on average, an older population with respect to urban areas. Its usual transportation
methods feature a single line with a mid-to-high capacity vehicle and a low frequency.
The lack of quality public transportation is reflected in the usage of individual motor-
ized transport, which is the most popular form of transportation in some rural areas [24].
DRT seems appropriate to fit rural demand and has the potential to cut operating costs
while being more sustainable thanks to its on-demand activation. In addition, passenger
experience could be improved by lower waiting and riding times.

There are a few works that analyze the potential of DRT for rural mobility. The authors
of [6,21] propose the replacement of the traditional transportation services of specific rural
areas with a DRT alternative. Both works find a better overall efficiency with DRT com-
pared to the fixed service. Particularly, the results in [6] show a decrease in the amount
of traveled kilometers, operational costs, and greenhouse gas emissions per passenger.
Other analytical works such as [30,1] focus on the adoption rate of these services among
rural inhabitants. Their findings show a potential niche market for DRT transportation and
explicit relevant factors that the user takes into account to switch to a new transportation
service. Finally, the work in [23] goes over rural DRT services from a customer satis-
faction perspective, evidencing a concerning conflict between user expectations and the
actual system operation. The authors underscore the importance of the analysis of the
rural area and the characterization of its potential customer needs for a successful DRT
application. All the research cited above shows that several authors from different contexts
find the use of DRT as a potential solution for improved rural mobility. However, there is
a noticeable lack of papers that bring more intelligent techniques to rural mobility.

Urban areas have always had a steady flow of quality proposals, such as [16,31], fo-
cused on optimizing their processes. However, rural areas find a clear lack of proposals.
Specifically, our current research is motivated by the literature gap regarding the appli-
cation of intelligent techniques for rural DRT services. The main objective of this line of
work is the development of practical solutions for dynamic, flexible, reliable, and eco-
nomically viable rural mobility. Working on such a goal, this paper characterizes DRT
systems, assessing each of the challenges their design and implementation implies. Given
the specific issues of rural areas, we theorize that the DRT paradigm might be a good fit to
provide displacement services to their inhabitants. We prove our hypothesis by describing
and implementing a system, which is later tested by simulating its operation in a real rural
area. The results show the system achieves a good quality of service over a wide area with
a reduced fleet of smaller (with respect to public buses) vehicles. Our work contributes to
the rural mobility research field with the introduction of an algorithm that schedules both
the static and online operation of the proposed DRT service. In addition, our results show
the potential DRT has to modernize and improve rural transportation systems.

This work is an extended version of the paper “Demand-responsive Mobility for Ru-
ral Areas: A Review” [19], presented at the 20th International Conference on Practical
Applications of Agents and Multiagent Systems (PAAMS 2022). The rest of the paper
is structured as follows. Section 2 dissects DRT through the review of relevant literature
works. Then, Section 3 describes the proposed system, its components, and the algorithms
that make it work. Section 4 presents the use case and the simulation results. Section 5
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discusses the introduction of DRT to rural areas in accordance with our results. Finally,
Section 6 concludes the work and states possible future directions for our research.

2. Demand-responsive Transportation Description

A DRT system is composed of a series of subsystems, each in charge of solving one
of the many challenges a transportation system involves. These subsystems are highly
configurable and can be adapted to the concrete mobility needs of a specific area. Because
of that, the variety of DRT services is vast. Nevertheless, all of them deal with a concrete
set of issues presented below:

– Planning of services and scheduling of requests. Whether it is performed in advance
or in real-time after receiving transportation requests, a DRT operator must plan the
operation of its fleet according to its resources. Depending on the type of system,
such planning may include routing and stop assignment. In addition, in a request-
based system, passengers must be assigned to a vehicle (or a concrete line) that will
serve them. This assignment implies the rescheduling of the vehicle planning to in-
clude new customers while worsening as little worse as possible other passengers’
experiences.

– Optimizing fleet resources. The goal is to select the appropriate vehicles with a con-
crete capacity such that the operation of the DRT system yields an acceptable quality
of service while being economically viable and sustainable.

– Demand prediction and estimation can be a complementary feature of DRT systems
used to optimize their operation. Such a feature can be implemented based on histor-
ical data or prediction techniques to control future and current demand. Many solu-
tions require the passengers to explicitly state their desire to use the service by issuing
a request.

– Validation through the definition of appropriated metrics to evaluate and compare
different configurations.

Solutions to the above issues are dependent on the concrete type of DRT system that
will be implemented in addition to the modeling and optimization techniques used for that.
Following, we describe the different characteristics that a DRT system can have (Section
2.1) and the techniques that have been observed in the literature for their implementa-
tion (Section 2.2). Finally, we enumerate the optimization perspectives of the reviewed
material (Section 2.3).

2.1. System Types

DRT systems have a series of standard elements present in all of them. Different authors
apply different labels to those elements. For the current section, we have followed the
terminology described in this survey [28].

In a DRT system, a service is the departure of a vehicle to serve the transportation re-
quests it has assigned. One service is generally tied to a concrete area or line the transport
will follow. In contrast, a route is the concrete path the vehicle follows, connecting all
the pickups and drop-offs. A route does not necessarily include all existing stops in a line
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or area. Customers are picked up and dropped off in a predefined set of stops within the
serviced area or line. Alternatively, a door-to-door service can be offered, in which any
user-specified location within a particular area may act as a stop. This type of mobility
is thought to be shared; i.e.: multiple customers are served by the same vehicle. Typi-
cal vehicle choices for demand-responsive services include a taxi-like car with a capacity
of 4 passengers, vans with 8 to 12 seats, and mini-buses or buses with 16 to 22 seats,
respectively.

