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Abstract. In this paper, we propose a Programmable Intraflow-based IoT Botnet 

Detection (PI-BODE) system. PI-BODE is based on the detection of the 

Command and Control (C&C) communication between infected devices and the 

botmaster. This approach allows detecting malicious communication before any 

attacks occur. Unlike the majority of existing work, this detection method is based 

on the analysis of the traffic intraflow statistical parameters. Such an analysis 

makes the method more scalable and less hardware demanding in operation, while 

having a higher or equal level of detection accuracy compared to the packet 

capture based tools and methods. PI-BODE system leverages programmable 

network elements and Software Defined Networks (SDN) to extract intraflow 

features from flow time series in real time, while the flows are active. This 

procedure was verified on two datasets, whose data were gathered during the time 

span of more than two years: one captured by the authors of the paper and the 

other, IoT23. 

Keywords: Botnet detection, Machine learning, IoT malware, programmable 

networks. 

1. Introduction 

Botnet is a network of computers (bots) that are under the control of a malicious hacker 

- botmaster. Botmasters use the devices under their control for various types of 

malicious activity, such as: performing Distributed Denial of Service (DDoS) attacks, 

spreading ransomware, stealing personal information, unwanted digital currency 

mining, and other [1]. Botnets came into the spotlight with the devastating attacks of the 

Mirai botnet which at one moment consisted of more than 600.000 devices. Although 

the peak of the first Mirai infection was in 2016, malware based on the Mirai code still 

exists and is active in creating new botnet infrastructures. For example, there has been 

an emergence of new botnets built using a variant of Mirai with the addition of recent 

exploits in the networking equipment [2]. Furthermore, new botnet generating malware 

appears every day, often reusing the code of the previous malware, making small 

changes (e.g., changing IP addresses or some strings in the messages exchanged) in 

order to avoid the detection or even mixing the features of multiple malware families. 

The recently discovered Dark Nexus botnet malware which is built on top of Mirai and 

QBot code [3] is one such case. For many recent botnet malware samples it is difficult 
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to tell which family they belong to, and multiple tags in relevant malware databases like 

URLhaus [32] are assigned to them.   

In the botnet infrastructure, the botmaster communicates with the infected computers 

via the command and control (C&C) channel. One use of the C&C channel by the 

botmaster is to maintain the list of active bots. Botmaster either periodically polls the 

bots or requires periodic messages from bots using so-called C&C heartbeat packets. 

Another key use of C&C is to initiate the attack or to send other commands to the bots. 

By exploring C&C dynamic behavior patterns and creating a system that can efficiently 

discover botnet communication, it is possible to stop the bots before they become 

activated by the botmaster and involved in an attack. Since the C&C channel is a single 

point of failure for the botnet and its detection and mitigation fully disables the control 

exerted upon the bots, C&C channels evolved in time, and their detection avoidance 

techniques (e.g. Domain Name System (DNS) fluxing or Domain Generation 

Algorithms (DGA)[4]) became more sophisticated. However, our preliminary 

investigation [5] of the recorded samples of IoT malware did not show sophisticated 

detection avoidance techniques among the IoT malware samples. It revealed similar 

C&C behavior among multiple malware families due to the previously mentioned code 

reuse. C&C heartbeat communication differed in some aspects (e.g., strings in packets, 

the number of packets exchanged in bursts, IP flags, heartbeat initiators), but on the 

other side kept some features with relatively stable and similar values (e.g., low and 

constant bit rates, flow symmetry, periodicity and so on) which can be used for botnet 

detection. 

Botnet or botnet-based attack detection are nowadays based on traffic statistics 

analysis. In this type of analysis there is a trade-off between the richness of data on one 

hand and network capacity, storage and processing capabilities on the other. Flow-based 

detection methods (that use e.g. IPFIX or similar flow gathering mechanisms) [6] store 

only the digest information about each network flow upon its completion (duration, 

number of packets and bytes). However, these methods have several drawbacks. First, 

full information about the flow is recorded after each flow ends, meaning that it can 

provide information about the attack or malicious behavior post factum. For long 

network flows, such as C&C heartbeats, communications last for hours or even days 

before the bot is activated for the attack. Such flows are either cut into multiple separate 

flows at the active flow timeout, which destroys the original flow properties, or stored 

too late to be detected during the C&C operation. Second, the global flow statistics are 

too coarse-grained and do not provide enough information about the intraflow 

dynamics, preventing the detection of some malicious activity. The alternative to this 

method is the analysis based on full packet capture, which provides an insight into all 

the packets on a specific link. The drawback to this is large overhead in processing of 

such data. One day of traffic recorded on a 100Gbps link amounts to approximately 1 

petabyte of data that needs to be stored and processed. Furthermore, with most of the 

internet traffic being encrypted nowadays, stored packet data cannot provide any 

information apart from the size of the payload, rendering this approach highly 

inefficient. Therefore, in this paper we propose a PI-BODE system that lies in between 

the two aforementioned approaches. The system, based on Software Defined 

Networking principles, gathers flow statistics, enriched with the set of intraflow 

statistical parameters, while the flows are still active. Botnet detection is based on 

detecting C&C communication patterns through the analysis of intraflow statistical 

features, which to the best of our knowledge were not used before.  
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The solution was designed and evaluated using the analysis of real malware captures 

which were gathered in the Laboratory for information security at the School of 

Electrical Engineering in the period between June 2019 and October 2020 (ETF-IoTB 

dataset), and the IoT23 dataset captured in the period 2018-2020. The experimental 

results show that the PI-BODE is capable of achieving the same or higher level of 

detection accuracy as in the similar systems that use full traffic analysis, while it 

requires up to two orders of magnitude less storage space.  

