
UDC 004.4’426

Constructing program animations using a pattern-
based approach

Daniela da Cruz1, Pedro Rangel Henriques1, and Maria João Varanda2

1 University of Minho, Department of Computer Science,
Campus de Gualtar, 4715-057 Braga, Portugal

{danieladacruz, prh}@di.uminho.pt
2 Institute Polytechnic of Bragança, Campus de Santa Apolónia,

Apartado 134 - 5301-857, Bragança, Portugal
mjoao@ipb.pt

Abstract. The aim of this paper is to discuss how our pattern-based
strategy for the visualization of data and control flow can effectively be
used to animate the program and exhibit its behavior. That result allows
us to propose its use for Program Comprehension. The animator uses
well known compiler techniques to inspect the source code in order to
extract the necessary information to visualize it and understand program
execution. We convert the source program into an internal decorated (or
attributed) abstract syntax tree and then we visualize the structure by
traversing it, and applying visualization rules at each node according to
a pre-defined rule-base. In order to calculate the next step in the
program execution, a set of rewriting rules are applied to the tree. The
visualization of this new tree is shown and the program animation is
constructed using an iterative process. No changes are made in the
source code, and the execution is simulated step by step. Several
examples of visualization are shown to illustrate the approach and
support our idea of applying it in the context of a Program
Comprehension environment.

1. Introduction

PCVIA, Program Comprehension by Visual Inspection and Animation, is a
research project looking for techniques and tools to help the software
engineer in the analysis and comprehension of (traditional or web-oriented)
computer applications in order to maintain, reuse, and re-engineer software
systems.

To build up a Program Comprehension environment we need tools to cope
with the overall system, identifying its components (program and data files)
and their relationships; complementary to those, other kind of tools is also
necessary in order to explore individual components. These tools — that are
our concern along the paper — deal with single programs instead of the
complete set of programming units (the application), and their purpose is to

Daniela da Cruz, Pedro Rangel Henriques and Maria João Varanda

ComSIS Vol. 4, No. 2, December 2007

100

extract and display static or dynamic data about a program to help the analyst
to understand its structure and behavior.

Depending on the actual program facet we want to explore, different
approaches to inspection and visualization can be followed. We are
experiencing that in the context of PCVIA. We are developing a tool that does
not modify the source program and uses abstract interpretation techniques,
aiming at an easy and systematic adaptation to cope with different
programming languages. In the Section 2 of this paper, we are going to
discuss this approach and the generated visualizations. To attain such an
objective, we parse the source program and build a decorated syntax tree and
a symbol table that are kept in memory to support all the other subsequence
operations (visualization and animation), while the program itself is discarded
and is not compiled (it will not be executed in the target machine).

The animation will be generated gluing all the visualizations of the
execution steps. In order to calculate a new execution step a set of rewriting
rules will be applied to the internal tree.

Following this approach we implemented Alma, a program animation
system.

We show some visualizations created by Alma. Alma facilitates the
representation of abstract program concepts and can be useful in
circumstances where there are not specific tools to visualize programs written
in the language. The produced visual representation contains information
about instructions and data that will allow the user to get the perception of the
program’s execution behavior and the changes in the value of variables.

1.1. Related work

During our study of the state of the art we found several software handling
tools: classic Program Comprehension (PC) tools; software visualization tools
that can be also seen as program understanding tools; development
environments that use visual or textual representation to help the
programmer; tools that are used just in some specific tasks of software
maintenance; graph visualization tools that can be used for some program
visualization tasks; and teaching tools.

Almost all of these tools were constructed for some specific language and
are totally dependent of that language. Most of them use parsers
automatically generated, and compiler techniques to process information.
These parsers are used to transform the source code in order to instrument it
with inspection functions or special data types. They can be also used to
construct an internal representation of the program. This representation can
be then systematically used to generate explanations, statistics, structured
information, visualization or animation of programs.

