
DOI: 10.2298/CSIS111231027S

High-level Multicore Programming with C++11

Zalán Szűgyi, Márk Török, Norbert Pataki, and Tamás Kozsik

Department of Programming Languages and Compilers,
Eötvös Loránd University

Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
{lupin,tmark,patakino,kto}@caesar.elte.hu

Abstract. Nowadays, one of the most important challenges in program-
ming is the efficient usage of multicore processors. All modern program-
ming languages support multicore programming at native or library level.
C++11, the next standard of the C++ programming language, also sup-
ports multithreading at a low level. In this paper we argue for some ex-
tensions of the C++ Standard Template Library based on the features of
C++11. These extensions enhance the standard library to be more power-
ful in the multicore realm. Our approach is based on functors and lambda
expressions, which are major extensions in the language. We contribute
three case studies: how to efficiently compose functors in pipelines, how
to evaluate boolean operators in parallel, and how to efficiently accumu-
late over associative functors.

Keywords: multicore programming, C++.

1. Introduction

The new standard of the C++ programming language supports parallel com-
putation. Strictly speaking, it supports only low level constructs [20]. Although
several libraries are available that provide high level parallelization tools for C++,
there are numerous occasions when the usage of these libraries is not bene-
ficial [2, 5, 17]. These libraries are complex and robust, their structure can be
different from that of other ones and they have their own coding styles. Thus,
if the programmer wants to use one of these libraries, first she needs to spend
a lot of time to get familiar with it to be able to use it properly [16]. Our goal
was to extend the standard library of C++ to support high level parallelization
techniques. In our solution we made an effort to extend it only slightly, and to
allow simple usage of our library for a programmer familiar with the STL.

The C++ Standard Template Library (STL) was developed by generic pro-
gramming approach [3]. In this way containers are defined as class templates,
and many algorithms can be implemented as function templates. Furthermore,
algorithms are implemented in a container-independent way, so one can use
them with different containers [14]. C++ STL is widely-used inasmuch as it is a
very handy, standard C++ library that contains useful containers (like list, vec-
tor, map etc.), a large number of algorithms (like sort, find, count etc.) among
other utilities.

Zalán Szűgyi et al.

The STL was designed to be extensible [4]. We can add new containers that
can work together with the existing algorithms. On the other hand, we can ex-
tend the set of algorithms with a new one which can work together with the exist-
ing containers. Iterators bridge the gap between containers and algorithms [11].
The expression problem [21] is solved with this approach. STL also includes
adaptor types which transform standard elements of the library for a different
functionality [12]. Adaptors can modify the interface of a container, transform
streams into iterators, modify the behavior of functors etc.

Functor objects make STL more flexible as they enable the execution of
user-defined code parts inside the library [13]. Basically, functors are usually
simple classes with an operator(). Inside the library operator()s are called
to execute user-defined code snippets. This can call a function via pointer to
functions or an actual operator() in a class. Functors are widely used in the
STL inasmuch as they can be inlined by the compilers and they cause no run-
time overhead in contrast to function pointers. Moreover, in case of functors
extra parameters can be passed to the code snippets via constructor calls.

Functors can be used in various roles: they can define predicates when
searching or counting elements, they can define comparison for sorting ele-
ments and property searching, they can define operations to be executed on
elements of collections.

C++11, the next standard of C++, includes a new feature called lambda
functions or lambda expressions [9]. Lambda expressions are able to express
the functionality of a function call operator without writing explicit functor types.
The call of an algorithm and the inner logic is not separated with this technique.
Lambda expressions can be considered as locally defined functors. The experi-
mental compilers generate functor types from lambda expressions. Our solution
also supports lambda expressions.

It is frequently advised that one should prefer standard library to other ones.
C++ programmers are familiar with the STL. Unfortunately, whereas the STL is
preeminent in a sequential realm, it is not aware of multicore environment [19].

In this paper we present our results to provide high level parallelization by
extending the STL. In our research we made an effort to highly reuse the ex-
isting utilities of the STL. Different functor-related techniques are implemented
to make STL a more advanced, multicore supporting library. Using our library
those programmers who are familiar with STL can easily adopt our extensions,
without the need to spend much time to learn it. The source code of the library
can be downloaded from the http://kp.elte.hu/STLpar URL.

