
UDC 004.416

ALMA versus DDD

Daniela da Cruz1, Pedro Rangel Henriques1 and Maria João Varanda
Pereira2

1University of Minho - Department of Computer Science,
Campus de Gualtar, 4715-057, Braga, Portugal

{danieladacruz,prh}@di.uminho.pt
2Polytechnic Institute of Bragança

Campus de Sta. Apolónia, Apartado 134 – 5301-857, Bragança, Portugal
mjoao@ipb.pt

Abstract. To be a debugger is a good thing! Since the very beginning of
the programming activity, debuggers are the most important and widely
used tools after editors and compilers; we completely recognize their
importance for software development and testing. Debuggers work at
machine level, after the compilation of the source program; they deal
with assembly, or binary-code, and are mainly data structure inspectors.
Alma is a program animator based on its abstract representation. The
main idea is to show the algorithm being implemented by the program,
independently from the language used to implement it. To say that
ALMA is a debugger, with no value added, is not true! ALMA is a source
code inspector but it deals with programming concepts instead of
machine code. This makes possible to understand the source program
at a conceptual level, and not only to fix run time errors. In this paper we
compare our visualizer/animator system, ALMA, with one of the most
well-known and used debuggers, the graphical version of GDB, the DDD
program. The aim of the paper is twofold: the immediate objective is to
prove that ALMA provides new features that are not usually offered by
debuggers; the main contribution is to recall the concepts of debugger
and animator, and clarify the role of both tools in the field of program
understanding, or program comprehension.

Keywords: Program Comprehension, Program Animation, Debugger,
Alma, DDD.

1. Introduction

In the context of our research on language-based tools and program
understanding, we developed, some time ago, a program animator, ALMA,
which has been confronted many times against debuggers; a common
question is: “what is the value added by ALMA to the usefulness of traditional
debuggers?"

ALMA was conceived in order to prove the potential of using a traditional
compilers' approach to enable the construction of generic (algorithm/language
independent) tools for program visualization/animation. That developing effort

Daniela da Cruz, Pedro Rangel Henriques and Maria João Varanda Pereira

 ComSIS Vol. 5, No. 2, December 2008 120

was justified because we did not find in literature any tool of that kind; after
reviewing the area of program animation, we have concluded that a generic
visualize animator (not specific for a family of algorithms or for a given
programming language) was lacking. So it is difficult to compare ALMA with
similar tools.

After attaining that methodological/technological objective, it became
evident that ALMA could also be used to help programmers and software-
engineers in program understanding. This is possible because ALMA let us
abstract from the concrete syntax of programming languages and aids in
associating (operational) meaning to programming concepts.

Our intention in this article is to claim and justify that ALMA is not a
debugger! We state the differences between a debugger (code analysis) and
a generic program animator (algorithm analysis). We want to prove that the
animators offer different features to the user. So, ALMA can be a good help in
pedagogical scenarios as well as for program comprehension.

We start the paper, on one hand writing about debuggers (section 2) and
introducing (subsection 2.1) one in particular (DDD), and on the other hand
presenting ALMA (subsection 3.1) in the context of animators (section 3).

Then, in section 4, we compare ALMA versus DDD, presenting general
arguments, and going through a concrete example --- the analysis (i.e., the
visual inspection) of the factorial program to comprehend the recursive
function-call mechanism. To compare both tools, ALMA and DDD, we must
study and confront many details. However, in this paper, we will focus just on
those topics that we consider the most important: the purpose of the tool; its
architecture; how and what is visualized.

2. Debuggers

In this section we intend to characterize the class of programs designated by
debuggers. As we can find in literature ([17, 14]) lots of things had been
already written about debuggers. Instead of trying our own definition and
characterization, we will present well-known and accepted descriptions.

According to many authors, and also found in Webopedia1, a first and very
simple definition of debugger says that it is a program used to find errors
(bugs) in other programs, allowing the user to stop the execution of a given
program at any point and examine and change the values of variables. So, it
is possible to list the three most important characteristics of a debugger:

1 URL http://www.webopedia.com/ visited on June, 2008.

ALMA versus DDD

ComSIS Vol. 5, No. 2, December 2008 121

- Helps a programmer to find bugs in programs;
- Allows to inspect variable values;
- Allows the use of breakpoints and step-by-step execution.

