
DOI: 10.2298/CSIS120104026G

A Programming Language Independent
Framework for Metrics-based Software Evolution

and Analysis

Črt Gerlec1, Gordana Rakić2, Zoran Budimac2, Marjan Heričko1

1 Institute of Informatics
Faculty of Electrical Engineering and Computer Science

University of Maribor
Smetanova ulica 17, 2000 Maribor, Slovenia

{crt.gerlec,marjan.hericko}@uni-mb.si
2 Department of Mathematics and informatics

Faculty of Science
University of Novi Sad

Trg Dositeja Obradovića 4, 2100 Novi Sad, Serbia
{goca,zjb}@dmi.uns.ac.rs

Abstract. Knowledge about different aspects of software quality during
software evolution can be valuable information for developers and project
managers. It helps to reduce the number of defects and improves the in-
ternal structure of software. However, determining software’s quality and
structure in heterogeneous systems is a difficult task. In this paper, a pro-
gramming language independent framework for evaluating software met-
rics and analyzing software structure during software development and its
evolution will be presented. The framework consists of the SMIILE tool
for calculation of software metrics, extended with an analysis of software
structure. The data are stored in a central repository via enriched Con-
crete Syntax Tree (eCST) for universal source code representation. The
framework is demonstrated in a case study. The development of such a
framework is a step forward to consistent support for software evolution by
providing a change analysis and quality control. The significance of this
consistency is growing today, when software projects are more complex,
consisting of components developed in diverse programming languages.

Keywords: Software evolution, software development, software quality,
software structure, software metrics, syntax tree

1. Introduction

From the beginning of the application of software engineering, engineers have
been striving to develop quality and maintainable software products. Therefore,
software evolution and its quality have become an important research discipline.
Early versioning systems like the Source Code Control System made it possi-
ble to record the sequential versions of software products [41]. Such software

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

history has been important to understand what, where and when a change was
applied. Beside versioning systems, software quality measures have been re-
searched. The first published book that describe software metrics appeared in
1976 [20] but the first attempts at applying software metrics had already taken
place in the late 1960s [17]. With the spread of software metrics, a need for
the appropriate storage of such data grew. In 1993, Pfleeger described the im-
portance of data collecting and determined their success in a metrics program
[37].

Various approaches have been used to analyze software evolution. The ma-
jority of them are programming language specific. Their meta-models are not
general and do not enable a structural software comparison between different
systems. Thus, making a comparison between the structural software evolution
of two systems or of two components with the same system that are written in
different programming languages (e.g. Java and C#), is not possible. A simi-
lar problem can be found in the field of software metrics. Existing approaches
that define the metrics and its algorithms are programming language specific.
Furthermore, the algorithms usually differ between the tools. Thus, a software
metric comparison in heterogeneous systems is not accurate.

The purpose of this study is to deal with the problems surrounding program-
ming language dependent frameworks and approaches that describe software
metrics and software structure. Thus, a general framework that allows a pro-
gramming language independent representation and evaluation of software ar-
tifacts has been developed. It consists of three major components. The first
component of the framework is a language independent meta-model for repre-
senting a source code structure. The main purpose is to provide sufficient data
for a further evolutionary analysis based on software structures (e.g. detecting
structural source code changes between sequential software versions). The
second one is the SMIILE (Software Metrics Independent of Input LanguagE)
tool. Its main advantage is to define an universal implementation of metric algo-
rithms (e.g. algorithm for the cyclomatic complexity) built upon the meta-model.
Both components are based on the enriched Concrete Syntax Tree (eCST)
that represents an internal representation of source code. The eCST is built on
”universal” nodes that are common for all programming languages. However,
in order to store the software artifacts and conduct a deeper analysis, an ap-
propriate repository is needed. To fulfill this demand, a specific repository was
build and integrated as the third component in the framework.

In our case study, the application of the framework will be shown. Its goal
is to apply the framework (i.e. meta-models) in practice by using the SMIILE
tool for defining and calculating software metric values and by using structural
source code representation from different programming languages.

The contribution of this paper is the development of a programming lan-
guage independent framework for metrics-based software evolution and anal-
ysis. This goal was achieved by (1) adjusting the eCST concept in order to
support a language-independent source code structure representation that en-

1156 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

ables evolutionary analysis based on software structure and by (2) integrating
the SMIILE tool with a central repository that supports eCST.

This paper is organized as follows: The background, needed for understand-
ing the study, and the motivation are described in section 2. Then, the prelim-
inary works are introduced in section 3. The programming language indepen-
dent framework for metrics and structural analysis in software evolution is briefly
described in section 4. In the section 5, the framework application is presented
with a case study. The validity and limitations of this research are stated in
section 6. In the section 7, state-of-the-art tools and approaches for analyzing
software metrics and software structure are introduced. In the last section, the
conclusion and ideas for future work are provided.

2. Background and motivation

This section describes three important notions of the study (i.e. software evolu-
tion, software metrics and software repository) and the motivation.

2.1. Software evolution

The field of software evolution has become an interesting area over the last
decade, leading to an increase in the amount of research on the subject [14].
Lehman et al. [31] describes two perspectives on software evolution. The first
perspective focuses on the questions of ”what and why” and describes the na-
ture of software evolution and its properties. On the other hand, the second
perspective is focused on the word ”how” and covers areas like the theories,
abstractions, languages, activities, methods and tools required to evolve soft-
ware.

Software evolution could also be understood as continuous adaptation. Soft-
ware changes, that are caused by an adaptation process, are usually partitioned
into three general classes [33]. The first class includes corrections that tend to
be fixes of source code errors. However, there are also some other error fixes
that are related to software design, architecture and requirements. The next
class consists of improvements. They tend to include things like increases in
performance, usability, maintainability, etc. The last class comprises enhance-
ments that represent new features or functions that are visible to the users of
the end system.

Software systems evolve continuously in order to satisfy all users’ needs and
requirements. The research in [26] showed that the software history is a good
indicator for its quality. Therefore, it is vital for companies to ensure mechanism
that tracks the changes during the development in order to minimize the risk for
potential new bugs.

Software changes are part of software evolution. Thus, it is important to
analyze these changes from a structural and qualitative point of view and then
compare the results.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1157

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

Structural source code changes are constant during software development.
They are usually made when new functionality is added to the existing software
product or during the updates. Moreover, changes are also made in refactoring
and debugging processes. In this paper, a structural source code change is de-
fined as an object-oriented change on a class (e.g. the add/remove method) be-
tween two sequential versions. The examples of structural source code changes
are:

– add parameter, field and method,
– remove parameter, field and method,
– hide and unhide method,
– rename method,
– move attribute, method and class,
– extract superclass, interface and class,
– pull up field and method,
– push down field and method, and
– inline class.

In the sense of software evolution, our study focuses on defining a program-
ming language independent meta-model that is based on the time (i.e. version)
component. Its intent is to collect sufficient data about software structure and
its quality properties. Such a meta-model enables further evolutionary analysis
upon the collected data. However, the change detection process uses several
rules in order to identify structural changes between two source code versions.
Each rule represents one change type (e.g. add method) and usually accepts
two parameters. For example, the first parameter is metadata for a class in ver-
sion n and the second parameter represents the same class in the next version
(i.e. n+1). If the metadata for the same class in two sequential versions fulfills
the demands of the rules, the change type that the rule represents, was used
on the class. Even though the change detection process has already been im-
plemented, it is out of the scope of this paper.