The structure of the paper is as follows. Section 2 provides an overview of the 

existing research literature. Section 3 discusses the datasets that are often used in botnet 

detection research, their properties and presents in detail the datasets that were used in 

this research. Section 4 describes the methodology of gathering and choosing the 

intraflow statistical features analysis. It also describes the proposed PI-BODE, a 

Software Defined Networking (SDN)-based intraflow statistics capturing system. 

Section 5 gives an overview of the data science pipeline used in this research. It 

describes each classifier used, feature selection and estimator parameter tuning steps. In 

Section 6, we presented the scores of the PI-BODE machine learning for both datasets. 

Obtained results are compared to the results from the related research that uses C&C 

communication detection. Finally, Section 7 summarizes the paper. 

2. Related Work 

Devastating botnet attacks on the computing and communication infrastructure 

provoked an increased research interest in their detection and mitigation in the last 

decade. Two most common botnet-related research topics are: 1. detecting the attacks 

and attack patterns (most often DDoS), which presents the larger part of the research 

work, and 2. detecting the botnet infrastructure and bot behavior. Since DDoS attacks 

are most often characterized by a high number of connections from various IP addresses 

or a high total volume of traffic, the former is done by finding anomalies in the numbers 

of connections and total traffic volume from the packet or flow captures [6]. However, 

such an approach provides information about the attack after the damage was made. For 

our research on C&C communication detection, more relevant is the second group of 

related research where we focus on the most recent papers. A thorough overview of 

these, mainly machine-learning based approaches is given in [7]. The key differences 

among the previous studies were the set of traffic features that were used to detect 

botnet behavior, the sources of information about the traffic (packet or flow trace), the 

type of botnet analyzed and the dataset that was used and machine learning methods.  

One of the first C&C-related studies [8] focused on Internet Relay Chat (IRC) based 

C&C communication by using 16 features extracted from the full packet header traces. 

These features included regular statistics that can be obtained through network flow 

analysis, as well as packet size histogram and variances of the bytes and packet inter-

arrival times for each flow. On the other side, a more recent study [9] provided an 

enriched traffic model and a dataset with 29 recorded and 14 generated traffic features 

for specific groups of flows and 3 category fields. Meanwhile, some authors explored 

traffic properties which cannot be found in the previously mentioned datasets, such as 

the periodicity in botnet communication for HTTP-based C&C communication [10, 11]. 

Wang et al. [12] created a BotMark system, which combines graph-based and statistical 
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features of traffic and hybrid analysis using similarity, stability and anomaly scores. 

This method uses the aforementioned scores as input for the ensemble method to 

classify network traffic. One of the particularly interesting features of the BotMark 

system is the detection method, which relies on the observed flow similarity (multiple 

bots have similar communication patterns with the botmaster) as the basis for the botnet 

communication detection.  

Cusack et al., created a ransomware detection system based on machine learning and 

SDN-based feature extraction [13]. The network feature set in [13] includes features 

such as the interarrival times, the ratio between the inflow and outflow packet counts 

and burst lengths, which have specific values in the analyzed ransomware 

communication. Another paper that proposed the usage of SDN for detecting threats on 

the Internet of Medical Things is that of Liaqat et al. [14]. Authors used SDN to collect 

packet data and make forwarding decisions, which can be leveraged to stop botnet 

spreading. The detection mechanism uses Convolutional Neural Networks and Cuda 

Deep Neural Network Long Short-Term Memory (LSTM). Paper by Bilge et al. [15] 

focuses on the detection of botnet C&C communication using NetFlow statistics as 

parameters for the machine learning algorithm. Authors noticed some characteristic 

patterns of the C&C communication in the set of malware samples they analyzed (e.g., 

periodic generation of new flows, flow sizes, client access patterns, and inter-flow 

temporal behavior) and used inter-flow statistics to get a richer set of features that is 

used for the C&C channel detection. The innovative idea presented in this paper is 

observing flow sizes between two endpoints over a significant period of time, with the 

supposition that the sizes of the flows in a botnet communication will not change 

significantly as time passes. The main difference between [15] and our paper is that in 

[15] authors calculated statistics based on completed flows between two endpoints at a 

given time, while our paper adds fine-grain statistics of each individual flow. Blaise et 

al. in [16] propose an anomaly detection technique that spots the changes in the usage of 

a single port to identify botnets. The method is oriented towards the initial phases of the 

infection - TCP scans, and is adapted to detect even slow and stealthy changes. 

