DOI: 10.2298/CSIS120102025M

Supporting heterogeneous agent mobility with
ALAS

Dejan Mitrovi¢!, Mirjana Ivanovi¢!, Zoran Budimac?, and Milan Vidakovi¢?

! Faculty of Sciences, Department of Mathematics and Informatics
Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia
{dejan, mira, zjb}@dmi.uns.ac.rs
2 Faculty of Technical Sciences
Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia
minja@uns.ac.rs

Abstract. Networks of multi-agent systems are considered to be hetero-
geneous if they include systems with different sets of APIs, running on
different virtual machines. Developing an agent that can operate in this
kind of a setting is a difficult task, because the process requires regener-
ation of the agent’s executable code, as well as modifications in the way
it communicates with the environment. With the main goal of providing an
effective solution to the heterogeneous agent mobility problem, a novel
agent-oriented programming language, named ALAS, is proposed. The
new language also provides a set of programming constructs that effec-
tively hide the complexity of the overall agent development process. The
design of the ALAS platform and an experiment presented in this paper
will show that an agent written in ALAS is able to work in truly heteroge-
neous networks of multi-agent systems.

Keywords: agent-oriented programming languages, mobile agents, het-
erogeneous agent mobility, multi-agent systems

1. Introduction

According to the weak notion of agency [39], software agents can be defined
as executable software entities characterized by autonomous behavior, social
interaction with other agents, reactivity to environmental changes, and the abil-
ity to take the initiative and express goal-directed behavior. The strong notion of
agency [40] extends this definition by including human-like behavior and mental
categories, such as beliefs, desires, and intentions (the so-called BDI agents).

Agents usually don’t exist on their own, but are rather situated inside an
environment. This runtime agent environment is often referred to as a multi-
agent system (MAS). Main tasks of a MAS are to control the agent life-cycle,
provide the messaging infrastructure, and offer a service subsystem that ef-
fectively supports agents, giving them the possibility of accessing resources,
executing complex algorithms, etc.

An agent, however, does not have to be confined to a single MAS instance.
A mobile agent is able to physically leave its current MAS and continue pursuing
its goals in another machine in a network.

Dejan Mitrovi¢, Mirjana Ivanovi¢, Zoran Budimac, and Milan Vidakovi¢

EXtebsible Java EE-based Agent Framework (XJAF) [34,35] is a multi-
agent system developed by the authors of this paper. The system is designed
as a modular architecture, comprised of a set of managers. Each manager is a
relatively independent module in charge of handling a distinct part of the overall
agent-management process. There are several benefits of the modular design.
For example, the system’s functionality can easily be extended by the addition
of new managers. In addition, each manager is accessible only though its inter-
face, which means that even the behavior of standard managers can be easily
changed.

Over the years, XJAF has been successfully used in several software sys-
tems, such as the virtual central catalogue and a metadata harvesting system
for library records [34]. Recently [16], it has also been proposed as an un-
derlying platform for agent-based harvesting of learning resources needed by
e-learning and tutoring systems. But, despite its successful practical usage,
XJAF had a disadvantage of being "locked” into a particular development plat-
form. Because it was implemented in Java, only Java-based external clients
were able to use the system and interact with its agents. In order to increase
the interoperability of the system and enable its wide-spread use, XJAF has
been redesigned as a service-oriented architecture (SOA). The new system,
named SOA-based MAS (SOM) [22], retains the manager-based design, but
with managers re-defined in terms of web services. In this way, even regular
web browsers can be used as clients of SOM, since the interaction relies on
the standardized communication protocol (i.e. SOAP [36]).

The SOA-based design of SOM, however, poses another problem. The sys-
tem is (only) an abstract specification of web services, their functionalities and
interactions, and any modern implementation platform can be used. But, devel-
oping an agent that can run on any of these implementations becomes almost
an impossible task. In the literature (e.g. [24]), this issue has been recognized
as an agent-regeneration problem: if a mobile agent migrates across a network
consisting of MASs that offer the same AP/, but are based on different virtual
machines, its executable code needs to be regenerated for each MAS it visits.

Unfortunately, the lack of MAS interoperability is not specific to different im-
plementations of SOM. Currently, there exists a large number of MASs offered
by different vendors. And although significant efforts have been put into the
standardization of the MAS development process (e.g. the Foundation for In-
telligent Physical Agents, FIPA [11]), agents are often incapable of operating
in these truly heterogeneous environments. This problem arises as a conse-
quence of standards incompliance, usage of different implementation technolo-
gies, different sets of APIs offered to agents, etc. The lack of interoperability is
a severely limiting factor in the agent development, and in the wide-spread use
of the agent technology.

In order to solve the MAS interoperability problem, a new agent-oriented
programming language named Agent LAnguage for SOM (ALAS) is proposed.
Besides providing developers with programming constructs that hide the overall
complexity of the agent-development process, one of the main goals of ALAS is

1204 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Supporting heterogeneous agent mobility with ALAS

to serve as a tool for writing agents that can execute their tasks regardless of the
underlying MAS. Originally, in [22], ALAS has targeted the agent-regeneration
problem. The idea has since been broadened to support the execution of agents
in heterogeneous environments. The focus of the research presented in this
paper will thus be to demonstrate how ALAS can be used to develop mobile
agents that can migrate across a network consisting of Java EE-based SOM,
Python-based SOM, and JADE [2,17] instances.

As noted, ALAS belongs to the category of agent-oriented programming
languages (AOPLs) which represent crucial tools of the agent-oriented pro-
gramming (AOP). AOP is a software development paradigm aimed at efficient
development of software agents and multi-agent systems. lts main goals are to
identify, analyze, and offer solutions for the most important theoretical and prac-
tical issues associated with the design and construction of software agents.

The rest of the paper is organized as follows. Section 2 provides an overview
of existing research efforts related to the work presented in this paper. Section
3 describes the architectures of XJAF and SOM, multi-agent systems that form
the basis for this research. Main features of ALAS, its syntax and programming
constructs are given in Section 4. A practical example of an ALAS-based mobile
agent operating in a heterogeneous environment is given in Section 5. Finally,
the overall conclusion and future research directions are outlined in Section 6.

2. Related work

Related research efforts presented in this section are divided into three parts.
The first part includes a general overview of existing multi-agent systems. The
second part outlines the state-of-the-art of AOPLs. The final part deals with the
work dedicated to interoperability multi-agent systems.

2.1. Multi-agent systems

Java Agent DEvelopment Framework (JADE) [2,17] is a Java-based, FIPA-
compliant MAS. At runtime, the framework consists of one of more agent con-
tainers, runtime environments with full support for agent execution. Individual
containers can be distributed across a network, in which case they are linked to
a designated main container. Each JADE agent has it own thread of control and
exposes its functionalities in terms of behaviors. That is, for each functionality
offered by an agent, developers need to define a separate class which extends
the Behaviour class, or one of its more specialized subclasses. A background
scheduler is then used to schedule execution of each behavior.

The main advantage of XJAF and SOM over JADE is in the use of Java EE,
the de facto standard development platform for building large-scale, scalable,
secure, and reliable software. Java EE includes a large set of standardized li-
braries and technical solutions which simplify the process of MAS development.
More importantly, the use of modern enterprise application servers incorporates
effective runtime agent load-balancing techniques into XJAF and SOM. Finally,

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1205

Dejan Mitrovi¢, Mirjana Ivanovi¢, Zoran Budimac, and Milan Vidakovi¢

the SOA-based design of SOM results in the system with greater interoperabil-
ity.

The SOA design philosophy has been employed in the development of FU-
SION@ [31, 32], a modular, FIPA-compliant MAS. Functionalities of the system
are exposed as services that can be accessed locally, or remotely through web
interfaces. The set of services is not fixed, which means that the system can
easily be extended with new functionalities. Any programming language can be
used for implementing new services, as long as it supports SOAP. FUSION@
also employs several types of specialized, system-level BD/ agents. Their main
task is to maintain high quality of service (QoS), by performing runtime load
distribution, monitoring all incoming and outgoing messages, etc.

