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Abstract. The syntax of Lisp languages is based on S-expressions, an 
extremely simple form of structured data representation that is 
nevertheless fundamental to the development of Lisp syntactic 
extensions. By adopting a more conventional syntax, the Java language 
placed itself in a difficult position in regard to user-defined syntax 
extensions. In spite of the many efforts to provide mechanisms for such 
extensions, they continue to be more difficult to use than S-expression-
based ones. In this paper, we will describe the use of the S-expression 
syntax in a Java code generation environment. By providing an S-
expression based program representation for Java source code, we are 
able to reuse and extend Lisp macro-expansion techniques to 
significantly simplify the construction of Java programs.  
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1. Introduction 

S-expressions (Symbolic Expressions) were invented by John McCarthy in 
the late 50s as a notation for both programs and data in the language Lisp 
[16]. 

S-expressions are usually expressed as fully-parenthesized prefix notation 
(also known as Cambridge Polish notation). For example, the mathematical 
expression 1+2×3 is represented in S-expression notation as (+ 1 (* 2 3)). 
Data can also be easily represented and there are old and recent proposals 
for its standardized use [17] [20]. 

McCarthy’s original idea also suggested the use of a different, more 
ALGOLesque, format named M-expressions (Meta Expressions), that would 
be translated into S-expressions. In M-expression notation, the previous 
expression looks like +[1, *[2, 3]]. However, programmers started to use 
and appreciate the S-expression format and M-expression never caught up. 

Homoiconicity is one of the fundamental ideas behind the S-expression 
notation. A language is said to be homoiconic when the primary 
representation of a program source code is implemented using a primitive 
type of the language itself. Thus, in a homoiconic language, a program can be 
constructed, analyzed, and evaluated using the programming language itself. 
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Lisp is the best known example of a homoiconic programming languages but 
there are other examples such as Prolog, SNOBOL and Tcl. 

The ability to write programs that write programs is the hallmark of meta-
programming [12]. A meta-program is written in a meta-language and its 
execution generates programs written in an object-language. In the case of 
homoiconic languages, such as Lisp, where programs and data are 
represented using the same S-expression notation, the meta-language and 
the object-language can be the same. 

From its inception Lisp was extensively used for meta-programming, 
including writing self-modifying programs. However, these programs were 
perceived as generally difficult to debug and with performance problems. As 
time went by, simpler and more standardized forms of meta-programming 
were developed and one, in particular, became well established: macros [19]. 

The word “macro” has a somewhat dubious reputation due to the problems 
of their use in the C programming language but that reputation is totally 
undeserved when we talk about Lisp. Macros in C are processed using a 
special program (a pre-processor) that operates as a text-replacement tool 
that does not understand the syntax of the language and that might create 
problems that are hard to debug. 

In Lisp, a macro describes a program that accepts program fragments (as 
S-expressions) and computes a new program fragment (an S-expression) that 
is evaluated in place of the macro call. This means that Lisp macros do not 
deal with the program text but with the program syntax tree instead. 

For performance reasons, the evaluation of the macro call and the 
evaluation of the new program fragment produced by that call occur at 
different times (called, respectively, macro-expansion time and run time) and, 
in most implementations, the new program fragment replaces the original 
macro-call so that there is only one macro-expansion for each call. 

Macros have been used in Lisp languages for quite a long time (at least, 
since 1963 [11]) and are fundamental for syntactically extending the 
language. In dialects such as Common Lisp [2], a significant part of the 
language is implemented using macros. 

As an example of the use of a macro, consider the following program 
fragment in Common Lisp that reads the first line of text contained in the given 
file: 

 
(with-open-file (s "/tmp/file.txt") 
 (read-line s))  
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The macro with-open-file is responsible for opening the file, executing the 
read-line operation requested and, in the end, closing the file and returning 
whatever was read. This behavior, however, is not implemented by the macro 
itself but by its macro-expansion, i.e., by the S-expression that is computed by 
the macro call. In fact, after macro-expansion time, what is really evaluated is 
the form:1 

 
(let ((s (open "/tmp/file.txt"))) 
 (unwind-protect 
 (read-line s) 
 (when (streamp s) 
 (close s)))) 

 
This sort of code generation can be very easy to do when we combine the 

Lisp macro system with a template-based quasiquotation approach [5]. 
Quasiquotation allows us to provide the following definition for the with-open-
file macro: 

 
(defmacro with-open-file ((f filename) form) 
 `(let ((,f (open ,filename))) 
 (unwind-protect 
 ,form 
 (when (streamp ,f) 
 (close ,f))))) 

 
The idea behind quasiquotation is that it operates as a parameterized 

version of quotation and is generally used to describe templates for code 
generation where some “unquoted” parts (those proceeded by commas) will 
be filled in by evaluating the corresponding expression. Given the fact that 
macros receive their arguments unevaluated (as S-expressions) and that they 
must compute an S-expression as result, it is extremely tempting to use 
quasiquotation in macros and, in fact, they are heavily used for that purpose. 
The macro/quasiquotation combination is one of the best features of Lisp and 
has been appropriately called “the ultimate CASE tool” [3]. 