Koroniotis et al. worked on the detection of various attacks towards the IoT 

infrastructure including probing attacks (scanning and fingerprinting), DoS and 

information theft [9]. The paper by De la Torre Parra et al. [17] provides an overview of 

IoT based botnets and their detection methods. Authors used LSTM neural networks for 

the attack detection. The attack set in that paper included various types of traffic floods, 

but also scanning as a preparatory attack phase and sending spam data. Kurniabudi et al. 

in [18] analyzed feature selection using information gain as a criterion and created 

several classification machine learning models. It was shown that the model prediction 

depends on the number of features selected, and that the optimal number of those 

features differs from model to model. One significant branch of work was directed 

towards DNS-based botnet evasion techniques detection, such as DGA and DNS-

fluxing [4,19-22]. Since the analyzed IoT malware samples did not use such 

mechanisms in this paper, DNS-based evasion techniques were not considered.  

In contrast to previously mentioned approaches, all based on full packet capture 

analysis, PI-BODE uses flow information enriched with an original set of intraflow 

features, which creates a new type of dataset for the C&C channel detection, different 

from the datasets mentioned in this section. The produced dataset is significantly 

smaller, allowing cheaper storage and processing capabilities while providing at least 

the same level of detection accuracy. Flow statistics are extracted leveraging the 
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capabilities of the programmable network elements while the flows are still active, 

which enables online botnet detection. Similarly to the other research, PI-BODE uses 

machine learning techniques for detecting botnet C&C heartbeat communication 

channels. 

3. Malware Samples and Datasets in Recent Botnet Research 

One of the critical decisions in malware and intrusion detection research is the choice of 

the malware samples and dataset which are used for algorithm training and evaluation. 

A recent study [23] emphasized some issues with the datasets that are often used for the 

research. Some of those issues are dataset age or conditions under which the traffic was 

recorded, which become irrelevant due to the changes in the attack patterns over the 

years. Such an example is the NSL-KDD dataset, which was recorded more than twenty 

years ago, yet it is still being used in some recent research studies [24-26]. The use of 

this dataset can be justified for research on the volumetric type of (D)DoS attacks, 

which do not change a lot in nature over time. However, other botnet features, like other 

information security threats, tend to constantly change their pattern of behavior to avoid 

detection.  

Some features, such as scanning, malware proliferation mechanisms or C&C 

communication continuously change in time [27]. It is a well-known fact that Mirai 

malware had 24 versions only in the first two months since it appeared [28], and its 

derivatives still appear daily. For such changing features, the use of outdated datasets 

gives results of limited usability. Besides, the age of the datasets, Al-Hadrami et al. [23] 

highlighted the problems with labeling these datasets. For instance, the information 

about the conditions under which they have been recorded. However, we would like to 

emphasize another issue with recent datasets that are commonly being used for this type 

of research. Datasets are recorded over a limited time presenting a snapshot of the threat 

landscape at that brief moment. Table 1 summarizes some of the recently used datasets 

for botnet detection. 

Table 1. Dates when some of the commonly used datasets were recorded 

Dataset Used in Year of recording Recording duration 

AWID [26] 2015 9 days 

ISOT [8] 2017 7 days 

CIC-IDS [18][24][26] 2017 5 days 

BotMark [13] 2016 16 days 

Bot-IoT [8][10] 2018 6 days in a one-month period 

NIMS [29] 2014 1 day 

To avoid models overfitted to one specific dataset and threat, we argue that the 

dataset should be created over a longer period and continuously refreshed. Also, the 
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research should focus on finding the features which rarely change, while the verification 

of machine learning models must be done on different, most recent datasets, captured 

over longer periods. Therefore, we decided to create our own dataset (ETF-IoTB), based 

on recorded malware samples over a period of more than one year, while performing 

verification with the IoT23 dataset [30]. The dataset details are given in the remainder 

of this section. 

3.1. ETF-IoTB Dataset 

The ETF-IoTB dataset was obtained by recording the traffic of the devices infected with 

the malware samples [31]. Malware samples were downloaded from the links in the 

URLHaus [32] database of the recent malware distribution points. Malware was 

executed on RaspberryPi 3 devices with Raspbian OS. RaspberryPi devices were 

connected to the internet without any protocol filtering, apart from protecting the local 

network infrastructure from malware lateral movement. The created dataset fulfills 

several recommendations of what constitutes a correct botnet dataset [33]: includes real 

botnet communication and not simulation, has unknown/regular traffic, has ground-truth 

labels for training and evaluating the methods and includes different types of botnet 

malware. Benign traffic was traffic from a regular workstation during the day.  

