
Computer Science and Information Systems 21(1):37–56 https://doi.org/10.2298/CSIS211116064J

PI-BODE: Programmable Intraflow-based IoT Botnet

Detection system

Đorđe D. Jovanović and Pavle V. Vuletić

School of Electrical Engineering, Bulevar kralja Aleksandra 73,

11000 Belgrade, Serbia

jd185001p@student.etf.bg.ac.rs

pavle.vuletic@ etf.bg.ac.rs

Abstract. In this paper, we propose a Programmable Intraflow-based IoT Botnet

Detection (PI-BODE) system. PI-BODE is based on the detection of the

Command and Control (C&C) communication between infected devices and the

botmaster. This approach allows detecting malicious communication before any

attacks occur. Unlike the majority of existing work, this detection method is based

on the analysis of the traffic intraflow statistical parameters. Such an analysis

makes the method more scalable and less hardware demanding in operation, while

having a higher or equal level of detection accuracy compared to the packet

capture based tools and methods. PI-BODE system leverages programmable

network elements and Software Defined Networks (SDN) to extract intraflow

features from flow time series in real time, while the flows are active. This

procedure was verified on two datasets, whose data were gathered during the time

span of more than two years: one captured by the authors of the paper and the

other, IoT23.

Keywords: Botnet detection, Machine learning, IoT malware, programmable

networks.

1. Introduction

Botnet is a network of computers (bots) that are under the control of a malicious hacker

- botmaster. Botmasters use the devices under their control for various types of

malicious activity, such as: performing Distributed Denial of Service (DDoS) attacks,

spreading ransomware, stealing personal information, unwanted digital currency

mining, and other [1]. Botnets came into the spotlight with the devastating attacks of the

Mirai botnet which at one moment consisted of more than 600.000 devices. Although

the peak of the first Mirai infection was in 2016, malware based on the Mirai code still

exists and is active in creating new botnet infrastructures. For example, there has been

an emergence of new botnets built using a variant of Mirai with the addition of recent

exploits in the networking equipment [2]. Furthermore, new botnet generating malware

appears every day, often reusing the code of the previous malware, making small

changes (e.g., changing IP addresses or some strings in the messages exchanged) in

order to avoid the detection or even mixing the features of multiple malware families.

The recently discovered Dark Nexus botnet malware which is built on top of Mirai and

QBot code [3] is one such case. For many recent botnet malware samples it is difficult

38 Đorđe D. Jovanović and Pavle V. Vuletić

to tell which family they belong to, and multiple tags in relevant malware databases like

URLhaus [32] are assigned to them.

In the botnet infrastructure, the botmaster communicates with the infected computers

via the command and control (C&C) channel. One use of the C&C channel by the

botmaster is to maintain the list of active bots. Botmaster either periodically polls the

bots or requires periodic messages from bots using so-called C&C heartbeat packets.

Another key use of C&C is to initiate the attack or to send other commands to the bots.

By exploring C&C dynamic behavior patterns and creating a system that can efficiently

discover botnet communication, it is possible to stop the bots before they become

activated by the botmaster and involved in an attack. Since the C&C channel is a single

point of failure for the botnet and its detection and mitigation fully disables the control

exerted upon the bots, C&C channels evolved in time, and their detection avoidance

techniques (e.g. Domain Name System (DNS) fluxing or Domain Generation

Algorithms (DGA)[4]) became more sophisticated. However, our preliminary

investigation [5] of the recorded samples of IoT malware did not show sophisticated

detection avoidance techniques among the IoT malware samples. It revealed similar

C&C behavior among multiple malware families due to the previously mentioned code

reuse. C&C heartbeat communication differed in some aspects (e.g., strings in packets,

the number of packets exchanged in bursts, IP flags, heartbeat initiators), but on the

other side kept some features with relatively stable and similar values (e.g., low and

constant bit rates, flow symmetry, periodicity and so on) which can be used for botnet

detection.

Botnet or botnet-based attack detection are nowadays based on traffic statistics

analysis. In this type of analysis there is a trade-off between the richness of data on one

hand and network capacity, storage and processing capabilities on the other. Flow-based

detection methods (that use e.g. IPFIX or similar flow gathering mechanisms) [6] store

only the digest information about each network flow upon its completion (duration,

number of packets and bytes). However, these methods have several drawbacks. First,

full information about the flow is recorded after each flow ends, meaning that it can

provide information about the attack or malicious behavior post factum. For long

network flows, such as C&C heartbeats, communications last for hours or even days

before the bot is activated for the attack. Such flows are either cut into multiple separate

flows at the active flow timeout, which destroys the original flow properties, or stored

too late to be detected during the C&C operation. Second, the global flow statistics are

too coarse-grained and do not provide enough information about the intraflow

dynamics, preventing the detection of some malicious activity. The alternative to this

method is the analysis based on full packet capture, which provides an insight into all

the packets on a specific link. The drawback to this is large overhead in processing of

such data. One day of traffic recorded on a 100Gbps link amounts to approximately 1

petabyte of data that needs to be stored and processed. Furthermore, with most of the

internet traffic being encrypted nowadays, stored packet data cannot provide any

information apart from the size of the payload, rendering this approach highly

inefficient. Therefore, in this paper we propose a PI-BODE system that lies in between

the two aforementioned approaches. The system, based on Software Defined

Networking principles, gathers flow statistics, enriched with the set of intraflow

statistical parameters, while the flows are still active. Botnet detection is based on

detecting C&C communication patterns through the analysis of intraflow statistical

features, which to the best of our knowledge were not used before.

 PI-BODE: Programmable Intraflow-based IoT... 39

The solution was designed and evaluated using the analysis of real malware captures

which were gathered in the Laboratory for information security at the School of

Electrical Engineering in the period between June 2019 and October 2020 (ETF-IoTB

dataset), and the IoT23 dataset captured in the period 2018-2020. The experimental

results show that the PI-BODE is capable of achieving the same or higher level of

detection accuracy as in the similar systems that use full traffic analysis, while it

requires up to two orders of magnitude less storage space.

The structure of the paper is as follows. Section 2 provides an overview of the

existing research literature. Section 3 discusses the datasets that are often used in botnet

detection research, their properties and presents in detail the datasets that were used in

this research. Section 4 describes the methodology of gathering and choosing the

intraflow statistical features analysis. It also describes the proposed PI-BODE, a

Software Defined Networking (SDN)-based intraflow statistics capturing system.

