
Computer Science and Information Systems 18(3):641–656 https://doi.org/10.2298/CSIS200124015V

A New Approximate Method For Mining Frequent
Itemsets From Big Data ?

Timur Valiullin, Joshua Zhexue Huang??, Chenghao Wei, Jianfei Yin, Dingming Wu,
and Iuliia Egorova

Big Data Institute, College of Computer Science and Software Engineering
Shenzhen University

518000 Shenzhen, China
{timur, zx.huang, chenghao.wei, yjf, dingming}@szu.edu.cn, jnegorova@gmail.com

Abstract. Mining frequent itemsets in transaction databases is an important task in
many applications. It becomes more challenging when dealing with a large transac-
tion database because traditional algorithms are not scalable due to the limited main
memory. In this paper, we propose a new approach for the approximately mining of
frequent itemsets in a big transaction database. Our approach is suitable for mining
big transaction databases since it uses the frequent itemsets from a subset of the en-
tire database to approximate the result of the whole data, and can be implemented in
a distributed environment. Our algorithm is able to efficiently produce high-accurate
results, however it misses some true frequent itemsets. To address this problem and
reduce the number of false negative frequent itemsets we introduce an additional
parameter to the algorithm to discover most of the frequent itemsets contained in
the entire data set. In this article, we show an empirical evaluation of the results of
the proposed approach.

Keywords: Approximation Method, Frequent Itemsets Mining, Random Sample
Partition, Big Transactional Database.

1. Introduction

Frequent itemsets mining is the first and most critical step of finding association rules
from a transaction database. Association rules mining is one of the main data mining tasks
in many applications, such as basket analysis [3], product recommendation [20], cross-
selling [10], etc. Huge research efforts have been devoted to solving frequent itemsets
mining problem. Many of these studies had considerable impact and led to a plenty of
sophisticated and efficient algorithms for association rules mining, such as Apriori [1,2],
FP-Growth (Frequent Pattern Growth) [8,6,13,7], and Eclat [22,21,18]. However, decade
of a fast development of e-commerce, online and offline shopping has resulted in the
fast growth of transaction data, which presents a tremendous challenge to these existing
algorithms, because these algorithms require large memory to run efficiently on large
transaction databases.

Parallel and distributed association rules mining algorithms were developed to handle
large transaction databases. Parallel association rules mining algorithms use in-memory

? This is an extended version of the DAMDID 2019 conference paper ”A New Approach for Approximately
Mining Frequent Itemsets.”

?? Corresponding author

642 Timur Valiullin et al.

computing to efficiently mine association rules from a large transaction database. How-
ever, their scalability is limited by the size of the memory of the parallel systems. Dis-
tributed association rules mining algorithms were developed using MapReduce [5], and
run on a Hadoop cluster platform. These algorithms have better scalability, but they are
not efficient for mining of a large transaction data sets because of frequent I/O operations
and communication overhead between nodes.

In this paper, we propose a new approach to solve the problem of mining frequent
itemsets from a big transaction data set. Similar to the distributed algorithms in MapRe-
duce, we partition the data set into same size disjoint subsets. However, we make the
distribution of frequent itemsets in each subset similar to the distribution of frequent item-
sets in the entire data set by random assignment of the transactions from the entire data
set to the subsets without replacement. As such, we can randomly select a few subsets and
run a frequent itemsets mining algorithm on each subset independently to discover the
local frequent itemsets from it. After all frequent itemsets are discovered from the sub-
sets, each frequent itemset is voted by all subsets and the one appearing in the majority of
subsets is determined as the frequent itemset, called a popular frequent itemset.

In this approach, we define the frequency (relative support) threshold for finding all
frequent itemsets in the entire transaction database as the global frequency threshold, and
the frequency threshold for mining all frequent itemsets in a subset of the transaction
database as the local frequency threshold. Based on these two thresholds, we introduce
an algorithm for finding the set of approximate frequent itemsets that estimates the set of
frequent itemsets in the entire data set. Initially, the algorithm makes the local frequency
threshold equal to the global frequency threshold for subsets to mine local frequent item-
sets. This setting results in a high-accurate approximate set of frequent itemsets, but the
result also contains insignificant amount of both false positive and false negative frequent
itemsets. To address this problem, we introduce an additional parameter to make the local
frequency threshold smaller than the global frequency threshold for subsets to produce the
set of local frequent itemsets. Using a reduced local frequency threshold helps to drasti-
cally reduce the number of false negative frequent itemsets and produce high-accurate
approximate frequent itemsets that cover most of the frequent itemsets contained in the
entire data set with respect to the global frequency threshold.

We conducted experiments to evaluate the approximate solutions on two real world
data sets. To evaluate the performance of our method, all popular frequent itemsets dis-
covered from the selected subsets using the local frequency threshold are compared with
the frequent itemsets found directly from the entire database using the global frequency
threshold. The recalls and precisions of the popular frequent itemsets obtained from the
selected subsets are used as evaluation measures. The empirical results have shown that
the proposed method is capable of producing high-accurate approximate frequent itemsets
and discovering most of the frequent itemsets contained in the entire database that can be
found with the global frequency threshold. The comprehensive analysis also shows that
reducing the local frequency threshold in the selected subsets enables obtaining all true
frequent itemsets.

