
UDC 004.45, DOI:10.2298/CSIS070521022R

COLIBROS: Educational Operating System

Žarko Živanov
1
, Predrag Rakić

1
, and Miroslav Hajduković

1

1
Faculty of Technical Sciences, Trg D. Obradovića 6,

21000 Novi Sad, Serbia
{zzarko, pec, hajduk}@uns.ac.rs

Abstract. This paper gives an overview of educational operating system
called COLIBROS. It is small, object oriented, library operating system,
based on micro-kernel concepts, supporting high level concurrency and
synchronization primitives. In fact, COLIBROS is simplified operating
system kernel accompanied with hardware emulation layer that
emulates keyboard, monitor, disk and interrupt mechanism. A
concurrent COLIBROS program behaves like stand alone program
executing in emulated environment, in our case as plain GNU/Linux
process. Encapsulating all critical concepts in host operating system
user space makes COLIBROS development and debugging easier and
more user friendly.

Keywords: Operating System, Programming Library, Education.

1. Introduction

In order to teach basic operating system undergraduate course, specially
designed educational operating system is useful. This operating system
should be simple enough that it can be presented with all details to students
in one-semester course. Also, it should give students insight in all basic
operating system concepts like multitasking, synchronization, memory
management, interrupt handling, device controlling and preemption. So, we
developed COLIBROS (COncurrent LIBRary Operating System) [15],
educational operating system with these properties.

In the rest of this paper COLIBROS project is discussed in more details.
Rationale for COLIBROS development is presented in chapter two, followed
by project history in chapter three. COLIBROS implementation details such as
modules, core implementation and hardware emulation are explained in
chapter four. Overview of COLIBROS interface is given in chapter five. This
chapter focuses on multithreading, thread synchronization, atomic variables
and device controlling mechanisms provided by COLIBROS. Our conclusions
and further development directions are presented in chapter six, followed by
references in chapter seven.

Žarko Živanov, Predrag Rakić, and Miroslav Hajduković

ComSIS Vol. 7, No. 4, December 2010 706

2. Rationale for COLIBROS Development

In introductory operating system course concurrency is the key new concept
that distinguishes operating system from other "ordinary" programs. Without
mastering concurrency concepts it is really difficult for students to
comprehend operating system behavior and functionality. Consequently, we
decided to put concurrency in the center of students attention during
operating system course. Examples of concurrent problems are used to give
students insight in operating system internals. Though, concurrency is placed
in the center of student’s attention, we think that well known educational
concurrency tools, like BACI [3, 4] or Hartley’s java library [17], are not best
shaped for operating system course because they are not adequate to
present other operating system aspects.

To support our approach, we developed COLIBROS. It is designed to
support execution of student programs in emulated environment on
GNU/Linux platform. Students, by solving all sort of concurrent problems, in
fact write different parts of operating system. We are convinced that this offers
invaluable experience that prepares student minds to accept "real" problems.
On that basis, it is easy to complete the whole operating system picture and
help students navigate in huge number of its details.

COLIBROS offers small and simple kernel suitable for students’ projects
aimed to change and improve its functionality. It is similar to the well-known
operating system courses during which students improve minimal kernel
through assignments [2, 12, 18, 13].

Our approach differs from other well-known operating systems developed
as educational tools, which are designed as fully functional UNIX-like
operating systems like MINIX [24] or XINU [7]. Using our approach we directs
student attention only to fundamental concepts, supported by fairly small
implementation (COLIBROS core consists of 1500 lines).

There is resemblance between COLIBROS and exokernel [10, 11] library
operating system. Difference is that COLIBROS is educationally oriented and
it stands above hardware emulation layer (virtual machine) instead of
exokernel. Without hardware emulation, standalone COLIBROS program can
be executed on bare hardware. In that constellation, COLIBROS core
represents simplified operating system kernel executing in the same address
space with application.