Section 5 gives an overview of the data science pipeline used in this research. It

describes each classifier used, feature selection and estimator parameter tuning steps. In

Section 6, we presented the scores of the PI-BODE machine learning for both datasets.

Obtained results are compared to the results from the related research that uses C&C

communication detection. Finally, Section 7 summarizes the paper.

2. Related Work

Devastating botnet attacks on the computing and communication infrastructure

provoked an increased research interest in their detection and mitigation in the last

decade. Two most common botnet-related research topics are: 1. detecting the attacks

and attack patterns (most often DDoS), which presents the larger part of the research

work, and 2. detecting the botnet infrastructure and bot behavior. Since DDoS attacks

are most often characterized by a high number of connections from various IP addresses

or a high total volume of traffic, the former is done by finding anomalies in the numbers

of connections and total traffic volume from the packet or flow captures [6]. However,

such an approach provides information about the attack after the damage was made. For

our research on C&C communication detection, more relevant is the second group of

related research where we focus on the most recent papers. A thorough overview of

these, mainly machine-learning based approaches is given in [7]. The key differences

among the previous studies were the set of traffic features that were used to detect

botnet behavior, the sources of information about the traffic (packet or flow trace), the

type of botnet analyzed and the dataset that was used and machine learning methods.

One of the first C&C-related studies [8] focused on Internet Relay Chat (IRC) based

C&C communication by using 16 features extracted from the full packet header traces.

These features included regular statistics that can be obtained through network flow

analysis, as well as packet size histogram and variances of the bytes and packet inter-

arrival times for each flow. On the other side, a more recent study [9] provided an

enriched traffic model and a dataset with 29 recorded and 14 generated traffic features

for specific groups of flows and 3 category fields. Meanwhile, some authors explored

traffic properties which cannot be found in the previously mentioned datasets, such as

the periodicity in botnet communication for HTTP-based C&C communication [10, 11].

Wang et al. [12] created a BotMark system, which combines graph-based and statistical

40 Đorđe D. Jovanović and Pavle V. Vuletić

features of traffic and hybrid analysis using similarity, stability and anomaly scores.

This method uses the aforementioned scores as input for the ensemble method to

classify network traffic. One of the particularly interesting features of the BotMark

system is the detection method, which relies on the observed flow similarity (multiple

bots have similar communication patterns with the botmaster) as the basis for the botnet

communication detection.

Cusack et al., created a ransomware detection system based on machine learning and

SDN-based feature extraction [13]. The network feature set in [13] includes features

such as the interarrival times, the ratio between the inflow and outflow packet counts

and burst lengths, which have specific values in the analyzed ransomware

communication. Another paper that proposed the usage of SDN for detecting threats on

the Internet of Medical Things is that of Liaqat et al. [14]. Authors used SDN to collect

packet data and make forwarding decisions, which can be leveraged to stop botnet

spreading. The detection mechanism uses Convolutional Neural Networks and Cuda

Deep Neural Network Long Short-Term Memory (LSTM). Paper by Bilge et al. [15]

focuses on the detection of botnet C&C communication using NetFlow statistics as

parameters for the machine learning algorithm. Authors noticed some characteristic

patterns of the C&C communication in the set of malware samples they analyzed (e.g.,

periodic generation of new flows, flow sizes, client access patterns, and inter-flow

temporal behavior) and used inter-flow statistics to get a richer set of features that is

used for the C&C channel detection. The innovative idea presented in this paper is

observing flow sizes between two endpoints over a significant period of time, with the

supposition that the sizes of the flows in a botnet communication will not change

significantly as time passes. The main difference between [15] and our paper is that in

[15] authors calculated statistics based on completed flows between two endpoints at a

given time, while our paper adds fine-grain statistics of each individual flow. Blaise et

al. in [16] propose an anomaly detection technique that spots the changes in the usage of

a single port to identify botnets. The method is oriented towards the initial phases of the

infection - TCP scans, and is adapted to detect even slow and stealthy changes.

Koroniotis et al. worked on the detection of various attacks towards the IoT

infrastructure including probing attacks (scanning and fingerprinting), DoS and

information theft [9]. The paper by De la Torre Parra et al. [17] provides an overview of

IoT based botnets and their detection methods. Authors used LSTM neural networks for

the attack detection. The attack set in that paper included various types of traffic floods,

but also scanning as a preparatory attack phase and sending spam data. Kurniabudi et al.

in [18] analyzed feature selection using information gain as a criterion and created

several classification machine learning models. It was shown that the model prediction

depends on the number of features selected, and that the optimal number of those

features differs from model to model. One significant branch of work was directed

towards DNS-based botnet evasion techniques detection, such as DGA and DNS-

fluxing [4,19-22]. Since the analyzed IoT malware samples did not use such

mechanisms in this paper, DNS-based evasion techniques were not considered.

In contrast to previously mentioned approaches, all based on full packet capture

analysis, PI-BODE uses flow information enriched with an original set of intraflow

features, which creates a new type of dataset for the C&C channel detection, different

from the datasets mentioned in this section. The produced dataset is significantly

smaller, allowing cheaper storage and processing capabilities while providing at least

the same level of detection accuracy. Flow statistics are extracted leveraging the

 PI-BODE: Programmable Intraflow-based IoT... 41

capabilities of the programmable network elements while the flows are still active,

which enables online botnet detection. Similarly to the other research, PI-BODE uses

machine learning techniques for detecting botnet C&C heartbeat communication

channels.

3. Malware Samples and Datasets in Recent Botnet Research

One of the critical decisions in malware and intrusion detection research is the choice of

the malware samples and dataset which are used for algorithm training and evaluation.

A recent study [23] emphasized some issues with the datasets that are often used for the

research. Some of those issues are dataset age or conditions under which the traffic was

recorded, which become irrelevant due to the changes in the attack patterns over the

years. Such an example is the NSL-KDD dataset, which was recorded more than twenty

years ago, yet it is still being used in some recent research studies [24-26]. The use of

this dataset can be justified for research on the volumetric type of (D)DoS attacks,

which do not change a lot in nature over time. However, other botnet features, like other

information security threats, tend to constantly change their pattern of behavior to avoid

detection.