Many properties of FUSION@, such as the extensible modular architecture,
and the use of low-level services, have been used in XJAF, although several
years earlier. Additionally, XJAF delegates some functionalities of FUSION@’s
system-level agents, such as runtime load-balancing, to an enterprise applica-
tion server, which simplifies the overall development process. Finally, it is not
clear how and if agent mobility is supported in FUSION@, or whether there
is a mechanism for organizing distributed instances of the environment. These
techniques have been built into XJAF and SOM from the start.

NOMADS [4,30] is one of the few MASs that support strong agent mobility
(e.g. all other systems mentioned in this paper support weak mobility only).
In order to achieve this feature, NOMADS runs on top of a customized, Java-
compatible virtual machine named Aroma. Aroma can transparently capture the
execution state of a single or all running threads, at the fine granularity level,
and in a cross-platform manner. Additionally, it can limit the agent’s access to
resources and enforce similar security-related restrictions.

The use of a custom virtual machine in NOMADS, however, has several
major disadvantages. These include interoperability issues, as well as the large
amount of work that needs to be conducted in order to maintain and update
Aroma for different operating systems and in accordance to new Java virtual
machine specifications. Nonetheless, the system does offer an interesting tech-
nical insight into requirements of strong and safe agent mobility.

Java is by far the most widely used platform for MAS development. However,
there exist notable examples of systems implemented using different technolo-
gies. One such example is Smart Python multi-Agent Development Environ-
ment (SPADE) [1,29] implemented in Python. SPADE is characterized by the
usage of XMPP/Jabber [41] instant messaging protocol for agent communi-
cation. Benefits of XMPP/Jabber include using [1] "an existing communication
channel, the concepts of users (agents) and servers (platforms) and an exten-
sible communication protocol based on XML”. The presence feature included in
the protocol also enables the real-time detection of the agent’s state.

SPADE platform is accompanied by a Python-based agent library of classes,
functions, and data structures that simplify the agent development process. The
SPADE agent development process is heavily inspired by that used in JADE:
functionalities of an agent are expressed in terms of behaviors, there is a sup-

1206 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Supporting heterogeneous agent mobility with ALAS

port for automatic, pattern-based matching of incoming messages, and so on.
The successful usage of Python as the implementation platform for SPADE has
inspired the development of Python-based SOM (discussed in more details in
Section 5).

2.2. Agent-oriented programming languages

AGENTO [28] was the first agent-oriented programming language and a direct
implementation of the AOP paradigm. In AGENTO, agents are defined in terms
of capabilities, beliefs, and commitment rules, which consist of message and
mental preconditions and resulting actions. Agents communicate by exchanging
request, unrequest, and inform messages. New features were added to the lan-
guage over time, with the two most notable direct extensions being PLACA [33],
which introduced support for agent planning, and Agent-K [7], which replaced
the custom communication messages with the standardized KQML, improving
the overall interoperability. These three languages, however, mostly served as
prototypes and were not designed for practical use. Their importance lays in the
influence they had on the development of many later AOPLs.

A large family of AOPLs includes languages that use first-order logical for-
mulae for describing agent’s mental state and behavior. Thus, they are specifi-
cally suited for BDI agent architectures. Influential representatives of this family
are 3APL [6], and AgentSpeak(L) [26]. BAPL supports descriptions of goals and
basic and composite plans, as well as "embedding” actions inside pre-condition
and post-condition rules. These rules, respectively, describe agent’s belief be-
fore and after the action is executed. Another important concept of 3APL are
goal, interaction, and plan rules, which are used generate new and update or
drop existing goals and plans. 3APL has inspired the development of many
other programming languages, most notably 2APL [5] and GOAL [15]. 2APL
increases the expressiveness of 3APL and aims at developing a more prac-
tical language. It makes a clear distinction between declarative concepts for
describing agent’s beliefs and goals, and imperative concepts for developing
plans (unlike 3APL, which mixes both declarative and imperative concepts in
defining goals). GOAL, among other things, introduces the blind commitment
strategy, a built-in goal update mechanism that automatically drops goals that
have been fully achieved, and perception rules which enable agents to respond
to external environmental changes.

AgentSpeak(L) is gaining more and more popularity due to the development
of Jason [3, 18], an interpreter for an extended version of the language. Along
with programming constructs for describing "common” features of BD/ agents,
such as beliefs, goals, rules, and plans, the extended version of AgentSpeak(L)
supports belief annotations. Annotations are programming constructs used to
attach additional details to agent’s beliefs. They do not increase the expressive-
ness of the language, but improve its readability and allow for (semi-)automatic
management of the agent’s belief base.

Although powerful and expressive, these languages suffer from several ma-
jor drawbacks. First of all, their descriptive nature and logical foundation might

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1207

Dejan Mitrovi¢, Mirjana Ivanovi¢, Zoran Budimac, and Milan Vidakovi¢

make them computationally expensive and complex. Secondly, the languages
were specifically designed for developing BDI-style agents and so are inade-
quate for implementing other types of architectures (e.g. purely reactive agents).
But, most importantly, the logical foundation and highly-abstracted program-
ming constructs used by this family of languages might prove to be their great-
est weakness. To avoid the faith of logic and functional programming languages
that were never widely adopted by the software development industry, AOPLs
should first and foremost be as simple to use as possible, i.e. without too many
high-level abstractions and without requiring a degree in computational logic
to understand their concepts. ALAS was designed to appear as a member of
the OO family of languages — the most widely used programming paradigm of
today — but with clear distinctions between objects and agents. This simplified
approach might turn out to be its main advantage, allowing for a broader accep-
tance of the agent technology.

JACK Intelligent Agents [38] is a robust, light-weight framework for rapid
development of multi-agent systems. It extends the Java programming lan-
guage by introducing new keywords and language constructs. The accompa-
nying compiler produces pure Java code, which allows for each JACK agent to
be used simply as another Java object. Although powerful, this system suffers
from the same drawbacks as the original XJAF: it is locked into a particular
development platform (i.e. Java). The ALAS platform is designed to allow trans-
formation of the original agent source code into a pure source code written in an
arbitrary language (such as Java and Python). With the SOA-based infrastruc-
ture supporting their execution, these agents can work in truly heterogenous
environments and cooperate with any external SOA-enabled entity. In addition,
JACK is a commercial product, while SOM can be freely downloaded and used.

2.3. MAS interoperability

Two MASs are said to be interoperable "if a mobile agent of one system can
migrate to the second system, the agent can interact and communicate with
other agents (local or even remote agents), the agent can leave this system,
and it can resume its execution on the next interoperable system” [25]. There-
fore, interoperability of MASs can seriously affect the agent’s performance, by
limiting its ability to move across the network or to interact with other agents.

Based on the actual types of MASs that appear in a network, several types
of agent mobility can be distinguished [24]:

— Homogeneous: all MASs in the network offer the same AP/ and are based
on the same virtual machine (VM). This is the easiest type of mobility to
implement, since no modifications of the agent’s code are needed.

— Cross-platform: MASs in the network offer different sets of APIs, but are
based on the same VM. In this scenario, the agent’s executable code re-
mains the same, but the AP/ calls it makes need to be adapted.

— Agent-regeneration: the agent moves across MAS instances that offer the
same AP/, but are based on different VMs. Therefore, the agent’s exe-
cutable code needs to be regenerated for each instance it visits, although

1208 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Supporting heterogeneous agent mobility with ALAS

its AP/ calls remain the same. This is the problem that affects different SOM
implementations.

— Heterogeneous: MASs in the network offer different sets of APIs and are
based on different VMs. This is the most difficult type of mobility to achieve,
as it includes both regeneration of the executable code, and the modifica-
tions in API calls.

Cross-platform agent mobility is usually achieved via one or more software
layers, where each layer is responsible for transforming AP/ calls from one form
to another. For example, Grid Mobile-Agent System (GMAS) [13] includes a
Foreign2GMAS layer, which transforms agent’s native AP/ calls into an inter-
mediary GMAS API, and a GMAS2Native, which transforms AP/ calls made to
GMAS APl into calls to the native platform. The first layer is required for a MAS
that needs to be able to send its agents to other architectures. Similarly, the
second layer is required for a MAS that needs to be able to accept agents from
other architectures.