In many cases, macros do nothing more than construct an S-expression 
from a template described by quasiquotation that incorporate the arguments 
to the macro call. The with-open-file example presented above shows this 
behavior, as can be seen in the (read-line s) argument that is carried over 

   
 
 
 
 
 
 
1We present only a simplification of the expansion that is done in most 

implementations of this macro. 
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the expansion without any changes. In these cases, the arguments are 
treated as completely opaque objects. 

In some other cases, however, it is necessary to look inside those 
arguments. For example, the extended loop macro provided in Common Lisp 
is used to express iterations and it expands into different forms depending on 
the presence of certain symbols in the macro arguments, such as from, in, 
and while, so that a (loop for i from ... to ... do ...) and a 
(loop while ... do ...) can produce different expansions.  

As another example, consider the macro that increments a place: (incf x) 
is the same as (setf x (+ x 1)). However, if the macro argument is more 
complex, e.g., in (incf (first (foo))), the naive application of the macro 
will generate the form (setf (first (foo)) (+ (first (foo)) 1)) that 
will incorrectly evaluate (foo) twice. To solve this problem it is necessary to 
look inside the argument in order to generate a program that avoids duplicate 
evaluation. 

In other cases, the situation is even more complex. Sophisticated syntactic 
extensions, such as the Series ([23]) and Iterate ([1]) packages, must 
extensively analyze and rearrange the source code that is passed as 
argument. For an even more extreme case, consider Screamer ([21]), a non-
deterministic variant of Common Lisp that depends on a few macros to 
convert a program into continuation-passing-style and that also 
(incrementally) operates a whole-program analysis to distinguish deterministic 
and non-deterministic functions. The common theme across the previous 
examples is that macros, sometimes, must do a lot more than the simple 
template instantiation provided by quasiquotation. 

In spite of its long history, there are still some problems associated with 
Lisp macros (unintended variable capture, out-of-order evaluation, etc) and 
some of these problems have been solved, e.g., by the hygienic macros [9] 
and syntactic closures [6] that have been proposed for the Scheme dialect of 
Lisp. Common Lisp, however, still uses the traditional model because it is 
simpler and it does not entail the same problems that it does in Scheme. 

In the rest of this paper, for reasons that will be obvious, we will only 
consider the Common Lisp model. 

2. The Linj Language 

System Software maintenance is an highly difficult task, in particular, when 
the software is written in one programming language but the maintenance 
team prefers to develop in a different language. To deal with this problem, 
management tends to restrict the set of “acceptable” programming languages 
to the most widely used ones such as Java. This imposes a difficult constraint 
on developers that prefer to work in less mainstream languages such as 
Common Lisp. 

Linj is a Common Lisp-like language intended to be translated into human-
readable Java source code. The fundamental idea behind Linj is that it should 



From Lisp S-Expressions to Java Source Code 

ComSIS Vol. 5, No. 2, December 2008  23 

be possible to develop a program in a Common Lisp dialect but deliver it in 
Java just like if the program was originally written in Java. Linj was designed 
by carefully selecting some of the best features of Common Lisp and avoiding 
or slightly changing those that are difficult to translate into readable Java 
source code. 

A preliminary version of Linj was described in [7] and a real example of its 
use was presented in [8]. The paper [13] explains the use of Linj in a 
reengineering setting and [14] discusses the round-trip process from Java to 
Linj. In this paper we will focus on the meta-programming capabilities of Linj 
for Java code generation, a topic that was only superficially addressed in the 
previous papers. We will now present a short overview of the Linj language. 