The infected devices were constantly monitored in order to detect the situations when 

there is a sharp increase of the traffic volume as an indication that the infected machine 

is a part of the DDoS attack. The devices typically worked in the pre-attack phase, when 

their initial and C&C heartbeat communication were recorded, and in few cases were 

stopped as soon as the DoS attacks from the infected device were noticed, as described 

in the provided dataset. Malware dynamic behavior samples were downloaded in the 

period between June 15th 2019 and October 15th 2020.  Two IoT malware families 

which are the most common today were analyzed: Mirai and Gafgyt. The dataset 

consists of sixteen Mirai, eighteen Gafgyt and one NanoCore sample. More details 

about the dataset and noticed patterns of C&C communication, as well as initiating 

attack commands are given in our previous work [5]. 

3.2. IoT23 Dataset 

The IoT23 dataset is the latest dataset provided by the Technical University in Prague. 

Dataset consists of labeled benign and botnet traffic collected on IoT devices. The 

IoT23 dataset contains 23 scenarios, 20 of which contain malware traffic, while the 

remaining 3 contain benign traffic. Traffic samples in this dataset were captured in the 

period between 2018 and 2020. Malware was also recorded on RaspberryPi devices, 

while the benign traffic scenarios were recorded on various IoT devices: a Philips HUE 

smart LED lamp, an Amazon Echo home intelligent personal assistant and a Somfy 

smart door lock. The IoT23 dataset consists of 7 Mirai, 1 Muhstik, 1 Kenjiro, 2 Torii, 1 

IRCBot, and 1 Gafgyt sample. The datasets are labeled and contain 8 labels related to 

the C&C communication. 
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4. Intraflow Statistical Feature Analysis 

In this section we present PI-BODE principles of operation and gathering network 

intraflow statistical features. 

4.1. Capturing Intraflow Information 

Intraflow statistical parameters can be obtained from the packet capture (pcap) files 

using a software tool similar to Joy [34], which is capable of extracting some intraflow 

features (e.g., per-flow packet size probability distribution, entropy or Walsh-Hadamard 

transform).  

 

Fig. 1. Sampling flow statistics - A visualization on how packet size in bytes and number of 

packets is collected from a time series 

Unlike this approach, PI-BODE leverages the SDN OpenFlow features for real-time 

statistics capturing. Instead of capturing each packet, our system samples the flow 

statistics periodically and gathers the flow metrics at each sample time. Figure 1 shows 

how flow data is being captured from the SDN switch. By sending the 

OFPFlowStatsRequest message periodically, the controller requests from the switch the 

total number of packets and the total amount of data for each flow. By sampling these 

counters and calculating the difference between the results of the two consecutive 

samples, per-flow time series for packet and byte counts are created. They are then used 

as a basis for various statistical features calculations, described in Section 4.3. 

Two configuration parameters are: sampling period and flow idle timeout value. For 

the first parameter we used 1 second period as a rule of thumb, which showed reliable 

detection results and low network overhead. The choice of the second parameter is 

important for those flows, which have either long idle periods or do not have explicit 

end of flow signalization (e.g., UDP flows). Longer idle timeout means more overhead 

because expired flows will remain longer in the switch tables, but also simpler 

processing at the analysis station. Processing is simpler because there is no need to 

concatenate the parts of the flows with long idle periods if they are broken in multiple 

flows. We used 2 minutes for the idle timeout, as the longest periods in the C&C 

heartbeat communication we observed were 60s, thus ensuring non-interruptible C&C 
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flow recording. These parameters also define the key limitations of the PI-BODE 

detection system. Worse detection results can be expected if the C&C communication 

patterns change in a way which would make them hardly noticeable with the chosen set 

of configuration parameters (sampling period and idle timeout). Botnet heartbeats with a 

period shorter than sampling period or longer than the idle timeout would be difficult to 

detect. However, in case of such changes, the system can be easily reconfigured to adapt 

to the changes. 

 

Fig. 2. Flow statistics gathering algorithm - Algorithm used by the SDN controller to perform 

flow switching 

The simple algorithm for the TCP flow statistics gathering is given in Figure 2. For 

each TCP flow, the key events (first packet and terminating handshake) cause flow rules 

to be added or deleted in the switch. The SDN switch works as a Layer-2 transparent 

bridge where packets are being forwarded per flow. Each new flow, defined as a tuple 

(Source IP, Destination IP, Source Port, Destination Port, Transport protocol) creates a 

new entry in the controller’s flow statistics time series database. Each flow has an 

OFPFF_SEND_FLOW_REM flag set to force the switch to send the summary 

information to the controller upon the flow removal. UDP or TCP flows with idle 

periods longer than the idle timeout are removed from the flow time series database 

upon the expiration of the idle timeout values.  