The rest of this paper is organized as follows. Section 2 shows how a pipeline
can be effectively implemented with functors. Section 3 describes the evalua-
tion of composite predicates in a multithreaded way. A solution which is able
to select a faster evaluation technique if we use an associative computation on
huge amount of data is presented in section 4. Finally, section 5 concludes the
paper.

1188 ComSIS Vol. 9, No. 3, Special Issue, September 2012

High-level Multicore Programming with C++11

2. Pipeline

The algorithm for each of STL applies a functor to each element in a given
range. If the functor is defined in a special way, it is able to represent the stages
of a pipeline, while the algorithm for each itself feeds it with data.

We extended the STL with a new functor adaptor to help the program-
mer create this kind of special functor called parallel compose. This functor
adapts two unary functors to a functor composition, and processes them in the
following way. Assume that parallel compose adapts the functors f and g,
and the input parameter is x. The result of the computation is g(f(x)). How-
ever, after f(x) is processed, the result value is passed to the functor g in a
new thread. Hereby while the functor g computes its result, the functor f can
start to process the next input data.

One input of parallel compose can be an another parallel compose
thus it is possible to create arbitrary long functor composition.

This way the algorithm for each acts as a pipeline. The simple functors
in a functor composition act as a stages of the pipeline, while the algorithm
for each feeds it with data defined by the input range.

2.1. Implementation details

The core of our implementation is the parallel compose functor adaptor.
Its constructor receives two unary functors that are playing role on a functor
composition. Then it wraps the second argument by a thread wrapper class
(described later) and starts it to run in a new thread. However, the algorithms
of STL can freely copy functors, by definition. This behavior is ineligible for us
because we do not want to copy a thread. To avoid this situation we allocate the
thread dynamically, and store it in a type shared ptr, which is a smart pointer,
provided by the new standard of C++ [15]. This ensures that all the temporarily
copied parallel compose functors refer to the same thread, and the memory
will be deallocated automatically.

The operator() of parallel compose invokes its first unary functor to
compute the first member of the composition, and sends the result to the thread
wrapper.

The member function join blocks the execution until the last element is
applied on all the stages. After that it destructs the pipeline. When there is
more than two stages in the pipeline, – i.e. parallel compose functors are
composed in a chain –, join must be invoked for all parallel compose func-
tors recursively. The naive method that invokes the join member function of
the second argument does not work because the second argument of the last
parallel compose is a different unary functor, see the example in subsec-
tion 2.2, and hence it would cause a compilation error.

We applied the SFINAE (Substitution Failure Is Not An Error) technique [22]
to solve this problem. We defined a new type trait to check whether the given
type is a parallel compose. Because type traits define a compile-time template-
based interface to query or modify the properties of types [10], we can cus-

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1189

Zalán Szűgyi et al.

tomize our code for a given type without any run-time overhead. Then we cre-
ated two auxiliary join functions that can be seen below:

template<typename T>
void join_aux(T& t,

typename std::enable_if<
is_parallel_compose<T>::value,
int>::type n = 0)

{
t.join();

}

template<typename T>
void join_aux(const T&)
{
}

The enable if is a template metafunction provided by the new standard. If
its first template argument is true, it has a public member typedef type, equal
to its second template argument; otherwise, there is no member typedef. This
metafunction is used to conditionally remove the first function join aux from
overload resolution based on type traits.

We invoke this join aux function in the following way:

void join()
{

join_aux(second_argument);
}

If the second argument itself is a parallel compose functor, then our
type trait returns with true, and the metafunction enable if has typedef type,
thus both definitions of join aux are valid. Since the second argument is
not a constant, the first join aux will be selected by the compiler, thus the
join is invoked on the next parallel compose functor in a chain. However,
if the second argument is a different functor, then there is no typedef type
inside of enable if. This means the definition of the first join aux is invalid,
thus it is removed from the overload resolution. In this case only the second
join aux is left – the one which does not invoke any join –, thus that one will
be selected.