Java-based Interoperable Mobile Agent Framework (JIMAF) [12] operates
on the principle of splitting the agent implementation into a platform-independent
(called the head) and a platform-dependent part (called the body). The body is
executed within Platform-dependent Mobile Agent Layer which is implemented
for each supported platform. When compared to GMAS, JIMAF is reported [12]
to introduce significantly less overhead to the agent migration process.

In ALAS, the task of adapting AP/ calls is handled transparently by the com-
piler's MAS selector component (see Section 4 for more details). The com-
ponent transforms, on-the-fly, the calls made to the ALAS standard library of
functions into native AP/ calls. The main advantage of this approach is that,
once the agent’s executable code is regenerated, all native AP/ calls are made
directly. That is, there is no additional overhead introduced by layering AP/ calls.

Much more work, however, is needed for heterogeneous agent mobility,
since both the executable code and AP/ calls need to be regenerated. Genera-
tive migration [24] is one proposed solution for this problem. Rather than on soft-
ware layering, it relies on a pool of agent building blocks, platform-independent
descriptions of reusable software components. Each building block is charac-
terized solely by a description of its interface, without any details regarding the
implementation. An agent is defined (or, rather, designed) by assembling and
interconnecting these building blocks into an agent blueprint. During the migra-
tion process, the agent’s blueprint is transferred, along with its runtime state.
Using the blueprint, an agent factory tool can rebuild the agent’s executable
code for a specific MAS.

ALAS solves the same problem as generative migration does. However,
ALAS is a programming language, syntactically (and, to a certain degree, con-
ceptually) similar to many popular OO programming languages. Generative mi-
gration, on the other hand, might be formalized as a Model-Driven Architecture
[27]. For a common software developer, this means that ALAS has a flatter
learning curve than generative migration. In addition, ALAS has a wider goal of

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1209

Dejan Mitrovi¢, Mirjana Ivanovi¢, Zoran Budimac, and Milan Vidakovi¢

simplifying the whole agent-development process, and it’s not focused just on
enabling heterogeneous agent migration.

3. XJAF and SOM: design and functionalities

XJAF was originally designed as a modular architecture. Each module, called
a manager, is responsible for handling a distinct part of the overall agent-
management process. The architecture defines a set of standard managers,
described in the following paragraphs. This set is not fixed, and new managers
(that is, new functionalities) can be added as needed. Additionally, managers
are defined and used solely by their interfaces, so even the standard behavior
can be changed.

AgentManager maintains the directory of agents and controls the agent life-
cycle. Its functionality matches the one defined for the FIPA’s Agent Directory
Service [9]. The directory of agents consists of two lists: local and remote. The
first list keeps a record of agents located in the manager’s host XJAF instance.
The second, remote list is used to support agent mobility. Once an agent leaves
its current host and migrates to another machine in the network, it is removed
from the local, and placed in the remote list (along with the address of its new
host XJAF). So when a message needs to be delivered to the agent, Agent-
Manager will:

— Check the local list and, if the agent is available there, deliver the message
directly.

— Otherwise, check the remote list and, if the agent is available there, forward
the message to AgentManager of the agent’s new host.

These steps are repeated in each XJAF instance in the agent’s migration
path, until the agent is finally located (i.e. until it appears in the AgentManager’s
local list). This simple, yet effective technique of agent location tracking is known
as the forwarding pointers technique [23].

ConnectionManager is the manager in charge of maintaining a network of
distributed XJAF instances and, in combination with the previously described
agent tracking technique, serves as the support for agent migration. In the ear-
liest implementation [34], each XJAF instance in a network had a single other
XJAF instance to register with, forming a tree-like structure. This organization,
however, was characterized by a single point of failure — if one instance breaks,
the whole tree is divided into two sets of mutually unreachable instances. Re-
cently [20,21], this organizational structure has been replaced with a fully-
connected graph. A new type of a mobile agent, named ConnectionAgent was
added to the system, with the job of building and maintaining the graph in an
efficient fashion. This new approach of organizing XJAF instances is shown
[21] to be fault-tolerant to unexpected failures, enabling each remaining XJAF
to have the correct overview of the network state, regardless of the number of
failures.

1210 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Supporting heterogeneous agent mobility with ALAS

MessageManager provides the messaging infrastructure. It supports inter-
agent communication via the exchange of KQML messages [8]. A KQML mes-
sage sent from one agent to another is embedded into a JMS message [14].
MessageManager then broadcasts the message to all XJAF instances that
have previously subscribed to this service, but only the instance containing the
target agent will process the message and extract KQML content from it. In
the ongoing work of increasing the interoperability of XJAF, the KQML-based
messaging system will be replaced by the de facto standard FIPA ACL [10].

An important aspect of each MAS is security. In terms of the agent technol-
ogy, security features are used to protect both agents and the MAS itself from
malicious attacks, to keep the confidentiality of exchanged messages, etc. In
XJAF, these features are offered by SecurityManager. And since often there
is a significant computational overhead associated with security (e.g. encryp-
tion/decryption of messages), the security features are not applied automati-
cally, but can rather be included on-demand, through an AP/ exposed by the
manager.

XJAF includes a service sub-system, where the service is a reusable soft-
ware component managed by ServiceManager. The basic idea is to expose
common tasks, such as file management, in form of services that can be directly
accessed and used by agents. This approach simplifies the agent development
process and supports the development of lighter agents (in terms of size). The
list of services is not fixed and can be expanded as needed.

XJAF agents expose their capabilities in form of tasks. A task includes a
detailed description of a single functionality offered by the agent. It incorporates
types and names of input parameters as well as of the returned value. The list
of tasks offered by the agents is maintained by TaskManager. External clients
of the system can ask for a task execution. In response, TaskManager will find
the most suitable agent for the given task, and then send it an appropriate
message. For interoperability reasons, the format of task descriptions is based
on the standardized and widely-used W3C XML Schema language [37].

The main advantage of XJAF over other existing MAS implementation is in
its use of the Java EE technology. Java EE has been endorsed by large busi-
ness enterprises as the main tool for building large-scale, scalable, secure, and
reliable software. As such, it represents an excellent platform for MAS develop-
ment. Immediate direct benefits of this approach are shorter development time,
standards compliance, and harnessing of advanced programming features. For
example, each XJAF agent is a regular Java object (i.e. a POJO), but wrapped
inside an Enterprise JavaBean (EJB) component. At runtime, the component
is passed to an enterprise application server in order to employ runtime load-
balancing and object pooling features.

The original XJAF had one serious disadvantage — it was "locked” into a
particular development platform. A consequence of this problems is the lack of
interoperability, in the sense that only Java-based external clients could access
the system and interact with its agents. In order to overcome this issue, a new
system, named SOA-based MAS (SOM) has been developed. SOM follows the

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1211

Dejan Mitrovi¢, Mirjana Ivanovi¢, Zoran Budimac, and Milan Vidakovi¢

manager-based design approach of XJAF, but with managers implemented as
web services. The most important improvement introduced by the “switch” to
the SOA-based design is increased interoperability: external clients and third-
party tools can interact with SOM and its agents through web service interfaces,
i.e. in a familiar fashion, and using the standardized communication protocol.

Unfortunately, the SOA-based design of SOM introduced a new, major is-
sue. Because the system is a specification of web services, it can be imple-
mented using many modern programming languages. However, developing an
agent that can run on any of these implementations becomes almost an impos-
sible task. In order to solve this problem, a new agent-oriented programming
language, named Agent LAnguage for SOM (ALAS) has been developed. Its
main features and functionalities are described in the following section.

4. Main features of ALAS

Originally, in [22], ALAS and its accompanying set of tools (in further text, the
ALAS platform) were primarily aimed at the development of agents for different
SOM implementations. One of the main characteristics of the ALAS platform is
hot compilation: when an agent arrives to an instance of SOM implemented in
a certain programming language X, its ALAS source code is transformed on-
the-fly into the source code written in X. The generated source code is then
forwarded to the native compiler, if any, to produce the executable code for the
target platform.

