
On Syntax-Directed Adjoint Fortran Code

Uwe Naumann12 and Jan Riehme2

1 LuFG Informatik 12, Department of Computer Science, RWTH Aachen University
52056 Aachen, Germany

2 Department of Computer Science, University of Hertfordshire
Hatfield, AL10 9AB, United Kingdom

{naumann, riehme}@stce.rwth-aachen.de

Abstract. Gradients of high-dimensional functions can be computed effi-
ciently and with machine accuracy by so-called adjoint codes. We present
an L-attributed grammar for the single-pass generation of intraprocedural
adjoint code for a subset of Fortran. Our aim is to integrate the syntax-
directed approach into the front-end of the NAGWare Fortran compiler.
Research prototypes of this compiler that build adjoint code based on
an abstract intermediate representation have been developed for several
years. We consider the syntax-directed generation of adjoint code as a
low development cost alternative to more sophisticated algorithms. The
price to pay comes in form of a very limited set of code optimizations that
can be performed in a single-pass setting.

1. Motivation

UDC 004.421

Numerical simulation plays a central role in computational science and engineering.
Derivatives (gradients, Jacobians, Hessians or even higher derivatives) are required in
order to make the highly desirable transition from pure simulation to optimization of the
numerical model or its parameters. Refer to [2],[3], [4],[5] for an impressive collection of
such applications.

Consider an implementation of a multivariate nonlinear function f : IRn → IR as a
computer program where y = f(x). Suppose that we are interested in the sensitivities
of the objective y with respect to changes in the parameter vector x, for example, in
the context of an unconstrained optimization algorithm. Such derivatives (the gradient of
y with respect to x) can be approximated by centered (or forward, or backward) finite
difference quotients

∂y

∂xi

≈
f(x0, . . . , xi + h, . . . , xn−1) − f(x0, . . . , xi − h, . . . , xn−1, u)

2h
(1)

for an appropriate (small) value h ∈ IR. Choosing the right value for h for a given function
evaluated in a given floating-point number system can be problematic. Cancellations can
lead to very poor approximations of the derivatives. More importantly, the accumulation
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of the whole gradient requires 2n function evaluations which may be infeasible for high-
dimensional problems. See [15] for an application in oceanography where n can be of
the order of 1012 and higher.

Even for very simple representatives of equation (1) (for example, y = x0 ∗ . . .∗xn−1)
the finite difference approximation of the gradient can take several hours for n ≥ 106. In
this paper we present an L-attributed grammar [13] for transforming the implementation
of f into an adjoint code during a single pass compilation process. The adjoint code
computes the same gradient in only a few seconds.

In section 2 we outline the basic structure of adjoint codes. An L-attributed grammar
for transforming programs written in imperative programming languages that are suitable
for single-pass compilation ([1],[17]) is presented in section 3. A simple proof-of-concept
implementation based on flex and bison as well as a case study are discussed in
section 4. Links with the ongoing development of the NAGWare Fortran compiler are
established in section 5. We conclude with an outlook to potential areas of application of
the proposed technology in section 6.

2. Adjoint Code

The problem of determining an appropriate value for h can be eliminated by considering
a tangent-linear model Ḟ of F. Let therefore x = x(t) with t ∈ IR and set

∂x

∂t
= ẋ .

By the chain rule we get

∂y

∂t
= ẏ = Ḟ (x, ẋ) = F

′ · ẋ . (2)

Refer to Fig. 1 (a) and (b) for a graphical illustration. It can be regarded as a transforma-
tion of the parser tree of F (x(t)) (see (a)) into one for Ḟ (x, ẋ). The technique is known
as the forward mode of automatic differentiation (AD) [9]. The parse tree is linearized
by attaching partial derivatives to the corresponding edges. The chain rule of differenti-
ation is interpreted as the chained product of all edge labels along the path from t to y.

Assuming that we have an implementation of Ḟ we can compute the columns of F ′ by
letting ẋ range over the Cartesian basis vectors in IRn. The computational complexity of
this approach is of the same order as that of finite differences.