The thread wrapper class wraps a unary functor, and runs it in a new thread.
It has two main member functions: the receive and the operator(). The
parallel compose sends the data to a thread via member function receive,
and the operator() performs the computation in the new thread. The key
parts of these two member functions can be seen below:

void receive(const argument_type& a)
{

1190 ComSIS Vol. 9, No. 3, Special Issue, September 2012

High-level Multicore Programming with C++11

//...
data_lock();
data = a;
data_ready=true;
//...

}

void operator()()
{

//...
while(run)
{

wait_for(data_ready);
if(run) stored_functor(data);
data_ready = false;
data_unlock();

}
//...

}

The data lock is used to prevent the previous stage to overwrite the data
before it is computed. It will be only unlocked when the computation of current
data is finished. The main loop of operator() runs while the logical variable
run is true. It waits for the data, then performs the computation, and finally
unlocks the semaphore to be able to receive the next one.

This class has a kill method, which terminates the thread. First it sets run
to false, and data ready to true. The second one is necessary because the
operator() may be waiting for data ready. But, because run is false, there
will be no false computation.

2.2. Example

The example below illustrates the way to apply our pipeline solution in a clas-
sical image processing task [6]. The image processing contains three steps:
transformation, rasterization and pixel processing. These steps will be the stages
of the pipeline, and the input data is a range of triangles. The hereinafter exam-
ple demonstrates our approach, but it highly simplifies the problem. In real life
image processing is a more complex process, and the stages can be split into
more substages to improve performance [23].

struct transformation
{

triangle operator()(const triangle& value)
{

// ...
}

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1191

Zalán Szűgyi et al.

};

struct rasterization
{

triangle operator()(const triangle& value)
{

// ...
}

};

struct pixel_processing
{

triangle operator()(const triangle& value)
{

// ...
}

};

for_each(input_iterator_begin,
input_iterator_end,
pcompose(transformation(),

pcompose(rasterization(),
pixel_processing()))

).join();

The input iterator begin and input iterator end are two iterators
defining the input range of triangles. The stages are functors, thus they have to
overload the operator(), which performs the computation. The pcompose is
a helper function that creates a parallel compose functor object by its ar-
guments and returns it. Helper functions simplify the creation of functors, thus
they are very common in the STL, because the C++ compiler can deduce the
template arguments by the type of actual parameters (e.g. std::make pair).
The algorithm for each returns with the functor. Thus the last function invo-
cation calls the join method of the functor. This synchronization step waits for
the pipeline to finish the computation.

3. Speculative Functors

There are several algorithms in the STL that take a predicate functor as ar-
gument to decide whether an element must be processed. The predicate is
a unary functor (its operator() has exactly one argument) that returns a
boolean value. If the predicate returns true for a given element, the algorithm
will deal with that element. The names of these algorithms have an if postfix,
such as: find if, count if, remove if, replace if etc.

1192 ComSIS Vol. 9, No. 3, Special Issue, September 2012

High-level Multicore Programming with C++11

In many cases the predicates are very complex. As the predicate is a logical
condition, it is often constructed from functors composed by logical and or
logical or.

If the subexpressions composed by logical and are complex, it might
worth to evaluate them in parallel. The more complex the subexpression is, the
more speed-up we can achieve.

We introduce a new functor adaptor called speculative logical and,
which can evaluate the subexpressions in separate threads. If one thread com-
putes the result of its subexpression, we check whether it is false. If so, we
got the result – thus, we kill the other thread, or drop its result if it is termi-
nated already. Otherwise we wait for the result of the other thread and use both
results.

3.1. Implementation details

Technically the speculative logical and is a unary functor that composes
the predicates f and g in the following way: f(x)&&g(x), where x is the input
parameter.

The speculative logical and receives the predicates in its constructor,
which wraps them with a thread wrapper class to ensure they run in separate
threads.