2.2. Software product metrics

The measuring and continual monitoring of a software product is crucial for
success in the software development process. From this perspective, software
metrics, the software metrics tool and the software metrics repository are crucial
notions.

Software metrics can be defined as numerical values that reflect the proper-
ties of a software development processes and software products [34]. There are
numerous categorizations of software metrics but when considering the mea-
surements, target metrics can be divided into three main categories: product
metrics, process metrics and project metrics [29]. In the rest of the paper, we
will deal with product metrics and especially code metrics as a sub-category of
product metrics. First, we will specify some of the product metrics used in the
rest of the paper:

1158 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

– Cyclomatic Complexity (CC) - reflects structure complexity based on control-
flow structures in the program.

– Halstead Metrics (H) - reflects the complexity of the program based on num-
ber of operators and operands.

– Lines of Code (LOC) - represents the length of the source code expressed
in the number of lines of source code. It is common to differentiate between
the number of lines of comment (CLOC), source code (SLOC), etc.

– Object Oriented metrics (OO) - the family of metrics related to the object
orientation of software. On the other hand, the term design metrics is of-
ten used and usually describes metrics related to characteristics of object
oriented development and design. However, some examples of the metrics
used in this paper are:
• Number of Classes (NOC) - reflects the number of classes contained in

the package, namespace, project, etc.
• Number of Interfaces (NOI) - reflects the number of interfaces contained

in the package, namespace, project, etc.
• Number of Methods (NOM) - reflects the number of methods declared

in the unit (class, interface, etc).
• Number of Properties (NOP) - reflects the number of properties de-

clared in the unit (class, interface, etc).
• Number of Attributes (NOA) - reflects the number of attributes declared

in the unit (class, interface, etc).

Nowadays, various software metrics tools are used for automatic calcula-
tions of software metrics. However, achieveing accuracy of the gathered metric
values and the appropriate interpretation of extracted data is often the hardest
step.

In section 7, problems in the area of consistent and systematic application
of software metrics will be presented. During the exploration, the strong depen-
dency of the applicability of software metrics on an input programming language
was recognized as one of the main weaknesses in this field. Introducing an
enriched Concrete Syntax Tree (eCST) for intermediate representation of the
source code resulted in a step towards programming language independence.

2.3. Software repositories

In order to perform a detailed measurement and analysis and interpretation of
numerous software metric values, a repository is needed. Its aim is to collect
[24], store and enable access to a wide range of metric values (e.g. product,
process and resource metric values) collected from software products, software
development processes and project management tools. The collected data, ex-
tracted with different tools, helps project leaders and development teams get a
better overview of a project.

Software repositories have been recognized as an important tool in the past.
Carnegie et al. [27] suggested that software organizations should implement
systems to define, collect, store, analyze and use process data. Furthermore,

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1159

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

Basili [12] suggested that data analysis routines should be implemented in or-
der to extract derived data from the row data. Then, all collected data should
be stored in a computerized database. In the study conducted by Goeminne
et al. [22] the term ”repository” is defined as follows: ”A data source containing
information that is relevant to the software product or process, and that can be
accessed and modified by different persons by using their identity.” Repositories
collect various properties of software systems (e.g the version of the source
code). As mentioned earlier, metrics repositories store data about a software
product (i.e. software metrics) while other repositories store different data (e.g.
properties of software processes). However, with historical insight over the soft-
ware properties, users become familiar with changes that were made over time.
With such knowledge, users are able to predict changes in the future and act if
the negative trend is detected. Thus, the establishment of software repositories
is sensible in organizations.

2.4. Motivation

Related research has also shown that there is no fully consistent tool support
for measurement and analysis during software development and maintenance.
The tools used for these purposes have some limitations (e.g. limited program-
ming language support, weak and inconsistent usage of metrics and/or testing
techniques, etc).

Large software systems are written in several programming languages. In
order to ensure a high level of software quality, we have to know the condition
of every part of a system. Furthermore, in order to evaluate such systems, dif-
ferent tools have to be used. However, these tools usually provide inconsistent
values for software metrics [36], [32], [43] and therefore, a comparison between
different parts of a system, written in different programming languages, is not
applicable.

In the field of software evolution, which enforces techniques such as advis-
ing, recommending and the automating of refactoring and reengineering, solu-
tions that are based on a common intermediate structure can be a key support-
ing element. This support could be based on metrics, testing and deeper static
and structure analysis. The development of such support would introduce new
values into the field of software engineering. For all of these reasons, a pro-
posed universal tree could be an appropriate internal representation applicable
toward all stated goals. Universality of internal structure is important for meeting
consistency in all fields.

By realization of this idea a key benefit could be made from language inde-
pendence of eCST and its universality and broad applicability.

3. Preliminary work

In this section, the preliminary work for developing a tool for change analysis
during software evolution will be described. Furthermore, a description of eCST

1160 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

and the original idea of an application of underlying trees in the development of
the SMIILE tool will be presented.

3.1. A tool for mining software repositories

The tool for identifying structural source code changes was presented in [19].
Its aim is to extract data from software repositories (e.g. subversion) and store
them into the meta-model in order to identify structural source code changes
between sequential versions. The change identification process is based on a
set of change rules. They are applied between different versions represented
by the meta-models. If demands of the rule are fulfilled, the change type is
found. In this study, 26 different rules for detecting change types were used.
The results showed that the tool could be used to analyze source code changes
in software repositories. On the other hand, the tool also has some limitations.
The main weakness is a programming language dependency. The current tool
only supports C# and VisualBasic programming language. The main problem is
direct relation between source-code and the meta-model. In order to overcome
this limitation, a universal intermediate representation of source code is needed.

3.2. Introducing of eCST

The motivation for introducing eCST as a new intermediate representation of
the source code is described in section 2.4.

Originally, tools used a Concrete Syntax Tree (CST) for the representation of
source code. This tree is usually an intermediate product of a parser generator.
It takes language grammar as an input and returns a language scanner and
parser as output. The grammar rules determine the manner in which the syntax
tree, as an intermediate structure, will be generated [23].

A CST represents concrete source code elements attached to a correspond-
ing construction in a language syntax. Although this tree is quite rich, it is still
unaware of sophisticated details about the meaning of syntax elements and
their role in certain problems (e.g. algorithms for the calculation of software
metrics). We enriched CST by adding universal nodes to mark elements to be-
come a recognizable independent for input programming language. The catalog
of universal nodes used in the prototype can be found in the appendix, in table
8.

To illustrate this technique and to achieve the independence of a program-
ming language, we provide the following simple example [38]. It illustrates the
problems in the calculation of a CC metric via the predicate counting method.

The simple loop statement (REPEAT), written in Modula-2, and the corre-
sponding one (do-while), written in Java, are stated as in table 1.

Although the given statements have different syntax, they express the same
functionality: some statements in the code will be repeated until parameter i
becomes greater than parameter j. In addition to the different syntax, a condition
for leaving the loop is oppositely stated. First, the condition expresses what

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1161

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

Table 1. Loop statements

REPEAT
... Some statements ...

UNTIL(i > j);

do{
...Some statements...
}while(i <= j);

(a) REPEAT (Modula-2) (b) do-while (Java)

condition should be fulfilled to leave the loop, while the second one states the
condition to continue looping.

Simplified syntax trees representing these given statements are illustrated
in Figure 1.