As a first example of a Linj program, we will consider the typical factorial 
function: 

 
(defun fact (n) 
 (if (= n 0) 
 1 
 (* n (fact (1- n))))) 

 
The previous definition is written using the exact same syntax that would be 

used in the Common Lisp language. However, instead of being used by a 
Common Lisp evaluator, the previous definition is translated by the Linj 
compiler into the following Java source code: 

 
public static Bignum fact(Bignum n) { 
 if (n.compareTo(Bignum.valueOf(0)) == 0) { 
 return Bignum.valueOf(1); 
 } else { 
 return n.multiply(fact(n.subtract(Bignum.valueOf(1)))); 
 } 
} 

 
It is important to note that, as a first approximation, the Linj compiler 

generates Java code that preserves the semantics of the original Common 
Lisp program. In this particular example, the presence of arithmetical 
operations allowed the compiler to infer that the factorial function accepts a 
number as argument and returns a number as result. However, it could not 
infer a more specific type for these numbers (such as integer or floating point) 
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and, consequently, the generated program will depend on a run-time library 
that implements a generic (arbitrary large) rational number called Bignum.2 

It is possible, however, to include in the program more specific type 
information about the function parameter n. If, instead of writing the above fact 
function definition, the programmer writes 

 
(defun fact (n/long) 
 (if (= n 0) 
 1 
 (* n (fact (1- n))))) 

 
then he is also asserting that the parameter n is a long. This allows Linj to 

make a more aggressive type inference to conclude that the function also 
returns longs. This extra aggressiveness is justified because it allows Linj to 
generate code that more closely resembles a human-written code fragment, 
as can be seen below: 

 
public static long fact(long n) { 
 if (n == 0) { 
 return 1; 
 } else { 
 return n * fact(n - 1); 
 } 
} 

 
As another example, consider the following Linj function that computes the 

biggest of three integer arguments: 
 

(defun max-x-y-z (x/int y/int z/int) 
 (let ((max-x-y (if (> x y) x y))) 
 (if (> max-x-y z) 
 max-x-y 
 z))) 

 
The Linj compiler translates the previous function into the following Java 

fragment: 
 
 

   
 
 
 
 
 
 
2The compiler can be trivially configured to use different Java classes and 

primitive types in the generated code, e.g., BigInteger in the place of Bignum. 
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public static int maxXYZ(int x, int y, int z) { 
 int maxXY = (x > y) ? x : y; 
 if (maxXY > z) { 
 return maxXY; 
 } else { 
 return z; 
 } 
} 

 

3. Linj Syntax 

Linj compiles source code that is very similar to Common Lisp to target code 
that is very similar to human-written Java. Syntactically speaking, Linj 
programs are so similar to Common Lisp that the Linj compiler inputs them 
using the exact same read function that is provided by Common Lisp. This 
was an important design decision because it allowed us to effortlessly reuse 
all the Common Lisp machinery for read-macros.3 Just like in Common Lisp, 
reading a Linj program produces an S-expression. 

S-expressions are the basis for Common Lisp macro capabilities but they 
are not enough for the full set of Linj macro capabilities. Common Lisp has an 
extremely simple syntax where forms can be categorized as symbols, conses 
or self-evaluating objects. On the other hand, Java has a very complex syntax 
with a large number of syntactical categories, including expressions, 
statements, blocks, compilation units, etc. Moreover, Common Lisp allows 
forms to be combined in arbitrary ways while Java has much more strict rules 
regarding the grammatical combination of expressions, statements, blocks, 
class declarations, etc. For example, contrary to Common Lisp, expressions 
in Java cannot contain variable declarations. 

In order to reduce the gap between the syntaxes of Common Lisp and 
Java, Linj imposes additional syntactical constraints upon the S-expression 
forms, allowing the same S-expression to be classified according to the place 
where it occurs. This should be evident in the previous max-x-y-z example, 
where the first if form is classified as an expression and translated into Java’s 

   
 
 
 
 
 
 
3In spite of being frequently seen together, read-macros have little in 

common with (normal) macros, as they just implement specialized parsing 
behavior triggered when the reader encounters the corresponding macro 
character. 
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conditional expression and the second one is classified as a statement and 
translated into Java’s if statement.  

Although it might seem that increasing the complexity of S-expressions is a 
step back relative to the uniform syntax of Lisp, the fact is that, in Linj, macros 
can also take advantage of the rich syntax and semantics of the Java 
language to provide a more expressive macro system. 