Since the original proposal, the functionality of ALAS platform has been
broadened to include support for other MAS implementations, such as JADE.
According to the classification of agent mobility presented in [24] and described
earlier, this means that the ALAS platform has been upgraded from delivering
agent-regeneration to supporting true heterogeneous agent mobility. The main
goal of ALAS is, therefore, to create an agent-oriented programming that hides
the complexity of the overall agent-development process from developers, and,
at the same time, operates regardless of the underlying MAS.

The ALAS platform has been designed ground-up with the idea of hetero-
geneous agent mobility in mind. The entire process of transforming the ALAS
source code into the executable code for the target platform is shown in Fig. 1.
In the first step, the agent source code written in ALAS is parsed to produce an
abstract syntax tree. The tree is then fed into the VM selector which associates
it with the proper ALAS standard library. The standard library includes utility
functions for common operations, such as string processing, file management,
and network connections. To support the idea of heterogeneous agent mobil-
ity, the library was re-implemented for each of the supported target languages
(currently, Java and Python). The output of this step is fed into the MAS selec-
tor which replaces MAS-specific ALAS instructions with native AP/ calls. MAS
selector produces a fully-functional source code of the agent for the target MAS
which is, finally, sent to the native language compiler (if any) to produce the
executable code.

1212 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Supporting heterogeneous agent mobility with ALAS

ﬁ > Java-based

<= ALAS Std. Lib.

SOM API
calls

MAS

Java selector

ﬂ i 4

Jjavac

JADE API
calls

PySOM API
calls

Python »(PySOM

selector

3 B

ﬂ Python-based
ALAS Std. Lib.

Fig.1. The process of compiling ALAS-based source code of an agent into the exe-
cutable code for the target platform

Protection from malicious attacks is an important issue, especially in sys-
tems that employ agent mobility. To protect the agent code during the migration
process, code certificates can be used [35]. A certificate holds the hash of the
ALAS source code, as well as the digital signature of the agent’s internal state.
The security check is performed before the parsing step, and if it fails, the agent
is discarded for unauthorized modifications.

Common, non agent-specific programming constructs, such as if-then-else
and switch control statements, while, do-while, and for loops, are also sup-
ported. Their syntax is, like in many modern programming languages, based on
the syntax of the C programming language.

In the current stage, ALAS can be used for developing purely reactive agents.
These assume agents that execute actions in response to some external events,
such as messages received from other agents. The support for BDI-style archi-
tecture is planned for a latter stage.

ALAS compiler handles a single compilation unit at a time, which includes
definition of one agent, and an optional package declaration:

CompilationUnit = [Package] AgentDefinition <EOF> ;
Package = "package" Name ";" ;
Name = Identifier { "." Identifier } ;

ALAS packages serve the same purpose as packages (or namespaces)
in traditional procedural and OO programming languages. They provide the
means for distinguishing between agents that have the same name, for logi-
cal grouping of related agents, etc.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1213

Dejan Mitrovi¢, Mirjana Ivanovi¢, Zoran Budimac, and Milan Vidakovi¢

4.1. Services

The main language construct for exposing agent’s behavior is a service. In
ALAS, a service is a functionality that the agent offers to others, and can be
seen as a counterpart of a public method in OOP. External entities can ask for
a service execution by sending an appropriate message to the agent. A func-
tion, on the other hand, is local and its primary use is to break large service
implementations into smaller logical units. It cannot be accessed by external
entities and is, therefore, a counterpart of a private method in OOP.

Agent definition in ALAS consists of the agent name and the agent body,
which, in turn, is defined as a set of states, services, and functions:

AgentDefinition = "agent" Identifier
"{" { AgentBodyDef } "}" ;
AgentBodyDef = (LookAhead(3) AgentState |
"service" Function |
"services" "{" { Function } "}" |
LookAhead (3) Function) ;
Function = ResultType Identifier ParamList Block ;
ParamList = "(" Param { "," Param } ")" ;
Param = Type Name ;

Agent service definition begins with the keyword service, followed by the
return type, unique name of the service, formal parameter list, and a body. As a
shortcut (i.e. to avoid typing the service keyword for each new service), several
services can grouped under a single services block. When SOM is used as the
target platform, a separate XML-based task description is produced for each
defined service.

An important thing to note about agent services is that method overloading
from OOP languages cannot be applied. That is, an agent cannot expose two or
more services under the same name, even if formal parameters differ. Although
the syntax of a service definition resembles the syntax of a method definition,
services are actually message handlers. In standardized agent communica-
tion, the order of values passed as the message content does not (or, should
not) matter. For example, the following code represents a KQML message that
AgentA sends to AgentB asking for the execution of its service PrintSum. The
message includes values 5 and 6 for the service’s two integer parameters, a
and b, respectively:

(achieve
:sender AgentA
:receiver AgentB
:language XML
:content "<service>
<name>PrintSum</name>
<args>
<arg name="a" type="int"><![CDATA[5]]></arg>
<arg name="b" type="int"><![CDATA[6]]></arg>

1214 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Supporting heterogeneous agent mobility with ALAS

</args>
</service>")

So even if the order of arg tags changes, the agent is still asked to execute
the same service.
Unlike services, functions can be overloaded.

4.2. Agent runtime state

ALAS is a strongly and statically typed language. In addition to void, the lan-
guage supports byte, short, int, long, float, double, boolean, and char primi-
tive data types. These types match the appropriate primitive data types of the
Java programming language. Currently, the only supported complex data type
is String, while the support other complex data types (e.g. for artifacts modeling)
will be included later.

The runtime state of an ALAS agent is represented by a set of persistent and
temporary properties. During the migration process, values of persistent prop-
erties are automatically saved before the agent leaves its host MAS, and later
automatically restored once it reaches the target MAS. Temporary properties,
on the other hand, should be used only to store values that are not supposed
to be transferred along with the agent.

The syntax for defining runtime state of an ALAS agent is as follows:

AgentState = ("state" "{" { Localvar ";" } "}" |
Localvar ";")

Localvar = Type Var { "," Var } ;

Var = Identifier ["=" Expression] ;

Any property defined within the state block will be considered persistent.
Properties defined outside of this block will be considered temporary.

As show, expressions can be used to set initial values of properties along
with declarations. If more complex initialization steps are required, a function
with the following signature can be defined: void initialize(). This special-purpose,
parameterless function is automatically invoked during the agent’s startup, and
before any other function or service. Therefore, it corresponds to a constructor
in traditional OO programming languages (or the __init__ method in Python).

4.3. Support for agent mobility

In order to support agent mobility, ALAS includes two programming instructions:
copy and move. The first instruction makes a clone of the original agent in the
target MAS, which means that the agent continues to operate in the source
MAS. This instruction can appear at any point in a service or function imple-
mentation. The move command, on the other hand, physically moves the agent
to the target MAS, which means that the original agent is disposed. This is why
the move instruction can be only the very last instruction in a service implemen-
tation. The syntax of copy and move instructions is as follows:

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1215

Dejan Mitrovi¢, Mirjana Ivanovi¢, Zoran Budimac, and Milan Vidakovi¢

MoveStatement = ("copy" | "move")
"(" Expression ["," Expression
{"," MoveArg } 1 m)" ";" ;
MoveArg = StringLiteral "=" Expression ;

Each instruction accepts at least one parameter, an expression that repre-
sents the target MAS. The value can be the concrete name of the MAS, or the
physical network address of the machine that hosts it, in the format host : port.
The second expression, if specified, is the name of the agent’s service that
should be automatically invoked once the target MAS is reached. Finally, a set
of values that should be passed to the service can be specified, in the form of
Parameter Name = Value.

Once the migration process is initialized, the agent is serialized into an XML
stream. The transferred data includes:

— The original (ALAS) source code of the agent.

— |dentifier of the agent’s originating MAS (included for convenience reasons).
— Agent’s persistent properties.

— Name of the service to be automatically invoked.

— The set of arguments for the service.