Fig. 1. Simplified CST for REAPEAT-UNTIL (left) and do-while (right) statements

For the implementation of a CC algorithm, a REPEAT and a WHILE loop
have to be recognized and then increment the current CC value by 1. It is clear
that by using CST for source code representation, two implementations or at
least two conditions to recognize these loops in the tree are needed. By adding
universal nodes (i.e. LOOP STATEMENT) as a parent of sub-trees, that repre-
sent these two segments of source code, the goal by only one condition in the
implementation of the CC algorithm is met. A universal node, CONDITION, was
also added in order to mark the condition for leaving the loop repetition (Figure
2).

By adding all the needed universal nodes [40], the algorithms for the CC
metric could be implemented independently of a programming language. The
only requirement is that there is a language grammar to modify and generate
an appropriate parser that is then used for generating eCST.

1162 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

Fig. 2. Simplified eCST for REAPEAT-UNTIL (left) and do-while (right) statements

Enriching the CST by adding universal nodes is done at a grammar level.
In the input language grammar, in the corresponding rule, we simply build in
an imaginary node. For example, in the rule where a control structures (e.g. if,
case, switch, etc.) are defined, an appropriate universal node is created. In the
ANTLR [9] (the compiler generator that was used in our study) this is possible
via a simple extension of the appropriate rule in the form of a declaration of
a new node that is automatically added to the syntax tree during its creation
process. The list of universal nodes required for implementing CC algorithm is
given in [40], while a full description of the eCST, generating process and stor-
ing is presented in [39]. The possible broader applicability of eCST in different
software engineering fields is described in [38].

It should be noted that the CC metric was chosen as a characteristic ex-
ample for presenting the usefulness of the eCST in the sense of language in-
dependence. The LOC metric is less sensitive to the syntax of a programming
language. However, a generated eCST is stored in an XML file based on a re-
cursive definition [39]. Each node contains information about the location of the
element in the source code (line and column), its text and node name, an index
of the element and nodes that contain children (i.e. sub-trees). In such a struc-
ture, we can find all the necessary data for calculating the LOC metric. From the
first element in the underlying sub-tree we can identify the starting line number,
and from the last element in the last sub-tree we can identify the ending line
number. Using the first and last line, we can easily calculate the LOC metric for
a certain unit.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1163

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

3.3. The SMIILE Tool

The SMIILE tool is a software metrics tool with the following general goals:

– independence of an input programming language,
– broad set of software metrics supported and
– support of software metrics history.

For an input source code, the SMIILE tool will execute the steps in two
phases (Figure 3).

– Phase 1:
• Recognition of the input programming language based on the input file

extension.
• Reading data about the language.
• Calling an appropriate scanner and parser. Scanner and parser is gen-

erated by an ANTLR parser generator [9] from grammar containing rules
for extending CST to eCST.

• Tree generation that represents the provided source code and trans-
lates it into XML format. This process forms the basis for applying dif-
ferent algorithms (e.g. algorithms for the calculation of software metrics)

– Phase 2:
• Reading the tree structure form XML to eCST.
• Calculating software metric values.
• Storing software metric values in XML.

The SMIILE was used on several different programming languages (object-
oriented Java and C#, procedural Module-2 and Pascal and legacy COBOL).
Furthermore, several metrics were used and implemented. We have chosen
two of them (LOC and CC) in order to demonstrate the universality of the model.
The LOC metric calculation algorithm is executable on a lexical level, while the
CC metric is sensitive to input language syntax (illustrated by the example in the
previous subsection). To implement algorithms for calculating the CC by predi-
cate counting and at the same time to meet the language independence of this
implementation, we introduced universal nodes for each element of language
syntax figuring in the algorithm. However, the eCST is designed in such a way
as to support any programming languages.

The catalog of universal nodes used in the implementation of the CC metric
is specified in [40]. The full catalogue of universal nodes used in the current
prototype of SMIILE tool can be seen in the appendix (in table 8). In the following
table (table 2) we will only introduce those universal nodes referred to in this
paper.

The storage of the SMIILE tool’s source code representation and metrics
history can be divided into two parts. In the first part, the eCST representation
of a source code is stored in an XML file that represents the basis for metric
calculations. In the next part, software metrics are calculated and stored in a
separate XML file that contain metric values. In other words, for each version
of a software the SMIILE tool generates two xml files (i.e. eCST representa-
tion and metric values). However, the aim of this study is to integrate software
metrics history with a repository.

1164 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

Fig. 3. SMIILE Tool Architecture

Table 2. Catalog of universal nodes used for integration eCST with the framework.

Universal node coresponding element
of language syntax

PACKAGE DECL package, workspace,. . .
CONCRETE UNIT DECL class, implementation module,. . .
ABSTRACT UNIT DECL abstrat class, etc.
INTERFACE UNIT DECL interface, definition module,. . .
EXTENDED BASE UNITS extended class
IMPLEMENTED INTERFACE UNITS implemented interface,

corresponding definition module,. . .
ATTRIBUTE DECL attribute, field,. . .
PROPERTY DECL property
FUNCTION DECL method, procedure, function
PARAMETERS DECL parameters of the

method, procedure, function,. . .
NAME name of any element

(unit, function, attribute,. . .)
TYPE type of any element

(unit, function, attribute,. . .)

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1165

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

4. Framework for analyzing software evolution

In this section, the programming language independent framework for analyzing
software structure and metrics is presented (figure 4). In order to overcome
the existing problems of meta-models and approaches for software evolution
analysis, our framework focuses on the following aspects:

– A programming language independent framework for analyzing software
evolution built on the eCST.
• An eCST-based meta-model that provides sufficient meta-data for ana-

lyzing software structure and its changes.
• An eCTS-based meta-model for representing software syntax that en-

ables metric calculations based on universal nodes.
– A software repository that stores meta-data and enables further analysis.

Metrics

repository

Source code

(version 1)

Source code

(version 2)

The SMIILE Tool

Programming

language

independent

eCST

Software structure analysis

Unified metric

algorithm

Identifying

software

structure

LOC

CC

NOC

NOI

NOA

NOM

...

Metrics

Packages

Classes

Interfaces

Attributes

Functions

...

Structure

Xml file

Xml file

Fig. 4. The programming language independent framework for analyzing software struc-
ture and metrics.

The framework is built upon the eCST that includes ”universal” nodes, which
are common for various programming languages. It consists of three compo-
nents. The first component is responsible for defining time in the software de-
velopment life cycle and is represented with the version entity. The second com-
ponent deals with a software structure. It describes the structure of software at
a certain time in the software development process and is represented in a ded-
icated part of the eCST. The last entity deals with software metrics and provides
a mechanism for the software quality analysis. Similar to a structure definition,

1166 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

Independent framework

for software evolution

Version (time) Structure Metrics

Fig. 5. Three fundamental components of the framework.

the properties needed for evaluating software metrics are also defined in the
special part of eCST. All tree core components are shown in Figure 5.

The version entity is a central part of our framework. It determines the cer-
tain state of software in a development life cycle. In order to provide meaningful
data to our meta-model and to enable a reasonable analysis in the future, the
version entity consists of two elements: DateTime for determining the date and
time of the software snapshot and VersionName, which describes the version
with a unique identifier (e.g. version number, release name). The latter is usually
specified by the product owner (e.g. ”my software version 1.5.3”).

4.1. Programming language independent meta-model for describing
software structure

In order to detect structural software changes between software versions, a
special meta-model is needed. However, one of the purposes of this study was
to build a programming language independent meta-model that ensures suffi-
cient data and represents the basis for approaches that deal with techniques
for detecting structural software changes.