Many use cases exist for demand-responsive transportation. Specifically, for rural
DRT, we find the following: transportation within rural settlements, transportation be-
tween rural settlements, and transportation between rural and urban settlements. In prac-
tice, these cases can be reduced to two systems: many-to-many, with multiple origins and
destination locations, and many-to-one, where origin and destination locations share a
unique pick-up or drop-off point. The last type is usually the so-called feeder line, where
flexible transportation service is used to move passengers to another, less accessible ser-
vice (for instance, communications from rural settlements to an airport). Figure 1 shows
a schematic representation of the commented use cases.

(a) Within a rural settlement (b) Between rural settlements (c) Between rural and urban
settlements

Fig. 1. Observed use cases for rural demand-responsive transportation systems. Boxes
indicate rural/urban settlements. Black dots represent stops. Dashed lines represent
demand-responsive lines. Pictures (a) and (b) are cases of many-to-many transportation,
while (c) represents a many-to-one model

If the customer is required to send a request to access transport, then the service is pro-
vided on-demand. The time between sending a request and the customer’s pick up is the
lead time, and it is used to adapt the fleet operation or planning to include such a request.
In a stop-based operation, the customer will be assigned a stop from which they will be
picked up. On-demand systems can operate based on reservations issued in advance by
the users, and in real-time, accepting last-minute bookings. The more complete systems
employ a hybrid approach, accepting advanced reservations as well as real-time traveling
requests. DRT systems that are not on-demand are also possible. These systems consider
current demand or demand predictions for service planning but do not require requests to
run.

The period of time for which the DRT service is planned and optimized is referred to
as planning horizon. The duration of planning horizons is usually a whole day. In addition,
the operator may plan for a few hours to adapt to high/low demand periods. According
to the influence of the demand data on the service planning, the system will be fully-
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flexible if routes are planned from scratch according to current demand, or semi-flexible if
a predetermined plan exists but vehicles are allowed to modify it influenced by demand.

2.2. Modeling and Optimization Techniques

Once the concrete type of DRT system has been chosen, it must be modeled and tested to
check its performance and adjust its attributes. We will discuss below the different steps
this involves, citing relevant research and their authors’ methods. Please be aware that not
every paper cited in this section explores rural DRT.

Most rural DRT works are set in a concrete rural settlement or area. In general, the
main transportation network (roads, highways) of the area is mirrored thanks to services
like OpenStreetMap (http://openstreetmap.org) or OpenSourcingRoutingMa-
chine (OSRM, http://project-osrm.org) [9]. Ideally, the actual organization of
the area, its types of districts, population, or socio-economic reality, among others, should
also be considered. Authors in [15] describe a seven-step analysis method for optimizing
any transportation system based on reproducing the features of the currently implemented
transport service (that would potentially be replaced) Alternatively, some works employ
grid-like modelings of the area where the system will run [5].

Demand modeling is also crucial. Passenger demand has two main aspects: (1) fre-
quency and intensity and (2) shape (location of origin-destination pairs). Demand at-
tributes can be extracted from datasets of different transportation modes and extrapolated,
as in [13], where taxi data is used. Moreover, real data of pilot DRT services [26,7] can be
reproduced when available. However, the most observed technique is the use of synthetic
demand data that can be generated statistically [5], based on socio-demographic informa-
tion [29], via surveys [15,24,9] or generated in a (semi-)random [27] way according to
the properties of the reproduced area (population, age, occupation, vehicle ownership).
Finally, if traffic intensity data is available, it is useful to include it in the model, although
not as relevant for rural areas with respect to city-centered studies since the former tend
to have lower intensity.

The operation of the DRT system requires automated planning and scheduling of ve-
hicle services. At the same time, these tasks need information on the time and traveled
kilometers that a concrete detour would imply, which makes routing algorithms also nec-
essary. In addition, since it is common to find online systems that accept real-time re-
quests, the computation time for detours and new request insertions must be kept low. The
use of multi-modal planning [9] is common to solve the scheduling of vehicle services.
Moreover, some simulation platforms, such as MATSim [2] include their own imple-
mentations of the algorithms mentioned above. These implementations usually employ
(meta)heuristic techniques [29] that optimize vehicle-passenger assignments (insertion
heuristics [4], for instance) or vehicle routing in a short computational time. Besides that,
other less exploited techniques, such as automated negotiation, could be used to decide
assignments from a decentralized perspective [3].

Finally, to observe the system’s dynamics and its operation and adjust its attributes,
it is necessary to simulate it. This can be performed through mathematical modeling [15]
provided detailed data is available. However, a more popular way of achieving this is
through multi-agent simulation (MAS). Among the observed choices, we find NetLogo
[25], used in [14], the already mentioned MATSim and even custom simulators [20,9].

http://openstreetmap.org
http://project-osrm.org
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2.3. Optimization Goals

The main goal of people transportation services is to supply the displacement needs of
its users. Ideally, the operation of the service shall be performed by optimizing three fac-
tors: (1) the economic viability of the service; (2) the customer’s experience (or quality
of service); and (3) the sustainability of the service. These three factors are translated into
scopes when it comes to transportation research, and thus we can find works that asses
one (only operator perspective [18]), or many of them from a multi-objective perspec-
tive (passenger and operator perspectives [17]), The optimization of customer experience
implies the reduction of passenger travel times, whereas economic viability is ensured
by reducing operational costs. Finally, optimizing sustainability requires reducing vehicle
traveled kilometers or the total fleet operational time.

The greatest challenge of demand-responsive transportation systems is finding the
equilibrium among the factors above to offer a competitively-priced, economically viable,
and flexible mobility alternative to private cars and traditional public transportation. For
the case of rural DRT, economic viability is especially difficult, taking into account the
relatively low demand.