The work is done by the operator(). The core of its implementation can
be seen below:

return_type operator()(const argument_type& a)
{

compute_in_new_thread(f,a);
compute_in_new_thread(g,a);

wait_for(impl->has_result_f || impl->has_result_g);

if(impl->has_result_f)
{

if(impl->result_f == false)
{

kill(g);
return false;

}
else
{

wait_for(impl->has_result_g);
return impl->result_g;

}
}
else
{

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1193

Zalán Szűgyi et al.

if(impl->result_g == false)
{

kill(f);
return false;

}
else
{

wait_for(impl->has_result_f);
return impl->result_f;

}
}

}

The members of speculative logical and functor are put into an im-
plementation class and the variable impl – a shared pointer pointing to it. This
solution ensures that the functor can be copied by the STL, and that all the
copies refer to the same implementation. impl is added to the thread wrappers,
thus the threads can store their results into that. After one thread computes the
result it sets its has result variable to true, indicating to the main thread that
the data is ready.

The speculative logical andwaits until one thread is ready and checks
the result. If it is false, the whole result is false, thus the other thread can
be killed, and false will be returned. Otherwise speculative logical and
waits for the result of the other thread, that value will be returned. (That way
the first argument of logical and is true, thus the result depends on the second
argument.)

In practice, speculative logical or behaves similarly. The only differ-
ence is that it kills the slower thread if the result of the faster one is true.

3.2. Example

The example above shows the usage of our solution. There is a range of log en-
tries which contains several fields, such as: timestamp, priority, user name, log
message. We would like to find those entries which were created on 20.03.2011
and the message fits a given regular expression.

struct log_entry
{

std::string username;
std::string message;
time_t timestamp;
int priority;
// ...

};

struct is_proper_date

1194 ComSIS Vol. 9, No. 3, Special Issue, September 2012

High-level Multicore Programming with C++11

{
bool operator()(const log_entry& le)
{

/*compute if le is created on 20.03.2011*/
}

};

struct has_proper_message
{

bool operator()(const log_entry& le)
{

/*compute if message fits to a regex*/
}

};

std::find_if(input_iterator_begin, input_iterator_end,
speculative_and(

is_proper_date(), has_proper_message()));

The input iterator begin and input iterator end are two iterators
defining the input range of log entries. The speculative and is a helper
function to create speculative logical and functor. This helper function
behaves similarly to the helper function pcompose described in the previous
section.

This solution is efficient to use when the subexpressions are complex.

4. Associative Functors

In this section we present an approach to compute an associative operation on
a huge amount of data effectively. We improve the accumulate algorithm of
STL to be as effective as possible [8].

By default the algorithm accumulate computes the sum of the elements
of a given range. However, we can customize the algorithm defining an own
operation instead of addition. The operation is defined by a binary functor (it
has two arguments) and it is an argument of accumulate [7]. If the operation
is associative, we can apply the optimized version of the accumulate algorithm.

A technique is presented to overload algorithms on the associativity of their
functor in [19]. This technique includes a trait type called functor traits. This type
is similar to the iterator traits of STL; functor traits consist of some typedefs. It
is possible to overload algorithms on the associativity of the functor based on
these typedefs [18].

Our main goal was to support the new standard proposal, where lambda
expressions can replace functors. However, it is not possible to define functor
traits in lambda expressions. We need to denote that an operation is associative
in a different way.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1195

Zalán Szűgyi et al.

4.1. Implementation details

In our solution an extra argument of a lambda expression, which has a spe-
cial type, called associative, denotes that the operation is associative. Our
implementation of algorithm accumulate is able to detect whether a given
lambda expression has that extra argument or not. If the lambda expression
is associative, the optimized algorithm [19] is chosen – otherwise we take the
original one.

The example below shows the way we determine if the lambda expression
has that extra argument. In this section we suppose that the range is defined by
a pair of random access iterators. STL algorithms can be overloaded on iterator
category easily [18].

template< typename RandomAccesIterator,
typename T,
typename BinFunctor>

T accumulate(RandomAccesIterator first,
RandomAccesIterator last,
T init,
BinFunctor bf)

{
typedef

T (BinFunctor::*funtype) (T, T, associative) const;

if(std::is_same< decltype(&BinFunctor::operator()),
funtype>::value)