The presented set of ALAS features already offers the possibility of writing
powerful agents. With the backing of the ALAS platform, these agents are able
to operate in networks consisting of Java EE-based SOM, Python-based SOM,
and JADE instances, as shown in the next section.

5. A mobile TimeSync ALAS agent

The example of using the ALAS platform presented in this section is intended
to serve as a proof of concept. The experiment will demonstrate how an ALAS-
based agent operates and migrates in a truly heterogeneous network environ-
ment.

For the purpose of this experiment, a TimeSync agent was developed. The
agent, upon receiving an appropriate message, visits all MASs in the network
and synchronizes their timers. The message sent to the agent includes a comma-
separated list of network addresses to be visited, and the value of time (of type
double) to be set in each MAS. Once it synchronizes the timers of all systems,
the agent returns to its originating MAS.

The network includes 3 different multi-agent systems:

— A Java EE-based implementation of SOM
— A Python-based implementation of SOM, named PySOM
— JADE version 4.1

Each system features a module that accepts a serialized form of the ALAS
agent, de-serializes it, invokes the ALAS compiler, restores the agent’s runtime
state, and then sends it the message for service execution.

1216 ComSIS Vol. 9, No. 3, Special Issue, September 2012

-
CQOWoONOOTOA~WN =

WWMNMNMNDMNPDNMNMNODMNDNMNDMNON =2 =22
0O VWoONOCOPRARWON—_LOOOONOOOIDWN =

Supporting heterogeneous agent mobility with ALAS

Python was chosen as the second implementation platform for SOM in this
experiment because the language itself is very different from Java in many as-
pects, such as the syntax, dynamic vs. static typing, multi-paradigm vs. OO
paradigm, etc. In this way, the experiment will show that the ALAS platform is
not tied to the Java platform.

JADE was included in order to demonstrate the ability of ALAS agents to
operate in heterogeneous environments. The system was extended with an
ALAS platform plug-in that performs the aforementioned steps from accepting
the agent, to requesting service execution.

The full source code of the TimeSync agent written in ALAS is shown in
Listing 5.1.

Listing 5.1. Full source code of the mobile TimeSync ALAS agent, capable of
operating in a network consisting of SOM, PySOM, and JADE instances

package example.agents;

agent TimeSync {
state { String startingHome; }
String next, remaining;

service void SyncTimers(String hosts, double time) {

if (startingHome == null)
startingHome = host(); // remember the starting point

else if (startingHome.equals(host())) { // am | back home?
log(”1’m back!”);
startingHome = null;
return; }

// apply the time

log (”Setting the system time to

applySystemTime (time);

// go to the next host

if (hosts.length() == 0) // no more hosts, go back home
next = startingHome;

else
parseHosts (hosts);

move(next, ”SyncTimers”, “hosts”=remaining, “time”=time); }

”»

, time);

void parseHosts(String hosts) {

int n = hosts.indexof(”,”);

it (n == -1) {
next = hosts;
remaining = 77;

} else {
next = hosts.substring(0, n);
remaining = hosts.substring(n + 1); } } }

Line 1 sets the agent’s package to example.agents, and the agent definition
starts at line 3. Lines 4 and 5 define the agent’s runtime state as a set of three

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1217

Dejan Mitrovi¢, Mirjana Ivanovi¢, Zoran Budimac, and Milan Vidakovi¢

String properties: startingHome, next, and remaining. The first property is per-
sistent. It holds the identifier of the agent’s starting MAS, i.e. the MAS that was
hosting the agent when it received the request to run the time synchronization
process. This value is used by the agent to return home once it finishes the pro-
cess. The latter two properties are temporary, and are used by the parseHosts()
function described later.

TimeSync agent exposes a single service (lines 7-22) called SyncTimers.
The service has no return value, and accepts two parameters: a comma-separa-
ted list of MAS instances the agent needs to visit, and the time value to be set
in each MAS. The starting MAS is stored persistently in lines 8 and 9. As noted
earlier, when a mobile agent arrives to a new MAS, its runtime state is restored
after the initialization, but before any service execution is requested. This means
that the expression startingHome == null will resolve to true only at the agent’s
starting MAS. Lines 10-13 are used to detect if the agent has returned back
home. For this evaluation, the host() library function is invoked, returning the
address of the agent’s current host.

Line 16 invokes a function called applySystemTime(), which is used to set
the system time to the given value. For security purposes, however, this is a
dummy functions. ALAS agents are not actually able to change the system
time.

Lines 18—21 are used to extract the next MAS that needs to visited. Line 18
in particular demonstrates the usage of the ALAS standard library. The hosts
parameter is of ALAS String complex type, which offers a set of functions for
string manipulation, including (among others):

— int length() — returns the length of the string.

— int indexof(String sub) — returns the index of the first occurrence of sub
within the string, or -1 if the parameter does not occur. The first character in
a string has the index of 0.

— String substring(int start [, int end]) — returns the substring of the string,
starting with index start (inclusive), and until the index end (exclusive). If
end is not specified, the call corresponds to str.substring(start, str.length()).

Because the String type is included both in Java and Python, the VM selec-
tor (Fig. 1) replaces these calls with calls to appropriate native string manipula-
tion methods.

The SyncTimers service utilizes a helper function, named parseHosts() (lines
24-31) which extracts the next MAS from the comma-separated list. The next
MAS is stored into the temporary property next, while the updated list (e.g. the
list without the extracted MAS) is stored into the second temporary property,
remaining.

The agent’s final step is to move to the next MAS, and it does so by invoking
the move instruction (line 22). The instruction’s arguments indicate that, once it
reaches the target, the agent should be asked to again execute the SyncTimers
service with parameter values remaining and time.

1218 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Supporting heterogeneous agent mobility with ALAS

5.1. Running the TimeSync agent

The network used in this experiment consists of three MASs, i.e. a single in-
stance of each of the SOM, PySOM, and JADE. The network addresses of the
systems are, respectively, 192.168.0.1 : 8081, 192.168.0.2 : 8081, and 192.168.0.3 :
8081. Initially, the agent is located in the SOM instance.

A client can ask for the SyncTimer service execution by sending the follow-
ing KQML message to the agent:

(achieve
:sender ALAS_IDE
:receiver TimeSync
:language XML
:content "<service>
<name>SyncTimers</name>
<args>
<arg name="hosts" type="String">
<![CDATA[192.168.0.2:8081,192.168.0.3:8081]1]1>
</arg>
<arg name="time" type="double">
<![CDATA[40893,639141169]]>
</arg>
</args>
</service>")

The sender of this message is ALAS IDE, which, among common features
such as syntax highlighting, provides the means for specifying the target MAS,
in form of typeQ@address. In this scenarion, the compilation process will auto-
matically load the agent in the specified MAS.

Once the agent executes the service, it will set the time of the current
MAS, extract the network address of the next MAS to visit (PySOM instance
at 192.168.0.2 : 8081), and initiate the migration process. The migration process
will serialize the agent, resulting in the following XML stream:

<?xml version="1.0" encoding="UTF-8"7?>
<alas xmlns="http://alasagents.org/SerializedAgent"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://alasagents.org/SerializedAgent
SerializedAgent.xsd ">

<source>
<! [CDATA [package example.agents; agent ...]]>
</source>
<home>192.168.0.1:8081</home>
<state>

<property name="startingHome" type="String">
<! [CDATA[192.168.0.1:808111>
</property>
</state>
<service>SyncTimers</service>

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1219

-
QOWoo~NOOCOGOR~WND =

NMMNODMNDMNODND = = 2
A WON—-O0OOONOOOTHAWN =

Dejan Mitrovi¢, Mirjana Ivanovi¢, Zoran Budimac, and Milan Vidakovi¢

<args>
<arg name="hosts" type="String">
<! [CDATA[192.168.0.3:8081]]>
</arg>
<arg name="time" type="double">
<! [CDATA[40893,639141169]]>
</arg>
</args>
</alas>

The type information for persistent properties and service arguments may
be redundant, but is included in the stream for convenience reasons.