Since COLIBROS is minimal operating system kernel, it offers realistic
insight into crucial aspects of operating system behavior. Modifying
COLIBROS core students can change system behavior influencing process,
memory management or device handling.

COLIBROS exports object oriented, high level programming concurrency
abstractions interface. The same abstractions are used to build operating
system kernel modules. Distinguishing feature of COLIBROS is that it can be
used in two ways, for teaching concurrency in high-level programs and for
teaching operating system kernel internals. COLIBROS simplified operating
system kernel uses threads and their synchronization to provide some typical
kernel functionalities.

COLIBROS: Educational Operating System

ComSIS Vol. 7, No. 4, December 2010 707

3. COLIBROS Project History

COLIBROS history begins with conCert (CONcurrent C for Embedded
RealTime) [14]. The conCert project started in early 1990-es with intention to
develop small, educational tool for operating system course at Computer and
Control Department of Faculty of Technical Science at University of Novi Sad.
Its goal was to support concurrency in simple multiprocessing environment.
The conCert was designed as monolithic but well structured (layered), single
space, library operating system. It was developed on DOS platform, using
Borland Turbo C compiler, like XINU [7] or MPX-PC [20]. Putting everything in
one address space, without any hardware protection between threads and
kernel, made it simple and fast. During 1990-es conCert was ported to several
Intel based platforms (80x86, 80960) and used as real time executive for
control industrial applications.

Couple of years later, conCert was renamed to COLIBRY, redesigned to
become object oriented and migrated to C++ language. Since then, COLIBRY
uses objects to represent system elements (thread, memory, ready_list...).
Concurrency (thread definition and creation) and synchronization (cooperation
between threads and cooperation between threads and interrupt handlers)
are implemented using C++ classes, similar to Choices [5, 6], instead of
introducing new language primitives.

COLIBRY programs were executed on DOS without any hardware
protection (similar to [22]). Students had difficulties developing and debugging
programs in such hostile environment. Thus, COLIBRY project was migrated
again [21] to GNU/Linux platform and GNU gcc compiler and renamed to
COLIBROS.

During this migration it was necessary to introduce hardware emulation
layer between COLIBROS core and Linux kernel. This emulation layer
emulates only devices (terminal, disk) and mechanisms (interrupt handling)
that are not directly/completely accessible to unprivileged Linux process. Our
goal was to help students to understand real hardware and master its
asynchronous behavior of hardware devices/mechanisms.

In the latest version of COLIBROS, students can use GNU/Linux memory
protection and debugging tools for safe COLIBROS program development
and at the same time they can freely access (emulated/real) hardware
devices.

4. COLIBROS Implementation

COLIBROS consists of two layers: core (COLIBROS kernel) and hardware
emulation layer. Every COLIBROS program is statically linked with
COLIBROS (kernel core and emulation layer) and executed as plain
GNU/Linux process (as shown in Fig 1). This organization allows independent
COLIBROS processes to be executed at the same time on the same
GNU/Linux host.

Žarko Živanov, Predrag Rakić, and Miroslav Hajduković

ComSIS Vol. 7, No. 4, December 2010 708

COLIBROS kernel is set of library functions/objects, which are linked with
user code, similar to Engler's exokernel [10]. That’s why it is referred to as
Library Operating System. This organization allows different kernel
implementations/configurations to be chosen at compile time.

Fig 1. COLIBROS environment. Many COLIBROS processes (potentially created by
different users) can coexist on the same GNU/Linux host. Every COLIBROS process
executes in user space and encapsulates it’s own instance of emulated hardware
layer.

COLIBROS source code is divided in modules that represent logical parts
of COLIBROS project.

4.1. COLIBROS Modules

COLIBROS core consists of exec and in_out modules.
The exec module contains platform independent COLIBROS executable

source code. For every platform there should be also platform specific code.
Currently there is only one platform supported: i386-pc-linux.

The in_out module contains character and block drivers for devices used
by COLIBROS. Only terminal and disk are currently implemented.