To eliminate the dependence of the computational complexity on the potentially very
large value of n we consider adjoint codes that can be generated by the reverse mode
of AD. Let therefore t = t(y) with t ∈ IR and set

∂t

∂y
= ȳ .

Exploiting the associativity of the chain rule we get

x̄ = F̄ (x, ȳ) = ȳ · F ′
. (3)

48 ComSIS Vol. 4, No. 2, December 2007



On Syntax-Directed Adjoint Fortran Code

Refer to Fig. 1 (c) and (d) for illustration. All barred vectors (x̄ and ȳ) are row vectors. As-
suming that we have an implementation of F̄ we can compute the rows of F ′ by letting ȳ

range over the Cartesian basis vectors in IRm. Gradients of scalar functions in particular
can be obtained at a (hopefully) small constant multiple of the computational complexity
of F . The realization of this theoretical result in practice is the subject of numerous on-
going research and development efforts world-wide. See http://www.autodiff.org for
links and further information.
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ẋ

F
′

x

F
′

ẋ
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Fig. 1. Linearized F (x(t)) (a), Ḟ (b) linearized t(F (x)) (c), F̄ (d)

Any execution of the program F is expected to decompose into a sequence of elemental
assignments

vj = ϕj(vi)i≺j (4)

for j = 1, . . . , p + m and i ≺ j if and only if vi is an argument of ϕj . equation (4) is also
referred to as the code list of F at the given point that fixes the flow of control. We set
vi−n = xi for i = 1, . . . , n and vp+j = yj for j = 1, . . . , m. The vk, k = 1− n, . . . , p + m,

are called code list variables.
The elemental functions ϕj are assumed to be continuously differentiable in a neigh-

borhood of the current argument. The corresponding local partial derivatives are denoted
by

cj,i =
∂ϕj

∂vi

.

Adjoints are propagated backwards with respect to the data flow in the code list. Hence,
the values of the intermediate variables are not used in their original order of computa-
tion. In (incremental) reverse mode AD the local partial derivatives are computed during

ComSIS Vol. 4, No. 2, December 2007 49



Uwe Naumann and Jan Riehme

the adjoint evaluation.

vi−n = xi for i = 1, . . . , n (5)

vj = ϕj(vi)i≺j for j = 1, . . . , p + m (6)

yk = vp+k for k = 1, . . . , m (7)

v̄p+k = ȳk for k = 1, . . . , m (8)

v̄j = 0 for j = 1 − n, . . . , p (9)

cj,i =
∂ϕj

∂vi

; v̄i = v̄i + cj,i · v̄j for i ≺ j and j = q, . . . , 1 (10)

x̄i = v̄i−n for i = 1, . . . , n . (11)

Adjoint assignments are generated for all assignments in the original code. We build
assignment-level code lists as in equation (5)–equation (7). The data-flow reversal re-
quires arguments of nonlinear operations to be persistent. Conservatively we account
for this by storing all overwritten values on a value stack (push v). The resulting code is
referred to as augmented forward code. Adjoints are propagated backwards according
to equation (8)–equation (11). The previously stored values are restored from the stack
(pop v). The resulting code is referred to as backward code. The compiler-generated
intermediate variables vj represent subexpressions of the right-hand side. Hence, they
are read exactly once, thus eliminating the need for the initialization in equation (9) as
well as that for the incrementation in equation (10). Adjoints of compiler-generated inter-
mediate variables are simply overwritten. Only adjoints of program variables need to be
initialized and incremented.