In general, the Linj syntax accepts the large majority of Common Lisp 
programs but there are some cases where a correct Common Lisp program is 
rejected. To understand the issue, we present a fragment of the Linj grammar: 

 
<statement> ::= <if statement> | <let statement> | … 
<if statement> ::= (if <expression> <statement> <statement>) 
<expression> ::= <literal> | <reference> | <if expression> | … 
<if expression> ::= (if <expression> <expression> <expression>) 
 
Note, in the above grammar, that the same if form can be classified both 

as a statement or as an expression. Other forms, such as the let, can only 
be parsed as statements. Now, let’s consider the following Common Lisp 
forms: 

 
 (if (let ((w (max y z)))     (let ((w (max y z))) 
 (> x (* w w)))           (if (> x (* w w)) 
 (+ x y)                        (+ x y) 
 (+ x z))  (+ x z))) 

 
Although both forms are valid Common Lisp forms, only the form on the 

right is a valid Linj form. The form on the left isn’t valid in Linj because an if 
(be it expression or statement) expects an <expression> as its first argument 
and the let is a <statement>. 

Although the Linj grammar seems like a severe restriction to a Common 
Lisp programmer, using a more restricted syntax is an important advantage 
for a translation process that wants to generate readable code and, in fact, the 
Linj grammar was carefully designed to describe Common Lisp sources that 
can be effectively translated into readable Java code. 

To use the Linj grammar we implemented a second parsing process (using 
a recursive descent parser with backup) that takes the S-expression produced 
by the Common Lisp parser and constructs abstract syntax trees (ASTs) 
where the nodes are instances of CLOS [18] classes related to the different 
syntactical categories. Each parse rule describes an S-expression-based 
pattern that will match an S-expression-based program: the parser operates 
over the S-expressions constructed by the Common Lisp reader and not over 
the textual representation of programs. 

Both the S-expression based program representation and the AST based 
program representation are essential for Linj macro capabilities and, to this 
end, each AST node contains a reference to the S-expression that it 
represents. In the next section we discuss Linj macro capabilities. 
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4. Linj Macros 

A Common Lisp macro is a Common Lisp program that accepts S-
expressions as arguments and that generates Common Lisp code fragments 
as results. 

Linj would not be a Common Lisp-like language if it didn’t implement 
Common Lisp-like macros. However, besides providing the traditional 
Common Lisp macros, Linj also allows two other types of macros that take 
advantage of the richer syntactic and semantic information that is available in 
the Linj ASTs. 

We will now explain these three different types of macros. 

4.1 Traditional Macros 

The first form of macro in Linj is indistinguishable from a Common Lisp macro. 
In fact, the body of the macro is written in Common Lisp. The macro 
expansion, however, entails a subtle difference: the same Linj macro call 
might be expanded more than once. 

In Common Lisp, macro expansion occurs when a macro-call is 
encountered while processing forms that are meant to be evaluated. In Linj, 
macro expansion occurs during the parsing phase and has to be repeated 
whenever the parser backtracks past the macro-call. 

To understand this issue, consider an hypothetical implementation and use 
of the anaphoric if macro[10] (we will call it aif). The idea is to introduce the 
locally scoped pronoun it that is lexically visible in the if branches and that 
stands for the result of the if test expression. Here is one example of its use: 
 
(aif (long-computation) 
 (princ it) 
 (princ "Failed!")) 
 
and here is the macro definition: 
 
(defmacro aif (test-form then-form else-form) 
 `(let ((it ,test-form)) 
 (if it 
 ,then-form 
 ,else-form))) 
 

Using this macro, Linj is capable of expanding the previous macro call into 
 
(let ((it (long-computation))) 
 (if if 
 (princ it) 
 (princ "Failed!"))) 
 
and then it will translate the macro-expanded code into 
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Object it = longComputation(); 
if (it != null) { 
 System.out.print(it); 
} else { 
 System.out.print("Failed!"); 
} 
 

Now, let’s imagine that the Linj parser is trying to parse the aif macro call 
as an expression. As we just saw, after expanding the macro call, the result is 
a let form that introduces a new variable declaration. 

Unfortunately, a Java expression cannot contain variable declarations and, 
by extension, neither can a Linj expression, so the parser backtracks as far as 
necessary, undoing all macro-expansions, and attempts other parsing rules, 
including the one that treats the entire aif form as a statement, causing re-
expansion of the macro call whose result can now be correctly parsed. 

For this reason, the Linj (macro-)programmer should be aware that macros 
should be side-effect free so that their macro calls can be expanded more 
than once. This is not a problem in practice because, due to the different 
phases of macro expansion and evaluation, it is extremely rare, even in 
Common Lisp, to find a macro that causes side effects. 