The exec and in_out modules (without emulation layer) contain around
1500 lines of code and can be executed in couple hundred KBs of RAM.

COLIBROS: Educational Operating System

ComSIS Vol. 7, No. 4, December 2010 709

Besides these two modules COLIBROS also contains: tests, measures and
programs modules.

The tests module contains carefully designed automatic and manual test
programs used during development of COLIBROS.

The measures module contains COLIBROS programs used to measure
efficiency of different COLIBROS implementations.

The programs module contains examples discussed through out course.
Examples demonstrate basic concurrent and parallel problems like
Producer/Consumer, Dining Philosophers, Readers/Writers, Disk Head
Scheduling, Parallel Sorting, Matrix Multiplication, Parallel Contour Finding
and so on.

At the end it should be noted that COLIBROS is accompanied with
operating system course book [15] contained in doc module. This book
contains COLIBROS reference manual and its source code with explanations.

4.2. COLIBROS Core Implementation

COLIBROS core implementation is based on several system objects. The
objects ready and kernel are in charge of processor and numerical co-
processor management, and support scheduling and synchronization. These
objects support context switching, preemptive round robin scheduling, mutual
exclusion and conditional synchronization with sorting of thread waiting lists
as well as dealing with asynchronous events (interrupts).

The objects exception and timer represent drivers that take care of
exceptions and system time.

The object memory is due to memory management. It supports contiguous
first fit memory allocation as well as C++ new and delete operators.

The objects delta and wake_up_daemon deal with thread sleeping.
Character and block input and output are supported by the objects

display_driver, keyboard_driver and disk_driver.
These system objects constitute simplified operating system kernel suitable

for changing and extending. So, during the operating system course different
improvements (like advanced scheduling mechanisms, memory management
techniques (e.g. virtual memory) or file system) can be added to basic
COLIBROS functionality.

Other, higher level, services can be built as user threads (similar to micro-
kernel architecture [24]) without changes in COLIBROS core.

4.3. COLIBROS Hardware Emulation Layer

The hardware emulation layer is added to COLIBROS during migration to
GNU/Linux platform. Using it COLIBROS program is executed as plain
GNU/Linux process that freely accesses only emulated hardware and
therefore there is no need for real hardware access privileges.

Žarko Živanov, Predrag Rakić, and Miroslav Hajduković

ComSIS Vol. 7, No. 4, December 2010 710

The emulation introduces system objects that represent keyboard, display
and disk controller as well as terminal. Another three system objects
represent emulated interrupt table and deal with Linux signals and Linux
timer.

Emulated keyboard and display controllers are software objects that
together represent terminal (serial device) in raw mode. This emulation is
implemented using GNU/Linux terminal primitives.

Emulated disk controller is software object that represents hardware
magnetic disk device. This controller emulates small capacity, block device
which stores it's data in COLIBROS process's memory. It, also, emulates
some physical characteristics of magnetic disk like seek time and rotational
delay.

Emulation of interrupt mechanisms requires emulation of interrupt
notification mechanism, interrupt table and interrupt flag. GNU/Linux signals
are used to emulate interrupt notification. Signals are designed for
inter-process asynchronous communication and are well suited for emulation
of interrupt notification.

Interrupt handling logic is implemented in signal handlers. Signal handlers
invoke appropriate interrupt handlers (registered in emulated interrupt table)
depending on emulated interrupt flag state (that enables or disables interrupt
handling).

System timer emulation is based on periodic signaling provided by Linux
kernel.

The emulation layer allows students to manage emulated hardware without
constrains and without risk of crashing underlain operating system. At the
same time, it does not hide device implementation. On the contrary, it ensures
that every important implementation detail is visible.

COLIBROS emulation layer can be used on any Linux kernel based
platform distribution, but install scripts are designed for and tested on Debian
and some Debian-like distributions.