Intraflow data series provide a more compact dataset and a much smaller network 

overhead. The exact gain in the amount of transferred traffic from the network element 

needed to do the attack detection is difficult to estimate, as it depends on various 

parameters in a given network traffic sample like: flow length distribution, number of 

packets per flow, flow ending methodology and others. We will illustrate the difference 

using one example which is taken from our packet capture [31]. One of our packet 

capture files with the non-malware traffic contained a total of 1,474,536 packets, which 

created 5,171 network flows of a total size of 2.496 gigabytes. The duration of the 

packet capture was 12,641s with 116 packets or 196 kilobytes per second on average 

transferred from the network element towards the analysis station. That same traffic 

when we used flow parameters sampling rate of 1s created the average traffic from the 

network element towards the controller in the range between 685 and 6,979 bytes per 

second for varying idle flow timeout values between 5s and 600s respectively that is a 

reduction in storage and network overhead between 28 and 280 times. 
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4.2. SDN Based Botnet Detection System based on intraflow statistics 

Since most of the IoT devices do not possess sufficient hardware capacities, software on 

them is often simple and prone to attacks. Adding additional security measures on the 

IoT devices is not always possible, meaning security measures must be implemented on 

the network level. The optimal solution is to place the attack detecting device in the line 

of the packets that flow between the protected devices and the internet and act as both 

intrusion detection and prevention systems (IDS and IPS) (Figure 3). 

 

Fig. 3. IDS system using SDN - A schematic diagram of a system that protects the LAN from 

botnet attacks 

The PI-BODE SDN controller software consists of three components (depicted in 

Figure 4.): Flow engine, Data collection thread and Analysis thread. The flow engine 

enables packet forwarding through the network. Each network flow has its own entry in 

the switch's flow table, but in terms of packet rewriting the switch does the basic Layer-

2 forwarding. The data collection thread is used to collect packet and byte counts for all 

flows each second, and the collected data are then put into their appropriate time series 

as described in Section 4.1.  

 

Fig. 4. SDN controller’s internal structure - Principal components of the SDN controller, as well 

as its interactions with the switch 

For all flows we also captured flow duration, total number of packets and number of 

entries in the empirical distribution. These parameters are not deemed flow features that 

are used in the detection process but are used to calculate the other features. 

Furthermore, flow duration is also the criterion that qualifies the flow to be used in the 

detection process. All flows shorter than 60s are not used for the botnet C&C detection. 

Some bots within the ETF-IoTB dataset (for example, xs.arm7 and nuclear.arm7) that 
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use periodic C&C pings and each ping represents a different flow (uses different port 

numbers for each ping). In these cases, defining a flow as double (src_IP, dst_IP) can 

capture the C&C communication and make flow tables more compact. However, in the 

remainder of the document we worked with tuples as defined in Section 4.1. 

4.3. Intraflow Features 

As described in Section 4.1, for each flow, packet and byte count samples are put into 

two time series, with a 1s time bin. From those time series we extracted 22 statistical 

features. Table 2 lists 14 features that will be analyzed in the remainder of this paper, 

their brief descriptions and Area Under Curve (AUC) values. The detailed discussion 

about the use of AUC values is given in Section 5.2. 

Features 1-11 are extracted from the two time series. Features 12-14 are extracted 

from the empirical distribution of the flow quiet times. The flow quiet time is the 

number of contiguous time bins whose byte count value is 0. Empirical distribution of 

the flow quiet times consists of the number of occurrences of different flow quiet times 

in a bytes flow time series. The reason for creating such a distribution is that the 

observed botnet C&C behavior consists of periodic exchanges between the C&C and 

bot for most of the time. Therefore, by capturing intervals of flow inactivity and 

analyzing their distribution, it is possible to detect this periodic behavior. The 

explanation of the flow collection process was given in Section 4.2. 

5. C&C Detection Methodology 

To detect IoT based C&C communication, a regular machine learning method is applied 

and further optimized using a data science pipeline which comprises the following 

steps: data extraction and handling, feature selection, hyperparameter tuning and 

classification. One step that is often used as a part of the data science pipeline is data 

transformation, namely, normalization and standardization [36]. These procedures 

transform range or data distribution for each feature, which allows certain classifiers to 

show better performance. However, there is a reason for not using data transformation 

in machine learning models that are applied to security systems. Normalization and 

standardization are based on transforming feature values in a certain dataset, using 

statistical properties of each feature. The goal of the detection system is to detect 

malware unknown during the training phase. With transformed data, new malware can 

have features whose values are out of bounds of the normalized or standardized dataset 

that was used for training. 
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Table 2. Intraflow features used in the C&C flow detection 

No Feature Feature description AUC 

1 
Average flow throughput 

(bytes/s) 

Number of bytes per second of the time series which is re-

calculated after each new sample is added to the time series. 
0.96 

2 

Average number of 

packets in a flow 
(packets/s) 

Number of packets per second of the time series which is re-

calculated after each new sample is added to the time series. 
0.93 

3 
Median of the throughput 

time series (median) 
Median value of all time bins in throughput time series 0.553 

4 
Average throughput 

difference 

Difference between the average flow throughputs for 

bidirectional sessions 
0.738 

5 
Average throughput ratio 
(Bidirectional bytes 

ratio) 

Ratio between the average flow throughputs for bidirectional 

sessions. 
0.805 

6 Standard deviation (Std) Throughput time series standard deviation 0.863 

7 Correlation (Corr) Pearson correlation coefficient of the throughput time series 0.551 

8 ADF Stat value 
Augmented Dickey–Fuller test (ADF test): a statistical test which 

determines whether a time series is stationary or not. 
0.511 

9 ADF Test p-value p-value for the ADF test 0.607 

10 
Autocorrelation 

(Autocorr) 

Autocorrelation of the bytes count time series calculated at the 
lag equal to the highest probability in the empirical distribution 

of the flow inactive periods (described below). This feature aims 

to capture the periodic behavior of the flow. 