As another example, consider the Linj version of the with-open-file 
Common Lisp macro that was presented in the introduction. Given the fact 
that Java deals with files using a decorator design pattern, Linj provides a 
more sophisticated macro definition that allows the specification of the stream 
class to use for reading from and writing to files and also allows the 
specification of an arbitrary composition of stream decorators. Here, for 
illustrative purposes, we will present a simpler implementation that only 
provides the instantiation of two different classes, namely, file-input-
stream and file-output-stream: 
 
(defmacro with-open-file ((var filename  
 &key (direction :input)) 
  &body body) 
 `(let ((,var  
 ,(ecase direction 
 (:input `(new file-input-stream ,filename)) 
 (:output `(new file-output-stream ,filename))))) 
 (unwind-protect 
 (progn ,@body) 
 (unless (eq ,var null) 
 (close ,var))))) 
 

The next Linj fragment shows a typical use of the previous macro where we 
open a file for input, another one for output, we read an S-expression from the 
first and we write it in the second: 
 



From Lisp S-Expressions to Java Source Code 

ComSIS Vol. 5, No. 2, December 2008  29 

(with-open-file (in "f1" :direction :input) 
 (with-open-file (out "f2" :direction :output) 
 (write out (read in)))) 
 
Its translation into Java is the following: 
 
FileInputStream in=new FileInputStream("f1"); 
try { 
 FileOutputStream out=new FileOutputStream("f2"); 
 try { 
 out.write(in.read()); 
 } finally { 
 if (out != null) { 
 out.close(); 
 } 
 } 
} finally { 
 if (in != null) { 
 in.close(); 
 } 
} 
 

Note how the simple three-line Linj example is translated into a 
combination of try-finally statements that ensure that streams are properly 
closed even in the event of abnormal exits. 

4.2 Context Sensitive Macros 

Sometimes, Linj programmers want to write macros that produce different 
expansions depending on the syntactic context where the macro call occurs. 
Consider, for example, a (very) simplified implementation in Linj of a sprintf 
function that accepts any number of arguments whose textual representation 
will be interspersed in the middle of a string at the positions indicated by a % 
marker. 

It is easy to define a first version that depends on Java’s StringBuffer 
class: 
 
(defmacro sprintf (str &rest args) 
 (let ((parts (split-sequence #\% str))) 
 `(let ((buff (new 'string-buffer ,(first parts)))) 
 ,@(loop for part in (rest parts) 
 collect `(append buff ,(pop args)) 
 collect `(append buff ,part)) 
 (to-string buff)))) 
 

This macro is used, for example, in: 
 
(defun foo (x y) 
 (sprintf "I have % apples and % oranges" x y)) 
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After macro expansion and translation into Java, we get: 

 
public static String foo(Object x, Object y) { 
 StringBuffer buff = new StringBuffer("I have "); 
 buff.append(x); 
 buff.append(" apples and "); 
 buff.append(y); 
 buff.append(" oranges"); 
 return buff.toString(); 
} 
 

The macro seems useful but, unfortunately, it does not work in the following 
example: 
 
(defun bar (x y) 
 (length (sprintf "I have % apples and % oranges" x y))) 
 

The reason for not working is that the macro expansion includes a let form 
that, as we said before, can only be parsed as a statement. However, in the 
above example, the macro call occurs in a position (call argument) where an 
expression is expected. 

To solve this problem, we can provide a different macro that guarantees 
that the macro expansion can be parsed as an expression. Here is one 
possibility: 
 
(defmacro sprintf (str &rest args) 
 (let ((parts (split-sequence #\% str))) 
 `(concat ,(first parts) 
 ,@(loop for part in (rest parts) 
 collect (pop args) 
 collect part)))) 
 

Using this version, the bar function is translated into: 
 
public static int bar(Object x, Object y) { 
 return ("I have " + x + " apples and " +  
 y + " oranges").length(); 
} 
 

Given the fact that both macro definitions have advantages we don’t want 
to be forced to prefer one over the other. Fortunately, the Linj macro system 
allow us to have both sprintf macro definitions available at the same time as 
long as we tag them with the syntactical category that is expected for the 
macro expansion, allowing the parser to choose the macro definition that is 
most appropriate for the parsing situation at hand. This is a very important 
feature to allow the best human-readable Java code generation for every 
conceivable situation. The tag is a symbol that names the intended syntactical 
category and is placed between the macro name and its list of parameters. 
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This feature is also very important for error reporting during the compilation 
process. To understand this issue, let’s suppose that one programmer defines 
a macro that expands into a form that must be parsed as a statement but 
another programmer uses that macro in a context where an expression was 
expected. In this case, a parsing error is generated but the error is related to 
the expanded code and not to the original macro call, thus making it more 
difficult to the programmer to understand the error message. However, if the 
macro developer had tagged his macro with the appropriate syntactical 
category, then the macro expansion would not be attempted and the error 
message would simply report that it was not possible to parse the macro call 
in a context where an expression was expected, thus making it much more 
easier for the macro user to understand the problem. 