In this section, DRT research has been dissected by reviewing various works. The
enumeration of its many configuration options is crucial to plan the correct system ac-
cording to the characteristics of the area of application. In addition, knowing how authors
model and implement their proposals facilitates future research. Coming up, we introduce
a proposal for a dynamic DRT system that aids in improving rural mobility.

3. System Proposal

We propose an on-demand, stop-based, many-to-many, and fully-dynamic ride-sharing
transportation system to give service to rural areas. A fleet of vehicles provides displace-
ment services with a variable capacity. Each vehicle will follow its own itinerary: the list
of stops it will visit during its operation, ordered in time. We assume that users of the
system issue travel requests through an application. A travel request indicates the location
and time window in a simple manner, such as “Pickup at stop A after 8:30, and dropoff at
B by 9:00”.

The implementation of our proposal is based on the work in [12]. Our system is man-
aged by a centralized scheduler which allocates each travel request to a vehicle’s itinerary.
The scheduler has two modes of operation: (1) offline planning of services and (2) online
scheduling of incoming travel requests. In offline operation, the scheduler prepares the
fleet’s itineraries for the following service period (i.e., hours, the following day), finding
the optimal allocation of bookings (requests issued in advance). In contrast, during ser-
vice hours, when the fleet is operating, the scheduler works in online mode, listening to
incoming requests and allocating them as they are issued. Figure 2 presents a schematic
representation of the scheduler’s operation, in which the allocation of a request to an
itinerary is referred to as a trip insertion.

The scheduler allocates the requests to itineraries such that the system-wide objective
function is optimized. Such an objective is the minimization of the fleet’s operational
time, thus reducing the operational costs of the whole system.

Following, we present the system elements together with their attributes and describe
the insertion searching procedure that the scheduler implements.
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Fig. 2. Operation modes of the proposed transportation system scheduler. Offline refers
to static planning of services, whereas online mode indicates the real-time allocation of
incoming travel requests

3.1. Definitions

Before describing the request allocation algorithm, it is necessary to define the system’s
elements. This section briefly enumerates those elements and attributes, giving impor-
tant notions to understand our implementation. The time units employed in the following
formulation are minutes, as these better serve the purposes of our experimentation.

Itineraries. The fleet is managed by the scheduler, a centralized entity with updated in-
formation about each vehicle’s itinerary, capacity, and location. An itinerary is equivalent
to the vehicle it represents. An itinerary is mainly characterized by its stop list, an ordered
list of stops that the vehicle will visit, including the time of arrival to and departure from
each of them. Even though an itinerary has additional attributes, we underscore that when
the text mentions the insertion of an element in an itinerary, it is referring to the itinerary’s
stop list, as it can be deduced. The attributes of an itinerary I are:

– vehI : Vehicle represented by itinerary I .
– capI : Capacity of vehI .
– I’s stop list: List of stops of the itinerary; it has at least two stops.

• Sstart
I : Stop where vehI begins its shift, including location and time window.

• Send
I : Stop where vehI ends its shift, including location and time window.

– nextI : Next stop of vehI within I’s stop list.
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– costI : Total amount of time that vehI will spend driving to complete the itinerary.

At the beginning of the operation, an itinerary per fleet vehicle is created. The stop list in
those itineraries only contains the stop where its vehicle begins its shift and, subsequently,
the stop at which finishes it. As travel requests are assigned to vehicles, the stop list of the
vehicle’s itinerary is updated, inserting new stops in visiting order. Because of that, the
stop list represents the route the vehicle will follow to complete its itinerary.

Trip. The scheduler receives travel requests from the system customers. The request is
the explicit petition for displacement. Such a petition describes the displacement in what
we call a trip. A trip indicates the need for a certain number of passengers to move from
its origin stop to its destination stop. Accepting a request implies that the trip it defines
has been inserted in an itinerary, and thus its customers will be serviced. The attributes of
a trip t are:

– npasst: Number of passengers traveling as a group on the trip.
– SOR(t): Pickup stop with location and time window.
– SDEST (t): Drop-off stop with location and time window.
– I(t): Itinerary to which the trip is assigned if any. I(t) ̸= ∅ implies SOR(t), SDEST (t) ∈

I(t)’s stop list.

The time window associated with stop SOR(t) defines the earliest and latest possible
times at which the customers can be picked up. Similarly, SDEST (t)’s time window de-
fines the earliest and latest drop-off time for the customers. For further clarification on a
stop’s time window, please refer to the definition of Stops. The wider the time window of
a request, the more flexibility the system has to allocate its trip.

Stops. A stop represents a physical location within the transportation service infrastruc-
ture where customers can board or lay off a vehicle. In our problem formulation, a stop
must be part of a trip or an itinerary. Stops have a time window associated with them. The
time window indicates to the scheduler the period of time a stop must be serviced, un-
derstanding the service of a stop as the service of the passengers associated with it.When
part of a trip, a stop S has the following attributes:

– tstartS : Soonest time at which the stop can be visited by a vehicle. Start of the time
window.

– tendS : Latest time at which the stop can be visited by a vehicle. End of the time win-
dow.

– tservS : Time employed by a vehicle for passenger pick-up and drop-off at the stop.

In addition, when a stop S is part of the stop list of itinerary I , it has the following
attributes, which come in handy to check the feasibility of trip insertions. As a reminder,
vehI indicates the vehicle that follows itinerary I .

– tarrivalS : Time at which vehI arrives to S.
– tdepartureS : Time at which vehI departs from S.
– wserv

S : Service window at S, indicating the time taken by passengers boarding or
laying off vehI in S.
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– wwait
S : Waiting window at S, during which vehI waits in S until the departure time.