Running the agent in PySOM The PySOM instance accepts the serialized
stream, extracts the agent source code, and passes it to the ALAS compiler.
The agent’s persistent property is then restored to 192.168.0.1 : 8081. Finally,
the system sends a message to the agent, asking for the execution of the Sync-
Timers service. The generated Python source code of the TimeSync agent is
shown in Listing 5.2 3.

Listing 5.2. Source code of the mobile TimeSync ALAS agent, regenerated for
PySOM

class TimeSync:

def __init__(self):
original , ALAS source code of the agent
self._AGENT_SOURCE. = ”package example.agents; ...~
comma-separated list of persistent properties
self.__PERSISTENT_VARS. = ”startingHome”
agent state
self.startingHome = None
self.next = None
self.remaining = None

handler of incoming messages
def onMessage(self, service):
if service.getName() == "SyncTimers”:
SyncTimers service implementation
def SyncTimers(hosts, time):
remember the starting point
if self.startingHome == None:
self.startingHome = host()
else: # am | back home?
if self.startingHome == host():
alas.stdlib.pysom.Log. write ("1 ’'m back!”)
startingHome = None
return

% This and subsequent listings showing transformed source code of the agent have

been manually reformatted to make them more human-readable.

1220 ComSIS Vol. 9, No. 3, Special Issue, September 2012

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Supporting heterogeneous agent mobility with ALAS

apply the time
alas.stdlib.pysom.Log. write (" Setting the ”,
“system time to ”, time)
alas . stdlib .pysom.Dummy. applySystemTime (time)
go to the next host
if len(hosts) == 0: # no more hosts, go back home
self.next = self.startingHome
else:
self.parseHosts (hosts)
prepare service parameters
__mv_obj_2 = time
_-mv_obj_1 = self.remaining
start the migration process
alas.stdlib.pysom.PySOMFacilitator.instance ().move(
self , self.next, ”"SyncTimers”, "hosts”, __mv_obj_1,
“time”, __mv_obj_2)
execute the service
SyncTimers(service.get(”hosts”), service.get(”time”))
return

def parseHosts(self, hosts):

n = hosts.find(”,”)

if n == —1:
self.next = hosts
self.remaining = 7”7

else:
self.next = hosts[0:n]
self.remaining = hosts[n+1:]

The TimeSync agent is represented by a class which includes a constructor
(lines 2—10), a function for handling incoming messages (lines 13-43), and the
helper parseHosts() function (lines 45-52). The actual code of the SyncTimers
services is inserted as an inner function of onMessage() (lines 16—43), right
under the conditional statement that determines the name of the requested
service. The actual call to this inner function is made in line 42.

Agents that wish to leave a PySOM instance can do so by calling the move
method of PySOMFacilitator. The method relies on Python reflection features
for extracting the necessary runtime information about the agent, such as its
original, ALAS source code stored in line 4, values of persistent properties listed
in line 6, etc.

As it can been seen from the given source code, the ALAS standard library
for PySOM is available under the alas.stdlib.pysom package.

After executing the service here, the agent will move to the JADE instance.

Running the agent in JADE Once the TimeSync agent reaches JADE, its
ALAS source code will be processed to produce JADE behavior class, shown
in Listing 5.3. MyBehavior is defined as an inner class of the TimeSync class,
which represents the actual agent. State properties, original ALAS source code,
and the list of persistent properties are all defined in this agent class.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1221

-
QOWoo~NOCGOPR~WND =

A BABADNDDIDDEDDRDOWOWWWWWWWWWNDMNDMNDMNDNMDNNDNDNDNON = = = =
NOOPRARWN—-L00O0O0ONOAPROUN2LO0OO0OONOODAPRPRWOUN2TOOONOOORAON =

Dejan Mitrovi¢, Mirjana Ivanovi¢, Zoran Budimac, and Milan Vidakovi¢

Listing 5.3. Source code of the mobile TimeSync ALAS agent, regenerated for

JADE

private class MyBehavior
extends jade.core.behaviours.CyclicBehaviour {
private TimeSync agent;

public MyBehavior(TimeSync agent) { this.agent = ag; }
@Override public void action () {

// wait for a message

jade.lang.acl.ACLMessage msg = agent.receive ();

if (msg == null) { block(); return; }

// extract service description from the msg content

alas.stdlib.java.common. migration.ServiceDesc content = null;

try {
content = (alas.stdlib.java.common.migration.ServiceDesc)

msg.getContentObject ();
} catch (jade.lang.acl.UnreadableException ex) { return; }

if (content.isService(”SyncTimers”)) {
// SyncTimers service implementation
class Service_SyncTimers {
void SyncTimers(String hosts, double time) {
// remember the starting point
if (startingHome == null)
startingHome = alas.stdlib.java.common. Facilitator.
instance ().getHome ();
// am | back home?
else if (startingHome.equals(alas.stdlib.java.
common. Facilitator.instance ().getHome ())) {
alas.stdlib.java.common.Log.write (”1’'m back!”);
startingHome = null;
return; }
// apply the time
alas.stdlib.java.common.Log. write (”Setting the 7,
”system time to 7, time);
alas. stdlib.java.common.Dummy. applySystemTime (time);
// go to the next host
if (hosts.length() == 0) // no more, go back home
next = startingHome;
else
parseHosts (hosts);
// prepare service parameters
Object mv_obj2 = time;
Object mv_obj1 = remaining;
// start the migration process
alas.stdlib.java.jade.JADEFacilitator.instance ().
move (this , next, ”"SyncTimers”,

1222 ComSIS Vol. 9, No. 3, Special Issue, September 2012

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

O©CoOoO~NOOOThA~WN =

Supporting heterogeneous agent mobility with ALAS

"hosts”, mv_objl, ”time”, mv_obj2); } }
// execute the service
String hosts = content.get(”hosts”, String.class);
double time = content.get(”time”, double.class);
new Service_SyncTimers (). SyncTimers(hosts, time);
return; } }

private void parseHosts (String hosts){
int n hosts.indexOf(”,”);
if (n==-1){
next = hosts;
remaining = ”7;
} else {
next = hosts.substring (0, n);

remaining = hosts.substring(n + 1); } } }

Inside JADE, the agent will wait for an incoming message (lines 9 and 10),
and then extract the message content (lines 13—-17). The content is defined
as a ServiceDesc class, which stores all the information about the service the
agent is asked to execute. The actual source code of the SyncTimers service is
inserted as the inner Service_SyncTimers class (lines 21—48), and it's invoked
using lines 50-52.

Two root packages, alas.stdlib.java.common and alas.stdlib.java.jade, make
up the ALAS standard library for JADE. All classes under the first package
are shared between all Java-based MASs (in this case, SOM and JADE) and
include functionalities that are architecture-independent. The second package
incorporates classes that implement JADE-specific behavior (e.g. JADEFacili-
tator).

Similarly as with PySOM, the move instruction (lines 46—48) relies on Java
reflection API to extract and serialize agent’s runtime properties.

After executing the service in JADE, the agent determines that there are no
more MASSs to visit, and returns to its home — the SOM instance.

Running the agent in SOM The TimeSync source code produced for SOM
is shown in Listing 5.4. Again, the agent is defined as a regular Java class
implementing the SOM-specific Agent interface that represents all agents.