5. Overview of COLIBROS Interface

COLIBROS concurrency primitives are designed having in mind rich heritage
of process synchronization papers [16, 25, 19, 1, 23]. COLIBROS also offers
tools to synchronize threads and interrupt handlers in manner similar to ones
used to synchronize threads. Besides that, COLIBROS offers flexible interface
to determine order of continuation of thread activities, stopped for
synchronization reasons. COLIBROS interface is intentionally designed to
bare similarity to Java programming language [9] to prepare students for
concurrent programming in Java.

COLIBROS: Educational Operating System

ComSIS Vol. 7, No. 4, December 2010 711

5.1. COLIBROS Multithreading

Thread creation is conducted in three steps:
 Definition of thread class,
 Instantiation of thread object and
 Activation of thread.

Each user class that inherits COLIBROS class Thread represents thread.

Program 1: Thread class definition

class Thread {

 ...

 virtual void run(void) = 0;

 ...

 void* operator new(size_t type_size,

 size_t stack_size = STACK_SIZE);

 void start(const int priority = DEFAULT_PRIORITY,

 const unsigned alias = 0);

 friend void destroy();

};

Such user class must implement member function run(), that contains
thread body (see Program 1).

Thread objects are instantiated by C++ operator new(). Every thread object
is therefore instance of previously defined user class.

Calling member function start(), inherited from class Thread, activates
thread.

When thread activity is completed, thread objects are automatically
destroyed. The friend function destroy() allows thread to stop its activity and
terminate its existence.

The example of complete COLIBROS program shown in Program 2
illustrates definition, creation and activation of thread that prints string “Hello
world”.

Program 2: Example of Complete COLIBROS Program

class Example : public Thread

{

 public:

 void run();

};

void

Example::run()

{

 tout << "Hello World!";

}

Žarko Živanov, Predrag Rakić, and Miroslav Hajduković

ComSIS Vol. 7, No. 4, December 2010 712

void

Initial::run()

{

 Thread* t;

 t = new Example();

 t -> start();

}

The example of complete COLIBROS program is presented as Program 2.
It contains member function run() of COLIBROS predefined class Initial. Initial
class represents initial thread, which is automatically created and started at
the beginning of the program execution. The object tout is predefined object
for the program output (similar to standard C++ object cout).

5.2. COLIBROS Thread Synchronization Using Exclusive Variables

Cooperation between threads is achieved by using exclusive variables.
Exclusive variable is instance of an exclusive class - a user defined class that
inherits COLIBROS class Exclusive.

Program 3: Exclusive class definition

class Exclusive

 class Exclusive_block {

 ...

 Exclusive_block(Exclusive* ex);

 ~Exclusive_block();

 };

 class Condition {

 ...

 void await(unsigned t = 0);

 void signal();

 bool first(unsigned* t = 0);

 bool last();

 bool next(unsigned* t = 0);

 bool attach_tag(unsigned t);

 };

};

Mutual exclusion is implemented in Exclusive_block class (see Program 3).
Exclusion enter protocol is implemented in constructor and exclusion exit
protocol is implemented in destructor. Creation and destruction of an object of
this class begins and ends exclusive regions.

Conditional synchronization is implemented through Condition class.
Thread might need more than one condition to be fulfilled before it can

COLIBROS: Educational Operating System

ComSIS Vol. 7, No. 4, December 2010 713

resume its activity in exclusive region. Because of that, COLIBROS exclusive
class can contain several members of Condition type.

Member function await() is intended to stop thread activity until some
condition is fulfilled, and function member signal() is intended to continue
thread activity after some condition is fulfilled. It is possible to influence order
in which threads continue their execution after necessary conditions have
been fulfilled. This is accomplished by linking threads (their descriptors) into
waiting lists. When linked in list, each thread can be assigned value (tag),
which can be used to determine order in the list. Thread lists manipulation is
supported by operations: first(), next(), last() and attach_tag() of class
Condition.