– npassS : Number of passengers boarded in the vehI on departure from S.

Given the above attributes, the time window of a stop is defined as follows:

tstartS ≤ tarrivalS , [wserv
S ], [wwait

S ], tdepartureS ≤ tendS

The vehicle visiting a stop can arrive to it at time tstartS as the soonest. Then, the
service interval [wserv

S ] begins, in which passengers are going on or off the vehicle. Fol-
lowing, the vehicle may wait at the stop for a defined waiting interval [wwait

S ]. At the end
of such a waiting period, the vehicle departs from the stop, which may be at time tendS at
the latest.

The particular arrival and departure times to a stop are determined according to a
dispatching strategy. A dispatching strategy defines the use of the so-called slack time,
the period of time during which the vehicle does not yet need to leave the stop where it
is stationary (represented by wwait

S in our formulation). A general dispatching strategy
would be departing the current stop as soon as possible, providing the earliest possible
service to those customers of the following stop. In contrast, other strategies force the
vehicle to wait at its current stop as much as possible, hoping new requests will be issued
and thus having more stationary vehicles to assign them to. For this work, we make use
of a hybrid strategy. Vehicles will depart from a stop to ensure the earliest feasible service
to the following stop. When the vehicle has slack time, it waits at a stop to maximize the
chance of inserting an incoming request.

Insertions. An insertion indicates the feasibility of allocating the trip of a request to
a particular itinerary. Moreover, it indicates the positions within the itinerary’s stop list
where each trip stop will be inserted. The scheduler looks for all feasible insertions of a
trip and implements the best one.

Given a trip t, its insertion in an itinerary I implies finding appropriate spots within
I’s stop list to visit t’s SOR(t) and SDEST (t). The visit to SDEST (t) must be subsequent
(but not necessarily directly after) to that of SOR(t). A trip insertion will always increase
the itinerary’s duration (costI ).

We define a trip insertion πij with the following attributes:

– I(π): Itinerary in which the trip will be inserted.
– i: Position within I’s stop list where SOR will be inserted.
– j: Position within I’s stop list where SDEST will be inserted.
– ∆ij : Time increment incurred by inserting π in I .

Let us have insertion πij that allocates trip t = ⟨SOR, SDEST ⟩ to itinerary I =
[Sstart

I , S1, . . . , Sn, Send
I ]. The insertion implies creating two new connections in the

itinerary: (Si−1 → SOR) and (Sj−1 → SDEST ), finally obtaining I = [Sstart
I , S1,

. . . , Si−1, SOR, . . . , Sj−1, SDEST , . . . , Sn, Send
I ]. Keep in mind that we could have

Sj−1 = SOR, as the destination stop could be visited immediately after the origin stop.
The implementation of a trip insertion modifies the planned operation of the vehi-

cle to whose itinerary the trip is allocated. Such a modification may occur during the
reservation-based operation of the system or in real-time while the vehicle is already in
service. In the former case, the time windows associated with each stop in the vehicle’s
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itinerary are updated taking into account the visit to the inserted trip stops. In the latter
case, time windows are adjusted in the same manner, but the vehicle may need to change
its route to reflect the changes in its itinerary’s stop list. Such a change of route, however,
will not break the time window of any already scheduled stop, as that is taken into ac-
count by our scheduling algorithm (see Insertion feasibility checks, under Section 3.2 for
further details).

Cost computation & Objective function. As commented on the definition of an itinerary,
its cost is equivalent to the time the vehicle it represents spends traveling throughout its
list of stops. Given an itinerary I with stop list = [S0, S1, . . . , Sn−1, Sn], its costI would
be computed by adding the traveling time between every two consecutive stops in its stop
list. Let us assume a function travelT ime(x, y), which, given service stops x and y, re-
turns the time taken by a fleet vehicle to travel from x to y in minutes. For an itinerary I
with n stops in its stop list, the cost would be computed as shown in Equation 1.

costI =

n−1∑
i=0

travelT ime(Si, Si+1), ∀ S ∈ I (1)

Given a fleet F of vehicles, the system’s objective function is to minimize the total ve-
hicle travel time or distance. This implies direct benefits for both passengers (shorter trips)
and the service provider (less operational costs). Such an objective is achieved by the way
in which requests are allocated to vehicles. These allocations are done with the insertion
search procedure, which works by iteratively finding the best possible insertion for each
of the pending requests and implementing it. The search for the best insertion is guided
by the cost increment ∆ that each feasible insertion may incur to an itinerary’s cost costI .
Therefore, the system’s objective function can also be described as the minimization of
the sum of the cost of each itinerary, as represented by Equation 2.

min(
∑

costI), ∀ I ∈ F (2)

3.2. Insertion Search Procedures

An insertion search procedure is the action of finding the best position within an itinerary
to allocate a request’s trip. In other words, the best moment to visit the trip’s origin stop
and the same for the destination. Our system implements two insertion search procedures,
each for an operation mode (online, offline). Following, both procedures are briefly de-
scribed, together with the system constraints that ensure the consistency of itineraries as
trips are inserted.

Offline insertion search. The offline insertion procedure allocates all bookings to the ini-
tially empty itineraries of the fleet. The bookings’ trips are inserted one by one, according
to issuing time, in the best possible itinerary, i.e., the one that minimizes operational time.