The remaining part of this paper is organized as follows. Related works are discussed
in Section 2. Section 3 describes the proposed approach. In Section 4, the details of the
algorithm are presented. Experiment results are shown in Section 5. Finally, conclusions
and future work are drawn in Section 6.

A New Approximate Method For Mining Frequent Itemsets From Big Data 643

2. Related Work

Frequent itemsets mining is a well-studied problem in computer science. However, the
enormous data growth made traditional methods inadequate. Therefore, parallel and dis-
tributed algorithms came in use.

Authors of [17] implemented a new algorithm called Partition to mine approximate
frequent itemsets which achieved both CPU and I/O improvements over Apriori by parti-
tioning the database into a number of non-overlapping partitions so that the partitions are
small enough to be handled in the main memory to generate local candidates. On the next
step, the local results are merged and the global frequency of the local frequent itemsets
is checked in the entire data set. In [19], H. Toivonen introduced new sampling based al-
gorithms to make association rules mining more efficient in terms of computational cost.
The proposed approach uses a sample of a data set with a lowered frequency threshold
to generate a bigger collection of frequent itemset candidates, and then verifies the candi-
dates with the entire database. Researchers in [9] introduced the parallel implementation
of the FP-growth algorithm on GPU. In [11] and [12], the authors introduced two dif-
ferent approaches for mining frequent itemsets in a large database based on MapReduce.
In [11], researchers presented two methods for frequent itemsets mining based on Eclat
algorithm. The first one is a distributed version of Eclat that partitions the search space
more evenly among different processing units, and the second one is a hybrid approach,
where the k-length frequent itemsets are mined by an Apriori variant, and then the found
frequent itemsets are distributed to the mappers in which frequent itemsets are mined us-
ing Eclat. Authors of [12] presented a novel zone-wise approach for frequent itemsets
mining based on sending computations to a multi-node cluster. All mentioned approaches
have obtained a speed increase over the traditional algorithms and allowed to increase the
size of the data set used for mining. However, all introduced approaches require using the
entire data set to get the result, which faces the memory bottleneck when dealing with big
data and working in a distributed environment.

Researchers in [4], [15] introduced sampling techniques which theoretically proved
the existence of the tight bounds of the sample size that guarantees the approximation
with respect to the parameters specified by the user. The sample size for mining is not
dependent on the size of the database and the number of items. However, in case of a real
big data the proposed method might not be applicable since the big sample data, used
to achieve the approximation with respect to the parameters specified by the user, may
not fit in the memory of a single machine. The proposed approaches are not suitable for
the distributed environment. In [14], M. Riondato introduced PARMA algorithm (Parallel
Randomized Algorithm for Approximate association rule mining). The algorithm sends
random subsets of the database to various machines in the cluster as an input. Then, each
machine mines the received subset, and reducers combine the result. Our work follows
the idea described in [16]. The random sample partition (RSP) data model was presented,
which showed that the block-level samples from an RSP data model can be efficiently
used for data analysis.

3. A New Approach

In our approach, we split a big data set into disjoint subsets such that the distribution of
frequent itemsets in each subset is similar to the distribution of frequent itemsets in the

644 Timur Valiullin et al.

entire data set. Mining smaller subsets allows using traditional frequent itemset mining
algorithms without experiencing memory limit problems. In this research, we have em-
pirically shown that by combining the results of randomly selected subsets, we are able
to produce a highly accurate approximate set of frequent itemsets.

3.1. Definitions

A transactional data set D = {t1, t2, ..., tn} is represented by a collection of n trans-
actions, where each transaction t is a subset of the set of items I = {I1, I2, ..., Im}. An
itemsetA with k distinct items is referred to k-itemset. In this paper, we do not distinguish
itemsets with different numbers of unique items. Given an itemsetA, define TD(A) as the
set of transactions in D which contain A. The number of transactions in TD(A) is defined
as the support of A by D and denoted as support(A) = |TD(A)|. The frequency of A,
i.e. the proportion of transactions containing A in D, is denoted as freqD(A) = |TD(A)|

n ,
called a relative support or frequency of A.

Under the above definitions, the task of finding frequent itemsets from D with respect
to a minimal global frequency threshold θ is defined as follows:

Definition 1. Given a minimum global frequency threshold θ for 0 < θ ≤ 1, the
frequent itemsets mining with respect to θ is finding all itemsets {Ai} for 1 ≤ i ≤M with
freq(Ai) ≥ θ, where M is the total number of frequent itemsets found in D. Formally,
we define the whole set of frequent itemsets in D as

FI(D, I, θ) = {(Ai, freqD(Ai)) : Ai ⊂ I, freqD(Ai) ≥ θ} (1)

Definition 2. Let FI(D, I, θ) be the set of frequent itemsets inD with respect to θ and
M =| FI(D, I, θ) | the number of frequent itemsets in FI . The accumulative distribution
of frequent itemsets in FI is defined as

P (f) =
1

M

∑
∀Ai∈FI

I(freqD(Ai) ≤ f) (2)

where I() is an indicator function and f is a frequency value for θ ≤ f ≤ 1. An example
of P (f) is shown in Figure 1.