Wikipedia2 presents a more sophisticated and complete definition that

corroborates the previous one:

“A debugger is a computer program that is used to test and debug
other programs. . . .
When the program crashes, the debugger shows the position in the
original code if it is a source-level debugger or symbolic debugger,
commonly seen in integrated development environments. If it is a low-
level debugger or a machine-language debugger it shows the line in
the disassembly. . . .
Typically, debuggers also offer more sophisticated functions such as
running a program step by step (single-stepping), stopping (breaking)
(pausing the program to examine the current state) at some kind of
event by means of breakpoint, and tracking the values of some
variables. . . .
Some debuggers have the ability to modify the state of the program
while it is running, rather than merely to observe it".

The last statement emphasizes the important functionality that should be

offered by any debugger concerning the possibility to handle the set of
variable-value pairs. Many programmers (especially those accustomed to IDE
for software development) don't like to work with console debuggers.
Nowadays, they use more sophisticated tools with navigation, visualization
and animation features. As we can read in [14]:

“Visualization of computer algorithms, data structures, and program
execution is a specific area in which visual tools can be used
effectively to enhance the productivity of software development and
usage. A visual debugger gives the user an opportunity to interact with
the program graphically. The graphical display enhances the
understanding of the specific way in which the program proceeds.”

Since ALMA is an animation system, it should be compared with modern
debuggers with a visual and windows-based interface.

2 URL http://en.wikipedia.org/ visited on June, 2008.

Daniela da Cruz, Pedro Rangel Henriques and Maria João Varanda Pereira

 ComSIS Vol. 5, No. 2, December 2008 122

GVD3, the GNU Visual Debugger now a component of GNAT (the GNU
Ada IDE), could be an interesting choice. However, we chose DDD (Data
Display Debugger) because it is one of the more sophisticated and well-
known (more used) members of that kind of recent debuggers; an introduction
to that tool, that will be further compared with ALMA (section 4), is presented
in the next subsection.

2.1. DDD at a glance

The standard Linux debugger is GDB [9], the GNU debugger. GDB provides
an interactive text-base method for accomplishing the tasks referred above,
including step-by-step execution, breakpoints, variable watch and other
options that are expected in a full-edged debugger. GDB is in fact a tool still
under development.

The last novelty relies on adding "reversible debugging" support [4] ---
allowing a debugging session to step backwards, much like rewinding a
crashed program to see what happened.

To make easier the debugging of a source program, DDD [17] rise up as an
X-Windows front-end to both GDB and DBX [7] debuggers. DDD is just a
front-end --- it does not do any debugging. Instead, it sends all user
commands to a GDB (or DBX) running process, and limits itself to display the
answer received from that back-end process.

Besides the usual FE features, such as the handling set and display of
breakpoints, DDD provides an interactive graphical data display, where data
structures are shown as graphs. So, using DDD, we can follow the program
execution visualizing the source code line-by-line and also watch its data
structures.

Hence the DDD depends on GDB, and GDB depends on GCC, the Gnu
Compiler Collection (previously, meaning Gnu C Compiler)4, it is relevant to
understand GCC's architecture, which is illustrated in Fig. 1.

3 URL http://directory.fsf.org/project/gnuVisualDebugger/, or http://www.lrz-
muenchen.de/~Reinhold.Bader/ada_doc/html/gvd.html, both visited on June, 2008.
4 Remember that to run GDB on a program, it is necessary to compile before that
program with GCC with debugging option activated.

ALMA versus DDD

ComSIS Vol. 5, No. 2, December 2008 123

Fig. 1. Architecture of the Gnu Compiler Collection (GCC)

Looking to the architecture of GCC we can remark that: the FE reads the
source code and builds a parse tree; the parse tree is used to generate an
RTL5 instruction list based on the named instruction patterns; and the
instruction list is matched against RTL templates to produce assembly or
machine-code.

This architecture allow us to understand how GCC supports multiple
languages --- like Ada, Bash, C, C++, Chill, Fortran, Java, Modula, Pascal,
Perl and Python; in fact, the FE parses each one and converts to RTL. Since
RTL is a common intermediate representation (IR), very close to assembly
language, this language is used by GCC to provide support to different
languages. We additionally can say that to port the compiler to a new
language is just needed to modify the FE; to alter the target architecture
implies just a change on the BE.