The search works as follows: While there are non-allocated requests, the scheduler se-
lects the next request and extracts its trip t. Given t, with origin stop SOR and destination
stop SDEST , we want to obtain all feasible insertions of that trip within all itineraries of
the fleet. Algorithm 1 receives the SOR, SDEST , and an itinerary I with N stops. Then,
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Algorithm 1: Search for feasible insertions within an itinerary I

Data: SOR, SDEST , I
Result: All feasible insertions of SOR, SDEST in I

1 found← [ ] ; /* List to store feasible insertions */
2 n← 0 ; /* Pointer to first stop, N = number of stops in I */
3 while n < N do
4 R← I[n] ; /* Select stop in position n */
5 if (R→ SOR) is feasible then
6 i← n+ 1 ; /* Position to insert SOR */
7 I ′ ← I .insert(SOR, i), recalculate time constraints;
8 m← i ; /* Pointer to SOR */
9 while m < N do

10 R← I[m] ;
11 if (R→ SDEST ) is feasible then
12 j ← m+ 1 ; /* Position to insert SDEST */
13 I ′′ ← I ′.insert(SDEST , j), recalculate time constraints;
14 ∆ij ← costI′′ − costI ; /* Increase in duration */
15 found← found+ (πij ,∆ij);
16 else
17 m← m+ 1 ; /* Go to next stop */
18 end
19 end
20 else
21 n← n+ 1 ; /* Go to next stop */
22 end
23 end
24 return found ;

it returns all feasible insertions found for trip t in I . This is done for all itineraries of the
fleet, and all the returned insertions are ordered according to their time increment ∆. The
scheduler then implements the insertion with a lower ∆. The request is rejected if the
procedure does not find any feasible insertion.

As it can be seen, Algorithm 1 tries to insert SOR in every possible position within
I . Once a feasible position is found for SOR, it is inserted in a copy of I , and the time
windows of other stops are updated, thus creating itinerary I ′. Then, the process tries to
insert SDEST in the position of all stops subsequent to SOR in I ′. Once a feasible position
is found for SDEST , it is inserted in a copy of I ′, and the time windows of other stops are
updated, thus creating itinerary I ′′. We have found a feasible insertion at this point, so the
algorithm computes its time increment (comparing I ′′ and I’s costs) and stores it before
continuing the exploration. Please note that I ′ and I ′′ are simply auxiliary itineraries; thus,
neither I nor the stops in t are modified by the search algorithm. The described procedure
constitutes a complete exploration of the possible insertions, allowing the scheduler to
implement the optimal one.

Online insertion search. The online insertion procedure works similarly to the offline
one but considers the current position of the vehicles within their itineraries. There-
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fore, given a trip t and an itinerary I being considered for its insertion, assuming vehI

is traveling the connection (R → nextI), Algorithm 1 only explores positions within
[nextI , S

end
I [ for the insertion of the trip’s origin and destination stops.

If the trip’s origin stop were to be scheduled in nextI ’s position, we would have an
immediate request, which implies the rerouting of vehI , changing its following stop from
nextI to SOR.

Insertion feasibility checks. For the system to work correctly, all itineraries must be
consistent. This consistency is enforced through time and capacity constraints.

Let S be a stop in an itinerary I . Let vehI be the vehicle represented by itinerary
I , with a capacity of capI . Let npassS be the number of passengers on board vehI on
departure from S. The capacity constraint states that: npassS ≤ capI , ∀S ∈ I . Simply
put, the number of passengers on departure from any of the stops of an itinerary can be,
at most, the capacity of the vehicle following such an itinerary.

Concerning time constraints, the system implements the following:

– All passengers must be picked up within the time window specified by their request’s
start time and the maximum waiting time.

– All passengers must get to their destination before their request’s end time.
– All stops must have service windows contained within their arrival and departure.
– All stops must be reached within their time window.

An insertion will be feasible if the insertion of its trip in its itinerary does not violate
any of the above constraints. The developed insertion search procedure returns only fea-
sible insertions. Because of that, the insertion of a trip in an itinerary will never cause any
inconsistencies or constraint violations.

Computational complexity. The presented insertion search procedures perform an ex-
haustive analysis of every possible position in which to allocate a trip within all the fleet’s
itineraries. This procedure composes a subproblem of the resolution of the whole DRT
service, which will be solved once all travel requests have been dealt with.

Regarding the trip insertion search procedure, its computational complexity depends
on the number of stops that the itinerary being explored contains. Such a number of stops,
in addition, is generally incremented every time a trip is inserted in the itinerary. This
causes the search for trip insertion at the beginning of the operation to be less complex
than towards its end. Assuming an itinerary has n stops, the complexity of the search is
of O(n2), as the algorithm checks each feasible position for the trip’s origin stop and,
for each of these positions, explores all feasible positions for the destination stop, using
two nested loops. In practice, the actual search for an insertion is less costly, as the many
restrictions that a feasible insertion has to preserve facilitate early discarding of invalid
positions within the stop list.

When it comes to the complexity of solving the scenario, we must take into account
that the aforementioned search is performed for every travel request (trip) and every vehi-
cle (itinerary) in the fleet. Thus, the computational complexity of allocating T trips within
I itineraries is of O(T × I × n2).

As it can be understood, the service schedules travel requests iteratively according
to their issuance time, following a FIFO logic. This way of operating is mandatory in
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the online scheduling of requests, as future demand is unknown. Because of that, the
resolution of the proposed DRT service is performed greedily and is sensitive to the order
in which requests are fed to the scheduler. To palliate this, improvement procedures could
be implemented, which considered global cost optimizations over a solved scenario.

4. Experimental Results

This section tests the proposed system’s potential to satisfy rural mobility demand. For
that, we defined simulations that reproduce the system’s operation over a concrete rural
area. Following, the rural area where the simulations are set is described. Then, the results
of various simulations are presented, showing the evolution of the overall service quality
of the system according to demand intensity and fleet size.