Example In our proof-of-concept implementation (see section 4) the single assignment

x=x∗y

is transformed into the augmented forward code

c a l l push v ( v0 ) ; v0=x
c a l l push v ( v1 ) ; v1=y
c a l l push v ( v2 ) ; v2=v0∗v1
c a l l push v ( x ) ; x=v2

followed by the backward code

c a l l pop v ( x ) ; v2 =x ; x =0
c a l l pop v ( v2 ) ; v0 =v2 ∗v1 ; v1 =v2 ∗v0
c a l l pop v ( v1 ) ; y =y +v1
c a l l pop v ( v0 ) ; x =x +v0

For notational simplicity code list variables are enumerated starting from 0 rather than
1 − n = −1. Adjoint variables are marked by a trailing underscore. The gradient of x as
an output with respect to x as an input and y at a given point (x, y) is equal to (y, x). It
can be computed numerically by a single run of the adjoint code. Note that, while being
conservatively correct, this adjoint code is far from optimal. Optimization of adjoint code
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is a major issue in ongoing research and development in the field of AD. It is beyond the
scope of this paper that aims to relate the fundamental concept of attribute grammars to
correct automatically generated adjoint code.

The reversal of the data-flow implies the necessity to reverse the flow of control. A simple,
conservatively correct approach is to enumerate all assignments and to remember their
order of execution in the augmented forward code by pushing their respective indexes
onto a control stack (push c). The backward code loops over the indexes in reverse
(pop c) thus executing the backward codes of all assignments in the correct order. Refer
to section 4 for an example.

3. L-Attributed Grammar for Adjoint Code

A syntax-directed approach to the automatic generation of tangent-linear code has been
presented in [8]. In this section we extend these ideas to adjoint codes by the definition
of an appropriate L-attributed grammar. Recall that a grammar is called L-attributed if
the values of all inherited attributes are functions of non-terminals to the left in the given
production rule (includes the parent on the left-hand side). A formal proof of the cor-
rectness of our approach is straight forward. All one has to show is that the augmented
production rules (P0)–(P10) imply equations (5)–(11).

The input code is a sequence of one or more statements (code :: s). In addition
to assignments (a) we introduce simple branch (b) and loop (l) constructs causing a
potentially nontrivial intraprocedural flow of control. Five attributes are associated with
each grammar symbol: The integer attribute j represents the assignment-level code list
variable indexes. A second integer attribute n is used to synthesize the sizes of subtrees
(parse trees) in right-hand sides of assignments. A third integer attribute k serves as
an enumerator of the assignments in the input code. There are two text attributes to
hold the forward (cf ) and backward (cb) sections of the adjoint code. The text vector cb

has length α, where α denotes the number of assignment statements in the input code.
The whole adjoint code is synthesized into code.cf during a successful compilation.
The complete augmented forward code s.cf is followed by the reverse loop over the
adjoints of all executed assignments. The Fortran syntax is sensitive with respect to
newline characters. Below we assume that the + at the beginning of a line implies a
newline in the generated code. Moreover we assume that the input code is syntactically
correct. For example, syntactic (and semantic) correctness can be verified by running
the commercial version of the NAGWare Fortran compiler prior to using our research
prototype.

(P0) code ::

s.k = 0

s

code.c
f = ”integer i”

+ s.c
f
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+ ”do while(pop c(i))”

+ ”if (i == 1) then”

+ s.c
b
1

+ ”else if (i == 2) then”

+ s.c
b
2

...

+ ”else if (i ==” + s.k

+ ”) then”

+ s.c
b
s.k

+ ”end if”

(P1) s ::

a.k = s.k + 1

a

s.k = a.k; s.c
f = a.c

f ; s.c
b = a.c

b

The vector assignment s.cb = a.cb operates at the elemental level, that is, s.cb
i = a.cb

i

for i = 1, . . . , α. We chose a split way of presenting the production rules together with
their associated semantic actions that resembles the implementation in section 4. For
example, the attribute k of a is set prior to parsing the assignment itself. The forward and
backward codes of the nonterminal symbol on the left-hand side of the production rule
are synthesized at the time of reduction (in the context of a shift-reduce parser).

(P1a) s ::

b.k = s.k

b

s.k = b.k; s.c
f = b.c

f ; s.c
b = b.c

b

(P1b) s ::

l.k = s.k

l

s.k = l.k; s.c
f = l.c

f ; s.c
b = l.c

b
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(P2) s
l ::

a.k = s
l
.k + 1

a

s
r
.k = a.k

s
r

s
l
.k = s

r
.k; s

l
.c

f = a.c
f + s

r
.c

f

s
l
.c

b = s
r
.c

b + a.c
b

The vector sum sl.cb = sr.cb + a.cb is also elemental, that is, sl.cb
i = sr.cb

i + a.cb
i for

i = 1, . . . , α.