The basis for defining this meta-model were changes defined by Fowler et
al. [18]. The authors actually defined refactoring techniques that are similar to
source code changes. By their definition, refactoring improves the internal struc-
ture of a software system via source code changes. On the other hand, new
functionality is not allowed to be added to the end system during the refactoring
process [18]. However, each refactoring is a source code change while the op-
posite relation is not true. Our programming language independent meta-model
is defined to provide sufficient data for detecting the changes below.

– Add parameter, field and method
– Remove parameter, field and method
– Hide and unhide method
– Rename method
– Move attribute, method and class
– Extract superclass, interface and class
– Pull up field and method
– Push down field and method
– Inline class

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1167

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

Programming languages differ from each other. Besides object-oriented con-
structs that are similar, they also have some that are unique or different be-
tween languages. For example, Java and C# use properties. In Java, they are
implemented with get and set methods. On the other hand, the C# program-
ming language has a unique construct for the same functionality. However, the
idea behind a source code representation is to take a snapshot of the soft-
ware’s structure as it is. No additional logic is used that could identify, for exam-
ple, properties (i.e. getter and setter methods) in Java code. In order to cover
as many programming languages as possible, additional changes have been
added to the list above. Additional types are written bellow.

– Add property
– Remove property
– Move property
– Pull up property
– Push down property
– Method body change

In order to provide sufficient data for approaches that deal with identifying
code changes, the appropriate extent of data should be extracted from the raw
source files. This extent of data is called the information level and represents the
minimal amount of data that is necessary in order to identify structural changes.
However, changes from the list were analyzed and for each change an informa-
tion level for detecting it from two sequential versions were defined.

For example, figure 6 shows the extract interface change type. In the version
1, the class Employee has 3 methods: getRate, getName and getSurname. Af-
ter the change process in version 2, the Employee class implements a new
interface Billable. The new interface contains a method getRate that was ”trans-
ferred” from the Employee class.

To be able to automatically detect such changes from software history, the
appropriate data (i.e. information level) should be stored into the meta-model.
The information level for the extract interface type is shown in table 3.

Table 3. Information level for extract interface change detection.

Version 1 Version 2 State (Added/Deleted/Updated)
Package x x x
Class x x x
Base class - - -
Interface x x x
Method x x x
Properties - - -
Attributes - - -

The adequate information for detecting the extract interface change type
between version 1 and version 2 are package, class, interface and method.

1168 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

Fig. 6. The extract interface change type.

In addition, the information about the state of this construct is also needed.
The state defines if a construct was added, deleted or updated in an observed
version. This information is needed in order to identify parts that were actually
changed.

The information level needed to fulfill all demands of our list of changes are
shown in the table 3. The root element is concrete unit decl which represents
the main entity. From an object-oriented perspective, this element corresponds
to the class construct. The next important elements are unit state, name and
package decl. The first one describes the state of an entity in the observed ver-
sion and identifies if it was added, deleted or updated. For example, if a method
is added to an existing class in a version, the unit state node will be set to up-
dated. On the other hand, the latter two elements identify a name and a package
for a concrete unit decl. Extended base units and implemented interface units
represents the lists of extended classes and implemented interfaces of the ob-
served entity.

An additional set of meta-data elements are attribute decl, property decl
and function decl. The first two elements represent the attributes and proper-
ties of a class. They are composed by two sub-elements that identify their types
(type) and names (name). The last element is function decl, which represents
the functions or methods. It consists of the function name (name), the access
element (access decl), the return type that is represented by type, a list of pa-
rameters (parameters decl) with underlying elements (type, name) and tokens
that describes the function body. However, tokens are represented in the eCST
and therefore they are extracted from it.

Interfaces are described with the interface unit decl node, which is similar to
concrete unit decl. However, the interface declaration has less universal nodes.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1169

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

4.2. Software repository for storing framework meta-data

A software repository is a fundamental tool for analyzing software evolution.
Software products are represented by raw source code that has to be reshaped
in order to achieve a deeper analysis. Special techniques are required to extract
meta-data from software products and store them into central storage. In this
research, a special software repository was built. Its intent is to fully support the
whole process for analyzing the software structure and evaluation of software
metrics. In addition to this, a special mechanism for evaluating software qual-
ity has been added. The mechanism based on a composed metric, called the
Quality index [25].

The repository consists of several modules (Figure 7).

– Basic metrics list
– Composed metrics list
– Defining a Quality index
– Data import
– Metric values presentation through versions

The fundamental module of our repository is a basic metric list. Its role is to
mark each metric with a unique internal identifier. If the metric is not defined, it
is skipped during the data import process. The reason for this is to unify met-
ric names across the repository and to ease further analysis. The next module
is composed metrics list where custom metrics are defined. For example, C
is a composed metric derived from A and B (basic metrics). Furthermore, the
repository enables custom calculations using simple mathematical operations.
Currently, the repository supports all basic arithmetic operations (e.g. addition,
subtraction, multiplication, divisions). However, if we would like to calculate the
ratio between the CC and the LOC, then we can manually define the ratio met-
ric as follows: Ratio = CC/LOC. The repository takes all the necessary metrics’
data from out of storage and then applies mathematical operations on them. Be-
side the composed metrics, the repository supports calculating a quality index
and its underlying parameters.

The data import process transfers data from outer sources into the reposi-
tory. The process uses a special mechanism that transforms the original struc-
ture of a source into the internal (xml notation). For example, meta-data (rep-
resented in meta-models) goes through the process of reshaping its structure
in order to import the data into the repository. On the other hand, the repos-
itory also allows for the importing of data from third-party sources. The only
requirement is to provide the data in an appropriate structure. However, such a
procedure guarantees that the data is always imported in the same way.

The last module is responsible for visualizing metric values. The repository
supports the storage of software metrics for different project versions. Thus, the
metric values could be historically analyzed and shown on a graph. With such
a representation, researchers and project managers can analyze the history of
the metrics and observe their changes between project versions. For example,
if the rise of the cyclomatic complexity is recognized, additional actions may be
required to lower the complexity in the next version.

1170 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

Data Import

Data analysis

CBO

CC

QI
LOC

RFC

Data

Basic metrics list

Composed metrics list

Quality Index Analysis

History Defining Quality index Results

Data import

Data representation

Web Server Database

Fig. 7. The metrics repository framework.

5. A case study

In this section, the applicability of the framework is shown. The application is
divided into two parts. In the first part, the programming-language independent
mechanism for extracting meta-data from raw source code files is described.
The mechanism is based on the meta-model that represents a software struc-
ture. In the second part, a general approach for calculating software metrics is
presented. However, the meta-model with universal nodes is the frame for the
software metrics’ evaluation.

5.1. Extracting meta-data from a source code

In the case study, two object-oriented programming languages (Java and C#)
were used in order to show the applicability of the meta-model for representing
software structure. To extract data from raw source code and to fulfill demands
of the meta-model, a special tool was developed. The fundamental part of the
tool is a mechanism for analyzing source code files. It uses the ANTLR lan-
guage tool[9] for language recognition and manipulation. However, Java and
C# grammars were used in order to construct an abstract syntax tree from the
source code. Then, a tree is used to identify meta-data and to fulfill demands of
the meta-model.

The example below shows two classes implemented in C# and Java pro-
gramming language. Both classes (Student) have the same behavior and the
only distinction is the programming language syntax.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1171

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

/* C# example */
namespace CSharpExample
{
using System;
public class Student : Person, IStudent
{

private Mark _mark;
public int StudentNumber { get; set; }
private decimal CalculateAverageMark(int level){
...
}

}
...