0.02 0.04 0.06 0.08 0.10
freq(A)

0.0

0.2

0.4

0.6

0.8

1.0

P(
f)

Fig. 1. Example of the accumulative frequent itemsets distribution, where θ = 0.005

Let D be a big transactional data set and P = {D1, D2, ..., Dk} a partition of D,
where

⋃k
i=1Di = D and Di

⋂
Dj = ∅ for i 6= j. Di for 1 ≤ i ≤ k is named as a block

A New Approximate Method For Mining Frequent Itemsets From Big Data 645

of transactions of data set D.

Definition 3. LetPD(f) be the accumulative distribution of frequent itemsetsFI(D, I, θ)
andPDi(f) the accumulative distribution of frequent itemsetsFI(Di, I, θ) for 1 ≤ i ≤ k.
P is a random sample partition of D if

PDi
(f)→ PD(f) as Di → D (3)

where Di → D implies that Di approaches D as the size of Di increases. Di for 1 ≤ i ≤
k is called an RSP data block.

Definition 3 is a redefined definition of random sample partition in [16] with respect
to frequent itemsets by replacing the condition of E[F̃k(t)] = F (t) with condition (3)
where F̃k(t) denotes the sample distribution function of t in Dk and E[F̃k(t)] denotes its
expectation.

3.2. Approximate Frequent Itemsets Mining

When the transaction data set D is big and cannot be held in memory, we cannot run
a frequent itemsets mining algorithm on D to find all frequent itemsets FID(D, I, θ).
In this situation, we randomly select a set of l RSP data blocks {D1, D2, ..., Dl} from
the partition P and use the frequent itemsets found from the selected RSP data blocks to
estimate the set of global frequent itemsets FID(D, I, θ). This approach is called approx-
imate frequent itemsets mining.

Definition 4. Let itemset A be a frequent itemset in FIDi(Di, I, θ) for 1 ≤ i ≤ l. A
is called a popular frequent itemset if

l∑
i=1

I(A ∈ FIDi
(Di, I, θ − ε)) > a (4)

where I() is an indicator function, ε for 0 ≤ ε < θ is a parameter to reduce the local
frequency threshold from the global frequency threshold value θ, and a is a given integer
greater or equal to l/2, so Equation 4 is a simple majority voting.

The set of all popular frequent itemsets PFI from FIDi(Di, I, θ) for 1 ≤ i ≤ l is the
estimation of the set of global frequent itemsets FID(D, I, θ). Given PFI and assuming
FID(D, I, θ) is known, an itemset A has one of the following statuses:

– true positive if A ∈ PFI and A ∈ FID(D, I, θ).
– false positive if A ∈ PFI but A /∈ FID(D, I, θ).
– false negative if A /∈ PFI but A ∈ FID(D, I, θ).

We intentionally omit the true negative frequent itemsets from the above definition
because we are not interested in mining infrequent itemsets (itemsets with frequency< θ).

646 Timur Valiullin et al.

4. An Approximate Frequent Itemsets Finding Algorithm

In this section, we propose a new algorithm for finding the set of approximate frequent
itemsets from a set of l RSP data blocks {D1, D2, ..., Dl} randomly selected from the
partition of a big transaction data set D, and using the local frequent itemsets to estimate
the set of frequent itemsets in D with respect to a global frequency threshold θ. The
algorithm contains four steps: RSP data blocks generation; RSP data blocks selection;
local frequent itemsets mining; finding the approximate set of frequent itemsets from the
sets of local frequent itemsets by voting.

The pseudo code is presented in Algorithm 1. The inputs are: a transaction database
D, the number of transactions in each RSP data block m, the number of RSP data blocks
selected for finding frequent itemsets l, two parameters θ and ε, and the parameter of the
popular frequent itemset voting condition α. The output of this algorithm is the set of the
popular frequent itemsets PFI .

The first step in lines 1-6 is to convert D to a partition of k RSP transaction blocks.
Each record in D represents one purchase transaction and the transactions with one pur-
chased item are removed. Given the size of the RSP data blockm, the number of RSP data
blocks in the partition k is the number of transactions in D divided by m. To generate k
RSP data blocks, m transactions are randomly selected from D without replacement and
assigned to each RSP data block. In the second step in lines 7-9, l RSP data blocks are
randomly selected from the k RSP data blocks of the partition without replacement. In the
third step in lines 10-15, Apriori algorithm is called with parameter value of (θ− ε) as the
local frequency threshold to find the local frequent itemsets in each of l RSP transaction
blocks {D1, D2, ..., Dl}. In the fourth step in lines 16-23, all local frequent itemsets are
voted by all sets of local frequent itemsets. The result of a frequent itemsets mining algo-
rithm is a set of string objects, therefore in this article, when comparing the local results
and counting the number of appearances of a frequent itemset in all RSP data blocks, we
mean an exact match of string objects. Thus, if a local frequent itemset occurs in RSP
data blocks more than the given number as shown in Equation 4, the frequent itemset is
added to the set of popular frequent itemset; otherwise, it is discarded.