{
return associative_accumulate(first, last, init,

std::bind(bf, std::_1, std::_2, associative());
}
else
{

return std::accumulate(first, last, init, bf);
}

}

The BinFunctor template type refers to the lambda expression, while T refers
to the elements of the input range. The static field value of template type
is same is true if the its two template arguments are same. We instantiate
it with a type of the member function pointer of the operator() which has that
extra argument and the type of the member function pointer of operator() of
the current functor. If the lambda expression has the extra argument, the two
types are the same. The value is computed at compile time. As C++ template
metaprograms run during compilation [1], the if statement in the example can
be replaced by a template metaprogram to make our solution more efficient.
That way the selection of the proper algorithm is done at compile-time. When

1196 ComSIS Vol. 9, No. 3, Special Issue, September 2012

High-level Multicore Programming with C++11

the accumulate is instantiated by an associative functor, that functor techni-
cally is a ternary functor, – its third argument refers to the associativity. That
case we need to transform it into a binary functor. The std::bind does this
work, binding a dummy value to the third arguments. This solution is backward
compatible to the original functor usage.

The more efficient version of the algorithm uses the following functor for the
computation in a distributed way:

template <typename Iterator, typename BinFunctor>
struct Accumulate
{

void operator()(
Iterator first,
Iterator last,
typename

std::iterator_traits<Iterator>::pointer p)
{

typename std::iterator_traits<Iterator>
::difference_type diff =

last - first;

if (2 == diff)
{

*p = BinFunctor()(*p, *first);

*p = BinFunctor()(*p, *(first + 1));
}
else if (1 == diff)
{

*p = BinFunctor()(*p, *first);
}
else
{

typename
std::iterator_traits<Iterator>::pointer p1 =
new std::iterator_traits<Iterator>::value_type;

typename
std::iterator_traits<Iterator>::pointer p2 =
new std::iterator_traits<Iterator>::value_type;

std::thread t1(Accumulate(),first,first+diff/2,p1);
std::thread t2(Accumulate(),first+diff/2,last,p2);
t1.join();
t2.join();

*p = BinFunctor()(*p, *p1);

*p = BinFunctor()(*p, *p2);

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1197

Zalán Szűgyi et al.

delete p1;
delete p2;

}
}

};

If the range has only 1 or 2 elements, the functor calculates the associative
operation, otherwise it divides the input range into two smaller ranges and starts
the calculation of smaller ranges in separate threads.

The associative accumulate initializes the shared data and starts the
parallel computation:

template< typename RandomAccessIterator,
typename T,
typename BinFunctor>

T associative_accumulate(RandomAccessIterator first,
RandomAccessIterator last,
T init,
BinFunctor bf)

{
typename

std::iterator_traits<RandomAccessIterator>::
pointer p = new T(init);

std::thread s(Accumulate<RandomAccessIterator,
BinFunctor>(),

first,
last,
p);

s.join();
T result = *p;
delete p;
return result;

}

4.2. Example

The example below shows the usage of our solution to calculate the product of
the input range of integers.

accumulate(input_iterator_begin, input_iterator_end, 1,
[](int a, int b){return a * b;});

accumulate(input_iterator_begin, input_iterator_end, 1,
[](int a, int b, associative){return a * b;});

The first function call summarizes the input range in conventional way, while
the second one applies the more effective algorithm which exploits the associa-
tivity.

1198 ComSIS Vol. 9, No. 3, Special Issue, September 2012

High-level Multicore Programming with C++11

4.3. Threshold

A more sophisticated and more effective implementation of the evaluation of
associative operation uses a threshold parameter. This parameter defines how
many elements in the range require the evaluation in a new separate thread.
This parameter highly depends on the characteristic of the problem.

As the previous subsection presents, the user may not know that differ-
ent implementation strategies are available according to the defined operation.
However, the user just states that his own operation is associative. How the
threshold parameter can be defined by user?

Two different approaches are discussed: if the operation is defined by a
functor type or a lambda function.

A functor type can contain special member variables and member function
that can be used by the accumulate. For convenience, an associative oper-
ation base type can be defined. This base type contains the associative
typedef and the default threshold value. The user has to create a subtype, and
he is able to override the threshold value. If the functor type is not subtype of the
associative operation base type, but is an associative operation, the previous
implementation works.