}

/* Java example */
package JavaExample;
import java.util.ArrayList;
public class Student extends Person implements IStudent
{
private Mark _mark;
private int studentNumber;
public int getStudentNumber(){
...
}
public void setStudentNumber(int studentNumber){
...
}
private decimal calculateAverageMark(int level){
...
}

}
...

The difference between the classes is the implementation of the student
number property. In the C# programming language, a special construct is used
in order to describe the property. On the other hand, in the Java programming
language, the property is implemented with the attribute studentNumber, which
actually stores a value, and two additional methods. The first method is getStu-
dentNumber that returns the value and the second method is setStudentNum-
ber that sets the value.

The table 4 shows the meta-models for the extracted source files. However,
the meta-models’ elements are similar for both languages. The unit state ele-
ments were set to ’added’ because the analyzed classes were treated as new

1172 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

Table 4. The meta-model for classes implemented in C# and Java.

C# class Java class is eCST
node

UNIT STATE Added Added no
PACKAGE DECL CSharpExample JavaExample yes
CONCRETE UNIT DECL x x yes
NAME Student Student yes
EXTENDED BASE UNITS Person Person yes
IMPLEMENTED IStudent IStudent yes
INTERFACE UNITS

ATTRIBUTE DECL x x yes
- TYPE Mark Mark/ int yes
- NAME mark mark/ studentNumber yes
PROPERTY DECL x / yes
- TYPE int / yes
- NAME StudentNumber / yes
FUNCTION DECL x x yes

CalculateAverageMark/
- NAME CalculateAverageMark getStudentNumber/ yes

setStudentNumber
- ACCESS DECL private private/ public/ public yes
- RETURN TYPE x x yes
- - TYPE decimal decimal/ int/ void yes
- PARAMETERS DECL x x yes
- - TYPE int int/ - / int yes
- - NAME level level/ - / studentName yes
- TOKENS / ... / ... no

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1173

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

classes in the case study. Similar to previous elements, the name elements also
have the same value for both languages. On the other hand, the package decl
elements are different and are set to ’CSharpExample’ and ’JavaExample’. The
extended class (base unit decl) and implemented interface (interface unit decl)
have the same values for both meta-models (’Person’ and ’IStudent’). Both
classes have one attribute and therefore the attribute decl elements are set with
the name ’ mark’ and type ’Mark’. As expected, the differences are in the def-
inition of the property decl and function decl elements. The C# programming
language has special constructs for properties. Therefore the property decl el-
ement is set to ’int’ for the type and ’StudentNumber’ for the name sub-element.
In Java, one additional attribute decl and two additional function decl are de-
fined. Besides the ’getStudentNumber’ and ’setStudentNumber’ definitions in
function decl, the ’calculateAverageMark’ method is also defined. It has the
’private’ access modifier (access decl), void return type (return type) and one
method parameter (parameter decl) with the type ’int’ and name ’level’. A similar
method is also defined in the meta-model that is the basis of the C# program-
ming language.

The difference between the languages related to properties are reflected
in the calculated values of the LOC metric. Therefore, the source code writ-
ten in Java is approximately twice as long as one written in C# (tables 5 and
6). Furthermore, the properties in C# account for the difference in the number
of attributes, properties and methods (the so-called functions in the universal
model). These values are presented in table 6. The number of classes (i.e. con-
crete units) and interfaces (i.e. interface units) are the same in both examples
5. In this case study, the CC metric has no importance because the CC values
for all methods are equal to one.

Software metrics have the same relation between different programming lan-
guages. For example, the CC metric counts the branches in a source code. If
the source code consists of more branches, its complexity will be higher. There-
fore, a high complexity will always be indicated with a high CC value in all pro-
gramming languages and the opposite relation does not exist.

Table 5. Metrics related to the workspaces.

C# Java
Number of concrete units 2 2
Number of interface units 1 1
LOC 32 66

When the source files are analyzed, the meta-models and the results are
exported in an xml format. Then, only the final step is required. This step imports
the prepared meta-models into the software repository.

1174 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

Table 6. Metrics related to the class Student.

class Student C# Java
Number of attributes 1 2
Number of properties 1 0
Number of functions 1 3
LOC 15 22

6. Validity and limitations

This section is focused on an internal and external validity [28] and on the limita-
tions of the study. In order to guarantee the accuracy of the extracted data from
the raw source files, the ANTLR language tool was used. Furthermore, the C#
and Java grammar, which describes a programming language, were used. The
tool requires a syntactically correct source code in order to build an abstract
syntax tree. However, the tree constitutes the basis for extracting the meta-data
into the meta-models used by framework.

The metrics’ value calculations rely on the nodes defined in the abstract
syntax tree. Therefore, the metrics’ equations are unified and defined only once
in the higher level of abstraction. For example, if the metric for calculating cy-
clomatic complexity is defined upon the universal nodes in a syntax tree then
their values could be easily calculated for C# and Java programming language
without knowing the specifics of the programming language. Furthermore, such
an approach enables the calculation of software metrics in the same way be-
tween programming languages. Thus, comparing the quality of heterogeneous
systems in such an environment is more accurate.

In this research, a programming language independent framework for ana-
lyzing software evolution was successfully applied in a case study and partly
in the preliminary work. In the first part, the source code of two programming
languages (i.e. C# and Java) were used in order to analyze its structure. The
results showed that the meta-model for describing software structure was suc-
cessfully populated with the meta-data. In the second part, the SMIILE tool that
evaluates software metrics was used. Several software metrics were defined
using the eCST and tested with different programming languages.

The metric values were correctly calculated for all cases. This was proven
by using independent and language-specific software metrics tools.

The research showed that the framework is general (i.e. programming lan-
guage independent) and can be used for more programming languages.

The limitation of the framework is the extent of meta-data that are described
in the meta-model for representing software structures. The study has been
limited to the subset of changes defined in Fowler’s book [18]. However, the
book contains numerous refactorings for resolving bad smells in code and de-
sign. From this perspective, this limitation is not a real limitation. Furthermore,
software metrics’ support gives additional value to the framework because the
quality of changes can be tracked.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1175

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

Different structural source code changes cannot always be compared among
programming languages. Some of them have special object-oriented constructs
(e.g. properties in C#) or behaviour (e.g. some languages support multiple in-
heritance). Another limitation is that the LOC metric has to be compared with
caution. For example, a high LOC value in a class (e.g. 10,000 lines of code)
will always indicate a large class and vice versa. On the other hand, we cannot
predict that the LOC values of the classes with the same behaviour, written in
C# and Java, will be equal. However, even if we can not strictly compare ev-
ery aspect among languages, we still provide consistent monitoring of software
evolution. Furthermore, adding weights to some metric values (e.g. the LOC
metric) can lead to better comparability among languages. However, such an
approach can improve the framework in the future.

7. Related work

In the last decade, different approaches for evaluating software artifacts have
been used. Therefore, this section will focus on existing tools and approaches
for evaluating software metrics and software structure through the software de-
velopment process. As the analisys of related work will show, the integrated
approach to application of software metrics algorithms and analysis of software
evolution that are independent on programming languages are not existant in
usable form. The first part describes the approaches for evaluating software
metrics, the second part describes the approaches for representing software
structure and the third part is focused on programming language independence.

The majority of problems are related to programming language dependency.
However, the last part of the analysis describes some more or less successful
approaches in order to overcome this issue. To improve existing approaches,
new framework that is based on internal representation of source code with
improved characteristics was developed.