In this article, we provide a comprehensive empirical analysis of the influence of pa-
rameter ε on the approximate result. We separately consider two cases. The first one is
when we set ε = 0 which indicates that the local frequency threshold is equal to the
global frequency threshold θ. The second one is 0 < ε < θ which indicates that the local
frequency threshold is smaller than the global frequency threshold θ. In Section 5, we
will show that even the small size of the data block with sufficient number of selected
RSP data blocks enables obtaining high quality estimation of the set of global frequent
itemsets, however the set of popular frequent itemsets will contain insignificant amount
of false positive frequent itemsets, moreover setting ε = 0 does not allow discovering all
true frequent itemsets from the selected RSP data blocks. To address this problem, we
reduce the local frequency threshold for mining local frequent itemsets. Decreasing of
the local frequency threshold by increasing the value of ε will result in increasing of the
number of the local frequent itemsets for each RSP data block. Thus, more true positive
frequent itemsets can be discovered from the selected RSP data blocks, i.e. the number
of false negative frequent itemsets will be reduced, however it will also increase the con-
tent of false positive frequent itemsets in the approxiamte solution. Empirical analysis for
choosing ε and experiment results for both cases are shown in Section 5.

A New Approximate Method For Mining Frequent Itemsets From Big Data 647

Algorithm 1 Algorithm for approximate discovery of frequent itemsets from a big trans-
action database using random sample partition
Input:
-D: transaction database;
-m: number of transactions in each RSP data block;
-l: number of RSP data blocks selected for finding frequent itemsets;
-θ: the global minimum frequency threshold;
-ε: local minimum frequency threshold deduction parameter;
-α: popular frequent itemset voting condition parameter.

1: procedure RSP GENERATION(D,m)
2: k = |D|

m
. |D| is the number of transactions in D and k is the number of RSP blocks to be

generated.
3: for each Di, 1 <= i <= k do
4: randomly assignm transactions fromD to the i-th RSP data block without replacement
5: end for
6: end procedure
7: procedure RSP BLOCK SELECTION({Dk}, l)
8: {Dl} = random.sample({Dk}, l) . randomly select l RSP data blocks from the set {Dk}

and put them in set {Dl}.
9: end procedure

10: procedure LOCAL FIS({Dl}, l, θ, ε)
11: for each Dj , 1 <= j <= l do
12: FIj = Apriori(Dj , θ − ε)
13: {FIl}.append(FIj) . {FIl} is the set of l sets of local frequent itemsets.
14: end for
15: end procedure
16: procedure POPULAR FIS({FIl})
17: {FI} = dictionary(∪l

i=1FIi) . for all frequent itemsets found, create <key, value>
pair, where itemset is a key and the number of repeats in all RSP data blocks is a value.

18: for each frequent itemset ∈ {FI} do
19: if value >α then
20: PFI .append(frequent itemset) . append a popular frequent itemset to the set

of popular frequent itemsets.
21: end if
22: end for
23: end procedure
24: Output: set of the popular frequent itemsets PFI

5. Experiments

We conducted 30 experiments on two real world transaction data sets. To evaluate the
quality of the approximate results, we compared popular frequent itemsets with the fre-
quent itemsets found directly from the entire database with respect to the global frequency
threshold θ. The comparison has shown that our approach produced good approximate
results and is efficient in mining approximate frequent itemsets from a big transaction
database. In this section, we present the real world data sets, experiment settings, evalua-
tion methods and the experiment results.

648 Timur Valiullin et al.

5.1. Data Sets and Experiment Settings

The two data sets used in these experiments were downloaded from Kaggle.com and
Open-Source Data Mining Library, respectively. The characteristics of the data sets are
listed in Table 1.

Table 1. The two data sets used in experiments
Kaggle data set Online Retail data set

Number of transactions 729148 541908
Number of items 791 2603

Average transaction length 8 4

Thirty experiments were conducted on each data set with different settings on the
number of RSP data blocks and the block sizes. The setting values of these experiments
are given in Table 2. The global frequency threshold was set as θ = 0.005 so a big set of
frequent itemsets was discovered from the entire data set.

Table 2. Settings on number of RSP data blocks and block sizes
Number of RSP data blocks Block sizes

50 10000, 5000, 3500, 2000, 1000
30 10000, 5000, 3500, 2000, 1000
15 10000, 5000, 3500, 2000, 1000
10 10000, 5000, 3500, 2000, 1000
5 10000, 5000, 3500, 2000, 1000

5.2. Evaluation Measures

In these experiments, we used the following three measures to evaluate the approximate
results of the proposed approach. In these evaluations, the set of popular frequent itemsets
PFI was compared with the set of global frequent itemsets. The popular frequent item-
sets in PFI were divided into two classes: true positive frequent itemsets TP and false
positive frequent itemsets FP . There is another class of false negative frequent itemsets
FN , which can only be found in the global frequent itemsets. Based on the three sets of
frequent itemsets, we define the evaluation measures as follows:

Recall =
|TP |

|TP ∪ FN |
(5)

where |TP | is the number of frequent itemsets in TP and |TP ∪ FN | is the number of
the global frequent itemsets because TP ∪ FN = FID(D, I, θ). This measure shows
how good the algorithm is in discovering true frequent itemsets. Since this measure is
very important in frequent itemsets mining, we use the parameter ε to reduce the local

A New Approximate Method For Mining Frequent Itemsets From Big Data 649

frequency threshold while mining local frequent itemsets for increasing the recall value.
As ε approaches to θ, the recall value will get close to 1.