Listing 5.4. Source code of the mobile TimeSync ALAS agent, regenerated for
SOM

public class TimeSync

implements xjafs.agentmanager.ejb.interfaces.Agent {
// original , ALAS source code of the agent
private final String __AGENT_SOURCE. =

"package example.agents; ...”;

// comma-separated list of persistent properties
private final String __PERSISTENT_VARS. = "startingHome”;
// agent state
private String startingHome, next, remaining;

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1223

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Dejan Mitrovi¢, Mirjana Ivanovi¢, Zoran Budimac, and Milan Vidakovi¢

// handler of incoming messages

@Override

public void onKQMLMessage(String kgml, String agentiD) {
// unmarshall the KQML message
final xjafs.agentmanager.ejb. utils .xml.kgml.KgmIMessage msg =5
xjafs .agentmanager.ejb. utils . XMLMapper. unmarshallKQML (kgml) ;

if (message.getCommand().equals(”SyncTimers”)) {
// SyncTimers service implementation
class Service_SyncTimers {
void SyncTimers(String hosts, double time) {
// remember the starting point
if (startingHome == null)
startingHome = alas.stdlib.java.common. Facilitator.
instance ().getHome ();
// am | back home?
else if (startingHome.equals(alas.stdlib.java.common.
Facilitator.instance ().getHome())) {
alas.stdlib.java.common.Log. write ("1 ’'m back!”);
startingHome = null;
return; }
// apply the time
alas.stdlib.java.common.lLog. write (”Setting the 7,
"system time to ”, time);
alas . stdlib.java.common.Dummy. applySystemTime (time);
// go to the next host
if (hosts.length() == 0) // no more, go back home
next = startingHome;
else
parseHosts (hosts);
// prepare service parameters
Object __mv_obj_$2 = (time);
Object __mv_obj_$1 = (remaining);
// start the migration process
alas.stdlib.java.som. SOMFacilitator.instance (). move(
this, next, ”"SyncTimers”,
"hosts”, __mv_obj_$1, "time”, __mv_obj_$2); } }
// execute the service
SyncTimers task = XMLMapperSyncTimers.
unmarshallSyncTimers (msg.getContent ());
new Service_SyncTimers (). SyncTimers(task.getHosts (),
task.getTime ());
return; } }

private void parseHosts (String hosts) { ... ommitted ... }

}

SOM agents communicate by exchanging KQML messages, and the system
relies on JAXB marshalling/unmarshalling [19] for message serialization/dese-

1224 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Supporting heterogeneous agent mobility with ALAS

rialization (lines 15 and 16). Similarly as with JADE, in this SOM-specific defi-
nition of TimeSync, the SyncTimers service implementation is provided in form
of an inner class (lines 20—47), and is invoked using lines 49-52.

This experiment demonstrates how ALAS can be used to develop agents
in the write once, run anywhere manner. The ALAS-based TimeSync agent is
implemented once to solve a specific problem, and is then able to work in SOM,
PySOM, and JADE instances without any interventions on the developer’s part.
Therefore, the main goal behind the development of ALAS has been achieved.

6. Conclusions and future work

XJAF is FIPA-compliant MAS developed by the authors of this paper. It is de-
signed as a pluggable, manager-based architecture, which allows for easy addi-
tions of new functionalities. The system is implemented in Java EE, today’s lead-
ing development platform for building large-scale, scalable, secure, and reliable
software. In the course of improving its interoperability, XJAF has recently been
redesigned as a service-oriented architecture. The resulting system, named
SOM, follows the manager-based approach of XJAF, but with managers be-
ing implemented as web services. The main advantage of this approach is that
external clients and third-party tools can use SOM and interact with its agents
through SOAP, the standardized communication protocol.

SOM is a conceptual specification of web services, and it can be imple-
mented using many modern programming languages. But, this poses a major
problem: an agent written for, e.g., Java-based implementation of SOM cannot
move to a Python-based implementation. In order to overcome this issue, a new
agent-oriented programming language named ALAS, has been proposed. The
two main goals of ALAS, as originally described in [22], are:

1. To provide developers with programming constructs that simplify the overall
complexity of agent development.

2. To include tools for agent code regeneration, and enable migration across
SOM instances implemented using different programming languages.

Since this original proposal, however, the design goal of ALAS has been
extended. The language itself and its accompanying set of tools have been
upgraded to support true heterogeneous agent mobility. Unlike the agent re-
generation, heterogeneous mobility assumes that agents are able to migrate
across the network consisting of MAS instances that offer different sets of APIs
and are implemented using different programming languages. This, obviously,
is more difficult problem to solve, as it requires both the regeneration of agent’s
executable code and modifications of the code in order to adapt to the AP/ of
the underlying MAS.

As shown in this paper, the desired goal has been achieved. ALAS agents
are able to seamlessly, without any interventions on the developer’s part, op-
erate inside Java-based SOM, Python-based SOM, and JADE instances. The

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1225

Dejan Mitrovi¢, Mirjana Ivanovi¢, Zoran Budimac, and Milan Vidakovi¢

presented experiment demonstrates how the agent’s executable code is regen-
erated and modified transparently, on-the-fly, to suit the requirements of the
underlying MAS. This enables the developer to focus on solving the concrete
problem, and, in a truly platform-independent manner, disregard information
about the target MAS. To the best of our knowledge, there currently exists no
other agent-oriented programming language that offers this significant benefit.

Future research directions will be concentrated onto improving the expres-
sive power of ALAS and extending its standard library of functions. This will
simplify the agent development process even further.

The support of other MASs is planned as well.

In the long run, the language will be enriched with programming constructs
for defining agent’s beliefs, desires, intentions, and goals, in order to support
the development of BDI-style agents.

Acknowledgments. This work is partially supported by Ministry of Education and Sci-
ence of the Republic of Serbia, through project no. Ol1174023: "Intelligent techniques and
their integration into wide-spectrum decision support”.

References

1. Aranda, G., Palanca, J., Criado, N.: SPADE user's manual. http://spade.gti-
ia.dsic.upv.es/manuals/html-chunk/index.html (October 2007), retrieved on Decem-
ber 7, 2011

2. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing multi-agent systems with
JADE. John Wiley and Sons (2007)

3. Bordini, R.H., Wooldridge, M., Hibner, J.F.: Programming Multi-Agent Systems in
AgentSpeak using Jason (Wiley Series in Agent Technology). John Wiley & Sons
(2007)

4. Bradshaw, J., Breedy, M., Groth, P, Hill, G., Jeffers, R., Mitrovich, T., Suri, N.: An
overview of the NOMADS mobile agent system. In: 2nd International Symposium
on Agent Systems and Applications, ASA/MA2000 (September 2000)

5. Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3), 214-248 (2008)

6. Dastani, M., van Riemsdijk, B., Dignum, F., Meyer, J.J.C.: A programming lan-
guage for cognitive agents - goal directed 3APL. In: Dastani, M., Dix, J., Fallah-
Seghrouchni, A.E. (eds.) PROMAS. Lecture Notes in Computer Science, vol. 3067,
pp. 111-130. Springer (2003)

7. Davies, W.H.E., Edwards, P.: Agent-K: An integration of AOP and KQML. In: Pro-
ceedings of the Third International Conference on Information and Knowledge Man-
agement (1994)

8. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent communication
language. In: Proceedings of the third international conference on Information and
knowledge management. pp. 456-463. CIKM '94, ACM, New York, NY, USA (1994),
http://doi.acm.org/10.1145/191246.191322

9. FIPA abstract architecture specification. http://www.fipa.org/specs/fipa00001/
SC00001L.pdf (2002), retrieved on December 7, 2011

10. FIPA ACL message structure specification. http://www.fipa.org/specs/fipa00061/
SC00061G.pdf (2002), retrieved on December 7, 2011

1226 ComSIS Vol. 9, No. 3, Special Issue, September 2012

11.
12.

13.

14.

15.

16.

17.
18.
19.

20.

21.

22.

283.

24,

25.

26.

27.

28.
29.