(P2a) s
l ::

b.k = s
l
.k

b

s
r
.k = b.k

s
r

s
l
.k = s

r
.k; s

l
.c

f = b.c
f + s

r
.c

f

s
l
.c

b = s
r
.c

b + b.c
b

(P2b) s
l ::

l.k = s
l
.k

l

s
r
.k = l.k

s
r

s
l
.k = s

r
.k; s

l
.c

f = l.c
f + s

r
.c

f

s
l
.c

b = s
r
.c

b + l.c
b

(P3) a ::

e.k = a.k; e.j = 0

V = e

a.c
f = e.c

f + ”call push c(” + a.k + ”)”

+ ”call push v(” + V.c
f + ”)”

+ V.c
f + ”= v0”

ComSIS Vol. 4, No. 2, December 2007 53



Uwe Naumann and Jan Riehme

a.c
b
a.k = ”call pop v(” + V.c

f + ”)”

+ ”v0 =” + V.c
f + ” ”

+ V.c
f + ” = 0”

+ e.c
b
a.k

The root of the syntax tree of the expression e of the right-hand side has fixed code list
variable index 0. Variable references are stored in V.cf by the scanner or some preparser
depending on the regularity of the syntax for variable references.

(P4) e :: V e.n = 1

a.c
f = ”call push v(v” + e.j + ”)”

+ ”v” + e.j + ”=” + V.c
f

a.c
b
e.k = ”call pop v(v” + e.j + ”)”

+ V.c
f + ” =” + V.c

f

+ ” + v” + e.j + ” ”

(P5) e :: C e.n = 1

a.c
f = ”call push v(v” + e.j + ”)”

+ ”v” + e.j + ”=” + C.c
f

a.c
b
e.k = ”call pop v(v” + e.j + ”)”

(P6) e
l ::

e
r
.j = e

l
.j + 1; e

r
.k = e

l
.k

F (er)

e
l
.n = e

r
.n + 1

e
l
.c

f = e
r
.c

f

+ ”call push v(v” + e
l
.j + ”)”

+ ”v” + e
l
.j + ”=” + F.c

f

+ ”(v” + e
r
.j + ”)”

e
l
.c

b
e.k = ”call pop v(v” + e

l
.j + ”)”

+ ”v” + e
r
.j + ” =” + Fer .j

+ ”∗v” + e
l
.j + ” ”

+ e
r
.c

b
e.k
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F is an arbitrary unary function, such as sin or exp . Fer .j denotes the partial derivative
of F with respect to the code list variable holding the value of the expression er.

(P7) e
l ::

e
r1 .j = e

l
.j + 1; e

ri .k = e
l
.k for i = 1, 2

e
r1

e
r2 .j = e

r1 .j + e
r1 .n + 1

Oe
r2

e
l
.n = e

r1 .n + e
r2 .n + 1

e
l
.c

f = e
r1 .c

f + e
r2 .c

f

+ ”call push v(v” + e
l
.j + ”);”

+ ”v” + e
l
.j + ”= v” + e

r1 .j + O.c
f

+ ”v” + e
r2 .j

e
l
.c

b
e.k = ”call pop v(v” + e

l
.j + ”)”

+ ”v” + e
r2 .j + ” =” + Oer2 .j

+ ”∗v” + e
l
.j + ” ”

+ ”v” + e
r1 .j + ” =” + Oer1 .j

+ ”∗v” + e
l
.j + ” ”

+ e
r2 .c

b
e.k + e

r1 .c
b
e.k

O is an arbitrary binary operator, such as + or ∗. Oer1 .j denotes the partial derivative of
O with respect to the code list variable holding the value of the expression er1 . (similarly
er2 )