However increasing ε to θ will affect precision value defined as:

Precision =
|TP |

|TP ∪ FP |
(6)

where TP ∪ FP = PFI . Precision measures the fraction of the true frequent itemsets
in the set of popular frequent itemsets. This measure shows how good the algorithm is
in avoiding discovering of the false positive frequent itemsets. Using (θ − ε), ε > 0 as
the local frequency threshold to mine local frequent itemsets tends to discover more local
frequent itemsets, therefore potentially increasing the number of false positive frequent
itemsets in the approximate result, which negatively affects the precision measure.

To consider the global frequent itemsets, the accuracy measure is defined as:

Accuracy =
|TP |

|TP ∪ FN ∪ FP |
(7)

This measure evaluates the approximate result in terms of both precision and recall. Since
TP ∪ FN ∪ FP = PFI ∪ FID(D, I, θ), this measure evaluates the quality of the
approximate solution in terms of its ability to discover true frequent itemsets, avoiding
discovering infrequent itemsets (itemsets with the global frequency < θ).

5.3. Experiment Results With ε = 0

In this series of experiments, we set θ = 0.005 and ε = 0, i.e. the local frequency thresh-
old is equal to the global frequency threshold. With these settings, we ran Algorithm 1 on
the entire data set on different numbers of data blocks and block sizes as specified in Ta-
ble 2. Figure 2(a) shows the accumulative distributions of frequent itemsets in the whole
Kaggle data set and RSP data blocks of different sizes. Subplot on the left shows the dis-
tribution in the entire data set. The plots in the middle are the distributions of the frequent
itemsets in the RSP data blocks with 10000 transactions. We can see that the distributions
of the frequent itemsets in the RSP data blocks are similar to each other and also similar
to the distribution in the entire data set. The plots on the right show the distributions of the
frequent itemsets in the RSP data blocks with 2000 transactions. Because the block size
is much smaller than the blocks for distributions in the middle, a big difference displays
among the blocks although the shapes of the distributions are similar to the distribution of
the entire data set. We can say that the RSP data blocks in the middle are better samples
of the entire data set than the RSP data blocks on the right.

Figure 2(b) shows the accumulative distributions of frequent itemsets in the entire
data set and the accumulative distributions of popular frequent itemsets in a number of
RSP data blocks of different sizes. Figure 2(b) shows that the three distributions are very
similar to each other. The distribution in the middle subplot is very close to the distribution
of frequent itemsets in the entire data set. The distribution on the right is also close to the
one in the middle. This indicates that the popular frequent itemsets improve the results of
frequent itemsets from individual data blocks even with a small block size, and are better
estimates of the frequent itemsets in the entire data set with respect to the same frequency

650 Timur Valiullin et al.

0.00 0.02 0.04 0.06 0.08 0.10
freq(A)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

P(
f)

0.00 0.02 0.04 0.06 0.08 0.10
freq(A)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

P(
f)

0.00 0.02 0.04 0.06 0.08 0.10 0.12
freq(A)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

P(
f)

(a) Accumulative distributions of the global frequent itemsets (left), and the local FIs (middle and right)

0.00 0.02 0.04 0.06 0.08 0.10
freq(A)

0.0

0.2

0.4

0.6

0.8

1.0

P(
f)

0.02 0.04 0.06 0.08 0.10
freq(A)

0.0

0.2

0.4

0.6

0.8

1.0

P(
f)

0.02 0.04 0.06 0.08 0.10
freq(A)

0.0

0.2

0.4

0.6

0.8

1.0

P(
f)

(b) Accumulative distribution of the global frequent itemsets (left), and accumulative distributions of the popular
frequent itemsets (middle and right)

Fig. 2. Accumulative frequent itemsets distributions. Number of RSP data blocks = 30,
block size (middle) = 10000, block size (right) = 2000. (Kaggle data set)

threshold θ. Generally speaking, these figures show that the RSP data blocks are good
random samples for estimating the frequent itemsets contained the entire data set.

The quality of the approximate results from randomly selected RSP data blocks is
evaluated with the measures of Accuracy, Precision and Recall defined in the previous
section. Figure 3 shows the changes of accuracy against the data block size in different
numbers of selected RSP data blocks. The left figure shows the results of Kaggle data set
and the right figure is the results of Online Retail data set. We can see that the accuracy
increases as the block size increases. Also, the more the RSP data blocks are selected for
voting the popular frequent itemsets, the higher the accuracy of the approximate result is.

1000 2000 3500 5000 10000
Block size

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Kaggle dataset

number_of_blocks
5
10
15
30
50

1000 2000 3500 5000 10000
Block size

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Online Retail dataset

number_of_blocks
5
10
15
30
50

Fig. 3. Accuracy changes with different numbers of RSP data blocks and block size

A New Approximate Method For Mining Frequent Itemsets From Big Data 651

Figure 4 shows the change of precision against the data block size in different numbers
of RSP data blocks. The trends are same as the trends of accuracy because the two mea-
sures are essentially same in evaluating the findings of the true positive frequent itemsets
in the entire data set from a set of selected RSP data blocks. In all cases, we can approach
above 90% of precision with a small portion of the entire data. Based on these figures, we
can assume that the bigger number of RSP data blocks is more important than the block
size because of the popular frequent itemsets voting. More investigations are needed to
find the reasons behind this phenomenon.