4.3 Semantic Macros 

Semantic Macros allow Linj to go one step further: they have the same syntax 
and same conceptual model as syntactical macros but they operate not on the 
S-expression representation as traditional and syntactical macros do but on 
the Linj AST instead. This gives them an additional power to analyze the AST 
and generate cleverer expansions. 

In this section we will focus on semantic macros that only explore type 
information but, in practice, these macros can explore all the information that 
is available in the AST. To this end, the Linj compiler provides an API that 
includes functions for walking the AST, for inspecting its nodes, for obtaining 
the type of the expressions, etc. 

As a first example, consider the Common Lisp function logbitp: it accepts 
an index and an integer and it tests the value of the indexed bit in the two-
complement binary representation of the integer. Java’s BigInteger method 
testBit(i) is similar: it accepts an integer parameter i and returns true if 
the i-th bit of the receiver is 1 and false otherwise.  

Unfortunately, there is no similar method for Java primitive integer types 
int and long, not even in some utility class such as java.lang.Math, thus 
forcing the programmer to use a combination of shifting and masking to 
achieve the same effect. This is bad because it makes the conversion of code 
between primitive integer types and reference integer types more difficult than 
it needs to be. 

To solve this problem, the Linj programmer can define a macro but this 
macro must be very different from the previous ones because, this time, the 
macro expansion does not depend on the syntactical form of the arguments 
neither does it depend on the syntactical category of the macro call. Now, the 
macro-expansion depends on the type of one of the arguments. To explore 
this type information, the Linj API exposes the get-type function. This 
function accepts an AST node that represents an expression and returns the 
(static) type of the expression, using type inference to derive that information. 
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Using this API, we can define a logbitp macro that accepts two 
expressions, the first one evaluating to an index and the second one to an 
integer. The macro computes the type of the second expression, distinguishes 
between the primitive types and the reference type BigInteger (using the 
predicates primitive-type-reference-p and big-integer-type-p, 
respectively) and returns an appropriate macro-expansion. Here is one 
possible definition: 
 
(def-linj-macro expression  
 (logbitp ?e1/expression ?e2/expression) 
 (let ((type2 (get-type ?e2))) 
 (cond ((primitive-type-reference-p type2) 
 `(not (zerop (logand ,?e2 (ash 1L ,?e1))))) 
 ((big-integer-type-p type2) 
 `(test-bit ,?e2 ,?e1)) 
 (t 
 (fail))))) 
 

Note that if the type does not pass the macro tests, meaning that the 
second argument has a type that is neither primitive nor a BigInteger, then 
the macro fails, i.e., it declines to expand. 

Now, let’s consider the following example that uses the macro in two 
different places: 
 
(defun baz (x/long y/big-integer) 
 (eq (logbitp 5 x) 
  (logbitp 5 y))) 
 

In the previous example, it is obvious that the macro cannot syntactically 
distinguish between the two calls. However, due to the introspective 
capabilities explored by the macro, Linj is capable of translating the previous 
function into the following equivalent Java code: 
 
public static boolean baz(long x, BigInteger y) { 
 return ((x & (1L << 5)) != 0) == y.testBit(5); 
} 
 

It is worth mentioning that Linj’s semantic macros go beyond what 
Common Lisp macros can usually do. This isn’t a Common Lisp shortcoming 
but a consequence of the dynamic nature of the language: Common Lisp is a 
dynamically typed language, meaning that there is very little type information 
available at macro-expansion time. Linj, on the other hand, is as statically 
typed as Java, allowing semantic macros to explore much more semantic 
information. 

As a final example, consider the use of a for-each macro that iterates 
different kinds of objects, as exemplified below: 
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(defun iterate (x/iterator)                 ;;an iterator 
 (let ((y (new 'string-tokenizer "1 2 3")) ;;an enumeration 
 (z #(1 2 3)))                       ;;a vector 
 (for-each (e x) 
 (princ e)) 
 (for-each (e y) 
 (princ e)) 
 (for-each (e z) 
 (princ e)))) 
 

The difficulty with the logbitp and for-each macros is that their 
expansion depends not on the syntactical form of the arguments (in the 
examples, they are indistinguishable) but on their semantic properties instead. 
In this case, it depends on the type of the iterated expression, that is, the 
types of x, y and z but this information can only be made available after 
parsing the S-expression and annotating the resulting AST with the types 
computed for the expression nodes. This means that the for-each macro 
expansion must be delayed until the AST is ready to provide the information it 
might need. 