(P8) b :: IF (r)

s.k = b.k

THEN

s

ENDIF

b.k = s.k

b.c
f = ”if” + ”(” + r.c

f + ”)” + ”then”

+ s.c
f

+ ”end if”

b.c
b = s.c

b
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(P9) l :: DO WHILE (r)

s.k = l.k

s

ENDDO

l.k = s.k

l.c
f = ”do while” + ”(” + r.c

f + ”)”

+ s.c
f

+ ”end do”

l.c
b = s.c

b

(P10) r :: V
r1 < V

r2

r.c
f = V

r1 .c
f + ”<” + V

r2 .c
f

14 (seq_of_stat)

8 (if) 13 (=)

2 (<) 6 (seq_of_stat)

0 (y) 1 (x) 5 (=)

3 (y) 4 (1)

7 (y) 12 (*)

9 (y) 11 (sin)

10 (x)

Fig. 2. Parse Tree (generated with dot; see www.graphviz.org)

Example We investigate the development of the values of all five attributes when pars-
ing
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i f ( y<x ) then
y=1

end i f
y=y∗ s i n ( x )

The parse tree is depicted in Fig. 2. Sequences of statements have been flattened into a
single vertex with the corresponding statements as immediate successors (v6 and v14).
The i-th vertex is referenced as vi.

1. Synthesized subtree sizes in right-hand sides of assignments: v4.n = 1, v9.n = 1,

v10.n = 1, v11.n = v10.n + 1 = 2, v12.n = v9.n + v11.n + 1 = 4.

2. Inherited code list variable indexes: v4.j = 0 (P3), v12.j = 0 (P3), v9.j = v12.j +1 =
1 (P7), v11.j = v12.j + v9.n + 1 = 2 (P7), v10.j = v11.j + 1 = 3 (P6).

3. Inherited assignment counter: v14.k = 0 (P0) v8.k = v14.k = 0 (P2a), v6.k = v8.k =
0 (P8), v5.k = v6.k + 1 = 1 (P1), v4.k = v5.k = 1 (P3), v8.k = v6.k = v5.k = 1 (P8,
P2a), v13.k = v8.k + 1 = 2 (P2, P3), v12.k = v13.k = 2 (P3), v9.k = v10.k = v11.k =
v12.k = 2 (P4–P7), v14.k = v13.k = 2 (P1, P2a).

4. Synthesized augmented forward code:

– v0.c
f = ”y” (Scanner)

– v1.c
f = ”x” (Scanner)

– v2.c
f = ”y < x” (P10)

– v3.c
f = ”y” (Scanner)

– v4.c
f = ”call push v(v0); v0 = 1” (P5, Scanner)

– v5.c
f = v4.c

f + ”call push c(1); call push v(y); y = v0” (P3, Scanner)
– v6.c

f = v5.c
f (P1)

– v8.c
f = ”if(y < x)then” + v5.c

f + ”endif” (P8)
– v7.c

f = ”y” (Scanner)
– v9.c

f = ”call push v(v1); v1 = y” (P4, Scanner)
– v10.c

f = ”call push v(v3); v3 = x” (P4, Scanner)
– v11.c

f = v10.c
f + ”call push v(v2); v2 = sin(v3)” (P6)

– v12.c
f = v9.c

f + v11.c
f + ”call push v(v0); v0 = v1 ∗ v2” (P7)

– v13.c
f = v12.c

f + ”call push c(2); call push v(y); y = v0” (P3, Scanner)
– v14.c

f = v8.c
f + v13.c

f (P2a, P1)

5. Inherited backward code:

– v4.c
b
1 = ”call pop v(v0)” (P5)

– v5.c
b
1 = ”call pop v(y); v0 = y ; y = 0” + v4.c

b
1 (P3)

– v8.c
b
1 = v6.c

b
1 = v5.c

b
1 (P1, P8)

– v9.c
b
2 = ”call pop v(v1); y = y + v1 ” (P4)

– v10.c
b
2 = ”call pop v(v3); x = x + v3 ” (P4)