Some features, such as scanning, malware proliferation mechanisms or C&C

communication continuously change in time [27]. It is a well-known fact that Mirai

malware had 24 versions only in the first two months since it appeared [28], and its

derivatives still appear daily. For such changing features, the use of outdated datasets

gives results of limited usability. Besides, the age of the datasets, Al-Hadrami et al. [23]

highlighted the problems with labeling these datasets. For instance, the information

about the conditions under which they have been recorded. However, we would like to

emphasize another issue with recent datasets that are commonly being used for this type

of research. Datasets are recorded over a limited time presenting a snapshot of the threat

landscape at that brief moment. Table 1 summarizes some of the recently used datasets

for botnet detection.

Table 1. Dates when some of the commonly used datasets were recorded

Dataset Used in Year of recording Recording duration

AWID [26] 2015 9 days

ISOT [8] 2017 7 days

CIC-IDS [18][24][26] 2017 5 days

BotMark [13] 2016 16 days

Bot-IoT [8][10] 2018 6 days in a one-month period

NIMS [29] 2014 1 day

To avoid models overfitted to one specific dataset and threat, we argue that the

dataset should be created over a longer period and continuously refreshed. Also, the

42 Đorđe D. Jovanović and Pavle V. Vuletić

research should focus on finding the features which rarely change, while the verification

of machine learning models must be done on different, most recent datasets, captured

over longer periods. Therefore, we decided to create our own dataset (ETF-IoTB), based

on recorded malware samples over a period of more than one year, while performing

verification with the IoT23 dataset [30]. The dataset details are given in the remainder

of this section.

3.1. ETF-IoTB Dataset

The ETF-IoTB dataset was obtained by recording the traffic of the devices infected with

the malware samples [31]. Malware samples were downloaded from the links in the

URLHaus [32] database of the recent malware distribution points. Malware was

executed on RaspberryPi 3 devices with Raspbian OS. RaspberryPi devices were

connected to the internet without any protocol filtering, apart from protecting the local

network infrastructure from malware lateral movement. The created dataset fulfills

several recommendations of what constitutes a correct botnet dataset [33]: includes real

botnet communication and not simulation, has unknown/regular traffic, has ground-truth

labels for training and evaluating the methods and includes different types of botnet

malware. Benign traffic was traffic from a regular workstation during the day.

The infected devices were constantly monitored in order to detect the situations when

there is a sharp increase of the traffic volume as an indication that the infected machine

is a part of the DDoS attack. The devices typically worked in the pre-attack phase, when

their initial and C&C heartbeat communication were recorded, and in few cases were

stopped as soon as the DoS attacks from the infected device were noticed, as described

in the provided dataset. Malware dynamic behavior samples were downloaded in the

period between June 15th 2019 and October 15th 2020. Two IoT malware families

which are the most common today were analyzed: Mirai and Gafgyt. The dataset

consists of sixteen Mirai, eighteen Gafgyt and one NanoCore sample. More details

about the dataset and noticed patterns of C&C communication, as well as initiating

attack commands are given in our previous work [5].

3.2. IoT23 Dataset

The IoT23 dataset is the latest dataset provided by the Technical University in Prague.

Dataset consists of labeled benign and botnet traffic collected on IoT devices. The

IoT23 dataset contains 23 scenarios, 20 of which contain malware traffic, while the

remaining 3 contain benign traffic. Traffic samples in this dataset were captured in the

period between 2018 and 2020. Malware was also recorded on RaspberryPi devices,

while the benign traffic scenarios were recorded on various IoT devices: a Philips HUE

smart LED lamp, an Amazon Echo home intelligent personal assistant and a Somfy

smart door lock. The IoT23 dataset consists of 7 Mirai, 1 Muhstik, 1 Kenjiro, 2 Torii, 1

IRCBot, and 1 Gafgyt sample. The datasets are labeled and contain 8 labels related to

the C&C communication.

 PI-BODE: Programmable Intraflow-based IoT... 43

4. Intraflow Statistical Feature Analysis

In this section we present PI-BODE principles of operation and gathering network

intraflow statistical features.

4.1. Capturing Intraflow Information

Intraflow statistical parameters can be obtained from the packet capture (pcap) files

using a software tool similar to Joy [34], which is capable of extracting some intraflow

features (e.g., per-flow packet size probability distribution, entropy or Walsh-Hadamard

transform).

Fig. 1. Sampling flow statistics - A visualization on how packet size in bytes and number of

packets is collected from a time series

Unlike this approach, PI-BODE leverages the SDN OpenFlow features for real-time

statistics capturing. Instead of capturing each packet, our system samples the flow

statistics periodically and gathers the flow metrics at each sample time. Figure 1 shows

how flow data is being captured from the SDN switch. By sending the

OFPFlowStatsRequest message periodically, the controller requests from the switch the

total number of packets and the total amount of data for each flow. By sampling these

counters and calculating the difference between the results of the two consecutive

samples, per-flow time series for packet and byte counts are created. They are then used

as a basis for various statistical features calculations, described in Section 4.3.

Two configuration parameters are: sampling period and flow idle timeout value. For

the first parameter we used 1 second period as a rule of thumb, which showed reliable

detection results and low network overhead. The choice of the second parameter is

important for those flows, which have either long idle periods or do not have explicit

end of flow signalization (e.g., UDP flows). Longer idle timeout means more overhead

because expired flows will remain longer in the switch tables, but also simpler

processing at the analysis station. Processing is simpler because there is no need to

concatenate the parts of the flows with long idle periods if they are broken in multiple

flows. We used 2 minutes for the idle timeout, as the longest periods in the C&C

heartbeat communication we observed were 60s, thus ensuring non-interruptible C&C

44 Đorđe D. Jovanović and Pavle V. Vuletić

flow recording. These parameters also define the key limitations of the PI-BODE

detection system. Worse detection results can be expected if the C&C communication

patterns change in a way which would make them hardly noticeable with the chosen set

of configuration parameters (sampling period and idle timeout). Botnet heartbeats with a

period shorter than sampling period or longer than the idle timeout would be difficult to

detect. However, in case of such changes, the system can be easily reconfigured to adapt

to the changes.