1000 2000 3500 5000 10000
Block size

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

Kaggle dataset

number_of_blocks
5
10
15
30
50

1000 2000 3500 5000 10000
Block size

0.70

0.75

0.80

0.85

0.90

0.95

Pr
ec

isi
on

Online Retail dataset

number_of_blocks
5
10
15
30
50

Fig. 4. Precision changes with different numbers of RSP data blocks and block size

In frequent itemsets mining with this approximate approach, Recall is an important
measure. Figure 5 shows the change of recalls against the block sizes and different num-
bers of RSP data blocks. We can see that the trends of recall are different from the trends of
accuracy and precision. The general trend is still that the recall increases as the block size
and the number of RSP data blocks increase. However, the number of RSP data blocks
has a bigger impact on recall. Generally speaking, recall is over 90% even with a few RSP
data blocks of a small size, but it rarely arrived 100% in case when the local frequency
threshold is equal to the global frequency threshold.

1000 2000 3500 5000 10000
Block size

0.90

0.92

0.94

0.96

0.98

Re
ca
ll

Kaggle dataset

number_of_blocks
5
10
15
30
50

1000 2000 3500 5000 10000
Block size

0.88

0.90

0.92

0.94

0.96

0.98

Re
ca
ll

Online Retail dataset

number_of_blocks
5
10
15
30
50

Fig. 5. Recall changes with different numbers of RSP data blocks and block size

652 Timur Valiullin et al.

5.4. Experiment Results With 0 < ε < θ

To increase recall of popular frequent itemsets from the selected RSP data blocks, we set
the local frequency threshold to (θ − ε) and make ε > 0. In this series of experiments,
we investigate the change of recalls as ε increases from 0 to θ. Since the local frequency
threshold is reduced, more frequent itemsets will be discovered for the same RSP data
blocks. The number of the local frequent itemsets increases as ε increases, so the recall
of the popular frequent itemsets will increase as well. However, as the number of the
local frequent itemsets increases, the number of the false positive frequent itemsets also
increases which decreases the accuracy and precision. Therefore, ε should be adjusted
so that the popular frequent itemsets should not contain too many false positive frequent
itemsets. In these experiments, we empirically investigated the value of ε which can make
a better trade-off between recall, accuracy and precision.

In these experiments, we used the same parameter settings from Table 2. For each
setting, we ran Algorithm 1 with a reduced local frequency threshold (θ−ε), ε > 0 to find
the popular frequent itemsets from the selected RSP data blocks. Then, we compared the
popular frequent itemsets with the frequent itemsets found from the entire data set with the
global frequency threshold θ to compute the recall. For each set of parameters from Table
2 we tested several ε values. We computed the recall distributions of the popular frequent
itemsets discovered with different values of ε for corresponding numbers of RSP data
blocks and block sizes. Figure 6 shows the recall distributions for all parameter settings
from Table 2 for Online Retail Data Set. The rows index is the numbers of RSP data
blocks in the descending order as (50, 30, 15, 10, 5), and the columns indicate the sizes
of RSP data blocks in transactions as (10000, 5000, 3500, 2000, 1000). Different ε values
were used in each setting as shown in each display block. From the first row in Figure 6,
we can see that for the settings of larger block sizes and more RSP data blocks, a small
increase of ε, e.g., from 0.0005 to 0.001, results in a big increase of recall which can reach
to 1. As the number of RSP data blocks is reduced, the larger ε is required to make the
recall approach to 1, as shown in the left column of Figure 6. Therefore, as the block size
and the number of RSP data blocks are reduced, a big increase of ε is required to increase
the recall to 1. For example, in the right and bottom display block of Figure 6, ε value
is 0.002 to make the recall approach 1. Since the global frequency threshold θ = 0.005,
the local frequency threshold is reduced with 40% from the global frequency threshold in
order to obtain a 100% recall.

We calculated precision with empirically found ε value that guarantees the absence of
the false negative frequent itemsets in the approximate solution, i.e. recall = 1 for most
settings for both data sets. The precisions of the approximate results with different settings
are shown in Figure 7. We can see the trends that precision increases sharply as the block
size and the number of RSP data blocks increase. In the case of few small RSP data blocks,
although the recall is high, the precision is low because a large number of false positive
frequent itemsets exist due to a significant reduction of the local frequency threshold. As
the block size and the number of RSP data blocks increase, ε decreases. Small ε allows
to maintain low number of false positive frequent itemsets in the approximate solution,
which makes the precision stay high. We can see that the precisions in both data sets are
over 80% in the settings of large block size and number of RSP data blocks.