The first operation (first()) positions internal pointer at first thread element in
list, the second one (next()) enables sequential moving throughout the list, the
third (last()) positions internal pointer at last thread element in list and the
fourth (attach_tag()) enables changing of value (that determines a thread
position in the list) associated with pointed thread element.

The Semaphore Example

Semaphores are not directly supported in COLIBROS but they can be easily
implemented as in Example of Semaphore Definition (Program 4).

Program 4: Example of Semaphore Definition

class Semaphore : public Exclusive

{

 int state;

 Condition open;

 public:

 Semaphore(int value = 1) : state(value) {};

 void wait();

 void resume();

};

void

Semaphore::wait()

{

 Exclusive_block set_up(this);

 if(state-- <= 0)

 open.await();

}

void

Semaphore::resume()

{

 Exclusive_block set_up(this);

 state++;

Žarko Živanov, Predrag Rakić, and Miroslav Hajduković

ComSIS Vol. 7, No. 4, December 2010 714

 open.signal();

}

Semaphore definition (shown as Program 4) illustrates how creation and
destruction of local variable set_up makes exclusive region. Also, it shows
how conditional synchronization is achieved by await() and signal() operations
on object open of Condition class.

Program 5 illustrates how Semaphore class can be used to achieve mutual
exclusion.

Program 5: Example of Critical Region Protection Using Semaphore

Semaphore mutex;

mutex.wait()

 ... // mutualy exclusive region

mutex.resume()

The Delta List Example

As already mentioned, users can influence order in which threads continue
their execution after necessary conditions have been fulfilled. For example
delta list implementation (shown as Program 6) requires threads to be sorted
in relative order of their expected awakening. Position of each thread in delta
list depends of its sleeping time. Sleeping time of each thread is relative to its
predecessor sleeping time (except the first thread with absolute sleeping
time). Object delta is used by threads to access delta list.

Program 6: Example of Delta List Implementation

class Delta : public Exclusive

{

 Condition delta;

 public:

 void sleep(unsigned time_to_wait);

 void tick();

};

void

Delta::sleep(unsigned time_to_wait)

{

 unsigned time;

 Exclusive_block set_up(this);

 if(delta.first(&time)) {

 do {

 if(time_to_wait >= time)

 time_to_wait -= time;

 else {

COLIBROS: Educational Operating System

ComSIS Vol. 7, No. 4, December 2010 715

 time -= time_to_wait;

 delta.attach_tag(time);

 break;

 }

 } while(delta.next(&time));

 }

 delta.await(time_to_wait);

}

void

Delta::tick()

{

 unsigned time_to_wait;

 Exclusive_block set_up(this);

 if(delta.first(&time_to_wait)) {

 if(--time_to_wait)

 delta.attach_tag(time_to_wait);

 else {

 do {

 delta.signal();

 } while((delta .first(&time_to_wait))

 && (time_to_wait == 0));

 }

 }

}

Operation sleep() links calling thread at appropriate place. This place is
determined during sequential advance through delta list from its beginning
(delta.first()) towards its end (delta.next()). Before thread is linked in delta list
(delta.await()), relative sleeping time of its successor is changed
(delta.attach_tag()).

Operation tick() decrements first thread’s sleeping time (delta.attach_tag()).
When first thread's sleeping time reaches zero, operation tick() wakes up this
thread (delta.signal()), as well as its successors with zero relative sleeping
time.

5.3. COLIBROS Device Drivers

Device drivers usually consist of two parts: synchronous and asynchronous.
Synchronous part is used by computer system to ask device for some kind of
service. Asynchronous part is used by device to notify computer system about
(usually urgent) event [8].

In traditional operating system to implement device driver one must
accomplish two unrelated operations: 1) register system service (for
synchronous part) and 2) register interrupt handler (for asynchronous part).

In COLIBROS these two operations are conducted through definition and
instantiation of atomic variable. Atomic variable is instance of atomic class – a

Žarko Živanov, Predrag Rakić, and Miroslav Hajduković

ComSIS Vol. 7, No. 4, December 2010 716

user defined class that inherits COLIBROS template class Atomic (Program
7).