5 Register Transfer Language.

Daniela da Cruz, Pedro Rangel Henriques and Maria João Varanda Pereira

 ComSIS Vol. 5, No. 2, December 2008 124

Based on that kind of hierarchy (GCC → GDB → DDD), DDD is able to
debug programs written in the languages supported by GCC (listed above). It
supports: machine-level debugging; hypertext source navigation and lookup;
breakpoint, back trace, and history editors; program execution in terminal
emulator window; debugging on remote host; GDB/DBX/XDB command-line
interface with full editing, history, and completion capabilities.

As can be seen in Fig. 3, DDD environment consists of four windows:
- The “debugger window" which contains the actual communication

between DDD and GDB;
- The “source window" which contains the source program and the basic

source debugging action;
- The “command tool window" which contains buttons to activate most

of the debugging actions (stepping up and down, setting breakpoints,
etc);

- The “data window" which contains all data-related information, such as
variable and function watching.

-
With all these powerful features, the debugging of a program becomes an

easy task.

3. Animators

The role of the visualization technology, in fields like program comprehension
and software engineering, is strongly recognized by the computer science
community as a very fruitful feature. Indeed, the use of software visualization
functionalities allows us to get a high quantity of information in a faster way.

The purpose of an animation system is to construct (automatically) program
visualizations in order to help the programmer to inspect data and control flow
of a source program and to understand its behavior. This kind of information
can be used by the programmer to recognize: the main tasks performed in the
program; the changes in the value of variables; or possible errors. It also can
be used to verify the correctness of the program results and their meaning.
The values computed by a program have an effect over the object under
control; so it will be also desirable to visualize the program effects, this is, the
meaning of the program.

In an animation system, a special care should be taken with content
(subset of program information that will be visualized). It is also necessary to
decide: how this content will be visualized; what kind of visualizations will be
used; what kind of interaction facilities should be made available; how to solve
scalability problems; the colors/sound usage, etc.

There are also several kinds of views that can be produced: operational
(program level) or behavioral (problem level); static (compile-time) or dynamic
(runtime); structural or quantitative (based on metrics or other kind of
statistical information).

ALMA versus DDD

ComSIS Vol. 5, No. 2, December 2008 125

Animation systems usually are designed to include some features that are
not available in debuggers. While animation systems are strongly oriented
towards program comprehension --- and so they care about high-
level/abstract concepts related with cognitive models --- traditional debuggers
are concerned with low-level/concrete concepts focused on the machine
comprehension.

Usually, in animation systems, the main research concerns are
visualization techniques: to adapt to the knowledge level of the user; to
provide multiple views; to map one view to another; to support learner-built
visualizations; to complement visualizations with explanations; to support
different abstraction levels, etc. These features are essentially concept-
oriented. In debuggers, the concerns are: how to enable forward or backward
traversal of the execution path; how to report historical information; how to
support user's input data; how to report one variable life cycle; how to use
dependency graphs, etc. These kinds of features are essentially operation-
oriented.

In the next subsection we present the ALMA system, explaining briefly its
architecture, how it supports different source languages, and the animation
process.

3.1. Alma at a glance

After reviewing the existing systems | like BALSA([2] in [12]), TANGO ([13],
PECAN ([10] in [12]), FIELD ([11] in [12]), JELIOT [5] | we conclude that
almost all were constructed for specific languages (language dependent) and
use techniques like code instrumentation or special data types that imply
changes in the source code. We also found systems, like CENTAUR [1],
which can be used to construct program animators but are based on semantic
annotations. We decided to design ALMA to be a generic tool for program
visualization and animation based on the internal representation of the input
program in order to avoid any kind of source code annotation, and to be able
to cope with different programming languages.

To fulfill such requirements, we were inspired by the classic structure of a
compiler and we conceived an architecture that separates the source program
recognition from its animation, using a decorated abstract syntax tree (DAST)
as internal representation (see Fig. 2).

Daniela da Cruz, Pedro Rangel Henriques and Maria João Varanda Pereira

 ComSIS Vol. 5, No. 2, December 2008 126

Fig. 2. Architecture of ALMA system

ALMA was implemented in Java, using and reusing the compiler generator
system LISA [8], as specified and described in [15], [6] and [16].