Fig. 2. Flow statistics gathering algorithm - Algorithm used by the SDN controller to perform

flow switching

The simple algorithm for the TCP flow statistics gathering is given in Figure 2. For

each TCP flow, the key events (first packet and terminating handshake) cause flow rules

to be added or deleted in the switch. The SDN switch works as a Layer-2 transparent

bridge where packets are being forwarded per flow. Each new flow, defined as a tuple

(Source IP, Destination IP, Source Port, Destination Port, Transport protocol) creates a

new entry in the controller’s flow statistics time series database. Each flow has an

OFPFF_SEND_FLOW_REM flag set to force the switch to send the summary

information to the controller upon the flow removal. UDP or TCP flows with idle

periods longer than the idle timeout are removed from the flow time series database

upon the expiration of the idle timeout values.

Intraflow data series provide a more compact dataset and a much smaller network

overhead. The exact gain in the amount of transferred traffic from the network element

needed to do the attack detection is difficult to estimate, as it depends on various

parameters in a given network traffic sample like: flow length distribution, number of

packets per flow, flow ending methodology and others. We will illustrate the difference

using one example which is taken from our packet capture [31]. One of our packet

capture files with the non-malware traffic contained a total of 1,474,536 packets, which

created 5,171 network flows of a total size of 2.496 gigabytes. The duration of the

packet capture was 12,641s with 116 packets or 196 kilobytes per second on average

transferred from the network element towards the analysis station. That same traffic

when we used flow parameters sampling rate of 1s created the average traffic from the

network element towards the controller in the range between 685 and 6,979 bytes per

second for varying idle flow timeout values between 5s and 600s respectively that is a

reduction in storage and network overhead between 28 and 280 times.

 PI-BODE: Programmable Intraflow-based IoT... 45

4.2. SDN Based Botnet Detection System based on intraflow statistics

Since most of the IoT devices do not possess sufficient hardware capacities, software on

them is often simple and prone to attacks. Adding additional security measures on the

IoT devices is not always possible, meaning security measures must be implemented on

the network level. The optimal solution is to place the attack detecting device in the line

of the packets that flow between the protected devices and the internet and act as both

intrusion detection and prevention systems (IDS and IPS) (Figure 3).

Fig. 3. IDS system using SDN - A schematic diagram of a system that protects the LAN from

botnet attacks

The PI-BODE SDN controller software consists of three components (depicted in

Figure 4.): Flow engine, Data collection thread and Analysis thread. The flow engine

enables packet forwarding through the network. Each network flow has its own entry in

the switch's flow table, but in terms of packet rewriting the switch does the basic Layer-

2 forwarding. The data collection thread is used to collect packet and byte counts for all

flows each second, and the collected data are then put into their appropriate time series

as described in Section 4.1.

Fig. 4. SDN controller’s internal structure - Principal components of the SDN controller, as well

as its interactions with the switch

For all flows we also captured flow duration, total number of packets and number of

entries in the empirical distribution. These parameters are not deemed flow features that

are used in the detection process but are used to calculate the other features.

Furthermore, flow duration is also the criterion that qualifies the flow to be used in the

detection process. All flows shorter than 60s are not used for the botnet C&C detection.

Some bots within the ETF-IoTB dataset (for example, xs.arm7 and nuclear.arm7) that

46 Đorđe D. Jovanović and Pavle V. Vuletić

use periodic C&C pings and each ping represents a different flow (uses different port

numbers for each ping). In these cases, defining a flow as double (src_IP, dst_IP) can

capture the C&C communication and make flow tables more compact. However, in the

remainder of the document we worked with tuples as defined in Section 4.1.

4.3. Intraflow Features

As described in Section 4.1, for each flow, packet and byte count samples are put into

two time series, with a 1s time bin. From those time series we extracted 22 statistical

features. Table 2 lists 14 features that will be analyzed in the remainder of this paper,

their brief descriptions and Area Under Curve (AUC) values. The detailed discussion

about the use of AUC values is given in Section 5.2.

Features 1-11 are extracted from the two time series. Features 12-14 are extracted

from the empirical distribution of the flow quiet times. The flow quiet time is the

number of contiguous time bins whose byte count value is 0. Empirical distribution of

the flow quiet times consists of the number of occurrences of different flow quiet times

in a bytes flow time series. The reason for creating such a distribution is that the

observed botnet C&C behavior consists of periodic exchanges between the C&C and

bot for most of the time. Therefore, by capturing intervals of flow inactivity and

analyzing their distribution, it is possible to detect this periodic behavior. The

explanation of the flow collection process was given in Section 4.2.

5. C&C Detection Methodology

To detect IoT based C&C communication, a regular machine learning method is applied

and further optimized using a data science pipeline which comprises the following

steps: data extraction and handling, feature selection, hyperparameter tuning and

classification. One step that is often used as a part of the data science pipeline is data

transformation, namely, normalization and standardization [36]. These procedures

transform range or data distribution for each feature, which allows certain classifiers to

show better performance. However, there is a reason for not using data transformation

in machine learning models that are applied to security systems. Normalization and

standardization are based on transforming feature values in a certain dataset, using

statistical properties of each feature. The goal of the detection system is to detect

malware unknown during the training phase. With transformed data, new malware can

have features whose values are out of bounds of the normalized or standardized dataset

that was used for training.

 PI-BODE: Programmable Intraflow-based IoT... 47

Table 2. Intraflow features used in the C&C flow detection

No Feature Feature description AUC

1
Average flow throughput

(bytes/s)

Number of bytes per second of the time series which is re-

calculated after each new sample is added to the time series.
0.96

2

Average number of

packets in a flow
(packets/s)

Number of packets per second of the time series which is re-

calculated after each new sample is added to the time series.
0.93

3
Median of the throughput

time series (median)
Median value of all time bins in throughput time series 0.553

4
Average throughput

difference

Difference between the average flow throughputs for

bidirectional sessions
0.738

5
Average throughput ratio
(Bidirectional bytes

ratio)

Ratio between the average flow throughputs for bidirectional

sessions.
0.805

6 Standard deviation (Std) Throughput time series standard deviation 0.863

7 Correlation (Corr) Pearson correlation coefficient of the throughput time series 0.551

8 ADF Stat value
Augmented Dickey–Fuller test (ADF test): a statistical test which

determines whether a time series is stationary or not.
0.511

9 ADF Test p-value p-value for the ADF test 0.607

10
Autocorrelation

(Autocorr)

Autocorrelation of the bytes count time series calculated at the
lag equal to the highest probability in the empirical distribution

of the flow inactive periods (described below). This feature aims

to capture the periodic behavior of the flow.