Program 7: Atomic class definition

template<int VECTOR_NUMBER>

class Atomic {

 ...

 class Event {

 ...

 void expect(void);

 void notify(void);

 };

 class Atomic_block {

 ...

 Atomic_block();

 ~Atomic_block();

 };

 void start_interrupt_handling();

};

Atomic class must implement interrupt_handler() member function
(inherited from Atomic_base class). This function is registered in interrupt
table under interrupt number given as template argument for class Atomic.

Event class encapsulates mechanism that enables threads to wait for
external events (expect()) and to resume activity after that events arrival
(notify()).

Consistency of atomic variables is preserved using Atomic_block class.
Constructor of this class disables interrupt handling, while destructor is
returning it in previous state.

The example of timer device driver (shown as Program 8) contains atomic
class that supports registration of time (current_ticks) and sleeping/wakeup
(countdown). A single thread can postpone its activity by calling member
function sleep(), providing sleep duration time. Creation and destruction of
local variable set_up, in member function sleep(), begins and ends atomic
region.

Program 8: Example of COLIBROS Timer Device Driver

class Timer : public Atomic<TIMER>

{

 unsigned long current_ticks;

 unsigned long countdown;

 Event alarm;

 public:

 Timer(void);

 void sleep(unsigned duration);

 unsigned time_get() { return current_ticks; };

COLIBROS: Educational Operating System

ComSIS Vol. 7, No. 4, December 2010 717

 protected:

 void interrupt_handler();

};

Timer::Timer()

{

 current_ticks = 0;

 countdown = 0;

 start_interrupt_handling();

}

void

Timer::sleep(unsigned duration)

{

 Atomic_block set_up;

 if(duration > 0) {

 countdown = duration;

 alarm.expect();

 }

}

void

Timer::interrupt_handler()

{

 current_ticks++;

 if((countdown > 0) && ((--countdown) == 0)) {

 alarm.notify();

 }

}

6. Conclusion and Future Work

For the last decade COLIBROS (and its predecessors) is continuously used
as educational tool, providing generations of students with their first
impressions of operating system details. COLIBROS joins concepts of
classical and object oriented operating systems with multithreading concepts
of high-level programming languages through simple and clean interface. Its
implementation helps undergraduate students establish first contact with
problems of concurrency, parallelism and operating systems.

Using COLIBROS in classroom has other advantages for students, like:
better understanding of semantics and limitations of C++ language,
introduction to Linux system calls and basic knowledge of hardware emulation
(virtual machines).

Žarko Živanov, Predrag Rakić, and Miroslav Hajduković

ComSIS Vol. 7, No. 4, December 2010 718

In future, COLIBROS is going to be ported on bare hardware and used as
small and fast object oriented, real-time (probably wireless sensor network)
operating system.

References

1. Andrews, G. R., and Schneider, F. B. Concepts and notations for concurrent
programming. ACM Comput. Surv. 15, 1 (1983), 3–43.

2. Atkin, B., and Sirer, E. G. Portos: an educational operating system for the post-pc
environment. SIGCSE Bull. 34, 1 (2002), 116–120.

3. Ben-Ari, M. Principles of concurrent programming. Prentice-Hall, 1982.
4. Bynum, B., and Camp, T. After you, alfonse: a mutual exclusion toolkit. In SIGCSE

’96: Proceedings of the twenty-seventh SIGCSE technical symposium on
Computer science education (New York, NY, USA), ACM Press, pp. 170–174.

5. Campbell, R., Johnston, G., and Russo, V. Choices (class hierarchical open
interface for custom embedded systems). SIGOPS Oper. Syst. Rev. 21, 3 (1987),
9–17.

6. Campbell, R. H., Islam, N., Raila, D., and Madany, P. Designing and implementing
choices: an object-oriented system in c++. Commun. ACM 36, 9 (1993), 117–126.