Some examples of tools that create and use internal representation as the
core of the tool are: Moose [1], CANTO [2] or Bauhaus [3]. In Moose (a
reengineering tool) the information is transformed from the source code into a
source code model. Moose supports multiple languages via the FAMIX

Constructing program animations using a pattern-based approach

ComSIS Vol. 4, No. 2, December 2007

101

languages independent meta-model. In almost all cases a parser is
constructed to directly extract information to generate the appropriate model.
The CANTO environment has a front-end (for C) which parses the source
code and creates an intermediate file with structural, flow and pointer
information. Then a flow analysis tool is used to compute flow analysis on the
code. The front-end also creates an abstract syntax tree that is used by an
architectural recovery tool which recognizes architectural patterns. The
Bauhaus system has tools that use compiler techniques which produce rich
syntactic and semantic information creating a low level representation of
programs.

Alma follows this kind of approach — well-known language processing
techniques are applied to visualization and animation. Alma uses a parser to
construct an internal representation of the program and then uses a set of
pattern based rules to inspect the code.

A first difference is that Alma can be easily prepared to cope with a new
language; it is simply a matter of building a map between language concepts
and Alma nodes, and nothing more is needed. Another difference is that
Alma is not a tool to analyze an application (a set of modules) and extract
information for its comprehension. Instead of that, Alma aims at aiding to
understand a program by visual inspection of its structure and by animation.

Of course, one of its handicaps is that more complementary tools are
needed to comprehend an application. Another disadvantage is that the visual
representations can be not so beautiful as those produced by tools dedicated
to a language or a problem class; but, on the another hand the system is
more generic.

TKSee [4] or SeeSoft [5] are some examples of tools that collect statistic
information about the source program and then this information is shown in a
structured way without changing the source code. TKSee permits users to
search the whole system for files, routines or identifiers whose name or lines
match a certain pattern and build hierarchies to organize the information.
SeeSoft also extracts statistical information from a variety of sources (like
version control systems, programmer purpose and static and dynamic
analysis) and shows the information using different coloured lines.

2. DAST Approach

In this section, we discuss the approach to program inspection and
visualization followed in the context of Alma, one of the PCVIA tools under
development. Although not a classic tool for program comprehension, we
believe that it can truly contribute to this task, at the program understanding
level (as argued in the Introduction).

Alma is a system for program visualization and animation. The purpose of
such a family of tools is to help the programmer to inspect data and control
flow for a given program (a static view of the algorithm realized by the

Daniela da Cruz, Pedro Rangel Henriques and Maria João Varanda

ComSIS Vol. 4, No. 2, December 2007

102

program —visualization), and to understand its behavior (a dynamic view of
the algorithm —animation).

The core of such tool is language independent; it is similar to a compiler’s
back-end that takes as input an abstract representation, and implements the
visualizer and the animator components in a systematic way. To process a
concrete programming language, the tool is specialized providing a dedicated
front-end that converts the input programs into that internal abstract
representation. As an intermediate representation, between the front-end and

the back-end, we chose a DAST — Decorated Abstract Syntax Tree.
In this paper we do not want to introduce or explain Alma in detail; our

purpose is just to discuss the information we need to extract from the source
program, how we do it, the format under which this information is represented,
and how is it visualized to help the user to understand the program.

3. Patterns: the information to extract

In contrast to the most common animators, we are looking forward to building
a more generic system, in the sense that it can animate any algorithm and
that it can be easily adapted to work with different programming languages.
To go in that direction, it is essential to find out a set of program patterns that
we know how to deal with (display and rewrite). That is, we need to discover
the information, common to a set of programming languages, that describes
the structure and semantics of the program, and that we know how to store
and to display (we intend to create a set of rules to systematically visualize
those patterns).

An analysis of the programming languages, belonging to the universe we
want to deal with, allows us to state that all of them have common entities,
like: literal values and variables (atomic or structured), assignments, loops
and conditional statements, write/read statements and functions/procedures.

After the common entities have been identified, we must find a way to
describe them at an abstract level, in order to establish a generic set of rules
to handle them in a language independent way. The solution is a set of
elementary programming patterns.

In this paper, we consider that a pattern is a tree that represents an
abstraction of a programming concept; it is composed by two parts: a
structural component (given by a grammar production) and a semantic
component (given by a set of attribute occurrences affected to the symbol that
labels each tree-node).

These patterns capture the abstract syntax of each entity (value or
operation) in order to preserve and keep, via attributes, the necessary
information to express its static semantics.