Fig. 3. Rural sub-area chosen for the deployment of the proposed system. The area
features many small-to-medium-sized settlements. The northern part of the area shows
the city of Valencia, Spain

4.1. Rural Use Case Description

A rural sub-area of the region of Valencia, Spain, was chosen for the deployment of
the demand-responsive service. For that, we departed from the existing public interur-
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ban bus service of the Valencian Community, which connects many rural settlements be-
tween them and with the region’s main cities. The dataset3, publicly accessible thanks
to the Generalitat Valenciana (https://linkshortner.net/kkvFj, accessed on
December 15th, 2022), contains information on the different transportation lines, routes
and stops the service offered. Specifically, it describes 722 lines with a total of 4562
stops. From those, only the elements lying inside the area shown in Figure 3 were kept.
That amounted to 88 lines and 341 stops, shown in Figure 4. Since we propose dynamic
DRT, the bus lines effectively disappeared, as now vehicles move freely between the stops
scheduled in their itinerary. The existing stops, however, were clustered so that any two
stops were at least 500 meters apart. With this, the final distribution of 99 stops that can be
seen in Figure 5 (left) is obtained. With fewer stops and longer distances between them, a
better representation of interurban displacement is achieved.

Fig. 4. Bus lines (left) and stops (right) the public interurban bus service defines in the
assessed rural area

The deployment area features mainly small-to-medium-sized towns located in rural
contexts. It can also be noticed how the urban density increases in the northern part of
the area, which is closer to the city of Valencia. Our proposal aims to provide on-demand
transportation to citizens of the shown settlements, such as Alginet, Algemesı́, Silla, Pi-
cassent, and El Saler, to mention a few. Figure 5 (right) shows a close-up in which the
location of stops can be better appreciated. Specifically, it shows the town of Sueca and
many smaller settlements nearby.

3 https://dadesobertes.gva.es/va/dataset/gtfs-itineraris-horaris-transport-public-interurba-autobus-comunitat-
valenciana

https://linkshortner.net/kkvFj
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Fig. 5. Final distribution of 99 stops over the chosen deployment area (left). All stops are
at least 500 meters apart. The image on the right shows a close-up view of small
settlements in the southeastern part of the area, near the town of Sueca

With respect to the displacement demand, the dataset did not provide usage data. To
the best of our knowledge, there is no publicly available usage data for interurban dis-
placement within the chosen region. Rural transportation demand has a lower intensity
than that of a city, and given the service area, it tends to be widely distributed in space.
With that in mind, a synthetic demand generator was employed to feed data to the simu-
lations.

The demand generator receives geolocated population information of the service area
to create demand according to it. The more population nearby a stop, the more probable it
is to be selected as the trip’s origin. The destination stop of the request, however, is chosen
randomly among all stops, considering a configurable minimum trip distance. Longer trip
distances favor the reproduction of interurban displacements. In addition, each request
can have between 1 and 5 passengers with respect to given probabilities (less probable
the more people). The demand is uniformly distributed throughout the service hours of
the system. The end of a request’s time window (the time at which the passengers need
to be at their destination) is computed according to a chosen maximum waiting time (at a
stop to be serviced) and the direct travel time between origin and destination. The direct
travel time is multiplied by a configurable factor. The higher this factor, the wider the time
window, and thus the more flexibility the system has to serve the request.
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4.2. Service Quality Assessment

The proposed system has been tested through many 14-hour services (07:00 AM to 09:00
PM) simulations with different amounts of vehicles and travel requests. Inspired by the
reviewed literature, a fleet of 10 vans, each with a capacity for eight people, was fixed
for the first round of experiments. The vans were deployed from a warehouse in Valencia
(the northern part of the service area) at 06:00 AM, an hour before the first requests could
be scheduled. Similarly, the drivers had to end their shift at the warehouse no later than
10:00 PM.

With regard to the demand, a total number of travel requests was specified and then
generated as described above in Section 4.1. The demand is divided into 50% of bookings
(scheduled before the system’s operation) and another 50% of real-time requests. Each re-
quest could have either 1, 2, 3, 4, or 5 passengers with a probability of 0.6, 0.15, 0.125, 0.1,
and 0.025, respectively. Finally, a minimum trip distance of 2,000 meters and a maximum
waiting time of 15 minutes were chosen. It must be noted that the different probabilities
that influence demand generation determine the importance of the subsequent results. For
the purposes of demonstrating the proposed algorithm’s operation, those probabilities de-
fined above have been used. We remark that the results presented below are dependent on
the specific demand generation. Nevertheless, their assessment can give insights to guide
future work in this field.

With the fixed fleet of 10 vans, we explored the system’s service quality as the number
of requests increased. Service quality is defined as the percentage of accepted requests
with respect to the total number of requests. In addition, the time that passengers wait for
a vehicle to pick them up is included as an additional measurement of service quality. As
commented above, for a request to be accepted, their passengers must be picked up before
a wait of 15 minutes. Nevertheless, waiting times closer to such a maximum indicate
worse passenger experiences. Because of that, our results reflect the average waiting time
of all accepted passengers, together with its standard deviation. Table 1 shows our first
results. The running time of the most complex simulation was 30 seconds, being executed
in a machine running Windows 11 with an Intel Core i7-10750H CPU at 2.60GHz and
16GB of memory.

The system maintained near-perfect service quality in runs with 100 to 300 requests
(rows 1 to 5). As it can be seen in the last column, given a particular fleet, the system
tries to schedule trips so that all vehicles are employed. Only in the first run, with 100
requests, a vehicle is unused. With 350 requests, the system maintains an acceptable ser-
vice quality with 84.29% of scheduled requests. From 400 requests on, the service quality
decays, lowering to 70% with 450 requests and 62.8% with 500 requests. These last three
runs present an unacceptable quality of service (< 80%) based on similar works of the
literature. With regards to the average waiting times, results show how these increase pro-
portionally to the number of requests. The standard deviation, however, is kept around 5
minutes throughout all executions. This fact reflects the high variability among each of
the individual waiting times, which in turn is motivated by the differences among the gen-
erated trips. The obtained average times indicate that most of the passengers are picked
up relatively soon after the issuance of their travel requests.