Lambda expressions cannot contain member variables and member func-
tions. The compiler generates a simple functor class from the definition of lambda,
but the generated functor is unavailable for extension. However, the possibility
of lambda-defined threshold needs extensive inspection.

However, the threshold value does not belong to the definition of the as-
sociative operation from the view of modularity. It belongs to the accumulate.
This means that accumulate has an extra parameter which defines the thresh-
old value. This argument may be defined if the operation is associative. Since
associativity is a compile-time information, compilation diagnostics can be emit-
ted if the operation is not associative and threshold parameter is given by the
user. If the operation is associative but no threshold is defined, the previous
code does work. This scenario does not depend on if the operation is defined
by functor or lambda function. Our future work includes the detailed implemen-
tation of this approach.

There are other approaches to solve this problem, but we reject them. One
of them is that the associative type contains the threshold value. This can be
a static value which is problematic from the view of parallelism. In the other one,
the threshold value is a template argument or a member set by its constructor.
Unfortunately, this makes the invocation of algorithm hard to maintain and the
algorithm cannot obtain this value effectively.

5. Conclusion

Multicore programming is an interesting new way of programming. Although
the current C++ programming language contains no constructs to write multi-
threaded programs, extensions and libraries can still be used. The next stan-

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1199

Zalán Szűgyi et al.

dard of C++ includes constructs for parallel program execution. Unfortunately,
these constructs are at a low level.

In this paper we argue for higher level constructs – ones at the level of the
widely used C++ Standard Template Library. We implemented special functors
and adaptors which support different kinds of evaluation in a multithreaded way.

– We can build up a pipeline of computations using a functor combinator.
– We can make use of speculative parallelism in the case of complex predi-

cates.
– We can take advantage of associative operations; STL algorithms can be

overloaded on their operation’s associativity, even if the operation is defined
as a lambda expression.

A programmer familiar with the STL can easily adopt our library.

Acknowledgments. The Project is supported by the European Union and co-financed
by the European Social Fund (grant agreement no. TÁMOP 4.2.1./B-09/1/KMR-2010-
0003).

References

1. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming: Concepts, Tools, and
Techniques from Boost and Beyond. Addison-Wesley, Reading, MA., USA (2004)

2. Aldinucci, M., Ruggieri, S., Torquati, M.: Porting decision tree algorithms to multi-
core using FastFlow. In: Proceedings of European Conference in Machine Learning
and Knowledge Discovery in Databases (ECML PKDD), Lecture Notes in Computer
Science, vol. 6321, pp. 7–23. Springer-Verlag, Berlin Heidelberg New York (2010)

3. Alexandrescu, A.: Modern C++ Design. Addison-Wesley, Reading, MA., USA (2001)
4. Austern, M.H.: Generic Programming and the STL: Using and Extending the C++

Standard Template Library. Addison–Wesley, Reading, MA., USA (1998)
5. Dagum, L., Menon, R.: Openmp: An industry-standard API for shared-memory pro-

gramming. IEEE Computational Science and Engineering 5, 46–55 (1998)
6. Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics, Principles

and Practice. Addison-Wesley, Reading, MA., USA (1990)
7. Frigo, M., Halpern, P., Leiserson, C.E., Lewin-Berlin, S.: Reducers and other cilk++

hyperobjects. In: Proceedings of Symposium on Parallel Algorithms and Architec-
tures (SPAA). pp. 79–90 (2009)

8. Gottschling, P., Lumsdaine, A.: Integrating semantics and compilation: using C++
concepts to develop robust and efficient reusable libraries. In: Proceedings of the 7th
international conference on Generative programming and component engineering,
GPCE 2008. pp. 67–76 (2008)

9. Järvi, J., Freeman, J.: C++ lambda expressions and closures. Science of Computer
Programming 75(9), 762–772 (2010)

10. Kalev, D.: The type traits library, [Online]. Available:
http://www.informit.com/guides/content.aspx?g=cplusplus&seqNum=276

11. Kozsik, T., Pataki, N., Szűgyi, Z.: C++ Standard Template Library by infinite iterators.
Annales Mathematicae et Informaticae 38, 75–86 (2011)