A New Approximate Method For Mining Frequent Itemsets From Big Data 653

0.0 0.0005
0.96

0.97

0.98

0.99

1.00

Re
ca

ll

50 blocks, 10000 transactions

0.0 0.0005

0.92

0.94

0.96

0.98

1.00
50 blocks, 5000 transactions

0.0 0.0005

0.92

0.94

0.96

0.98

1.00
50 blocks, 3500 transactions

0.0 0.0005 0.001

0.90

0.92

0.94

0.96

0.98

1.00
50 blocks, 2000 transactions

0.0 0.0005 0.001

0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

50 blocks, 1000 transactions

0.0 0.0005
0.94

0.95

0.96

0.97

0.98

0.99

1.00

Re
ca

ll

30 blocks, 10000 transactions

0.0 0.0005 0.001

0.92

0.94

0.96

0.98

1.00
30 blocks, 5000 transactions

0.0 0.0005

0.90

0.92

0.94

0.96

0.98

1.00
30 blocks, 3500 transactions

0.0 0.0005 0.001

0.94

0.95

0.96

0.97

0.98

0.99

1.00
30 blocks, 2000 transactions

0.0 0.0005 0.001
0.92

0.94

0.96

0.98

1.00
30 blocks, 1000 transactions

0.0 0.0005 0.001

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Re
ca

ll

15 blocks, 10000 transactions

0.0 0.0005 0.001
0.90

0.92

0.94

0.96

0.98

1.00
15 blocks, 5000 transactions

0.0 0.0005 0.001
0.88

0.90

0.92

0.94

0.96

0.98

1.00
15 blocks, 3500 transactions

0.0 0.0005 0.001 0.0015

0.88

0.90

0.92

0.94

0.96

0.98

1.00
15 blocks, 2000 transactions

0.0 0.0005 0.001 0.0015

0.92

0.94

0.96

0.98

1.00
15 blocks, 1000 transactions

0.0 0.0005 0.001

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Re
ca

ll

10 blocks, 10000 transactions

0.0 0.0005 0.001

0.90

0.92

0.94

0.96

0.98

1.00
10 blocks, 5000 transactions

0.0 0.0005 0.001 0.0015

0.80

0.85

0.90

0.95

1.00
10 blocks, 3500 transactions

0.0 0.0005 0.001 0.0015 0.002
0.80

0.85

0.90

0.95

1.00
10 blocks, 2000 transactions

0.0 0.0005 0.001 0.0015 0.002

0.850

0.875

0.900

0.925

0.950

0.975

1.000
10 blocks, 1000 transactions

0.0 0.0005 0.001
epsilon

0.90

0.92

0.94

0.96

0.98

1.00

Re
ca

ll

5 blocks, 10000 transactions

0.0 0.0005 0.001 0.0015
epsilon

0.88

0.90

0.92

0.94

0.96

0.98

1.00
5 blocks, 5000 transactions

0.0 0.0005 0.001 0.0015
epsilon

0.850

0.875

0.900

0.925

0.950

0.975

1.000
5 blocks, 3500 transactions

0.0 0.0005 0.001 0.0015 0.002
epsilon

0.80

0.85

0.90

0.95

1.00
5 blocks, 2000 transactions

0.0 0.0005 0.001 0.0015 0.002
epsilon

0.80

0.85

0.90

0.95

1.00
5 blocks, 1000 transactions

Fig. 6. Distributions of recalls on the different settings of block sizes, numbers of RSP
data blocks and ε values

1000 2000 3500 5000 10000
Block size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

isi
on

Kaggle dataset
number_of_blocks

5
10
15
30
50

1000 2000 3500 5000 10000
Block size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ec

isi
on

Online Retail dataset
number_of_blocks

5
10
15
30
50

Fig. 7. Precision of the approximate solution with reduced frequency threshold changes
with different numbers of RSP data blocks and block sizes

654 Timur Valiullin et al.

6. Conclusions and future work

In this paper, we have presented a new approach for mining approximate frequent itemsets
based on a random sample partition of a big transaction database. We have shown that
using the RSP data model for mining frequent itemsets can be very beneficial when the
amount of data is very large and traditional single machine or distributed and parallel
approaches are no longer able to process it. In this work, we introduced an algorithm
for approximate frequent itemsets mining and experimentally showed that the algorithm
is able to produce high-accurate frequent itemsets with random sample data blocks, and
capable of discovering of all frequent itemsets from the entire data set which is achieved
by parameter ε. The proposed approach is highly suitable for a distributed architecture
and can be effectively run on a computing cluster.

For the further work, we will carry out theoretically statistical analysis on the quality
of the outputs of the proposed algorithm and investigate an automatic way of estimating
the parameter ε. Besides, we are going to implement a parallel version of the algorithm
on a cluster and conduct experiments on big data sets in terabyte scale.

Acknowledgments. This research was supported by the National Natural Science Foundation of
China under Grant 61972261.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large
databases. In: Proceedings of SIGMOD (1993)

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In:
Proceedings of VLDB (1994)

3. Annie, L., Kumar, A.: Market basket analysis for a supermarket based on frequent itemset
mining. IJCSI International Journal of Computer Science Issues 9(3), 257–263 (2012)

4. Chakaravarthy, T., Pandit, V., Sabharwal, Y.: Analysis of sampling techniques for association
rule mining. In: ICDT ’09 Proceedings of the 12th International Conference on Database The-
ory. pp. 276–283 (2009)

5. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. In: Proceed-
ings of the CACM. pp. 107–113 (2004)

6. Grahne, G., Zhu, J.: Efficiently using prefix-trees in mining frequent itemsets. In: Proceedings
of the CEUR Workshop Proceedings. Melbourne, FL (2003)

7. Grahne, G., Zhu, J.: Reducing the main memory consumptions of fpmax* and fpclose. In:
Proceedings of the CEUR Workshop Proceedings. Brighton, UK (2004)

8. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings
of the 19th ACM International Conference on Management of Data (SIGMOD). Dallas, TX,
USA (2000)