Fleet size. After the initial experimentation, the fleet was varied by adding or subtracting
a few vehicles. Once again, the aim was to observe service quality and vehicle usage
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Table 1. Service quality evolution with increasing demand and a fixed fleet of 10 vehicles
Requests req/hour Vehicles Capacity Service quality (%) Avg. pax wait (min) Fleet usage

100 ∼8 10 8 100.00 3.5 ± 5.0 9/10
150 ∼11 10 8 99.33 4.4 ± 5.2 10/10
200 ∼15 10 8 99.00 4.3 ± 5.1 10/10
250 ∼18 10 8 96.00 4.8 ± 5.0 10/10
300 ∼22 10 8 89.67 5.0 ± 4.9 10/10
350 ∼25 10 8 84.29 5.5 ± 5.3 10/10
400 ∼29 10 8 74.75 6.1 ± 5.2 10/10
450 ∼33 10 8 70.00 6.2 ± 5.1 10/10
500 ∼36 10 8 62.80 6.5 ± 5.3 10/10

evolution. For these tests, the number of requests increased from 200 to 500 in 50 request
intervals. Table 2 presents all the runs. The results indicate that reducing the fleet also
reduces the amount of demand the system can appropriately manage, as can be expected.
Similarly, with a more significant fleet, the quality of service is preserved above the 70%
margin for higher intensities of demand. Even in runs with a more extensive fleet, the
system achieves a uniform division of requests among vehicles, employing all of them.
The pattern of evolution of passenger waiting times is observed to be the same as in the
previous experimentation, having standard deviations approaching 5 minutes across all
the tested parameter combinations.

Fig. 6. Visualization of service quality according to various number of requests and fleet
sizes



262 Pasqual Martı́ et al.

Table 2. Service quality evolution with different fleets ranging from 8 to 12 vehicles and
various demand intensities
Requests req/hour Vehicles Capacity Service quality (%) Avg. pax wait (min) Fleet usage

200 ∼15 8 8 94.50 4.2 ± 5.0 8/8
250 ∼18 8 8 83.60 5.5 ± 5.1 8/8
300 ∼22 8 8 76.67 6.3 ± 5.2 8/8
350 ∼25 8 8 69.43 5.9 ± 5.3 8/8
400 ∼29 8 8 60.50 6.4 ± 5.1 8/8
450 ∼33 8 8 56.22 6.5 ± 5.2 8/8
500 ∼36 8 8 50.60 6.9 ± 5.3 8/8

200 ∼15 9 8 98.50 4.5 ± 5.3 9/9
250 ∼18 9 8 92.00 4.8 ± 4.9 9/9
300 ∼22 9 8 85.00 5.2 ± 4.9 9/9
350 ∼25 9 8 78.57 5.9 ± 5.3 9/9
400 ∼29 9 8 69.75 6.2 ± 5.0 9/9
450 ∼33 9 8 64.00 6.5 ± 5.1 9/9
500 ∼36 9 8 56.20 6.5 ± 5.2 9/9

200 ∼15 11 8 99.50 4.2 ± 5.1 11/11
250 ∼18 11 8 98.00 4.7 ± 5.1 11/11
300 ∼22 11 8 93.67 4.4 ± 4.9 11/11
350 ∼25 11 8 89.71 5.1 ± 5.1 11/11
400 ∼29 11 8 83.25 5.6 ± 5.0 11/11
450 ∼33 11 8 74.89 6.0 ± 5.0 11/11
500 ∼36 11 8 67.40 7.0 ± 5.3 11/11

200 ∼15 12 8 99.50 4.2 ± 5.1 12/12
250 ∼18 12 8 99.20 4.3 ± 4.9 12/12
300 ∼22 12 8 97.67 4.3 ± 4.8 12/12
350 ∼25 12 8 93.43 4.9 ± 5.1 12/12
400 ∼29 12 8 86.25 5.4 ± 5.0 12/12
450 ∼33 12 8 80.22 6.1 ± 5.2 12/12
500 ∼36 12 8 73.80 6.4 ± 5.3 12/12
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The graph on Figure 6 visually represents the results of Tables 1 and 2, showing the
evolution of the service quality provided by fleets of various vehicles with respect to an
increasing number of requests. Table 3 summarizes all results, showing the lower bounds
of acceptable service quality found for each combination of demand and fleet size.

Table 3. Lower bound of acceptable service quality found for all combinations of
demand intensity and fleet sizes
Requests req/hour Vehicles Capacity Service quality (%) Avg. pax wait (min) Fleet usage

250 ∼18 8 8 83.60 5.5 ± 5.1 8/8
300 ∼22 9 8 85.00 5.2 ± 4.9 9/9
350 ∼25 10 8 84.29 5.5 ± 5.3 10/10
400 ∼29 11 8 83.25 5.6 ± 5.0 11/11
450 ∼33 12 8 80.22 6.1 ± 5.2 12/12

Vehicle capacity. The final parameter that was assessed was vehicle capacity. The above
simulations were run with fleets of 8 to 12 vehicles but changing their capacity to that of
a minibus, ranging from 16 to 22 passengers. The results in terms of quality of service,
however, were very similar to what has been presented so far. This indicates that, given
the shape of the generated demand, vehicle capacity was not a bottleneck of the system,
and rejected requests were motivated by time window incompatibilities and not because
of capacity constraints. We must acknowledge, however, that the conclusions drawn from
this study of vehicle capacity are only applicable to the specific generated demand. From
a general perspective, varying the capacity of fleet vehicles could have a great impact on
the system’s performance, which is what motivated this final experimentation.