0.985

11 Entropy
Throughput time series entropy calculated using the formula
H(X)=-iP(xi)ln(P(xi)), where P(xi)is the probability of a packet

having given size.

0.767

12 Best/Other ratio

The ratio of the probabilities of the value that appears the most

often in the empirical probability distribution and the most
probable highest value in the periodicity dictionary to the sum of

other values

0.893

13 Best/Second ratio
The ratio of two most probable values in the empirical

distribution
0.85

14 Top Two
Sum of top two values that appear the most often in the empirical
distribution

0.849

5.1. Classifier Description

The classifiers used in this paper are: K-nearest neighbor (KNN), logistic regression,

and random forest from the Python sklearn library. The K-nearest neighbor algorithm is

a non-parametric method used in pattern recognition [35]. Each data point is represented

48 Đorđe D. Jovanović and Pavle V. Vuletić

by a n-dimensional vector in feature space. The training phase of the algorithm consists

of storing the data points with labels. The classification phase begins by considering

each new data point’s position in feature space. Then, by using a distance metric, k-

nearest neighbors are determined, and a data point is classified by majority voting.

Logistic regression uses a sigmoid function to perform classification. This machine

learning model is the discrete version of linear regression. Using the data point

representation as n-dimensional vectors designated with xi, polynomial real coefficients

designated with i, and error value designated with ε, the input to the sigmoid function

has the following form:

f(x) = 1 x1 + 2 x2 + … + n xn + ε. (1)

The value of probability is between 0 (data point certainly belongs to class “0”) and 1

(data point certainly belongs to class “1”). The classes named “0” and “1” are defined

before classification. During the training phase, each data point is fed into the sigmoid

function, fitting the coefficients and error value so that the best fit is achieved.

Random forest belongs to a class of data science models called ensemble methods. In

essence, an ensemble method combines many simple or weak classifiers, and the

classification is performed using majority voting. The core classifier in this method is

the decision tree, consisting of nodes and leaves. Each node contains a boundary value

for a feature, whilst the leaves contain the information to which class a certain data

point belongs. Selecting a subset of features, as well as a ranking function, the features

are ranked and the decision tree is constructed. This is done by putting the features as

boundary values inside the decision tree, going from the topmost ranking feature down

to the lowest. The random forest consists of a certain number of random trees, and the

class for the data point is determined by majority voting.

5.2. Feature Selection

Dimensionality reduction is an important step in order to create a classifier suitable for

the implementation in the network elements in terms of memory and processing power

consumption. For this purpose, the area under the curve (AUC) for receiver operating

characteristic (ROC) calculated as if each feature alone was used for the classification is

used as a measure of the impact that the specific feature has on the classification.

The ROC is a plot that shows for each value of a feature the ratio of true positive rate

(TPR) to true negative rate (TNR). The number of true positives and the number of true

negatives is designated as TP and TN, while the number of false positives and the

number of false negatives is designated as FP and FN. TPR and TNR two values are

calculated as follows:

TPR = TP / (TP+FN), TNR = 1 - Specificity = 1 - TN / (TN + FP). (2)

The ROC is a probability curve, and the AUC value shows how well a certain feature

separates the data correctly into classes. The AUC holds values in the [0,1] interval,

where a value closer to one indicates a better feature score. The features with the AUC

values higher or equal to 0.85 are autocorrelation, throughput (bytes/s), packets/s,

Best/Other ratio, Standard deviation, Best/Second ratio. However, the features that are

chosen for the classification process should not be mutually correlated as this means

that they describe the same or similar dataset property. Therefore, a correlation matrix

 PI-BODE: Programmable Intraflow-based IoT... 49

was used to test the correlation between all pairs of features. The correlation matrix is

shown in Figure 5. High correlation (greater than 0.8) is observed between the bytes/s

and packets/s features. Therefore, the five features that are chosen as input features to

the classification process are Autocorrelation, Throughput (bytes/s), Best/Other ratio,

Standard deviation of the throughput time series and Best/Second ratio.

Fig. 5. Correlation matrix for feature selection - A correlation matrix of all the input features,

which is used for feature selection.

5.3. Estimator hyperparameters

Each estimator has a set of hyperparameters, which define its behavior. In this phase,

we analyzed the combination of estimator parameters that maximizes the scores used in

classification using a “fit” and a “score” method implemented by the GridSearchCV

method [37] in the sklearn Python library. The method is slightly modified as described

below to fit the analyzed datasets which are disbalanced. The set of scores used in this

paper are precision (PREC), recall (REC), and f1-score (F1) [35]. These scores are

given in the equations below:

PREC = TP / (TP + FP),

REC = TP / (TP + FN),

F1 = 2 · PREC · REC / (PREC + REC).

(3)

Precision is a measure which shows how many false negatives are there during

classification, while recall is a measure which shows how many false negatives are there

50 Đorđe D. Jovanović and Pavle V. Vuletić

during classification. The F1 score represents a measure whose objective is to analyze

the trade-offs between correctness and coverage in classifying positive instances [38], as

it includes both precision and recall. Although accuracy is a more intuitive metric, these

three measures are chosen because there is a difference in sizes of normal and botnet

flows that is larger than 20 percent, which is considered a disbalanced dataset. In case of

disbalanced datasets accuracy can be biased towards the majority class. Even high

accuracy values can yield poor classification rates on minority classes and classifiers

can have low predictive power [39]. Botnet C&C datasets are disbalanced because

botnet C&C communication is a relatively rare occurrence in network traffic compared

to all the other traffic and produces typically one or few flows at a time.