– v11.c
b
2 = ”call pop v(v2); v3 = cos(v3) ∗ v2 ” + v10.c

b
2 (P6)

– v12.c
b
2 = ”call pop v(v0); v2 = v1 ∗ v0 ; v1 = v2 ∗ v0 ” + v9.c

b
2 + v11.c

b
2 (P7)

– v13.c
b
2 = ”call pop v(y); v0 = y ; y = 0” + v12.c

b
2 (P3)

– v14.c
b
1 = v8.c

b
1(P2a); v14.c

b
2 = v13.c

b
2 (P2a, P1)
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Finally, the augmented forward code and the backward codes of both assignments are
synthesized according to production rule P0 to obtain the whole adjoint code:

integer i;

v14.c
f

do while (pop c(i))

if (i==1) then

v14.c
b
1

else if (i==2) then

v14.c
b
2

end if

end do

4. Implementation and Case Study

We have developed a proof-of-concept implementation based on the scanner and parser
generators flex and bison. The inherited attributes are evaluated very conveniently as
a combination of synthesized and global variables. Alternatively we could have used an
attribute grammar processing tool such as LISA [16] or JastAdd [12]. This research is
part of the CompAD project – a larger R&D effort aiming at the integration of adjoint
code generation capabilities into the NAGWare Fortran compiler [20]. The NAGWare
compiler uses yacc / bison as a parser generator. Hence, our focus is on bison in order
to make our results directly exploitable in the context of CompAD. See section 5 for
further information on the CompAD project.

The bison input has the following structure.

1 . . .
2

3 %token V F IF THEN DO WHILE END
4 %l e f t ’∗ ’
5

6 %%
7

8 code : s
9 s : a

10 | b
11 | l
12 s : a s { . . . } ;
13 | b s { . . . } ;
14 | l s { . . . } ;
15 b : IF ’ ( ’ c ’ ) ’ THEN s END IF { . . . } ;
16 l : DO WHILE ’ ( ’ c ’ ) ’ s END DO { . . . } ;
17 c : V ’ < ’ V { . . . } ;
18 a : V ’ = ’ { . . . } e ’ ; ’ { . . . } ;
19 e : e ’∗ ’ e {
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20 $$ . j = c l c ++;
21 get memory f (&$$ ) ; get memory r (&$$ , k ) ;
22 s p r i n t f ( $$ . cf ,”%s%s c a l l push v ( v%d ) ; v%d=v%d∗v%d\n ” , $1 . cf , $3

. cf , $$ . j , $$ . j , $1 . j , $3 . j ) ;
23 s p r i n t f ( $$ . cb [ k ] , ” c a l l pop v ( v%d ) ; v%d =v%d ∗v%d ; v%d =v%d ∗

v%d\n%s%s ” , $$ . j , $1 . j , $$ . j , $3 . j , $3 . j , $$ . j , $1 . j , $3 . cb [ k ] ,
$1 . cb [ k ] ) ;

24 f ree memory f (&$1 ) ; f ree memory r (&$1 , k ) ; f ree memory f (&$3 )
; f ree memory r (&$3 , k ) ;

25 } ;
26 | F ’ ( ’ e ’ ) ’ { . . . } ;
27 | V { . . . } ;
28 | C { . . . } ;
29

30 %%

IF, THEN, DO, WHILE, END, V, F, as well as the remaining single-character tokens are
delivered by the lexical analyzer. Assuming syntactic correctness of the input code we
can ignore the sensitivity with respect to newline characters. As an example we include
the treatment of the product of two expressions. The inherited attribute j in grammar
rule P7 is implemented as a global counter variable (line 20). While the order of the
enumeration is changed, the necessary properties (uniqueness, correct dependences
among the code list variables) are preserved. New dynamic memory is allocated for the
augmented forward and adjoint codes corresponding to the nonterminal symbol e on
the left-hand side of the production rule (line 21). The augmented forward code ($$.cf)
is generated on line 22. The adjoint code ($$.cb[k]) is generated on line 23. Finally, the
dynamic memory associated with the two nonterminal symbols on the right-hand side
of the production rule is deallocated (line 24). The entire code is open source. It can be
obtained by sending an email to the first author.