ALMA system has a front-end (FE) specific for each language and a
generic backend (BE). It uses a decorated abstract syntax tree (DAST) for the
internal representation of the program's meaning; this DAST is the connection
between the FE and the BE. Using a DAST as an intermediate representation,
we isolate all the source language dependencies in the FE, while keeping the
generic animation engine in the BE. The DAST is built using a set of pattern
rules [3]. A pattern represents an abstraction of a programming concept. Each
one of these patterns is composed by two parts: a structural component
(given by a grammar production) and a semantic component (given by a set
of attribute occurrences affected to the symbol that labels each tree-node).

These patterns capture the abstract syntax of each entity (value or
operation) in order to preserve and keep, via attributes, the necessary
information to express static semantics of those values or operations. So the
DAST do not reflect directly the source language syntax, and in this case, the
tree generated by the FE (after parsing the source) represents the input
program.

Applying specific rewrite rules (which are used according to the pattern-tree
found in the DAST) to the execution tree, we obtain a description of the
different program states, simulating its execution.

A Tree-Walker Visualizer, traversing the execution tree and applying visual
rules, creates a representation for the nodes, generating a visualization of the
program tree in that moment. Then the DAST is rewritten (to obtain the next
internal state), and redrawn, generating a new visualization which reflects the
new state of the program.

This approach, using a DAST as internal representation and a set of
pattern rules allows us to easily construct different abstraction levels of the
same program since the operational view till the behavioral view. For that, it
suffices to associate a new set of rewrite and visualize rules to the DAST
patterns. This system is based on the concepts involved in a program and not
directly in the source code.

ALMA versus DDD

ComSIS Vol. 5, No. 2, December 2008 127

As can be seen in Fig. 5, ALMA's interface is split in four windows --- 3
main windows and 1 with the buttons for navigation --- with the following
content:

- The identifier table (on the top, to the left);
- The source text of the program to be animated (on the bottom, to the

left);
- The program tree (to the right, occupying most of the display);
The interaction buttons that allow the user to control the system. Using

back and forward controls the user will be able to navigate through the
program animation, step by step.

Colors are used to make easier to track the animation of a program: Red
color indicates the identifier / subtree that will be changed by the next
execution step (the execution of the program-statement also colored in red);
Green color indicates the new status of the program (subtree /identifier) after
the last change.

In the next section we finally show how different is ALMA from DDD. For
that purpose a simple source program written in C --- the recursive
implementation of the factorial function --- is used. This example, although
simple, is short and allow us to focus in the most important and crucial details.

4. Alma vs DDD

To illustrate how we perform this study, we discuss, in this section, two
specific cases: recursive function invocation (section 4.1) and data types
representation (section 4.2).

Before that, we synthesize in table 1 the criteria used for the global
comparison. Table 1 is also fulfilled with final results of the referred
comparison.

Table 1. Criteria for comparing Alma vs DDD

Criterion Alma DDD
GUI windows based windows based
Breakpoints not allowed allowed
Stepping back and forward back and forward
Identifiers table shown shown
Registers and memory addr not shown shown
Code simulated executed
Structured variables values shown pointers shown
Function call separated windows same window
Parameter passing shown not shown
Source language independent RTL dependent
Machine language independent dependent
Abstraction level source machine
Program Visualization source-code tree memory mapping
Program Animation yes no

Daniela da Cruz, Pedro Rangel Henriques and Maria João Varanda Pereira

 ComSIS Vol. 5, No. 2, December 2008 128

4.1. Recursive function invocation

To do the comparison between ALMA and DDD, we will show how each one
of the tools holds and shows the information for the same source program
listed below --- a C program that implements the factorial function.

After loading factorial program, DDD displays the information illustrated in
Fig. 3.

1 #include <stdio.h>
 int factorial(int n) {
3 int res=1;
 if (n>0) {
5 res = n*factorial(n-1);
 }
7 return res;
 }
9 int main() {
 int a, r;
11 scanf("%d",&a);
 r = factorial(a);
13 printf("%d ",r);
 return 0;
15 }

Our main purpose, exploring this example, is to focus on the recursive

mechanism: How does DDD deal with the function-call process? How does it
cope with the parameter-passing process?