This set of patterns can be compared with the instruction set of a machine.
At compile time, the statements of a program, in the source language, are
mapped into the proper instructions of the target machine (translation from
high-level to low-level, or machine-level). In the same way, with our approach,

Constructing program animations using a pattern-based approach

ComSIS Vol. 4, No. 2, December 2007

103

the statements of a program are translated into patterns (in this case, from
high-level to an abstract-level). For example, in an high-level language, the
reference to a variable in an expression means the access to its stored value.
The corresponding machine instructions have to load the variable value into
the stack or accumulator; in the assembly language of a stack machine these
instructions are something like: PUSH var_address, followed by LOAD.
Similarly, in our approach, this operation will be mapped, in our internal
representation, to the pattern that matches a variable; similar to assembly
language, we get the value of this variable from the attribute where it was
stored at parsing time.

4. Program representation: Pattern Tree

Once we decided the information that we need to extract from a source
language, we must now find a way to represent it. The internal representation
chosen to store these patterns is a DAST [6][7] that describes the meaning of
the program we intend to represent and visualize, being separated from any
particularity of a source language. This DAST is specified by an abstract
grammar independent of a concrete source language. This DAST is intended
to represent the program in each execution point.

Consider the following program in some imperative source language:
a=2;
write((a+10)*2);
Clearly, we have two different statements: an assignment and an I/O

statement (write).
One possible representation for it could be the syntax tree shown in Fig.

1(a).

Fig. 1. (a) Syntax Tree representation of the program

Daniela da Cruz, Pedro Rangel Henriques and Maria João Varanda

ComSIS Vol. 4, No. 2, December 2007

104

Fig. 1. (b) Pattern Tree representation of the program

Fig. 1(b) shows the pattern tree (DAST) chosen in our approach. Each
node in a concrete DAST will match and instantiate a specific pattern. These
tree nodes are implemented with attributes, whose values are obtained during
the information extraction phase, and describe the characteristics of the
source program to preserve.

Looking at Fig. 1(a), we see that assignment node has two children—a
variable name, and a value—and an implicit type. So, the corresponding
DAST pattern will use three attributes: name, value and type. Bellow, we list
the patterns considered in our approach, as well as some of the attributes
used in each one.

- Constants — value, type;
- Variables — name, value, type;
- Assignments — left-side: variable name, right-side: expression;
- Arrays — particular case of variable, have one more attribute:

dimension;
- Conditional If/Then — boolean expression (1) to evaluate, set of

statements to execute in case (1) is true;
- Conditional If/Then/Else — boolean expression (2) to evaluate, set

of statements to execute in case (2) is true, set of statements to
execute in case (2) is false;

- Loops — boolean expression (3) to evaluate, set of statements to
execute in case (3) is true;

- Read — (variable) name, value, type;
- Write — expression;
- Functions/Procedures — table for local variables, arguments, set of

statements, and return value (for functions).

The visualization and animation are internally supported by trees. At first,

the program tree is constructed, representing a static visualization of the
entire source program. Then, an execution tree is constructed representing
the dynamic facet of the program. The rewriting and visualizing processes are
applied precisely to this second tree; the first one will be only used as a
repository of nodes. For example, when an instruction is executed three
times, three instances of the corresponding nodes will be copied from the
program tree to the execution tree.

In order to simulate the execution, all the pattern instances have one
common attribute: isEvaluated. This attribute is mainly used to control the

Constructing program animations using a pattern-based approach

ComSIS Vol. 4, No. 2, December 2007

105

rewrite process (necessary for program animation) — it indicates if the tree
had already been evaluated or not yet.

In next section, we show how we implement the patterns and how the
DAST is built.

5. Pattern Extraction and Implementation

To extract information from a concrete source program its is necessary to
parse it. This operation will be responsible for by a front-end built specifically
for the concrete language under consideration. The front-end will be in
charged of identifying the source language constructs and map them to the
DAST patterns. To develop such a front-end we will use a compiler generator
based on an attribute grammar. Our choice was LISA [8,9]. LISA is
implemented in the programming language Java, following an object-oriented
approach either in its internal implementation or in the attribute grammar it
accepts. To generate a front-end for a specific source language, we use the
syntax and static semantics of that language specified by its grammar, and
then we add to each production new attribute evaluation rules (computing
statements in LISA’s metalanguage) to build the internal representation of
the corresponding DAST pattern.