As a final case study consider the following simple Fortran code fragment.

i f ( x<y ) then
x=x∗y
do wh i le ( y<x )

x=s i n ( x∗y )
end do

}

With x=-5.0 and y=-0.5 as inputs the while-loop is traversed once to compute x=-0.949.
The corresponding gradient (0.079,1.577) is computed by a single run of the following
automatically generated adjoint code.

1 i n t e g e r i ;
2 i f ( x<y ) then
3 c a l l push c ( 1 )
4 c a l l push v ( v0 ) ; v0=x
5 c a l l push v ( v1 ) ; v1=y
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6 c a l l push v ( v2 ) ; v2=v0∗v1
7 c a l l push v ( x ) ; x=v2
8 do wh i le ( y<x )
9 c a l l push c ( 2 )

10 c a l l push v ( v0 ) ; v0=x
11 c a l l push v ( v1 ) ; v1=y
12 c a l l push v ( v2 ) ; v2=v0∗v1
13 c a l l push v ( v3 ) ; v3=s i n ( v2 )
14 c a l l push v ( x ) ; x=v3
15 end do
16 end i f
17 do wh i le ( pop c ( i ) )
18 i f ( i ==1) then
19 c a l l pop v ( x ) ; v2 =x ; x =0
20 c a l l pop v ( v2 ) ; v0 =v2 ∗v1 ; v1 =v2 ∗v0
21 c a l l pop v ( v1 ) ; y =y +v1
22 c a l l pop v ( v0 ) ; x =x +v0
23 else i f ( i ==2) then
24 c a l l pop v ( x ) ; v3 =x ; x =0
25 c a l l pop v ( v3 ) ; v2 =cos ( v2 )∗ v3
26 c a l l pop v ( v2 ) ; v0 =v2 ∗v1 ; v1 =v2 ∗v0
27 c a l l pop v ( v1 ) ; y =y +v1
28 c a l l pop v ( v0 ) ; x =x +v0
29 end i f
30 end do

The two assignment statements are enumerated by pushing unique indexes onto the
control stack (lines 3 and 9; grammar rule P3). Assignment-level code lists are built and
the values of all overwritten variables are saved on the value stack (lines 4 – 7 and 10–
14; grammar rules P3–P7). The flow of control remains unchanged in the augmented
forward code.
The adjoint code executes the adjoint code lists in reverse order by restoring the indexes
of the corresponding original assignments (lines 1, 17, 18, and 23; grammar rule P0). All
adjoint code list statements are preceded by pop accesses to the value stack to restore
the old value of the variables of the left-hand side of the original code list statement (lines
19 – 22 and 24–28; grammar rules P3–P7). For example, the adjoint corresponding to
the assignment on line 13 first restores the value of v3 followed by the evaluation of the
product of cos(v2) (derivative of sin(v2)) with the adjoint of v3 to get the adjoint of v2
(line 25).

5. The CompAD Project

The aim of the Comp iler for Automatic Differentiation project is to integrate Automatic
Differentiation (AD) [9] capabilities into an industrial-strength compiler – the NAGWare
Fortran compiler. The assessment of the individual grant review of CompAD-I (EPSRC
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grant GR/R55252/01) was “tending to outstanding.” We are currently at the end of the
first year of CompAD-II – a two year project funded by EPSRC under grant number
EP/D062071/1.

The detailed description of all issues considered during CompAD so far would be
inappropriate for this manuscript. We focus on some major points. Additional material
can be found on the project’s Internet site.3 It is impossible to present all the background
of the following statements. Good references are [9] and the proceedings of the past four
international conferences on automatic differentiation [2],[3],[4], [5].