9. Jiang, H., Meng, H.: A parallel fp-growth algorithm based on gpu. In: 2017 IEEE 14th Int.
Conf. E-bus. Eng. pp. 97–102 (2017)

10. Kazienko, P., Pilarczyk, M.: Data mining for inventory item selection with cross-selling con-
siderations. New Generation Computing 26, 227–244 (2008)

11. Moens, S., Aksehirli, E., Goethals, B.: Frequent itemset mining for big data. In: 2013 IEEE
International Conference on Big Data (2013)

12. Prajapati, D., Garg, S., Chauhan, N.: Interesting association rule mining with consistent and
inconsistent rule detection from big sales data in distributed environment. Future Computing
and Informatics Journal 2(1), 19–30 (2017)

A New Approximate Method For Mining Frequent Itemsets From Big Data 655

13. Racz, B.: An fp-growth variation without rebuilding the fp-tree. In: Proceedings of the CEUR
Workshop Proceedings. Brighton, UK (2003)

14. Riondato, M., DeBrabant, J., Fonseca, R., Upfal, E.: Parma: a parallel randomized algorithm for
approximate association rules mining in mapreduce. In: Proceedings of the ACM International
Conference on Information and Knowledge Management (2012)

15. Riondato, M., Upfal, E.: Efficient discovery of association rules and frequent itemsets through
sampling with tight performance guarantees. In: ECML PKDD: Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. pp. 25–41 (2012)

16. Salloum, S., Huang, J., He, Y.: Random sample partition: A distributed data model for big data
analysis. IEEE Transactions on Industrial Informatics 15(11), 5846 – 5854 (2019)

17. Savasere, A., Omiecinski, E., Navathe, S.: An efficient algorithm for mining association rules
in large databases. In: VLDB ’95: Proceedings of the 21th International Conference on Very
Large Data Bases. p. 432–444 (1995)

18. Schmidt-Thieme, L.: Algorithmic features of eclat. In: Proceedings of the Workshop Frequent
Item Set Mining Implementations. Brighton, UK (2004)

19. Toivonen, H.: Sampling large databases for association rules. In: VLDB ’96: Proceedings of
the 22th International Conference on Very Large Data Bases. p. 134–145 (1996)

20. Wong, R., , Fu, A., Wang, K.: Mining evolving association rules for e-business recommenda-
tion. Data Mining and Knowledge Discovery 11, 81–112 (2005)

21. Zaki, M., Gouda, K.: Fast vertical mining using diffsets. In: Proceedings of the 9th ACM In-
ternational Conference on Knowledge Discovery and DataMining. pp. 326–335. Washington,
DC, USA (2003)

22. Zaki, M., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast discovery of associ-
ation rules. In: Proceedings of the 3rd International Conference on Knowledge Discovery and
Data Mining. Newport Beach, CA, USA (1997)

Timur Valiullin received the master’s degree from the Institute of Computational Math-
ematics and Information Technologies of Kazan Federal University, Kazan, Russia, in
2018. Currently He is a Ph.D. candidate in Computer Science at Shenzhen University,
Shenzhen, China.

Joshua Zhexue Huang received the Ph.D. degree in Computer Science from The Royal
Institute of Technology, Stockholm, Sweden, in 1993. He is currently a Distinguished
Professor of College of Computer Science & Software Engineering, Shenzhen University,
Shenzhen, China. He is also the Director of Big Data Institute in Shenzhen University, and
the Deputy Director of National Engineering Laboratory for Big Data System Computing
Technology, Shenzhen, China.

Chenghao Wei obtained his B.Eng. degree in electronic engineering from the Wuhan
University of Science and Technology, Wuhan, China, 2009. He received his M.Eng. de-
gree with distinction from the Department of Electrical Engineering and Electronics in the
University of Liverpool, U.K., 2010. Thereafter, he continued his study as a Ph.D. can-
didate in the same department for oil-immersed power transformer fault diagnosis. Since
then, he joined the Big Data Institute of Shenzhen University as a research assistant. His
current research focuses on machine learning, big data application, pattern recognition,
data analysis.

656 Timur Valiullin et al.

Jianfei Yin received the Ph.D. degree in Computer Science from the South China Univer-
sity of Technology, Guangzhou, China, in 2005. He is currently an Associate Professor
with the College of Computer Science and Software Engineering, Shenzhen University,
Shenzhen, China.

Dingming Wu is Associate Professor of College of Computer Science & Software En-
gineering at Shenzhen University, China. She received her Bachelor degree in Computer
Science at Huazhong University of Science and Technology, Wuhan, China in 2005, and
a Master degree in Computer Science at Peking University, Beijing, China in 2008. She
received a Ph.D. degree in Computer Science at Aalborg University, Denmark, in 2011.
Her research concerns data management, query processing, information retrieval, and data
mining.

Iuliia Egorova received the master’s degree from the Institute of Computational Math-
ematics and Information Technologies of Kazan Federal University, Kazan, Russia, in
2020.

Received: January 24, 2020; Accepted: July 15, 2020.

	Introduction
	Related Work
	A New Approach
	Definitions
	Approximate Frequent Itemsets Mining

	An Approximate Frequent Itemsets Finding Algorithm
	Experiments
	Data Sets and Experiment Settings
	Evaluation Measures
	Experiment Results With = 0
	Experiment Results With 0<<

	Conclusions and future work