To achieve this effect, macro calls for these semantic macros are not 
expanded at parse time, thus becoming AST nodes themselves. Later on, a 
tree visitor responsible for expanding these macro calls is activated and all 
macro calls are expanded in a top-down fashion. 

During the macro-expansion, what the macro receives as arguments is 
either S-expressions or completely parsed AST sub-trees that can be 
analyzed, manipulated, and reused at will. The macro specifies what it 
expects to receive by tagging each parameter with the syntactical category it 
wants (or none if it just wants the S-expression). If, during one expansion, 
information regarding other (semantic) macro calls is needed, its expansion is 
also computed, thus triggering a kind of chain reaction. 

The final phase of the expansion is the generation of an S-expression that 
can also include fragments of the already parsed AST and that is 
subsequently parsed to compute a new AST subtree that replaces the 
semantic macro call. Obviously, to compute this expansion, one might use the 
same quasiquotation that is used in traditional and syntactical macros. 

We will now complete the previous example, showing a possible 
implementation of the for-each macro: 
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(def-linj-macro statement 
 (for-each (?var ?form/expression) . ?body) 
 (let ((form-type (get-type ?form))) 
 (cond ((array-type-reference-p form-type) 
 `(dovector (,?var ,?form) . ,?body)) 
 ((super-type-p (iterator-type) form-type) 
 `(let ((iter ,?form)) 
 (while (has-next iter) 
 (let ((,?var (next iter))) . ,?body)))) 
 ((super-type-p (enumeration-type) form-type) 
 `(let ((enum ,?form)) 
 (while (has-more-elements enum) 
 (let ((,?var (next-element enum))) . ,?body)))) 
 (t 
 (error "Unknown type for iteration ~A" form-type))))) 
 

Note that the macro definition requires the form parameter to be parsed as 
an expression. Using this expression, the macro computes its type using the 
function get-type: this is an entry-point for the type inferencer that, given an 
expression, returns the static type of the value of the expression; it is 
guaranteed that its dynamic type will be a subtype of this static type. 
Depending on this type, the macro then expands into different forms that will 
be used in place of the macro call. 

For the example given above, the three syntactically identical uses of the 
macro produces three completely different expansions, each dealing with a 
different type of iterated object: 
 
public static void iterate(Iterator x) { 
 StringTokenizer y = new StringTokenizer("1 2 3"); 
 int[] z = new int[] { 1, 2, 3 }; 
 Iterator iter = x; 
 while (iter.hasNext()) { 
 Object e = iter.next(); 
 System.out.print(e); 
 } 
 StringTokenizer enum = y; 
 while (enum.hasMoreElements()) { 
 Object e = enum.nextElement(); 
 System.out.print(e); 
 } 
 int limit = z.length; 
 for (int i = 0; i < limit; ++i) { 
 int e = z[i]; 
 System.out.print(e); 
 } 
} 
 

The previous example also demonstrates the usefulness of user-defined 
syntax extensions: Linj programmers have been using the for-each macro 
since Java 1.1, while Java programmers had to wait until Java 5 for a similar 
syntax extension provided by the Java language itself. Another advantage is 
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that just by changing the macro definition, the same Linj programs can now be 
simply recompiled to generate Java sources that take advantage of the Java 5 
for-each statement. 

Given the fact that Linj macros can depend on the available type 
information and that the type inference mechanism depends on the expansion 
of macros, it is possible to create circularities. These circularities will be 
detected by the Linj compiler and will be represented using a cyclic type. As a 
result, The Linj (macro) programmer should be prepared to deal with this type, 
either by aborting the macro expansion or by replacing the cyclic type with 
some other type or by using some other strategy. 

A final important point about semantic macros in Linj is that they can 
decline to expand, meaning that they might not want to generate any 
expansion. In this case, Linj shadows the macro (so that it cannot be 
recursively applied to the same AST node) and re-parses the original S-
expression form of the node. This is useful to provide partial evaluators that 
can generate more efficient code but only if they have sufficient static 
information available. 

5. Related Work 

There is a large number of proposals for including macro capabilities in 
syntactically rich languages such as C or Java. In most cases, there is a 
serious attempt to reuse in the meta-language the same (or a similar) 
language that is used in the object-language. In [24], a Lisp-inspired template 
approach for C is used but where macros are programmed in an extended C 
that is interpreted at macro-expansion time. 