For example, consider a grammar derivation rule (production) to define the
assignment statement in some imperative language. Its definition in LISA’s
metalanguage using attribute evaluation templates is:

rule extends Assign {

 ASSIGN ::= DESIGNATOR \= EXPR \; compute {

 ALMA_ASSIGN_VAR<ASSIGN, DESIGNATOR.name,

 EXPR.value, DESIGNATOR.type>

 };

}

ALMA ASSIGN VAR is a template and has the three attributes mentioned
in subsection 4 — the variable name, value and type.
Each template is previously defined in an Alma library
and has the generic form shown below:

template<attributes X_in, Y_in, ...> compute NODETYPE {

 X_in.dast = new Node(Y_in, Z_in, ...);}

Notice that NODETYPE identifies the type of the DAST node to be built

corresponding to the pattern found (one of those listed in page 3).

Daniela da Cruz, Pedro Rangel Henriques and Maria João Varanda

ComSIS Vol. 4, No. 2, December 2007

106

As we are using the LISA tool to automatically produce the extractor, we
also decided to implement the patterns (subsection 3) reusing some LISA
classes. It was very easy to identify and understand the data structures and
methods used by the LISA system to process a given attribute grammar
specification or a source program — they are properly encapsulated in
classes with attributes and methods. So the coding of patterns became
straightforward, due to the reuse of CSyntaxTree and CTreeNode classes to
build the internal tree representation. As an immediate consequence, all the
facilities provided by LISA to manipulate the attributed tree became available
to process the DAST. This consequence made the development of the Alma
back-end (another Java class that implements the visualizer and animator)
much easier and faster; to code that class, we kept the object oriented
approach followed in LISA.

6. Pattern Visualization

At this point, we had already decided which information to extract, how to
extract it, how to represent it, thus making how to visualize it is a natural
consequence of the previous decisions.

Once we have a pattern tree as the intermediate representation between
the front-end and the back-end, the DAST will be used to construct a visual
representation for the source program. Each pattern will be extended with one
additional attribute: vr, that contains the corresponding visualization rule.
Thus, the visualization of a program is obtained by making a top-down
traversal over the DAST, applying the specified rule to each node instance.
The first traversal produces a picture of the entire program before execution.
So, the animation of a program will be done by multiple top-down traversals to
the DAST, until program is totally rewritten.

The objectives of our approach are twofold: to show the program structure
(the hierarchy of the statements); and to illustrate the execution flow and how
it affects the program state. For that purpose we just have to parse the source
program in order to: collect the information that defines its state (values and
variables); and to find out its structure. A symbol table and an abstract syntax
tree is enough to store this information. The visualization process is then
performed by a systematic tree traversal, applying straightforward rules to
each tree node, and to each symbol table row. We do not need any more the
source program and we are able to give visual details helpful for the user to
get easily an operational view of it. This approach does not modify the source
program, and is relies upon a visualization/animation engine (the Back-End of
the tool) that is independent of the source language (and, of course, of the
algorithm). Alma has also included some features in order to cope with
scalability problems and can also be adapted to other kind of views (different
abstract levels) depending on the purpose of its user.

Constructing program animations using a pattern-based approach

ComSIS Vol. 4, No. 2, December 2007

107

For the first program listed below, the visualization obtained is shown in
Fig. 1 (using the pattern tree corresponding to the source program shown in
the bottom-left sub-window).

Fig. 1 and Fig. 6 show the animation of a LISS program. LISS [10] is a
language where all variables are initialized at declaration time (with explicit
values or default ones). Fig. 7, 8 and 9 (subsection 6.2) are related with C
language.

program Integer {

 declarations

 a = 7, c, d = 2 -> integer;

 statements

 c = 3 + d*(15-a);

 write(d);

}

As can be seen in Fig. 2, the user interface of Alma system is split into 4

sub-windows: the definition’s table (at left, top corner); the source program (at
left, bottom corner); the program tree (at right, the main and biggest sub-
window); and the button’s to control the animation steps.

To better understand the way how works Alma, let us consider the
expression c = 3 + d*(15-a) extracted from the source program above. In
Alma system this expression is represented as in Fig. 3.

After on step over this expression is executed, the sub-tree corresponding
to sub-expression 15-a is reduced to the root of this sub-tree, having as
attribute the result of the operation (Fig. 4). In this way, after executing all
operations, only the node to respect with the final result is leaved, see Fig. 5.