5. Discussion

Given the results summarized in Section 4.2, we can conclude that dynamic DRT is a good
fit for the synthetically generated rural mobility demand. The inefficiency of traditional
interurban public mobility options in rural contexts comes from the shape of its demand.
Vehicles with a high occupancy ratio, scheduled in periodic lines, tend to drive mostly
empty, therefore being costly to maintain for public transport providers. The proposed
system tackles these problems by ensuring maximum fleet usage, taking advantage of
every present vehicle. In addition, this behavior eases the consideration of adding new
vehicles to the fleet, as the fleet administrator has the certainty that it will be exploited
and thus not a waste of resources.

With regard to the economic viability of the system, having a smaller fleet of smaller
vehicles implies lower maintenance and salary expenses. Furthermore, if autonomous mo-
bility becomes feasible in the future, economic expenses would lower even more due to
the avoidance of driver salaries. Our experimentation has not explicitly considered the
service’s environmental impact. Nevertheless, the proposed system has features which
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indirectly contribute to a better sustainability. On the one hand, the objective function re-
duced vehicle travel time which, in turn, would reduce any type of emissions stemming
from the fleet. In addition, we assess a reduction of such a fleet, achieving a similar level
of service quality while cutting costs. Finally, it is worth mentioning that the environment
is better preserved because the fleet makes journeys only when necessary. Moreover, these
journeys are more cost-effective due to the higher occupancy of the vehicles.

As seen throughout Section 2, demand-responsive systems present a high number of
operation modes and configurable parts. The present work describes one of the many ap-
proaches that could work to modernize and improve rural mobility. Ideally, the proposed
system would completely replace the inefficient, traditional transportation options. How-
ever, in reality, the adoption rate of DRT tends to be low, even more in rural contexts, due
to the necessity to explicit a travel request. The easiest methods to do so consist of smart-
phone applications and call centers, being the former generally harder to manage for the
older population. Because of that, the deployment of a demand-responsive system would
initially complement the current mobility options providing, for instance, connection to
the most stranded settlements with the main means of public transportation.

Finally, we want to assess the lack of publicly available demand data, which hardens
the research on rural mobility. In the context of rural DRT, this issue is aggravated by
the lack of rural-specific or low-demand datasets. There are a small number of DRT pilot
projects, and among them, an even smaller number share the collected data. Still, the data
that can be found about pilot projects is very dependent on the specific area and the socio-
demographic context where the pilot took place. To deal with data shortage, synthetic data
generation is often employed, basing generation on population, age, occupation, and any
other kind of survey that characterizes the potential users of the system.

6. Conclusion

In this paper, DRT has been characterized, together with the challenges rural mobility
presents for the implementation of efficient modes of public transportation that satisfy the
population. A DRT system has been proposed to match the rural mobility demand and
provide such a quality service. The system has been described in depth, implemented,
and tested by means of simulations. A rural area in the region of Valencia, Spain, has
been chosen for the deployment of the system. The mobility demand, in terms of travel
requests, has been generated with a synthetic demand generator according to the popula-
tion of the deployment area and a series of configurable parameters. The research results
prove the potential that DRT holds to develop dynamic, reliable, and cost-effective public
transportation in the rural context. This research contributes with a system proposal and
its validation to the field of rural mobility, which has a general lack of innovation when it
comes to displacement proposals.

In terms of future research, we observe two paths. On the one hand, the proposed
system can be further improved. Different system configurations must be assessed to find
the best match for the deployment area. In addition, the parameters of the proposed sys-
tem could also be fine-tuned through more experimentation. To further improve results,
global optimization techniques can be implemented in order to further optimize the ob-
tained itineraries. For instance, considering request exchange among vehicles could de-
crease global costs. Finally, we would like to include transfer operations as an option for
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the scheduler to allocate requests. These operations have the potential to simplify the fleet
operation, cutting costs. On the other hand, regarding experimentation, it would be inter-
esting to assess the impact of different levels of demand dynamism, tighter request time
windows, or different dispatching strategies, to mention a few. Finally, simulation results
could be enhanced by considering factors such as vehicle autonomy or strategic agent
behavior.

As closing remarks, we want to state that there is a need for specific investigations on
the successful implementation of DRT. To bridge such a gap, researchers must go beyond
service quality to focus on the adoption rate and usage of the system. For instance, we
believe in the potential pricing policies that could both attract new users to the system
and, in addition, influence how they use it to improve the overall quality of service.
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24. Schlüter, J., Bossert, A., Rössy, P., Kersting, M.: Impact assessment of autonomous demand re-
sponsive transport as a link between urban and rural areas. Research in Transportation Business
& Management 39, 100613 (2021)

25. Tisue, S., Wilensky, U.: Netlogo: A simple environment for modeling complexity. In: Int. con-
ference on complex systems. vol. 21, pp. 16–21. Boston, MA (2004)

26. Vallée, S., Oulamara, A., Cherif-Khettaf, W.R.: Maximizing the number of served requests in
an online shared transport system by solving a dynamic darp. In: Computational Logistics. pp.
64–78. Springer International Publishing, Cham (2017)

27. van Engelen, M., Cats, O., Post, H., Aardal, K.: Enhancing flexible transport services with
demand-anticipatory insertion heuristics. Transportation Research Part E: Logistics and Trans-
portation Review 110, 110–121 (2018)



Flexible Rural Demand-Responsive Transportation 267
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