7. Comer, D., and Fossum, T. V. Operating system design. Vol. 1: the XINU
approach (PC edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.

8. Corbet, J., Rubini, A., and Kroah-Hartman, G. Linux Device Drivers, 3rd edition ed.
O’Reilly, 2005.

9. Eckel, B. Thinking in Java, 3rd edition ed. Prentice Hall Professional Technical
Reference, 2002.

10. Engler, D. R. The exokernel operating system architecture. PhD thesis,
Massachusetts Institute of Technology, 1998. Supervisor-M. Frans Kaashoek.

11. Engler, D. R., Kaashoek, M. F., and J. O’Toole, J. Exokernel: an operating system
architecture for application-level resource management. In SOSP ’95:
Proceedings of the fifteenth ACM symposium on Operating systems principles
(New York, NY, USA, 1995), ACM Press, pp. 251–266.

12. Gary, J. E. Using nachos is an upper division operating systems course. J.
Comput. Small Coll. 18, 2 (2002), 337–345.

13. Goldweber, M., Davoli, R., and Morsiani, M. The kaya os project and the
micromps hardware emulator. SIGCSE Bull. 37, 3 (2005), 49–53.

14. Hajdukovic, M. Konkurentno programiranje programskim jezikom conCert.
Author’s reprint, Novi Sad, 1996.

15. Hajdukovic, M. Operativni sistemi (problemi i struktura), tehnicke nauke -
udzbenici ed. No. 74. Fakultet tehnickih nauka, 2004.

16. Hansen, P. B. The architecture of concurrent programs. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1977.

17. Hartley, S. J. Concurrent programming: the Java programming language. Oxford
University Press, Inc., New York, NY, USA, 1998.

18. Kifer, M., and Smolka, S. Introduction to Operating System Design and
Implementation: The OSP 2 Approach. Springer, 2007.

19. Lampson, B. W., and Redell, D. D. Experience with processes and monitors in
mesa. Commun. ACM 23, 2 (1980), 105–117.

20. Lane, M. G., and k. Ghosal, A. Mpx-pc: an operating system project for the pc.
SIGCSE Bull. 21, 1 (1989), 231–235.

COLIBROS: Educational Operating System

ComSIS Vol. 7, No. 4, December 2010 719

21. Rakic, P. Migration of concurrent library COLIBRY from MS/DOS to GNU/Linux
platform. Master’s thesis, Faculty of Technical Science, Trg Dositeja obradovica 6,
Novi Sad, Serbia, Feb 2006.

22. Reek, M. M. An undergraduate operating systems lab course. In SIGCSE ’90:
Proceedings of the twenty-first SIGCSE technical symposium on Computer
science education (New York, NY, USA, 1990), ACM Press, pp. 171–175.

23. Reynolds, C. W. Signalling regions: multiprocessing in a shared memory
reconsidered. Softw. Pract. Exper. 20, 4 (1990), 325–356.

24. Tanenbaum, A. S. Operating systems: design and implementation. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1987.

25. Wirth, N. MODULA: A Programming Language for Modular Multiprogramming, vol.
7. Eidgenössische Technische Hochschule, Institut für Informatik, 1977.

Žarko Živanov received Bachelor and Master of Science degree in Electrical
and Computer Engineering from University of Novi Sad, Faculty of Technical
Sciences. Hi is currently employed as assistant at University of Novi Sad,
Computing and Automation Department.

Predrag Rakić received Bachelor and Master of Science degree in Electrical
and Computer Engineering from University of Novi Sad, Faculty of Technical
Sciences. Hi is currently employed as assistant at University of Novi Sad,
Computing and Automation Department. His primary interests are: Unix--like
systems, Parallel and GPU programming.

Miroslav Hajduković is currently employed as full professor at University of
Novi Sad, Computing and Automation Department. He is teaching courses in
Computer Architecture and Operating Systems.

Received: May 21, 2007; Accepted: October 12, 2009.