0.985 

11 Entropy 
Throughput time series entropy calculated using the formula 
H(X)=-iP(xi)ln(P(xi)), where P(xi)is the probability of a packet 

having given size. 

0.767 

12 Best/Other ratio 

The ratio of the probabilities of the value that appears the most 

often in the empirical probability distribution and the most 
probable highest value in the periodicity dictionary to the sum of 

other values 

0.893 

13 Best/Second ratio  
The ratio of two most probable values in the empirical 

distribution  
0.85 

14 Top Two 
Sum of top two values that appear the most often in the empirical 
distribution 

0.849 

5.1. Classifier Description 

The classifiers used in this paper are: K-nearest neighbor (KNN), logistic regression, 

and random forest from the Python sklearn library. The K-nearest neighbor algorithm is 

a non-parametric method used in pattern recognition [35]. Each data point is represented 
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by a n-dimensional vector in feature space. The training phase of the algorithm consists 

of storing the data points with labels. The classification phase begins by considering 

each new data point’s position in feature space. Then, by using a distance metric, k-

nearest neighbors are determined, and a data point is classified by majority voting.  

Logistic regression uses a sigmoid function to perform classification. This machine 

learning model is the discrete version of linear regression. Using the data point 

representation as n-dimensional vectors designated with xi, polynomial real coefficients 

designated with  i, and error value designated with ε, the input to the sigmoid function 

has the following form: 

f(x) =  1 x1 +  2 x2 + … +  n xn + ε. (1) 

The value of probability is between 0 (data point certainly belongs to class “0”) and 1 

(data point certainly belongs to class “1”). The classes named “0” and “1” are defined 

before classification. During the training phase, each data point is fed into the sigmoid 

function, fitting the coefficients and error value so that the best fit is achieved.  

Random forest belongs to a class of data science models called ensemble methods. In 

essence, an ensemble method combines many simple or weak classifiers, and the 

classification is performed using majority voting. The core classifier in this method is 

the decision tree, consisting of nodes and leaves. Each node contains a boundary value 

for a feature, whilst the leaves contain the information to which class a certain data 

point belongs. Selecting a subset of features, as well as a ranking function, the features 

are ranked and the decision tree is constructed. This is done by putting the features as 

boundary values inside the decision tree, going from the topmost ranking feature down 

to the lowest. The random forest consists of a certain number of random trees, and the 

class for the data point is determined by majority voting.  

5.2. Feature Selection 

Dimensionality reduction is an important step in order to create a classifier suitable for 

the implementation in the network elements in terms of memory and processing power 

consumption. For this purpose, the area under the curve (AUC) for receiver operating 

characteristic (ROC) calculated as if each feature alone was used for the classification is 

used as a measure of the impact that the specific feature has on the classification.  

The ROC is a plot that shows for each value of a feature the ratio of true positive rate 

(TPR) to true negative rate (TNR). The number of true positives and the number of true 

negatives is designated as TP and TN, while the number of false positives and the 

number of false negatives is designated as FP and FN. TPR and TNR two values are 

calculated as follows: 

TPR = TP / (TP+FN), TNR = 1 - Specificity = 1 - TN / (TN + FP). (2) 

The ROC is a probability curve, and the AUC value shows how well a certain feature 

separates the data correctly into classes. The AUC holds values in the [0,1] interval, 

where a value closer to one indicates a better feature score. The features with the AUC 

values higher or equal to 0.85 are autocorrelation, throughput (bytes/s), packets/s, 

Best/Other ratio, Standard deviation, Best/Second ratio. However, the features that are 

chosen for the classification process should not be mutually correlated as this means 

that they describe the same or similar dataset property. Therefore, a correlation matrix 
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was used to test the correlation between all pairs of features. The correlation matrix is 

shown in Figure 5. High correlation (greater than 0.8) is observed between the bytes/s 

and packets/s features. Therefore, the five features that are chosen as input features to 

the classification process are Autocorrelation, Throughput (bytes/s), Best/Other ratio, 

Standard deviation of the throughput time series and Best/Second ratio. 

 

Fig. 5. Correlation matrix for feature selection - A correlation matrix of all the input features, 

which is used for feature selection. 

5.3. Estimator hyperparameters 

Each estimator has a set of hyperparameters, which define its behavior. In this phase, 

we analyzed the combination of estimator parameters that maximizes the scores used in 

classification using a “fit” and a “score” method implemented by the GridSearchCV 

method [37] in the sklearn Python library. The method is slightly modified as described 

below to fit the analyzed datasets which are disbalanced. The set of scores used in this 

paper are precision (PREC), recall (REC), and f1-score (F1) [35]. These scores are 

given in the equations below:  

PREC = TP / (TP + FP),  

REC = TP / (TP + FN),                   

F1 = 2 · PREC · REC / (PREC + REC). 