To makes easier follow the animation process, there are used 2 colours:
the red colour points to the next operation to execute (in the definition’s table
point to the variable that will change its value; in the source program the line
of code; and in the execution tree, the sub-tree that match with the operation
to execute); and the green colour points to the last operation executed.

Daniela da Cruz, Pedro Rangel Henriques and Maria João Varanda

ComSIS Vol. 4, No. 2, December 2007

108

Fig. 2. Global visualization of the source program

Fig. 3. Sub-tree to the expression c = 3 + d*(15-a)

Fig. 4. Sub-tree to the expression c = 3 + d*(15-a) (after computing (15-a))

Constructing program animations using a pattern-based approach

ComSIS Vol. 4, No. 2, December 2007

109

Fig. 5. Final state of the sub-tree after doing the assignment c = 3 + d*(15-a)

6.1. Arrays and Structures

For arrays and structures we chose a different way to show their initialization.
The initialization of variables of this kind is usually more difficult to
understand; when a variable of one of those data types is initialized, a new
sub-window is shown, giving the user the opportunity to see in detail the
attribution of values to each component or to skip all the steps at once.

To the program below, the Fig. 6 shows the sub-window to initialize a
structured variable. After a variable is initialized in the respective row of the
identifiers table, will appear a link ”See table” to the current value of this
variable. In the case of an array, will appear the values at each index (Fig. 6).
In the case of a structured data type will also appear a local identifiers table.

program StructTest {

 declarations

 first -> struct {

 def -> integer;

 vec -> array size 3;

 b -> boolean;

 };

 def -> integer;

 statements

 first.def = 5;

 first.vec[def+1] = first.def;

}

Daniela da Cruz, Pedro Rangel Henriques and Maria João Varanda

ComSIS Vol. 4, No. 2, December 2007

110

Fig. 6. Struct initialization and local table with values of an array variable

6.2. Functions and Procedures

To animate functions or procedures, a new window is opened each time the
subprogram is invoked. This window is divided into parts: the first one is used
to animate the parameters passing process; and the second one, to animate
the execution of the function/procedure body. In case of subprograms without
parameters, the first window (related with parameters passing) is omitted.

To illustrate the function call mechanism — suspending the execution of
the invoker, evaluating and passing actual values to the function formal
parameters, executing the function body, returning a value and resuming the
invoker execution — we include Fig. 7, 8 and 9 that are concerned with the
animation of a classic program written in C language listed below (program
below).

int factorial(int n) {

 int res = 1;

 if (a != 0) { res = n * factorial(n-1); }

 else {}

 return res;

Constructing program animations using a pattern-based approach

ComSIS Vol. 4, No. 2, December 2007

111

}

int main() {

 int f, r;

 scanf("%d",&f);

 r = factorial(f);

 printf("%d",r);

 return 0;

}

Fig. 7. Invoking the main function

Daniela da Cruz, Pedro Rangel Henriques and Maria João Varanda

ComSIS Vol. 4, No. 2, December 2007

112

Fig. 8. Parameters passing to factorial function

Fig. 9. Calling recursively the factorial function – Executing the function

The program under consideration in this example is composed by two

functions: main() that prints the factorial of a given integer, invoking a function

Constructing program animations using a pattern-based approach

ComSIS Vol. 4, No. 2, December 2007

113

to do the computation; and factorial() that receives a parameter and computes
recursively its factorial.

The first screen displayed by Alma for this example, corresponds directly to
the program tree, and shows that program global structure.

Automatically the Animator invokes function main(), opening a second
window to show inside it the main() execution. Fig. 7 is a screen-shot of the
main() state corresponding to the execution of the read statement; notice the
input window that appears in the middle of the screen to get a new value from
the user. This picture also illustrates the mapping of a concrete C instruction,
scanf(%d,&f), into the Alma’s abstract pattern read. The next two figures (Fig.
8 and Fig. 9) illustrate the invocation of factorial() function. The first describes
the parameter passing (immediately after executing the call statement, a new
window is opened and the animation of the evaluation and assignment of the
actual parameter is displayed). The second (Fig. 9) corresponds to the
execution of the third recursive invocation of factorial(). Notice that a new
window is opened for each function invocation; a new identifier table and a
new tree are displayed in order to animate that new execution process.