Balanced sampling was used to split data into training and testing subsets with a

90/10 ratio. The data is split in such a manner, in order to preserve the ratio of classes

from the dataset, which is known as stratified sampling. A similar approach was

presented in [40], in order to account for class imbalance in the dataset. After splitting

the dataset, the model is trained and tested, and the scores are extracted. This procedure

is repeated 100 times, and mean values are calculated for all scores (Monte Carlo cross-

validation [41]). This approach was taken by the authors in order to have as much

variation to the training and testing set scenarios, while keeping the number of scenarios

tested to a minimum. Again, because the dataset is disbalanced, this method is more

appropriate than the ubiquitous k-fold cross-validation, which splits the whole dataset

into k equal parts. Such an approach produces some parts of the dataset to have low

presence of botnet data points. After calculating all the scores, the list of parameter

combinations is searched for those having the maximum values for all scores. In the

following paragraph, an overview of the tested hyperparameters for both datasets is

given. After the name of each hyperparameter, the best value is given in parentheses. If

there is one value, that means that the value is best for both datasets, while if there are

two values, the first one refers to the ETF-IoTB dataset, and the other refers to the

IOT23 dataset.

The hyperparameters that were considered for the KNN classifier are the following:

number of neighbors (5), weight function (uniform), neighbor computation algorithm

(ball tree), and the distance metric (Manhattan). The hyperparameters that were

considered for the logistic regression classifier are the following: inverse of the

regularization strength (0.25), class weights (none), option of adding a constant to the

decision function (false), maximum number of iterations (100), solver (newton-cg,

lbfgs), and the tolerance for the stopping criteria (0.001, 10
-5

). The hyperparameters that

were considered for the random forest classifier are the following: class weights

(balanced subsample), ranking function (entropy), max number of features (none), and

the total number of estimators (200).

6. PI-BODE Classification Evaluation

This section presents and discusses the results of machine learning classification for

three estimators: KNN, Logistic regression and Random Forest, using the

hyperparameter values determined in the previous section. Precision, Recall and F1

scores for the PI-BODE detection method are given in Tables 3 and 4 for the ETF-IoTB

and IoT23 datasets, respectively.

 PI-BODE: Programmable Intraflow-based IoT... 51

Table 3. Scores for all the estimators for the ETF-IoTB dataset

Model botnet

precision

botnet

recall

botnet

f1 score

normal

precision

normal

recall

normal f1

score

KNN 0.9363 0.9141 0.9218 0.9967 0.9973 0.9970

Logistic

regression

0.9131 0.9247 0.9150 0.9971 0.9962 0.9967

Random

forest

0.5954 0.6240 0.5994 0.9859 0.9948 0.9902

Table 4. Scores for all the estimators for the IOT23 dataset

Model botnet

precision

botnet

recall

botnet f1

score

normal

precision

normal

recall

normal

f1 score

KNN 0.8683 0.8759 0.8690 0.8558 0.8382 0.8423

Logistic

regression

0.8347 0.8778 0.8510 0.8522 0.7858 0.8093

Random

forest

0.5564 0.6071 0.5780 0.7566 0.8733 0.7724

Several conclusions can be drawn from these results. First, the highest scores on both

datasets prove that this method can be used to detect botnet C&C communication with

high precision. Second, even though the feature selection was done on the ETF-IoTB

dataset, the results of the detection method on the IoT23 dataset that contains a different

set of malware samples (Muhstik, Kenjiro, Tori in addition to those in the ETF-IoTB

dataset) revealed similar precision compared to the other research papers. It can be

concluded that the key C&C features in different malware samples are not largely

different in two datasets. Also training a model, which uses features obtained from the

intraflow statistics, can detect the C&C communication of the malware samples that are

not in the dataset used to train the model, so the zero-day malware detection is possible.

Third, the results show that for both datasets, KNN and Logistic Regression classifiers

have given the best results, while having little discrepancies between the precision and

recall scores. This means that there is little difference between the number of false

negatives and false positives, demonstrating detection stability. The consistency in

classifier performance shows that the proposed method performs well regardless of the

dataset used. On one hand, KNN classifier shows a slightly better score than Logistic

Regression classifier, while on the other KNN has much greater memory usage and is

impractical to be used in network elements. Since ultimately these models should be

implemented in a security system, using a Logistic Regression classifier is

recommended, because it gives nearly the best scores among all the classifiers, while

keeping the memory usage at a lower level.

52 Đorđe D. Jovanović and Pavle V. Vuletić

Papers in references [11] to [13] have, similar to our approach, sought to detect

botnets and ransomware via the C&C communication. In paper [11], the research

showed an accuracy of 80% in classifying botnet periodicity, which is lower than scores

obtained in our research for the best classifiers. Tables 5 and 6 show research results

presented in papers [12] and [13], respectively. In paper [12], the BotMark detection

system has shown a high accuracy (0.9994) and low false positive rate scores. However,

since the F1-scores are low for all previous research methods (0.115 for BotMark,

compared to 0.915 and 0.85 for PI-BODE Logistic Regression) while the false positive

rate is also low, this means that the false negative rate is high, which further implies that

the stability of the BotMark classifiers is low, and certainly much lower than in PI-

BODE.

Table 5. Scores for all the methods in paper [12]

Method F-score Accuracy

True

Positive

Ratio

False

Positive

Ratio

Similarity 0.087247 0.9904 0.9836 0.009645

Stability 0.060732 0.9868 0.9115 0.013181

C-flow 0.152788 0.9949 0.9836 0.005108

Graph 0.034811 0.9166 0.9836 0.083478

BotMark 0.115207 0.9994 0.9836 0.000641

Table 6. Scores for all the methods in paper [13]

No of features Precision Recall F1-score

28 0.83 0.89 0.86

8 0.86 0.87 0.87

Authors in [13] use precision, recall and F1-score as scores for their classifier. In

both cases presented in [13], with 8 and 28 features, score values are in the range 0.83 to

0.89. This is worse classification performance than with the PI-BODE whose scores

when the system is trained, verified and tested on the ETF-IoT dataset, are in the range

0.914 to 0.936 for the KNN and Logistic Regression classifiers. Even with the classifier

training on the ETF-IoT dataset and testing on the IOT23 dataset (zero-day detection

case), the scores are in the range 0.83 to 0.88 which is comparable to the scores

obtained in [13]. Also, what needs to be taken into account is the fact that both of these

papers show only the scores in regards to the whole dataset. In the case of balanced

datasets, scores can be presented this way. However, since malware represents a minor

part of each network traffic, such datasets are disbalanced by nature. Scores presented in

this way should be treated with caution, since there is no information on the machine

learning model’s performance on both normal and malware traffic. At last, but not at

 PI-BODE: Programmable Intraflow-based IoT... 53

least ransomware C&C communication detection described in [13] is based on full

packet capture analysis meaning a much higher network and storage overhead.