(3) 

Precision is a measure which shows how many false negatives are there during 

classification, while recall is a measure which shows how many false negatives are there 
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during classification. The F1 score represents a measure whose objective is to analyze 

the trade-offs between correctness and coverage in classifying positive instances [38], as 

it includes both precision and recall. Although accuracy is a more intuitive metric, these 

three measures are chosen because there is a difference in sizes of normal and botnet 

flows that is larger than 20 percent, which is considered a disbalanced dataset. In case of 

disbalanced datasets accuracy can be biased towards the majority class. Even high 

accuracy values can yield poor classification rates on minority classes and classifiers 

can have low predictive power [39]. Botnet C&C datasets are disbalanced because 

botnet C&C communication is a relatively rare occurrence in network traffic compared 

to all the other traffic and produces typically one or few flows at a time. 

Balanced sampling was used to split data into training and testing subsets with a 

90/10 ratio. The data is split in such a manner, in order to preserve the ratio of classes 

from the dataset, which is known as stratified sampling. A similar approach was 

presented in [40], in order to account for class imbalance in the dataset. After splitting 

the dataset, the model is trained and tested, and the scores are extracted. This procedure 

is repeated 100 times, and mean values are calculated for all scores (Monte Carlo cross-

validation [41]). This approach was taken by the authors in order to have as much 

variation to the training and testing set scenarios, while keeping the number of scenarios 

tested to a minimum. Again, because the dataset is disbalanced, this method is more 

appropriate than the ubiquitous k-fold cross-validation, which splits the whole dataset 

into k equal parts. Such an approach produces some parts of the dataset to have low 

presence of botnet data points. After calculating all the scores, the list of parameter 

combinations is searched for those having the maximum values for all scores. In the 

following paragraph, an overview of the tested hyperparameters for both datasets is 

given. After the name of each hyperparameter, the best value is given in parentheses. If 

there is one value, that means that the value is best for both datasets, while if there are 

two values, the first one refers to the ETF-IoTB dataset, and the other refers to the 

IOT23 dataset. 

The hyperparameters that were considered for the KNN classifier are the following: 

number of neighbors (5), weight function (uniform), neighbor computation algorithm 

(ball tree), and the distance metric (Manhattan). The hyperparameters that were 

considered for the logistic regression classifier are the following: inverse of the 

regularization strength (0.25), class weights (none), option of adding a constant to the 

decision function (false), maximum number of iterations (100), solver (newton-cg, 

lbfgs), and the tolerance for the stopping criteria (0.001, 10
-5

). The hyperparameters that 

were considered for the random forest classifier are the following: class weights 

(balanced subsample), ranking function (entropy), max number of features (none), and 

the total number of estimators (200). 

6. PI-BODE Classification Evaluation 

This section presents and discusses the results of machine learning classification for 

three estimators: KNN, Logistic regression and Random Forest, using the 

hyperparameter values determined in the previous section. Precision, Recall and F1 

scores for the PI-BODE detection method are given in Tables 3 and 4 for the ETF-IoTB 

and IoT23 datasets, respectively.  



 PI-BODE: Programmable Intraflow-based IoT...           51 

 

 

Table 3. Scores for all the estimators for the ETF-IoTB dataset 

Model botnet 

precision 

botnet 

recall 

botnet 

f1 score 

normal 

precision 

normal 

recall 

normal f1 

score 

KNN 0.9363 0.9141 0.9218 0.9967 0.9973 0.9970 

Logistic 

regression 

0.9131 0.9247 0.9150 0.9971 0.9962 0.9967 

Random 

forest 

0.5954 0.6240 0.5994 0.9859 0.9948 0.9902 

Table 4. Scores for all the estimators for the IOT23 dataset 

Model botnet 

precision 

botnet 

recall 

botnet f1 

score 

normal 

precision 

normal 

recall 

normal 

f1 score 

KNN 0.8683 0.8759 0.8690 0.8558 0.8382 0.8423 

Logistic 

regression 

0.8347 0.8778 0.8510 0.8522 0.7858 0.8093 

Random 

forest 

0.5564 0.6071 0.5780 0.7566 0.8733 0.7724 

Several conclusions can be drawn from these results. First, the highest scores on both 

datasets prove that this method can be used to detect botnet C&C communication with 

high precision. Second, even though the feature selection was done on the ETF-IoTB 

dataset, the results of the detection method on the IoT23 dataset that contains a different 

set of malware samples (Muhstik, Kenjiro, Tori in addition to those in the ETF-IoTB 

dataset) revealed similar precision compared to the other research papers. It can be 

concluded that the key C&C features in different malware samples are not largely 

different in two datasets. Also training a model, which uses features obtained from the 

intraflow statistics, can detect the C&C communication of the malware samples that are 

not in the dataset used to train the model, so the zero-day malware detection is possible. 