Supporting heterogeneous agent mobility with ALAS

FIPA homepage. http://www.fipa.org/, retrieved on December 7, 2011

Fortino, G., Garro, A., Russo, W.: Achieving mobile agent systems interoperabil-
ity through software layering. Information and software technology 50(4), 322—341
(2008)

Grimstrup, A., Gray, R.S., Kotz, D., Carvalho, M.M., Cowin, T.B., Chacoén, D.A., Bar-
ton, J., Garrett, C., Hofmann, M.: Toward interoperability of mobile-agent systems.
In: International symposium on mobile agents. pp. 106—120 (2002)

Hapner, M., Burridge, R., Sharma, R., Fialli, J., Stout, K.: Java Message Service
(JMS) specification. http://www.oracle.com/technetwork/java/jms/index.html (April
2002), retrieved on December 7, 2011

Hindriks, K.V.: Programming rational agents in GOAL. In: El Fallah Seghrouchni, A,
Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming:, pp. 119-157.
Springer US (2009)

Ivanovi¢, M., Mitrovi¢, D., Budimac, Z., Vidakovi¢, M.: Metadata harvesting learning
resources — an agent-oriented approach. In: Proceedings of the 15th International
Conference on System Theory, Control and Computing (ICSTCC 2011). pp. 306—
311 (October 2011)

JADE homepage. http://jade.tilab.com/, retrieved on December 7, 2011

Jason homepage. http://jason.sf.net/, retrieved on December 7, 2011

Java Architecture for XML Binding (JAXB) homepage.
http://www.oracle.com/technetwork/articles/javase/index-140168.html, retrieved
on December 7, 2011

Mitrovi¢, D., Budimac., Z., lvanovié, M., Vidakovié¢, M.: Improving fault-tolerance of
distributed multi-agent systems with mobile network-management agents. In: Pro-
ceedings of the International Multiconference on Computer Science and Information
Technology. vol. 5, pp. 217-222 (October 2010)

Mitrovi¢, D., Budimac, Z., lvanovi¢, M., Vidakovi¢, M.: Agent-based approaches to
managing fault-tolerant networks of distributed multi-agent systems. Multiagent and
Grid Systems 7(6), 203—218 (December 2011)

Mitrovi¢, D., lvanovi¢, M., Vidakovi¢, M.: Introducing ALAS: a novel agent-oriented
programming language. In: Simos, T.E. (ed.) Proceedings of Symposium on Com-
puter Languages, Implementations, and Tools (SCLIT 2011) held within Interna-
tional Conference on Numerical Analysis and Applied Mathematics (ICNAAM 2011).
pp. 861-864. AIP Conf. Proc. 1389 (September 2011), iSBN 978-0-7354-0956-9
Moreau, L.: Distributed directory service and message router for mobile agents.
Science of Computer Programming 39(2—3), 249-272 (2001)

Overeinder, B.J., Groot, D.R.A.D., Wijngaards, N.J.E., Brazier, EFM.T.: Generative
mobile agent migration in heterogeneous environments. Scalable computing: prac-
tice and experience 7(4), 89-99 (2006)

Pinsdorf, U., Roth, V.: Mobile agent interoperability patterns and practice. In: Pro-
ceedings of the 9th IEEE international conference on engineering of computer-
based systems. pp. 238-244 (2002)

Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: de Velde, W.V., Perram, J.W. (eds.) MAAMAW. Lecture Notes in Computer Sci-
ence, vol. 1038, pp. 42-55. Springer (1996)

Schmidt, D.C.: Model-driven engineering. Published by IEEE Computer Society
(February 2006)

Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60(1), 51-92 (1993)
SPADE homepage. http://code.google.com/p/spade2/, retrieved on December 7,
2011

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1227

Dejan Mitrovi¢, Mirjana Ivanovi¢, Zoran Budimac, and Milan Vidakovi¢

30. Suri, N., Bradshaw, J., Breedy, M.R., Groth, P.T., Hill, G.A., Jeffers, R.: Strong mo-
bility and fine-grained resource control in NOMADS. In: Kotz, D., Mattern, F. (eds.)
Proceedings of the Second international Symposium on Agent Systems and Ap-
plications and Fourth international Symposium on Mobile Agents. Lecture Notes In
Computer Science, vol. 1882, pp. 2—15 (September 2000)

31. Tapia, D.I., Bajo, J., Corchado, J.M.: Distributing functionalities in a SOA-based
multi-agent architecture. In: Demazeau, VY., Pavén, J., Corchado, J.M., Bajo, J. (eds.)
7th International Conference on Practical Applications of Agents and Multi-Agent
Systems (PAAMS 2009), Advances in Intelligent and Soft Computing, vol. 55, pp.
20-29. Springer Berlin / Heidelberg (2009)

32. Tapia, D.I., Rodriguez, S., Bajo, J., Corchado, J.M.: FUSION@, a SOA-based multi-
agent architecture. In: Corchado, J.M., Rodriguez, S., Llinas, J., Molina, J. (eds.)
International Symposium on Distributed Computing and Atrtificial Intelligence 2008
(DCAI 2008), Advances in Soft Computing, vol. 50, pp. 99—107. Springer Berlin /
Heidelberg (2009)

33. Thomas, S.R.: The PLACA agent programming language. In: Wooldridge, M., Jen-
nings, N.R. (eds.) ECAI Workshop on Agent Theories, Architectures, and Lan-
guages. Lecture Notes in Computer Science, vol. 890, pp. 355-370. Springer (1994)

34. Vidakovié, M.: Extensible Java based agent framework. Ph.D. thesis, Faculty of
Technical Sciences, University of Novi Sad, Serbia (2003)

35. Vidakovi¢, M., Sladi¢, G., Konjovi¢, Z.: Security management in J2EE based intelli-
gent agent framework. In: Proceedings of the 7th IASTED International Conference
on Software Engineering and Applications (SEA 2003). pp. 128—133 (November
2003

36. Worlci Wide Web Consortium (W3C) SOAP version 1.2.
http://www.w3.0rg/TR/soap/, retrieved on December 7, 2011

37. World Wide Web Consortium (W3C) XML Schema.
http://www.w3.org/XML/Schema, retrieved on December 7, 2011

38. Winikoff, M.: JACK Intelligent Agents: an industrial strength platform. In: Bordini,
R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.) Multi-Agent Program-
ming, Multiagent Systems, Artificial Societies, and Simulated Organizations, vol. 15,
pp. 175—-193. Springer (2005)

39. Wooldridge, M., Jennings, N.: Agent theories, architectures, and languages: A sur-
vey. In: Wooldridge, M., Jennings, N. (eds.) Intelligent Agents, Lecture Notes in
Computer Science, vol. 890, pp. 1-39. Springer Berlin / Heidelberg (1995)

40. Wooldridge, M., Jennings, N.: Intelligent agents: Theory and practice. Knowledge
Engineering Review 10, 115-152 (1995)

41. XMPP standards foundation homepage. http://xmpp.org/, retrieved on December 7,
2011

Dejan Mitrovi¢ is a teaching and research assistant at Faculty of Sciences, Uni-
versity of Novi Sad, Serbia. He graduated in 2006 (Informatics), and received
master’s degree (Computer Science) in 2008, enrolling the PhD studies after-
wards. He published 11 research papers on software agents, multi-agent sys-
tems, and distributed computing. He is a member of several science research
projects.

Mirjana Ivanovi¢ holds position of full professor since 2002 at Faculty of Sci-
ences, University of Novi Sad, Serbia. She is head of Chair of Computer Sci-

1228 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Supporting heterogeneous agent mobility with ALAS

ence. She is author or co-author of 13 textbooks and of more then 230 research
papers on multi-agent systems, e-learning and web-based learning, software
engineering education, intelligent techniques (CBR, data and web mining), most
of which are published in international journals and international conferences.
She is/was a member of Program Committees of more then 80 international
Conferences and is Editor-in-Chief of Computer Science and Information Sys-
tems Journal.

Zoran Budimac holds position of full professor since 2004 at Faculty of Sci-
ences, University of Novi Sad, Serbia. Currently, he is head of Computing labo-
ratory. His fields of research interests involve: Educational Technologies, Agents
and WFMS, Case-Based Reasoning, Programming Languages. He was princi-
pal investigator of more then 20 projects and is author of 13 textbooks and more
then 220 research papers most of which are published in international journals
and international conferences. He is/was a member of Program Committees of
more then 60 international Conferences and is member of Editorial Board of
Computer Science and Information Systems Journal.

Milan Vidakovi¢ received the BSc, MSc and PhD degrees in electrical engi-
neering from the Faculty of Technical Sciences, University of Novi Sad, in 1995,
1998 and 2003 respectively. He is a professor at Computing and Control De-
partment, University of Novi Sad. He participated in several science projects
and published more than 60 scientific and professional papers. His research
interest covers web and internet programming, distributed computing, software
agents, embedded systems, and language internationalization and localization.

Received: January 2, 2012; Accepted: Jun 12, 2012.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1229