7.1. Software metric approaches

In this section, the findings of current problems in the application of software
metrics in practice are described [39]. Some preliminary observations of the
field show that the main problem lies in the weaknesses of available metric
tools and techniques. These observations are based on numerous reports on
the weaknesses of existing tools in both practice and in the academic world
([30] and [32]).

Our analysis included 20 tools, with six of them being representative exam-
ples. The tools were analyzed with respect to two groups of criteria.

The first group of criteria is related to the usage range of a tool and by
the nature and structure of the software product being measured. However, the
group of criteria consists of: platform independence, input language indepen-
dence and a list of supported metrics. The following metrics were considered:

– the cyclomatic complexity - CC,

1176 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

– the Halstead metrics - H,
– lines of code - LOC (if a tool calculates any of the LOC (SLOC, CLOC,

etc.) metric, then the corresponding cell contains the ’+’ symbol),
– the object-oriented metrics - OO (if a tool supports any of the OO metrics,

then the corresponding cell contains the ’+’ symbol. The mark ’*’ next to the
symbol ’+’ means that a tool only partially satisfied specified criteria) and

– the others (if a metric is supported and it does not belong on the list above,
then the criteria is marked with a ’+’).

The results for six representative tools can be seen in Table 7.

Table 7. Software metric tools and observed criteria

Tool Producer Platform Language Other
[see ref] indep. indep. CC H LOC OO metrics

SLOC D. Wheeler - + - - + - -
[47]

Code Geronesoft - + - - + - -
Counter Pro [2]
Source Monitor Campwood Software - - + - + + -

[8]
Understand ScientificToolworks + - + + + - -

[1]
RSM MSquared + - + + + - -

Technologies [7]
Krakatau Power Software - +* + + + + -

[5], [6]

The important conclusions of this analysis are below.

– The analyzed tools could be divided into two categories.
• The first category includes tools that only calculate simple metrics (i.e.

the LOC metrics) but for a wide set of programming languages.
• The second category of tools is characterized by a wide range of met-

rics but limited to a small set of programming languages. There were
attempts to bridge the gap between these categories, but without suc-
cess. This is a limitation because there are many legacy software sys-
tems written in ancient languages, whereas modern metric tools cannot
be applied uniformly.

– Even if the tools support some object-oriented metrics, the amount of sup-
ported metrics is fairly small. This is especially true when compared to the
broad application of the object-oriented approach within current software
development.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1177

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

However, we have demonstrated on representative languages that the SMI-
ILE is language independent for currently implemented software metrics (sec-
tion 3.3). The process of calculating them can be strictly connected with the
language syntax (e.g. the CC metric) or it can be less sensitive to its syntax
and lexical analysis because we have enough data in the universal nodes (e.g.
the LOC metric with the first and the last line). The object-oriented metrics are
still decently supported in tools. However, we have an internal representation of
the source code and its design. This is the basis for metric calculation and our
next task is to extend the set of algorithms for calculating software metrics[38].

Furthermore, the analysis considered support for processing and interpret-
ing the calculated metric results via the given tools. The criteria were: the history
of the source code, the metric results’ storing facility, a graphical representation
of the calculated values and an interpretation of the calculated values includ-
ing suggestions for improvements based on the calculated values. The general
conclusion was that many techniques and tools compute numerical results with
no real interpretation of their meaning. The only interpretations of numerical re-
sults that can be found are graphical. These results possess little or no value for
practitioners, who need suggestions or advice on how to improve their project
based on the metrics’ results. Recommendations for an improvement, or even
the automation of an improvement based on the obtained metrics results, would
be significantly useful for the way to the real practical usability of software met-
rics.

Today, complex software projects are developed in several programming lan-
guages while available software metric tools are not language independent.
When taking these facts into account, we can conclude that the use of several
software metric tools in one project is required. An additional problem is that
different software tools often provide different values for the same metric, calcu-
lated on the same product or its component [36],[32]. One of the reasons for this
is the fact that the rule for metrics calculations could be differently interpreted
and implemented with different tools [43]. On the other hand, our approach
uses a common internal representation of the source code and meta-model for
all programming languages that represents a basis for metrics calculation. Such
an approach enables the same metrics calculation algorithms across different
programming languages.

7.2. Approaches for analyzing software structure

Software evolution analysis covers different aspects of software development.
¿From the granularity level, two major approaches exists. The version-centered
approach considers versions to be a representation of granularity, while the
history-centered approach considers history to be a representation of granular-
ity [21].

The research conducted by Gı̂rba et al. [21] focused on the set of require-
ments that an evolution meta-model should have. Therefore, they defined a
meta-model where history is modeled as an explicit entity. A time component
was set as the basis for structural information, which thus provides a common

1178 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

infrastructure for expressing and combining evaluation analysis and structural
analysis. The authors also focused on different abstraction and detailed lev-
els, the ability to compare and combine property evolutions and the ability of
history navigation between relations. Our meta-model differs from this study
in three aspects: the meta-model is programming-language independent (sup-
ports object-oriented and procedural languages), it has the ability to represent
software metrics and it provides a sufficient basis for detecting structural code
changes between versions.

Tichelaar et al. [45] investigated similarities between refactorings for Small-
talk and Java programming languages. They derived a language independent
meta-model for object-oriented source code and showed that it is feasible to
build a language independent engine for refactorings on top of this meta-model.
Our study is similar in the context of an independent meta-model and differs in
the ability to provide sufficient data to analyze different structural source code
changes between versions over the software evolution. However, some refac-
torings are composed by one or several structural source code changes.

Studies conducted in [21, 45] are based on a language independent and
extensible model for modeling object oriented software systems, called FAMIX
[44].

7.3. Programming language independence

This section focuses on various universal software tools that strive to achieve
the independence of an input programming language.

The FAMIX meta-model [44] boasts one of the most similar general goals
with our project. Its strength is mainly in language independence. It supports
OO design (at the interface level of abstraction) for various input programming
languages and is supported by separate tools for filling in the meta-model with
sources in different programming languages. Our approach is more general -
it is based on (enriched) syntax trees representing all aspects of source code,
instead of just the design. It is thus equally appropriate for supporting a broader
set of software metrics. However, it also fully supports procedural languages,
including legacy ones (e.g., COBOL).

Arbuckle[11] presented an interesting approach for the measuring evolution
of a multi-language software system. He avoids difficulties related to syntax, se-
mantics and language paradigms by looking directly at relative shared informa-
tion content. His approach measures a relative number of bits of shared binary
information between artifacts of consecutive releases. However, our approach
uses source code changes from software repositories to analyze software evo-
lution.

The ATHENA tool for assessing the quality of software [15] was based on
the parsers that generate abstract syntax trees as a representation of a source
code. The generated trees were structured in such a way that the metric algo-
rithms were easily applied. The final goal of the tool was to generate a report
that describes the quality. However, it was only executable under the UNIX op-
erating system and its official support is not available anymore. Our approach

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1179

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

is also based on usage of specific parser for generating of syntax trees, but our
parers are not manually implemented but generated by a parser generator. This
makes the process of adding support for a new programming language easier.
Furthermore, the eCST has a richer representation than AST. At the end, the
SMIILE tool is implemented in Java and can therefore be used on a broader
range of platforms.