For each function, a local identifier table is created, and it is possible to
map each row of this table to the visualization of the function body execution.
When the function execution ends, the local table disappears, and the return
value is transferred to the previous identifier table.

The execution tree for a huge program will be very large and its
visualization will be difficult. However, this approach — the association of a
new main window to each function (that opens when it is called, and closes
when it returns)—has an important side effect: it solves scalability problems.
Nowadays most of the huge programs are split into a large number of
subprograms (functions or procedures). In that case (the most probable) the
maximum size of the execution tree to visualize corresponds to the size of the
biggest subprogram. Many windows will be opened, but the size of the tree
inside each one is reasonable and manageable! This allows us to say that our
solution for the visualization of a source program as a forest of the tree-
patterns will scale-up without problem.

7. Conclusion

To help the software engineer to understand the behavior of a given program
(in the context of program comprehension environments), it is necessary to
extract and collect from it static data — concerned with variable/type
declarations and statement structure — and dynamic data — concerned with
the data and control flows.

The objectives of our approach are two-fold: to show the program structure
(the hierarchy of the statements); and to illustrate the execution flow and how
it affects the program state. For that purpose we just have to parse the source
program in order to: collect the information that defines its state (values and
variables); and to find out its structure. A symbol table (or definition table) and

Daniela da Cruz, Pedro Rangel Henriques and Maria João Varanda

ComSIS Vol. 4, No. 2, December 2007

114

an abstract syntax tree are enough to store this information. The visualization
process is then performed by a systematic tree traversal, applying
straightforward rules to each tree pattern, and to the correspondent row in the
symbol table and line in the source text.

In our approach, we no longer need the source program; furthermore, after
extracting information and building the DAST, we are able to give visual
details helpful to get easily an operational view of the program. This approach

does not modify the source program, and relies upon a
visualization/animation engine (the Back-End of the tool) that is independent
of the source language (and, of course, of the algorithm); thus, tuning the tool
to analyze programs in different languages is not an hard task.

In order to use Alma for a new language we just have to construct a front-
end for that language. This front-end will map each source language concept
to an Alma pattern. To start Alma development, we have created a front-end
for LISS language, enabling us to begin the tests. Recently, we have followed
a similar systematic process to construct another front-end, this time for C
language. Using an attribute grammar (based on a public CFG for C) and
LISA generator, this front-end was developed very fast.

We also believe that Alma can be very useful to visualize more declarative
languages, like functional/logic programming languages, or specification
languages, but we will work out this point as future work.

Hence Alma patterns correspond to the Turing machine basic operations,
we argue they suffice to deal with the common imperative programming
languages.

To cope with other paradigms, as referred above, possibly it will be
necessary to upgrade the patterns library to include some others that can
contribute to a more clear understanding of their specificities.

Alma system can be particularly useful for domain specific languages and
other special languages that don’t have any kind of PC tool implemented. For
these languages a new PC tool would be constructed from the scratch.

As we already said using Alma a specific PC tool can be easily prepared.
We are convinced that present Alma animations really help on program

understanding — they show a program execution simulation with data and
control flow information. However, this statement will be measured in the near

future, via usability tests.

8. Refences

1. Ducasse, S., Gˆırba, T., Lanza, M.: Moose: an agile reengineering environment.
In: ESEC-FSE’05, Lisbon, Portugal (2005)

2. Antoniol, G., Fiutem, R., Lutteri, G., Tonella, P., Zanfei, S., Merlo, E.: Program
understanding and maintenance with the Canto environment. In: IEEE
International Conference on Software Maintenance (ICSM’97), Bari, Italy (1997)

3. Raza, A., Vogel, G., Plodereder, E.: Bauhaus - a tool suite for program analysis
and reverse engineering. Technical report, Department of Programming
Languages, Institute for Software Technology, University of Stuttgart (2006)

Constructing program animations using a pattern-based approach

ComSIS Vol. 4, No. 2, December 2007

115

4. Herrera, F.: A usability study of the tksee software exploration tool. Master’s
thesis, University of Ottava (1999)

5. Eick, S., Steffen, J., Jr., E.S.: Seesoft - a tool for visualizing line oriented software
statistics. IEEE Transactions on Software Engineering 18 (1992) 957–968