Adjoint code is generated automatically for programs written in Fortran We have
developed a C++-API for the compiler’s native C interface to the internal representation
(IR). The API is used to perform modifications of the IR that result in adjoint C code
after unparsing. See [14] for details. A number of successful tests are documented on
our Internet site. The interprocedural flow of control is currently reversed in split mode
[9]. Building on [18] we can show that the combinatorial problem of optimal call graph
reversal is NP-complete. Near-optimal trade-offs between various reversal modes are
the subject of ongoing research.

Tangent-linear code is generated automatically for programs written in Fortran
An elegant approach to the automatic generation of tangent-linear code is to inline im-
plementations of overloaded operators and intrinsic functions. The static resolution of
overloading in Fortran 90 makes this solution possible. Our inliner replaces calls to sub-
routines from the tangent-linear module with the corresponding code to obtain clean
tangent-linear code. Refer to our Internet site for examples.

Tangent-linear code is generated automatically for programs written in Assem-
bler Our tool for generating tangent-linear versions of assembler programs is called
ADAC (“Automatic Differentiation of Assembler Code”). It parses the input into a custom
IR that is then converted and unparsed. The efficient handling of various issues related to
addressing memory (including registers and stacks) poses several problems. Moreover
the corresponding solutions are often hardware-dependent (Intel 80386 in our case).
Nevertheless, our pioneering work in this field is likely to make the potential transition to
other architectures much easier. We consider assembler as an IR that is independent
of the high-level programming language. Refer to [7] and to our Internet site for vari-
ous proof-of-concept examples, where Assembler is generated from C/C++ and Fortran
programs followed by the application of ADAC.

Second-order adjoint code is generated automatically for programs written in
Fortran Given an adjoint code the obvious and very robust approach to the genera-
tion of second-order adjoint code [9] is to overload the given first-order adjoint code in
tangent-linear mode [19]. The computational overhead due to the subroutine calls result-
ing from resolved overloading is usually acceptable. Otherwise the previously mentioned
inliner can be used to gain efficiency. Corresponding tests are underway. Alternatively,

3 http://wiki.stce.rwth-aachen.de/bin/view/Projects/CompAD/WebHome
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the compiler can produce adjoint assembler code that is fed into ADAC. Refer to our
Internet site for illustration.

Automatically generated adjoint code is used in a time-dependent optimal con-
trol formulation of the compressible Navier-Stokes equations In collaboration with
colleagues at the Technical University Dresden, Germany, the compiler has been cou-
pled with the checkpointing tool revolve [10] to solve a large-scale optimal control prob-
lem (105 controls). The adjoints are computed by overloading using the built-in support
for the necessary type changes provided by the differentiation-enabled NAGWare For-
tran compiler.

Automatically generated second-order adjoint code is used to obtain a matrix-
free version of the Truncated Newton (TN) algorithm by Dembo and Steihaug [6]
The basic approach has been described in [19]. The availability of exact (up to machine
accuracy) derivative information proves to be crucial for the convergence behavior of
TN. We are currently working on a set of different stopping criteria. Larger test cases will
are targeted as the robustness of the adjoint code generator and the efficiency of the
generated code increase.

6. Conclusion

The syntax-directed compilation of adjoint codes for numerical programs written in suit-
able (subsets of) programming languages represents a low-development-cost alternative
to full-size adjoint code compilers such as OpenAD [21] or the differentiation-enabled
NAGWare Fortran compiler. Due to the lack of static program analysis and the cor-
responding optimizations (see, for example, [11]) the output of a single-pass adjoint
compiler should not be expected to have the same level of efficiency. However the con-
ceptual insight provided by the formulation of adjoint code generation rules in form of an
L-attributed grammar represents a good entry point into the subject. For example, we
follow this approach in our course on “Adjoint Compilers” taught at the Department of
Computer Science at RWTH Aachen University.

The proposed method can be modified and extended to decrease the computa-
tional complexity through a decrease of the memory requirement. The use of compiler-
generated variables in the context of assignment-level code lists can be reduced dras-
tically. Arithmetic expressions (required for the local partial derivatives) need to be syn-
thesized instead of indexes of the corresponding code list variables. This work is to be
continued on the basis of graduate- and undergraduate-level projects.
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