Third, the results show that for both datasets, KNN and Logistic Regression classifiers 

have given the best results, while having little discrepancies between the precision and 

recall scores. This means that there is little difference between the number of false 

negatives and false positives, demonstrating detection stability. The consistency in 

classifier performance shows that the proposed method performs well regardless of the 

dataset used. On one hand, KNN classifier shows a slightly better score than Logistic 

Regression classifier, while on the other KNN has much greater memory usage and is 

impractical to be used in network elements. Since ultimately these models should be 

implemented in a security system, using a Logistic Regression classifier is 

recommended, because it gives nearly the best scores among all the classifiers, while 

keeping the memory usage at a lower level. 
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Papers in references [11] to [13] have, similar to our approach, sought to detect 

botnets and ransomware via the C&C communication. In paper [11], the research 

showed an accuracy of 80% in classifying botnet periodicity, which is lower than scores 

obtained in our research for the best classifiers. Tables 5 and 6 show research results 

presented in papers [12] and [13], respectively. In paper [12], the BotMark detection 

system has shown a high accuracy (0.9994) and low false positive rate scores. However, 

since the F1-scores are low for all previous research methods (0.115 for BotMark, 

compared to 0.915 and 0.85 for PI-BODE Logistic Regression) while the false positive 

rate is also low, this means that the false negative rate is high, which further implies that 

the stability of the BotMark classifiers is low, and certainly much lower than in PI-

BODE.  

Table 5. Scores for all the methods in paper [12] 

Method F-score Accuracy 

True 

Positive 

Ratio 

False 

Positive 

Ratio 

Similarity 0.087247 0.9904 0.9836 0.009645 

Stability 0.060732 0.9868 0.9115 0.013181 

C-flow 0.152788 0.9949 0.9836 0.005108 

Graph 0.034811 0.9166 0.9836 0.083478 

BotMark 0.115207 0.9994 0.9836 0.000641 

Table 6. Scores for all the methods in paper [13] 

No of features Precision Recall F1-score 

28 0.83 0.89 0.86 

8 0.86 0.87 0.87 

Authors in [13] use precision, recall and F1-score as scores for their classifier. In 

both cases presented in [13], with 8 and 28 features, score values are in the range 0.83 to 

0.89. This is worse classification performance than with the PI-BODE whose scores 

when the system is trained, verified and tested on the ETF-IoT dataset, are in the range 

0.914 to 0.936 for the KNN and Logistic Regression classifiers. Even with the classifier 

training on the ETF-IoT dataset and testing on the IOT23 dataset (zero-day detection 

case), the scores are in the range 0.83 to 0.88 which is comparable to the scores 

obtained in [13]. Also, what needs to be taken into account is the fact that both of these 

papers show only the scores in regards to the whole dataset. In the case of balanced 

datasets, scores can be presented this way. However, since malware represents a minor 

part of each network traffic, such datasets are disbalanced by nature. Scores presented in 

this way should be treated with caution, since there is no information on the machine 

learning model’s performance on both normal and malware traffic. At last, but not at 



 PI-BODE: Programmable Intraflow-based IoT...           53 

 

 

least ransomware C&C communication detection described in [13] is based on full 

packet capture analysis meaning a much higher network and storage overhead. 

7. Conclusion 

In this paper, we proposed and demonstrated a novel approach for the detection of 

botnet C&C communication based on SDN and intraflow statistics. It provides more 

traffic description features than flow-based methods, while not using the analysis of all 

packets on a link. Thus, this method represents an in-between solution that saves storage 

and processing power up to two orders of magnitude, yet provides enough detail about 

network conversations for distinguishing malware and normal traffic. Experimental 

results have shown that PI-BODE achieves the same or higher level of botnet detection 

accuracy as in the similar systems which use full traffic analysis. Other conclusions can 

be drawn from the presented research. First, the results prove that botnet C&C 

communication can be detected using the intraflow statistics and proposed traffic 

features. Second, since PI-BODE training and evaluation have been done on the datasets 

that contain various malware samples, it shows that different versions of botnet malware 

have similar C&C communication characteristics and that new malware samples can be 

detected with the system trained on the older malware samples. Third, using an SDN 

controller as an intraflow statistics gathering tool allows creating a simple intrusion 

prevention system for the devices that lack security, such as IoT devices. Using the PI-

BODE approach as a basis, future research should attempt to explore additional 

statistical parameters of the network flow, analyze other malware dynamic properties 

that can be used for the detection, explore the use of other programmable platforms 

(e.g., P4-based) and to assess how to improve the malware detection speed. The 

research presented in this paper can be extended to using other state-of-the-art machine 

learning algorithms, such as boosting models (such as extreme gradient-boosting and 

light gradient-boosting machine) and deep learning models. Also, since computer 

viruses are constantly evolving, training a dataset on current botnets may not be 

applicable to detecting botnets in the future. Therefore, future research should be 

directed towards developing a machine learning model with on-line learning 

capabilities. 
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