6. Moher, T.G.: PROVIDE: A process visualization and debugging environment. In:
IEEE Transactions on Software Engineering. Volume 14. (1988) 849–857

7. Reiss, S.: PECAN: Program development systems that support multiple views.
IEEE Transactions on Software engineering (1985)

8. Mernik, M., Zumer, V., Lenic, M., Avdicausevic, E.: Implementation of multiple
attribute grammar inheritance in the tool LISA. ACM SIGPLAN not. 34 (1999) 68–
75

9. Mernik, M., Lenic, M., Avdicausevic, E., Zumer, V.: Compiler/interpreter generator
system LISA. In: IEEE Proceedings of 33rd Hawaii International Conference on
System Sciences. (2000)

10. da Cruz, D., Henriques, P.R.: Liss — The Language and the Compiler. In:
Proceedings of the 1st Conference on Compiler Related Technologies and
Applications, CoRTA’07—Universidade da Beira Interior, Portugal. (2007)

Daniela Carneiro da Cruz got a degree in "Mathematics and Computer
Science", at University of Minho, and now she is starting a Ph.D. degree in
"Computer Science" also at University of Minho, under the MAPi doctoral
program.
She joined the research and teaching team of "gEPL, the Language
Processing group" in 2005. She is teaching assistant in different courses in
the area of Compilers and Formal Development of Language Processors; and
Programming Languages and Paradigms (Procedural, Logic, and OO).
As a researcher of gEPL, Daniela is working with the development of
compilers based on attribute grammars and automatic generation tools.
She developed a completed compiler and a virtual machine for the LISS
language (an imperative and powerful programming language conceived at
UM).
She is also involved in the PCVIA (Program Comprehension by Visual
Inspection and Animation), a FCT funded national research project; in that
context, Daniela worked in the implementation of "Alma", a program visualizer
and animator tool for program understanding, and she is now enrolled in the
development of similar tools for XML, UML and so on.

Pedro Rangel Henriques got a degree in "Electrotechnical/Electronics
Engineering", at FEUP (Oporto University), and finished a Ph.D. thesis in
"Formal Languages and Attribute Grammars" at University of Minho. In 1981
he joined the Computer Science Department of University of Minho, where he
is a teacher/researcher. Since 1995 he is the coordinator of the "Language
Processing group". He teaches many different courses under the broader
area of programming: Programming Languages and Paradigms (Procedural,
Logic, Functional and OO); Compilers and Formal Development of Language
Processors; etc. He is co-author of the "XML & XSL: da teoria a prática"
book, publish by FCA in 2002. Pedro Rangel Henriques has supervised M.Sc.
(13) and Ph.D. (12) thesis, and more than 50 graduating
trainingships/projects, in the areas of: language processing (textual and

Daniela da Cruz, Pedro Rangel Henriques and Maria João Varanda

ComSIS Vol. 4, No. 2, December 2007

116

visual), and structured document processing; program animation and program
comprehension; knowledge discovery from databases, data-mining, and data-
cleaning. He also was responsible for several applicational projects (in the
interface university/external-community, industry), mainly in the area of
information systems (databases and web oriented). From 2002 until 2004 he
was the Head of the Department, and at moment he is the President of
APPIA, the Portuguese Association for Artificial Intelligence.

Maria João Tinoco Varanda Pereira got a degree in "Systems and
Informatics Engineering", at University of Minho in 1994, finished a master
degree in Computer Science in 1996 and finished a Ph.D. thesis in "Program
Animation Systematization" at University of Minho in 2003. In 1995 she
joined the Informatics and Communications Department of Polytechnic
Institute of Bragança, where she is adjunct-professor since 1999. She is
researcher in the "Language Processing Group" at University of Minho since
1995, where she is working in Program Comprehension, Program Animation,
Visual Languages, Automatic Generation of Compilers and Software
Engineering.

She teaches several courses in programming area: Programming
Languages and Paradigms, Language Processing and Programming
Techniques.

Maria João Tinoco Varanda Pereira has supervised a M.Sc. during
2005/2006, about 10 graduating projects and is responsible for PCVIA
(Program Comprehension by Visual Inspection and Animation), a FCT funded
national research project. From 2003 until 2005 she was head of the
Department and, at the moment, she is vice-president of Technologic and
Management School of the Polytechnic Institute of Bragança.