7. Conclusion

In this paper, we proposed and demonstrated a novel approach for the detection of

botnet C&C communication based on SDN and intraflow statistics. It provides more

traffic description features than flow-based methods, while not using the analysis of all

packets on a link. Thus, this method represents an in-between solution that saves storage

and processing power up to two orders of magnitude, yet provides enough detail about

network conversations for distinguishing malware and normal traffic. Experimental

results have shown that PI-BODE achieves the same or higher level of botnet detection

accuracy as in the similar systems which use full traffic analysis. Other conclusions can

be drawn from the presented research. First, the results prove that botnet C&C

communication can be detected using the intraflow statistics and proposed traffic

features. Second, since PI-BODE training and evaluation have been done on the datasets

that contain various malware samples, it shows that different versions of botnet malware

have similar C&C communication characteristics and that new malware samples can be

detected with the system trained on the older malware samples. Third, using an SDN

controller as an intraflow statistics gathering tool allows creating a simple intrusion

prevention system for the devices that lack security, such as IoT devices. Using the PI-

BODE approach as a basis, future research should attempt to explore additional

statistical parameters of the network flow, analyze other malware dynamic properties

that can be used for the detection, explore the use of other programmable platforms

(e.g., P4-based) and to assess how to improve the malware detection speed. The

research presented in this paper can be extended to using other state-of-the-art machine

learning algorithms, such as boosting models (such as extreme gradient-boosting and

light gradient-boosting machine) and deep learning models. Also, since computer

viruses are constantly evolving, training a dataset on current botnets may not be

applicable to detecting botnets in the future. Therefore, future research should be

directed towards developing a machine learning model with on-line learning

capabilities.

References

1. Vormayr, G., Zseby, T., Fabini, J.: Botnet Communication Patterns, IEEE Commun.

Surv. Tutorials, vol. 19, no. 4, pp. 2768–2796, 10.1109/COMST.2017.2749442 (2017)

2. Chen, R., Niu, W., Zhang, X., Zhuo, Z., Lv, F.: An Effective Conversation-Based

Botnet Detection Method, Math. Probl. Eng., vol. 2017, pp. 1–9,

10.1155/2017/4934082 (2017)

3. B. Krebs, Zyxel Flaw Powers New Mirai IoT Botnet Strain, Krebs on Security website,

https://krebsonsecurity.com/2020/03/zxyel-flaw-powers-new-mirai-iot-botnet-strain/

(accessed on December 21st 2022)

54 Đorđe D. Jovanović and Pavle V. Vuletić

4. Štampar, M., Fertalj, K.: Applied Machine Learning in Recognition of DGA

Domain Names, Computer Science and Information Systems, vol. 19, No. 1,

205-227., 10.2298/CSIS210104046S (2022)

5. Jovanović Đ., Vuletić P.: Analysis and Characterization of IoT Malware

Command and Control Communication, Telfor Journal Vol.12 No.2, p. 80-85,

10.5937/telfor2002074B (2020)

6. Ibrahim, J., Gajin, S.: Entropy-based Network Traffic Anomaly Classification

Method Resilient to Deception. Computer Science and Information Systems,

Vol. 19, No. 1, 87-116., 10.2298/CSIS201229045I (2022)

7. Asadi, M., Jabraeil Jamali, M. A., Parsa, S., Majidnezhad, V.: Detecting botnet

by using particle swarm optimization algorithm based on voting system. Future

Generation Computer Systems, vol. 107, 95–111.,

10.1016/j.future.2020.01.055 (2020)

8. Livadas C., Walsh, R., Lapsley, D.E., Strayer, W.T.: Using machine learning

techniques to identify botnet traffic, LCN, pp. 967–974.,

10.1109/LCN.2006.322210 (2006)

9. Koroniotis, N., Moustafa, N., Sitnikova, E., Turnbull, B.: Towards the

development of realistic botnet dataset in the Internet of Things for network

forensic analytics: Bot-IoT dataset, Future Generation Computer Systems, vol.

100, p. 779-796, 10.1016/j.future.2019.05.041 (2019)

10. Lee, J.-S., Jeong, H., Park, J.-H., Kim, M., Noh, B.-N.: The activity analysis of

malicious http-based botnets using degree of periodic repeatability, 2008

International Conference on Security Technology, pp. 83–86.,

10.1109/SecTech.2008.52 (2008)

11. Eslahi, M., Rohmad, M. S., Nilsaz, H., Naseri, M. V., Tahir, N. M., Hashim,

H.: Periodicity classification of HTTP traffic to detect HTTP Botnets, 2015

IEEE Symposium on Computer Applications & Industrial Electronics

(ISCAIE), p. 119–123. 10.1109/ISCAIE.2015.7298339 (2015)

12. Wang, W., Shang, Y., He, Y., Li, Y., Liu, J.: BotMark: Automated botnet

detection with hybrid analysis of flow-based and graph-based traffic behaviors,

Information Sciences, Vol. 511, p. 284–296. 10.1016/j.ins.2019.09.024 (2020)

13. Cusack, G., Michel, O., Keller, E.: Machine Learning-Based Detection of

Ransomware Using SDN, In Proceedings of the 2018 ACM International

Workshop on Security in Software Defined Networks & Network Function

Virtualization - SDN-NFV Sec’18, pp. 1–6., 10.1145/3180465.3180467 (2018)

14. Shahzana Liaqat, S., et al.: SDN orchestration to combat evolving cyber threats

in Internet of Medical Things (IoMT), Computer Communications, Volume

160, p. 697-705, 10.1016/j.comcom.2020.07.006 (2020)

15. Bilge, L. et al.: DISCLOSURE: Detecting Botnet Command and Control

Servers Through Large-Scale NetFlow Analysis, ACSAC ’12,

10.1145/2420950.2420969 (2012)

16. Blaise, A., Bouet, M., Conan, V., Secci, S.: Detection of zero-day attacks: An

unsupervised port-based approach, Computer Networks, vol.180,

10.1016/j.comnet.2020.107391 (2020)

17. De La Torre Parra, G., Rad, P., Choo, K.-K. R., Beebe, N.: Detecting Internet

of Things attacks using distributed deep learning, Journal of Network and

Computer Applications, vol. 163, 10.1016/j.jnca.2020.102662 (2020)

 PI-BODE: Programmable Intraflow-based IoT... 55

18. Kurniabudi, et al.: CICIDS-2017 Dataset Feature Analysis With Information

Gain for Anomaly Detection, IEEE Access, Volume 8, p. 132911-132921,

10.1109/ACCESS.2020.3009843 (2019)

19. Sharifnya, R., Abadi, M.: DFBotKiller: Domain-flux botnet detection based on

the history of group activities and failures in DNS traffic, Digit. Investig., vol.