1200 ComSIS Vol. 9, No. 3, Special Issue, September 2012

High-level Multicore Programming with C++11

12. Matsuda, M., Sato, M., Ishikawa, Y.: Parallel array class implementation using C++
STL adaptors. In: Proceedings of the Scientific Computing in Object-Oriented Par-
allel Environments, Lecture Notes in Computer Science, vol. 1343, pp. 113–120.
Springer-Verlag, Berlin Heidelberg New York (1997)

13. Meyers, S.: Effective STL - 50 Specific Specific Ways to Improve Your Use of the
Standard Template Library. Addison-Wesley, Reading, MA., USA (2001)

14. Stroustrup, B.: The C++ Programming Language (Special Edition). Addison-Wesley,
Reading, MA., USA (2000)

15. Stroustrup, B.: The design of C++0x – Reinforcing C++’s proven strengths, while
moving into the future. C/C++ Users Journal 23(5) (May 2005)

16. Szűgyi, Z., Pataki, N.: Generative version of the FastFlow multicore library. Elec-
tronic Notes in Theoretical Computer Science 279(3), 73–84 (2011)

17. Szűgyi, Z., Pataki, N.: A more efficient and type-safe version of FastFlow. In: Pro-
ceedings of Workshop on Generative Programming 2011. pp. 24–37 (2011)

18. Szűgyi, Z., Török, M., Pataki, N.: Multicore C++ Standard Template Library in a
generative way. Electronic Notes in Theoretical Computer Science 279(3), 63–72
(2011)

19. Szűgyi, Z., Török, M., Pataki, N.: Towards a multicore C++ Standard Template Li-
brary. In: Proceedings of Workshop on Generative Programming 2011. pp. 38–48
(2011)

20. Szűgyi, Z., Török, M., Pataki, N., Kozsik, T.: Multicore C++ Standard Template Li-
brary with C++0x. In: NUMERICAL ANALYSIS AND APPLIED MATHEMATICS IC-
NAAM 2011: International Conference on Numerical Analysis and Applied Mathe-
matics, AIP Conference Proceedings, vol. 1389, pp. 857–860. American Institute of
Physics (2011)

21. Torgersen, M.: The expression problem revisited – four new solutions using gener-
ics. In: Proceedings of European Conference on Object-Oriented Programming
(ECOOP) 2004, Lecture Notes in Computer Science, vol. 3086, pp. 123–143.
Springer-Verlag, Berlin Heidelberg New York (2004)

22. Vandevoorde, D., Josuttis, N.M.: C++ Templates – The Complete Guide. Addison–
Wesley, Reading, MA., USA (2002)

23. Wei, H., Yu, J., Li, J.: The design and evaluation of hierarchical multi-level paral-
lelisms for h.264 encoder on multi-core architecture. Computer Science and Infor-
mation Systems 7(1), 189–200 (2010)

Zalán Szűgyi is assistant at Faculty of Informatics, Eötvös Loránd University
(Budapest, Hungary) since 2010. He is teaching C++ programming language.
His research area includes static analysis of programming languages, multicore
programming, and generative programming.

Márk Török is a PhD student at Faculty of Informatics, Eötvös Loránd Uni-
versity (Budapest, Hungary) where he is assistant since 2010. Programming
languages and multicore programming belong to the fields of his interest.

Norbert Pataki is assistant at Faculty of Informatics, Eötvös Loránd University
(Budapest, Hungary) since 2009. His research area includes programming lan-
guages (especially the C++ programming language), multicore programming,
software metrics, and generative programming.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1201

Zalán Szűgyi et al.

Tamás Kozsik received his PhD (summa cum laude) in computer science in
2006 at Eötvös Loránd University (Budapest, Hungary), where he works as as-
sociate professor and vice-dean for scientific affairs and international relations
of Faculty of Informatics. Since 1992 he has been teaching programming lan-
guages, as well as distributed and concurrent programming. His research fields
are program analysis and verification, refactoring, type systems and distributed
systems. His PhD thesis investigated the integration of logic-based and type
system based verification of functional programs.

Received: December 31, 2011; Accepted: May 21, 2012.

1202 ComSIS Vol. 9, No. 3, Special Issue, September 2012