Suppose that we add a breakpoint to the program at line 5 (recursive call).
Fig. 3 and 4 illustrate what happens when, evaluating the factorial of 4, we
execute 2 steps (selecting Step action twice), after DDD stops at the
breakpoint. Observing those figures, we see that: in the stack the double call
of factorial function is explicit, first with the value 4, and then with the value 3;
the next line executed is the line 4; and this is also visible in the frame and in
the registers table.

But, if we are trying to understand which values are actually passed and
how they are assigned to the function parameters, DDD is not of a big help,
because it just displays the values of the arguments when the function
execution starts (after the assignment).

ALMA versus DDD

ComSIS Vol. 5, No. 2, December 2008 129

Fig. 3. Executing the factorial function in DDD --- recursive call (1)

Fig. 4. Executing the factorial function in DDD --- recursive call (2)

If we do not know assembly language at all, the use of a debugger is very
complex or not really helpful. In fact, if we are just interested in understanding
the program's control or data flow, the visualization of that mess of registers,
and hexadecimal codes or addresses can be awkward. If this is the case, the
use of ALMA can be helpful. Following the previous procedure (above done

Daniela da Cruz, Pedro Rangel Henriques and Maria João Varanda Pereira

 ComSIS Vol. 5, No. 2, December 2008 130

for DDD), we can observe in figures 5, 6, and 7 the output of ALMA for the
function-call, parameter passing, and function execution.

Each time a function is called a new window is opened, being drawn in a
cascade style (see Fig. 6). As the new function has its own memory area, a
new window shows the function execution environment (IdTable), i.e., the
local and global identifiers; the program-tree for that function is also displayed

Looking at Fig. 6, we see that the call of factorial function causes a jump to
the function-header to show how the parameters are passed --- this is a
completely different approach of the one followed by DDD. Notice that the
identifier table, during the argument-passing phase, is different from the
identifier table available during the execution of the function body (Fig. 7). At
this moment (argument passing), the active identifier table is the one
belonging to the calling function plus the function arguments (defined in the
factorial header).

After passing the parameters to the function, a new sub-window --- named
Executing function --- opens at the right of the previous one to display
the tree corresponding to the function body (Fig. 7) and to show its execution.
At this phase, the identifier table is the one strictly accessible inside the called
function (including just the global variables and those variables local to
factorial).

It is evident that ALMA displays more information, and in a clearer way,
than DDD for the same execution process: the function/procedure call
(recursive or not).

Fig. 5. Executing the main function in ALMA --- reading a variable

ALMA versus DDD

ComSIS Vol. 5, No. 2, December 2008 131

Fig. 6. Passing parameters to the factorial function in ALMA

Fig. 7. Executing the body of factorial function in ALMA

4.2. Data types representation

Another interesting/important case to compare DDD and ALMA is the visual
inspection of structured data types. For that purpose, we will consider the
visualization of arrays.

Daniela da Cruz, Pedro Rangel Henriques and Maria João Varanda Pereira

 ComSIS Vol. 5, No. 2, December 2008 132

In DDD, displayed pointer values are dereferenced by a simple mouse
click, allowing unfolding arbitrary data structures interactively. DDD
automatically detects if multiple pointers refer to the same address and
adjusts the display accordingly. DDD has a major drawback: each and every
pointer of a data structure must be dereferenced manually. While this allows
the programmer to set a focus on specific structures, it is tedious to access,
let us say, the 100th element in a linked list.

In ALMA, each element of a structured data type is displayed in a row of a
table, freeing the user from the tedious task of clicking in each element to
discover the next one. If the array is larger, the user only needs to scroll
down. These situations are illustrated in Fig. 8 and 9 for DDD and ALMA,
respectively.

So, we are able to say, after comparing DDD and ALMA tools, that ALMA
provides a more effective aid in the context of program
comprehension/understanding.

Fig. 8. Display of the elements of an array in DDD --- at the top left factorial function in
ALMA

ALMA versus DDD

ComSIS Vol. 5, No. 2, December 2008 133

Fig. 9. Display of the elements of an array in ALMA

Below are the stronger arguments that came out from the comparative
study, to affirm that definitely ALMA is not a Debugger.