Semantic macros were also proposed in [15] in terms that are very similar 
to ours. The authors present a new experimental language—XL—that 
borrows its semantics from Scheme but whose syntax, although S-expression 
based, has many more syntactical categories. Again, this is very similar to our 
own approach (except that we borrowed our semantics from Common Lisp 
and Java). The biggest difference, however, is that the extra syntax is visible 
in the source code, making macro definitions harder to write and understand. 

OpenJava [22] is a macro system for Java where programmers customize 
the definition of class meta-objects for describing macro expansions. 
OpenJava was designed to address the needs of semantic macros and, to 
this end, it provides an object-oriented representation of programs that include 
logical and contextual information. 

The biggest difference between Linj and OpenJava is that OpenJava does 
not use any template-based approach, instead preferring to construct the 
macro expansion by hand. Linj allows both, although quasiquotation is more 
used because it is clearer. 

Jak [4] is an extensible superset of Java with support for meta-
programming. Jak is part of JTS (Jakarta Tool Suite), a set of tools aimed at 
the construction of domain-specific languages. JTS represents source code 
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using SSTs (surface syntax trees) and ASTs (that are semantically-checked 
and annotated SSTs). Jak also uses a template based approach but where 
the code fragments must be surrounded by keywords (named tree 
constructors) that express the intended syntactical categories. There are 
several such tree constructors expressing, among others, expressions, 
statements, method definitions, classes, etc. 

In contrast, Linj does not need tree constructors because the (meta-
)programmer can indicate, in the macro definition, any syntactical category 
that he wants and this category is used to restrict the triggering of the macro 
expansion and for parsing its result. In Jak, the meta-language is Java 
complemented with an API for processing the SSTs and ASTs. 

In general, all the approaches that attempt to add meta-programming 
capabilities to mainstream programming languages suffer from the fact that 
they target non-homoiconic languages. This makes it difficult to use template-
based quasiquotation and, in many cases, it forces the macro writers to 
manually construct syntactically valid program fragments, a task that is 
difficult, tedious and error prone. Moreover, given the fact that macro 
expansion is done at (or before) compile-time, the macros must be coded 
using a meta-language that cannot be the same as the object-language, thus 
making the process more complex. 

What we think is the major difference between our approach and others is 
the fact that our real object-language is hidden from the Linj programmer. In 
fact, while using Linj, the programmer never sees Java. What he sees is Linj, 
that is, a Common Lisp with a slightly restricted syntax. Our meta-language is 
(unrestricted) Common Lisp but since there’s no relevant differences between 
Common Lisp and Linj and, moreover, macros generally use quasiquotation 
that further hides the differences, few Linj (meta-)programmers are aware of 
the fact that they are using two different languages. As a result, Linj seems to 
be an homoiconic language while, in practice, it is not.  

6. Conclusions 

S-expressions are one of John McCarthy marvelous inventions that still are, 
almost 50 years later, one of Lisp most distinguishing features. Being an 
uniform representation for both code and data, S-expressions allow code to 
be treated as data and data to be treated as code. Lisp macros are the best 
tool to explore, in a disciplined way, this uniform treatment. In a macro call, 
the code in the macro arguments is treated as data and the data produced by 
the macro is treated as code. When used in combination with quasiquotation, 
macros become an extremely simple but powerful tool for meta-programming. 

In this paper, we presented the Linj approach to meta-programming for 
Java. Linj is a Common Lisp-like language that superimposes a Java-like 
grammar on top of S-expressions in order to allow Linj programs to be 
translated into human-readable Java programs. Linj programs are parsed into 
S-expressions that, according to the Linj grammar, are then parsed into ASTs. 
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Meta-programming in Linj is obtained through the use of Linj macros that 
accept either S-expressions or ASTs and that generate Linj S-expressions 
that are further parsed into ASTs. In the end of the translation process, these 
ASTs are finally transformed into Java source code. 

The implementation of macros in Linj is more complex than in Common 
Lisp but we believe we managed to preserve the look and feel of Common 
Lisp macros while allowing much more sophisticated macro operations, 
including exploring syntactic and semantic aspects of the macro call 
arguments or of the expected results. It is also possible for these macros to 
operate arbitrary transformations of the entire AST. This sophistication is 
needed in Linj to provide the best possible translation from Linj S-expressions 
to human-readable Java source code. 
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