The development of the CodeSquale metrics tool was based on a simi-
lar idea. The early results were published on the project website [3], [4]. The
authors developed a system, based on the representation of a source code
through abstract syntax trees, and implemented one object-oriented metric for
the Java source code. Furthermore, an idea for the additional implementation of
other metrics and opportunities for extending the tree to other programming lan-
guages was described. However, their final goal was programming language in-
dependence. Unfortunately, later results were not published. However, a weak-
ness of the project was the use of an AST to represent source code. By using
the eCST we are able to implement algorithms that are independent of pro-
gramming language.

The Wide Spectrum Language (WSL) [10] is used for the intermediate rep-
resentation of software programs in translating legacy to maintainable code (eg.
assembly code to C/COBOL code). The main characteristics of WSL is a for-
mal background and the application of formal transformations of code internally
represented by using abstract syntax trees. Even the WSL is (by definition) in-
dependent of programming languages. Nevertheless, it still does not support
object-oriented languages. In the process of program transformation, a small
set of software metrics is used to measure the effects of transformations. In
comparison with WSL, our approach supported a broader scope of languages
and metrics (including object-oriented).

Static analysis usually includes some metrics calculation and further analy-
sis of the obtained values. Such a study was presented in [46] where the authors
used a static analysis for student programs written in Java. The study is based
on an abstract syntax tree (AST) to represent the code. The XML format was
used in order to represent the data.

The AST representation of the source code also led to language indepen-
dence in some related areas of software engineering. The tool described in [16]
uses the abstract syntax tree for the representation of source code in a dupli-
cated code analysis. The tree has specific mechanisms designed for the easier
implementation of algorithms and comparisons. A similar approach was de-
scribed in [13] but a more complex algorithm for comparison was implemented.

An approach for detecting similar classes in Java source code was pre-
sented in [42]. Furthermore, ASTs were also used to monitor software changes
[35]. The specified tool was implemented for the analysis of code written in the
C programming language. Its significance is in its ideas for change analysis
based on AST.

1180 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

8. Conclusion and future work

The programming language independent framework for analyzing software struc-
ture and metrics during software development and evolution was presented
in the study. The framework consists of three modules. The first one defines
the meta-model for providing sufficient data, which constitutes the basis for ap-
proaches dealing with software change detection processes. The second mod-
ule uses a mechanism for evaluating software metrics. Both modules are built
on the eCST for the unified representation of a source code. The last mod-
ule contains an approach for collecting evolutionary software artifacts that then
enables further analysis.

The integration of improved characteristics of eCST into a framework for
metrics calculation and the framework for software evolution extended by soft-
ware metrics and the changes repository lead to the following important bene-
fits.

– Usage of the eCST leads to language independence.
– The storing of software metrics in the software metrics repository enables a

better interpretation of acquired data.
– Integration with the repository additionally gives opportunities to extend it in

such a way as to store data about structural software changes.
– Enables the further analysis of stored data (e.g. custom metrics) and pro-

vides the opportunity to give recommendations to users about the improve-
ment of a product and the development process or even the automation
of some of the suggested improvements (e.g. automatic refactoring). The
need for this analysis is examined in the related work. An advanced calcu-
lation on metric values and visualization are enabled by the software metrics
repository and the rest of an intelligent analysis are planned for future work.

These features distinguish the framework from existing techniques and ap-
proaches and provide it with significant prospects in the field of software de-
velopment and evolution. Furthermore, a special engine for detecting structural
source code changes is already being implemented, but it is out of the scope of
this paper.

The framework was successfully presented in the case study. In the first
part, the software structure was analyzed from source code written in two dif-
ferent programming languages (i.e. C# and Java). The data extracted from the
eCST into the meta-model fulfilled all described requirements. However, pro-
gramming language independency of the eCST has been also shown on other
case studies [39] and [40]. Therefore, the extraction is independent of an input
language. In the second part, several software metrics were evaluated based
on the same source code. The algorithms defined upon the universal nodes
correctly calculated the values for lines of code and cyclomatic complexity and
also for some other design metrics (i.e. NOC, NOA, NOM). In the last part, the
results were successfully imported into the software repository for collecting
and storing meta-data.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1181

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

The framework and its components are still on prototype level. In future
work, the framework will be tested with more programming languages and ad-
justments will be made if necessary. Also, support for additional algorithms for
calculating software metrics will be added. Furthermore, all data will be stored in
a repository with the intention of analyzing the correlation between the changes
and software quality and to provide more useful information to the user or even
to develop an automated quality improvement.

Acknowledgments. Work of the second and third author is partially supported by the
Serbian Ministry of Science and Technological Development through project no. OI174023
”Intelligent Techniques and Their Integration into Wide-Spectrum Decision Support”. Bi-
lateral project between Slovenian Research Agency and Serbian Ministry of Science and
Technological Development (Grant BI-SR/10-11-027) enabled the exchange of visits and
ideas between authors of this paper and their institutions.

References

1. Understand 2.0 user guide and reference manual. online (2008),
http://www.scitools.com

2. Code counter pro. online (2010), http://www.geronesoft.com/
3. Codesquale. online (2010), http://code.google.com/p/codesquale/
4. Codesquale. online (2010), http://codesquale.googlepages.com/
5. Krakatau essential pm (kepm)- user guide 1.11.0.0. online (2010),

http://www.powersoftware.com/
6. Krakatau suite management overview. online (2010),

http://www.powersoftware.com/
7. Rsm. online (2010), http://msquaredtechnologies.com/
8. Sourcemonitor,. online (2010), http://www.campwoodsw.com/sourcemonitor.html
9. Antlr - another tool for language recognition (2011), http://www.antlr.org

10. Wsl - wide spectrum language (2012), http://www.smltd.com/wsl.htm
11. Arbuckle, T.: Measuring multi-language software evolution: a case study pp. 91–95

(2011)
12. Basili, V.R.: Data collection, validation and analysis, p. 143160. MIT Press (1981)
13. Baxter, I.D., Yahin, A., de Moura, L.M., Sant’Anna, M., Bier, L.: Clone detection using

abstract syntax trees. In: ICSM. pp. 368–377 (1998)
14. Breivold, H.P., Crnkovic, I., Larsson, M.: A systematic review of software architecture

evolution research. Information and Software Technology 54(1), 16 – 40 (2012)
15. Christodoulakis, D., Tsalidis, C., van Gogh, C., Stinesen, V.: Towards an automated

tool for software certification. In: Tools for Artificial Intelligence, 1989. , IEEE Interna-
tional Workshop on Architectures, Languages and Algorithms. pp. 670–676 (1989)

16. Ducasse, S., Rieger, M., Demeyer, S.: A language independent approach for detect-
ing duplicated code. In: ICSM. pp. 109–118 (1999)

17. Fenton, N.E., Neil, M.: Software metrics: successes, failures, and new directions.
Journal of Systems and Software (1999)

18. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the
Design of Existing Code. Addison-Wesley Professional, 1 edn. (Jul 1999)

19. Črt Gerlec, Andrej Krajnc, M.H.J.B.: Mining source code changes from software
repositories. Central and Eastern European Software Engineering Conference in
Russia (2011)

1182 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

20. Gilb, T.: Software Metrics. Chartwell-Bratt (1976)
21. Gı̂rba, T., Ducasse, S.: Modeling history to analyze software evolution: Research

articles. J. Softw. Maint. Evol. 18, 207–236 (May 2006)
22. Goeminne, M., Mens, T.: A comparison of identity merge algorithms for software

repositories. Science of Computer Programming (2011)
23. Grune, D., Bal, H.E., Jacobs, C.J.H., Langendoen, K.: Modern Compiler Design.