- ALMA is not a traditional (low-level) debugger in the common sense of
a tool that helps the programmer to fix errors in the assembly/machine-
code. Alma creates visualization for abstract programming concepts
and animates them. ALMA can simulate the source code execution (on
an operational visualization level) but it does not compile the source
program, neither it reuses the assembly code.

- ALMA is not C/RTL-oriented, it is language-independent. Even
knowing that DDD can cope with any language L that compiles to RTL
it is much more difficult/complex to create a compiler to RTL then a L --
FE for ALMA (mapping L-statements to abstract high-level concepts).

- DDD works at an operational-level (machine level), while ALMA can
produce visualizations at a concept-level (programming abstract level)
or at an operational level as we presented in this paper. It depends on
the visualization rules associated to the program internal
representation.

- ALMA is aimed at explaining (illustrating) the program semantics that
can be useful to detect/understand algorithmic errors, while DDD and
other debuggers are oriented to low-level error detection.

Notice the way ALMA deals with parameter passing referred above. In any
high-level language this mechanism is entirely embedded in the subprogram
invocation, and the underlying idea of assigning values (the actual
parameters) to the local variables (the formal parameters) is not explicit
anywhere. As long as ALMA works with concepts, this mechanism is made
explicit...

Daniela da Cruz, Pedro Rangel Henriques and Maria João Varanda Pereira

 ComSIS Vol. 5, No. 2, December 2008 134

Of course ALMA has some limitations when compared with most
debuggers --- ALMA is an academic prototype, while the others are
professional, or commercial, tools. ALMA does not support, at this moment,
pointers neither objects, and is much poor concerning the interaction with the
user during the animation (no breakpoints available, etc.). To deal with
multiple language complex applications, although not experimented, we
defend that it will not be a problem, as it is a matter of converting the various
modules to the DAST uniform representation.

5. Conclusion

ALMA and DDD (or any other visual debugger) are very similar, at least at a
first sight, and many people says that ALMA is just a new debugger without
any value added. Because of that we decided to carry on a study aiming at
gathering arguments to agree or refute that statement. For that purpose, we
selected DDD to confront with ALMA. This article reports that work,
concluding that ALMA adds value to a debugger! After a careful study of both
tools (just summarized here), we went through an example --- the recursive
computation of the factorial --- highlighting the points of the visual inspection
offered by each tool in order to support the arguments presented at the end of
section 4.

6. References

1. Yves Bertot. Occurrences in debugger specifications. In PLDI91, 1991.
2. M. H. Brown and R. Sedgewick. A system for algorithm animation. In

SIGGRAPH'84, volume 18, pages 177-186, Minneapolis, July 1984. ACM
Computer Graphics.

3. Daniela da Cruz, Maria João Varanda Pereira, and Pedro Rangel
Henriques. Constructing program animations using a pattern-based
approach. Computer Science and Information System (ComSIS), 2, December
2007.

4. GDB. GDB and reverse debugging.
http://sourceware.org/gdb/news/reversible.html, 2007.

5. J. Haajanen, M. Pesonius, E. Sutien, T. Terasvirta, P. Vanninen, and J.
Tarhio. Animation of user algorithms in the Web. In VL'97 - IEEE
Symposium on Visual Languages, pages 360{368. IEEE, Setembro 1997.

6. Pedro Henriques, Maria João Varanda, Marjan Mernik, and Mitja Lenic.
Automatic generation of language-based tools. In LDTA - Workshop on
Language, Descriptions, Tools and Applications (ETAPS'02), April 2002.

7. Mark A. Linton. The evolution of DBX. In USENIX Summer, pages 211{220,
1990.

ALMA versus DDD

ComSIS Vol. 5, No. 2, December 2008 135

8. Marjan Mernik, Mitja Lenic, Enis Avdicausevic, and Viljem Zumer.
Compiler/interpreter generator system LISA. In IEEE Proceedings of 33rd
Hawaii International Conference on System Sciences, 2000.

9. R. Pesch R. Stallman and S. Shebs. Debugging with GDB - The GNU Source-
Level Debugger. Free Software Foundation, 2002.

10. Steven Reiss. PECAN: Program development systems that support
multiple views. IEEE Transactions on Software engineering, 1985.