12, pp. 15–26, 10.1016/j.diin.2014.11.001 (2015)

20. Plohmann, D., Yakdan, K., Klatt, M., Bader, J., Gerhards-Padilla, E.: A

Comprehensive Measurement Study of Domain Generating Malware, Open

access to the Proceedings of the 25th USENIX Security Symposium is

sponsored by USENIX, pp. 1996–2014, 10.5555/3241094.3241115 (2016)

21. Tong, V., Nguyen, G.: A method for detecting DGA botnet based on semantic

and cluster analysis, ACM Int. Conf. Proceeding Ser., vol. 08, pp. 272–277,

10.1145/3011077.3011112 (2016)

22. Wang, T. S., Lin, H. T., Cheng, W. T., Chen, C. Y.: DBod: Clustering and

detecting DGA-based botnets using DNS traffic analysis, Computer Security,

vol. 64, pp. 1–15, 10.1016/j.cose.2016.10.001 (2017)

23. Al-Hadhrami, Y., Hussain, F. K.: Real time dataset generation framework for

intrusion detection systems in IoT, Future Generation Computer Systems, Vol.

108, p. 414–423., 10.1016/j.future.2020.02.051 (2020)

24. de Souza, C. A., et al.: Hybrid approach to intrusion detection in fog-based IoT

environments, Computer Networks, 180, 107417.,

10.1016/j.comnet.2020.107417 (2020)

25. Hosseini, S., Zade, B. M. H.: New hybrid method for attack detection using

combination of evolutionary algorithms, SVM, and ANN, Computer Networks,

Vol. 173, 10.1016/j.comnet.2020.107168 (2020)

26. Zhou, Y., Cheng, G., Jiang, S., Dai, M.: Building an efficient intrusion

detection system based on feature selection and ensemble classifier, Computer

Networks, 174, 10.1016/j.comnet.2020.107247 (2020)

27. Gardiner, J., Cova, M., Nagaraja, S.: Command & Control: Understanding,

Denying and Detecting, vol. cs.CR, no. February, 10.48550/arXiv.1408.1136

(2014)

28. Antonakakis, M. et al.: Understanding the Mirai botnet, SEC'17, p. 1093–

1110., 10.5555/3241189.3241275 (2017)

29. Shafiq, M., et al.: Selection of effective machine learning algorithms and Bot-

IoT attacks traffic identification for internet of things in smart city, Future

Generation Computer Systems, Vol. 107, p. 433–442.

10.1016/j.future.2020.02.017 (2020)

30. Parmisano, A., Garcia, S., Erquiaga, M. J.: A labeled dataset with malicious

and benign IoT network traffic. Stratosphere Laboratory,

10.5281/zenodo.4743746 (2020)

31. Jovanovic, G., Vuletić, P.: ETF IoT Botnet Dataset, Mendeley Data, V1,

10.17632/nbs66kvx6n.1 (2021)

32. abuse.ch, URLHaus, a database of malware URLs, https://urlhaus.abuse.ch/

(accessed on December 21st 2022)

33. García et al.: An Empirical Comparison of Botnet Detection Methods,

Computers & Security, 10.1016/j.cose.2014.05.011 (2014)

https://doi.org/10.1016/j.future.2020.02.017

56 Đorđe D. Jovanović and Pavle V. Vuletić

34. Joy, A package for capturing and analyzing network flow data and intraflow

data, for network research, forensics, and security monitoring,

https://github.com/cisco/joy, (accessed on September 2nd 2020)

35. Skiena, S. S.: The Data Science Design Manual, Springer, 10.1007/978-3-319-

55444-0 (2017)

36. Raschka, S. :About Feature Scaling,

https://sebastianraschka.com/Articles/2014_about_feature_scaling.html

(accessed on May 21st 2022)

37. sklearn documentation, GridSearchCV, https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.ht

ml, (accessed on May 21st 2022

38. Fernández, A. et al.: Learning from Imbalanced Data Sets, Springer,

10.1007/978-3-319-98074-4 (2018)

39. Gibert, D., et al.: The rise of machine learning for detection and classification

of malware: Research developments, trends and challenges, Journal of

Network and Computer Applications, Vol. 153, 10.1016/j.jnca.2019.102526

(2020)

40. Apruzzese, G. et al.: Evaluating the effectiveness of Adversarial Attacks

against Botnet Detectors, 2019 IEEE NCA, 978-1-7281-2522-0/19/ (2019)

41. Dubitzky, W., Granzow, M., Berrar, D.: Fundamentals of data mining in

genomics and proteomics, Springer Science & Business Media, p. 178.,

10.1007/978-0-387-47509-7 (2007)

Đorđe Jovanović obtained his BSc and MSc in Computer Networks from University of

Belgrade, School of Electrical Engineering (ETF). Since 2019, he began his work as an

assistant researcher-trainee at the Mathematical Institute of Serbian Academy of

Sciences and Arts (MISANU/SASA). Since 2022, he works as an assistant researcher at

MI SANU. His research interests encompass Software-Defined Networks (SDN),

computer networks, botnet detection, machine learning, optimization, and

metaheuristics.

Pavle Vuletić obtained his BSc, MSc and PhD in Computer Systems and Network

Architecture from University of Belgrade, School of Electrical Engineering (ETF). He

used to work on all positions from network engineer to the deputy director of AMRES,

national research and education network where he participated in the establishment of

the first national CSIRT team. He is currently an associate professor at the ETF teaching

Data Security, Computer Systems and Network Security, Advanced Computer

Networks and SDN courses, leads the Laboratory for Information Security at ETF. His

research interests span from data protection and privacy, network and systems security,

network and system performance evaluation to the programmable networks and network

and systems management.

Received: February 22, 2023; Accepted: September 10, 2023.

https://sebastianraschka.com/Articles/2014_about_feature_scaling.html