John Wiley (2002)
24. Harrison, W.: A flexible method for maintaining software metrics data: a universal

metrics repository. Journal of Systems and Software 72(2), 225–234 (2004)
25. Heričko, M., Živkovič, A., Porkolb, Z.: A method for calculating acknowledged project

effort using a quality index. Informatica 31(4), 431–436 (2007)
26. Illes-Seifert, T., Paech, B.: Exploring the relationship of a files history and its fault-

proneness: An empirical method and its application to open source programs. Infor-
mation and Software Technology 52(5), 539 – 558 (2010)

27. Institute, C.M.U.S.E., Martin, R., Carey, S., Coticchia, M., Fowler, P., Maher, J.: Pro-
ceedings of the Workshop on Executive Software Issues, August 2-3 and November
18, 1988. Technical report, Carnegie Mellon University, Software Engineering Insti-
tute (1989)

28. Jedlitschka, A., Ciolkowski, M., Pfahl, D.: Reporting experiments in software engi-
neering. Guide to advanced empirical software engineering (1), 201–228 (2008)

29. Kan, S.: Metrics and Models in Software Quality Engineering Second Edition
Boston. Addison-Wesley (2003)

30. Lanza, M., Marinescu, R.: Object-Oriented Metrics in Practice - Using Software Met-
rics to Characterize, Evaluate, and Improve the Design of Object-Oriented Systems.
Springer (2006)

31. Lehman, M., Ramil, J.F., Kahen, G.: Evolution as a noun and evolution as a verb. In:
Proc. Workshop on Software and Organisation Co-evolution (SOCE) (July 2000)

32. Lincke, R., Lundberg, J., Löwe, W.: Comparing software metrics tools. In: ISSTA. pp.
131–142 (2008)

33. Madhavji, N.H., Fernandez-Ramil, J., Perry, D.: Software Evolution and Feedback:
Theory and Practice. John Wiley & Sons (2006)

34. N. Fenton, S.L.P.: Software Metrics: A Rigorous and Practical Approach. Thomson
Computer Press (1996)

35. Neamtiu, I., Foster, J.S., Hicks, M.W.: Understanding source code evolution using
abstract syntax tree matching. In: MSR (2005)

36. Novak, J., Rakić, G.: Comparison of software metrics tools for :net. In: Proc. of 13th
International Multiconference Information Society - IS, Vol A. pp. 231–234 (2010)

37. Pfleeger, S.: Lessons learned in building a corporate metrics program. Software,
IEEE 10(3), 67 –74 (may 1993)

38. Rakić, G., Budimac, Z.: Introducing enriched concrete syntax trees. In: Proc. of 13th
International Multiconference Information Society - IS, Vol A. pp. 211–214 (2011)

39. Rakić, G., Budimac, Z.: Problems in systematic application of software metrics and
possible solution. In: Proc. of The 5th International Conference on Information Tech-
nology (ICIT) (2010)

40. Rakić, G., Budimac, Z.: Smiile prototype. AIP Conference Proceedings 1389(1),
853–856 (2011)

41. Rochkind, M.J.: The source code control system. IEEE Transactions on Software
Engineering 1(4), 364–370 (1975)

42. Sager, T., Bernstein, A., Pinzger, M., Kiefer, C.: Detecting similar java classes using
tree algorithms. In: MSR. pp. 65–71 (2006)

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1183

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

43. Scotto, M., Sillitti, A., Succi, G., Vernazza, T.: A non-invasive approach to product
metrics collection. Journal of Systems Architecture 52(11), 668–675 (2006)

44. Tichelaar, S., Ducasse, S., Demeyer, S.: Famix and xmi. In: Reverse Engineering,
2000. Proceedings. Seventh Working Conference on. pp. 296 –298 (2000)

45. Tichelaar, S., Ducasse, S., Demeyer, S., Nierstrasz, O.: A meta-model for language-
independent refactoring. In: Principles of Software Evolution, 2000. Proceedings.
International Symposium on. pp. 154 –164 (2000)

46. Truong, N., Roe, P., Bancroft, P.: Static analysis of students’ java programs. In: ACE.
pp. 317–325 (2004)

47. Wheeler, D.A.: Sloccount user’s guide, version 2.26. online (2004),
http://www.dwheeler.com/sloccount/sloccount.html

1184 ComSIS Vol. 9, No. 3, Special Issue, September 2012

A Programming Language Independent Framework for ...

Appendix

Table 8. Catalog of universal nodes.

Universal node coresponding element
of language syntax

PACKAGE DECL package, workspace, etc
CONCRETE UNIT DECL class, implementation module, etc
ABSTRACT UNIT DECL abstrat class, etc
INTERFACE UNIT DECL interface, definition module, etc
EXTENDED BASE UNITS extended class
IMPLEMENTED INTERFACE UNITS implemented interface,

corresponding definition module, etc.
INSTANTIATED UNIT instantionation of a new object
IMPORT DECL unit or function import
ATTRIBUTE DECL attribute, field, etc.
PROPERTY DECL property
FUNCTION DECL method, procedure, function, etc
FUNCTION CALL call of a function
PARAMETERS DECL parameters of a function
ARGUMENT LIST parameters passed to a function
VAR DECL local variable defined in functions
MAIN BLOCK main block of program
STATEMENT Any statement
BRANCH STATEMENT Any Branch Statement

(each branch will be additionally marked)
BRANCH Branch in Branch Statement
LOOP STATEMENT Any Loop Statement
JUMP STATEMENT Any Jump Statement
CONDITION Condition (in loop, branch,. . . statements)
CONDITION BRANCH each branch of condition

separated by logical operator
LOGICAL OPERATOR logical operator (in condition)
OPERATOR any operator
OPERAND any operand
NAME name of any element (unit, function,etc.)
TYPE type of any element (unit, function,etc.)

Črt Gerlec is a researcher and PhD student associated with the Faculty of
Electrical Engineering and Computer Science, Institute of Informatics at the
University of Maribor. His research interests are mining software repositories,
software evolution, software quality, software metrics, information systems and

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1185

Črt Gerlec, Gordana Rakić, Zoran Budimac, Marjan Heričko

more. He is experienced software developer on Microsoft.NET platform and
expert for software architecture, design patterns and best practices.

Gordana Rakić has received her MSc degree in 2010 from Faculty of Sciences,
University of Novi Sad. Currently she is the PhD student and works as assistant
at Department of Mathematics and Informatics, Faculty of Sciences, University
of Novi Sad. Her fields of interest are Software Engineering, Software Metrics,
Software Maintenance, etc.

Zoran Budimac Since 2004 holds position of full professor at Faculty of Sci-
ences, University of Novi Sad, Serbia. Currently, he is head of Computing labo-
ratory. His fields of research interests involve: Educational Technologies, Agents
and WFMS, Case-Based Reasoning, Programming Languages. He was princi-
pal investigator of more then 20 projects. He is author of 13 textbooks and more
then 220 research papers most of which are published in international journals
and international conferences. He is/was a member of Program Committees of
more then 60 international Conferences and is member of Editorial Board of
Computer Science and Information Systems Journal.

Marjan Heričko is a Full Professor at the University of Maribor, Faculty of
EE&CS, Institute of Informatics. He received his M.Sc. (1993) and Ph.D. (1998)
in computer science from the University of Maribor. His research interests in-
clude all aspects of IS development with emphasis on metrics, software pat-
terns, process models and modeling.

Received: January 04, 2012; Accepted: May 31, 2012.

1186 ComSIS Vol. 9, No. 3, Special Issue, September 2012