11. Steven Reiss. Interacting with the FIELD environment. Software Practice
and Experience, 1990.

12. John Stasko, John Domingue, Marc H. Brown, and Blaine A. Price.
Software Visualization - Programming as a Multimedia Experience. The MIT
Press, 1997.

13. John T. Stasko. Simplifying algorithm animation with TANGO. In IEEE
Workshop on Visual Languages. IEEE, October 1990.

14. Dan E. Tamir, Ravi Ananthakrishnan, and Abraham Kandel. A visual
debugger for pure prolog. Inf. Sci. Appl., 3(2):127-147, 1995.

15. Maria João Varanda and Pedro Rangel Henriques. Visualization /
animation of programs based on abstract representations and formal
mappings. In HCC'01 - 2001 IEEE Symposia on Human-Centric Computing
Languages and Environments. IEEE, September 2001.

16. Maria João Varanda and Pedro Rangel Henriques. Visualization /
animation of programs in alma: obtaining different results. In VMSE2003 -
Symposium on Visual and Multimedia Software Engineering (HCC'03), New
Zealand. IEEE, October 2003.

17. Andreas Zeller and Dorothea Lutkehaus. DDD - a free graphical front-end
for Unix debuggers. SIGPLAN Not., 31(1):22-27, 1996.

Daniela da Cruz received a degree in "Mathematics and Computer Science",
at University of Minho, and now she is starting a Ph.D. degree in "Computer
Science" also at University of Minho, under the MAPi doctoral program. She
joined the research and teaching team of "gEPL, the Language Processing
group" in 2005. She is teaching assistant in different courses in the area of
Compilers and Formal Development of Language Processors; and
Programming Languages and Paradigms (Procedural, Logic, and OO). As a
researcher of gEPL, Daniela is working with the development of compilers
based on attribute grammars and automatic generation tools. She developed
a compiler and a virtual machine for the LISS language (an imperative and
powerful programming language conceived at UM).
She was also involved in the PCVIA (Program Comprehension by Visual
Inspection and Animation), a FCT funded national research project; in that
context, Daniela worked in the implementation of "Alma", a program visualizer
and animator tool for program understanding. She is now enrolled in a new
bilateral cooperation project with Slovenia under the subject "Program
Comprehension for Domain Specific Languages".

Daniela da Cruz, Pedro Rangel Henriques and Maria João Varanda Pereira

 ComSIS Vol. 5, No. 2, December 2008 136

Maria João Varanda Pereira received the M.Sc. and Ph.D. degrees in
computer science from the University of Minho in 1996 and 2003 respectively.
She is currently an Adjunct Professor at the Polytechnic Institute of Bragança
in the Informatics and Communications Department. Her research interests
include programming languages, compilers, grammar-based systems, visual
languages, program comprehension, animation systems and domain specific
languages. She was responsible for PCVIA (Program Comprehension by
Visual Inspection and Animation), a FCT funded national research project.
She is involved in bilateral cooperation projects with Slovenia since 2000.

Pedro Rangel Henriques got a degree in "Electrotechnical/Electronics
Engineering", at FEUP (Oporto University), and finished a Ph.D. thesis in
"Formal Languages and Attribute Grammars" at University of Minho. In 1981
he joined the Computer Science Department of University of Minho, where he
is a teacher/researcher. Since 1995 he is the coordinator of the "Language
Processing group". He teaches many different courses under the broader
area of programming: Programming Languages and Paradigms (Procedural,
Logic, Functional and OO); Compilers and Formal Development of Language
Processors; etc. He is co-author of the "XML & XSL: da teoria à prática" book,
publish by FCA in 2002. Pedro Rangel Henriques has supervised M.Sc. (16)
and Ph.D. (14) thesis, and more than 100 graduating trainingships/projects, in
the areas of: language processing (textual and visual), and structured
document processing; program animation and program comprehension;
knowledge discovery from databases, data-mining, and data-cleaning. He
also was responsible for several applicational projects (in the interface
university/external-community, industry), mainly in the area of information
systems (databases and web oriented). From 2002 until 2004 he was the
Head of the Department, and at moment he is the President of APPIA, the
Portuguese Association for Artificial Intelligence.

Received: July 16, 2008; Accepted: December 3, 2008.

