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Abstract. Gene expression data often contain missing expression 
values. For the purpose of conducting an effective clustering analysis 
and since many algorithms for gene expression data analysis require a 
complete matrix of gene array values, choosing the most effective 
missing value estimation method is necessary. In this paper, the most 
commonly used imputation methods from literature are critically 
reviewed and analyzed to explain the proper use, weakness and point 
the observations on each published method. From the conducted 
analysis, we conclude that the Local Least Square (LLS) and Support 
Vector Regression (SVR) algorithms have achieved the best 
performances. SVR can be considered as a complement algorithm for 
LLS especially when applied to noisy data. However, both algorithms 
suffer from some deficiencies presented in choosing the value of 
Number of Selected Genes (K) and the appropriate kernel function. To 
overcome these drawbacks, the need for new method that automatically 
chooses the parameters of the function and it also has an appropriate 
computational complexity is imperative. 

Keywords: Completely at random (MCAR), Missing At Random (MAR), 
Sequential K-Nearest Neighbors (SKNN), Gene Ontology (GO), Singular 
Value Decomposition (SVD), Least Squares Imputation (LSI), Local 
Least Square Imputation (LLSI), Bayesian Principal Component Analysis 
(BPCA) and Fixed Rank Approximation Method (FRAA). 

1. Introduction 

The presence of missing values is a common problem for the analysis of 
microarray data. Typically, in an ordinary microarray, 1-10% of the data 
entries are missing [1], affecting up to 95% of the genes. There are different 
reasons for missing expression values [2]. The microarray may contain so-
called “weak spots”. Usually these spots are filtered out. After comparing the 
pixels of the spot with the pixels of the background, if the fraction of spot 
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pixels is greater than the median of the background pixels and is less than a 
given threshold, the gene expression that corresponds to this spot will be set 
as missing. Another reason for missing expression values is the occurrence 
of technical errors during the hybridization. Moreover, if fluorescent intensity 
of a given spot is below a certain threshold, the value of that spot will be 
defined as missing. A third reason for missing values is the presence of dust, 
scratches, and systematic errors on the slides [1]. Thus, the resulting data 
matrix will most likely contain missing values which may disturb the gene 
clustering obtained by the classical clustering methods, e.g., projection 
methods like PCA. As well known, many algorithms for gene expression 
analysis require a complete matrix of gene array values as input. For 
example, hierarchical clustering method is not robust to missing data, and 
may lose effectiveness even with a few missing values. To limit the effects of 
missing values in the clustering analysis, different strategies have been 
proposed: (i) the genes containing missing values are removed, (ii) the 
missing values are replaced by a constant (usually zero, or one), or (iii) the 
missing values are re-estimated on the basis of the whole gene expression 
data. Different estimation techniques have been applied to missing values in 
microarray data. The K-nearest neighbours approach (KNN), Local Least 
square (LLS) and Support Vector Regression (SVR) are among the most 
reliable and efficient methods. 

Recently comparative studies of three data imputation methods; a singular 
value decomposition based method, weighted K-nearest neighbours, and row 
average were presented in Troyanskaya et al. (2001) [3]. Also, Bo et al. 
(2004) [4] compared methods that utilize correlations between both genes 
and arrays based on the least square principle and the method of K-nearest 
neighbours. Ouyang et al. (2004) [5] proposed an imputation method based 
on Gaussian mixture clustering and model averaging. There are several 
alternative ways of dealing with missing data, and this paper aim is to review 
and critically discuss the most common used methods for missing values 
estimation. For the purpose of the application, the imputation approaches will 
be discussed in the context of microarray data imputation. This paper begins 
with explaining the nature of missing data. Then it discusses general rules for 
dealing with missing values and finally in the subsequent sections it reviews 
and analyse the most common used microarray data imputation approaches 
as well as presenting some of major experimental results and discussion. 

1.1. The Nature of Missing Data  

An empirical examination of the patterns of missing data is required to 
determine whether it is distributed randomly across the cases and the 
variables. Two patterns are possible: missing completely at random or 
missing at random 
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Completely At Random (MCAR). Data are missing completely at random 
when the probability of obtaining a particular pattern of missing data is not 
dependant on the values that are missing and when the probability of 
obtaining the missing data pattern in the sample is not dependant on the 
observed data [6]. 

Missing At Random (MAR). Often data are not missing completely at 
random, but they may be classifiable as missing at random (MAR). MAR is a 
condition which exists when missing values are not randomly distributed 
across all observations but are randomly distributed within one or more 
subsamples (e.g., missing more among samples from diseased persons than 
non diseased, but random within each sample) [6]. In practical terms, it is 
quite difficult to determine if the data are MAR or MCAR. When a single 
variable contains missing data, it is not too difficult to determine if any of the 
other variables in the data set predicts whether there is missing data on a 
particular variable. In practice, however, data will be missing on a number of 
variables, and so determining if other variables are related may be 
considerably complex, and this is particularly the case with hierarchically 
structured data and individuals are missing entirely from specific groups. 
Some statistical programs have techniques specifically designed for missing 
data analysis (e.g., Missing Value analysis in SPSS statistical software 
package [27]), which generally include one or both diagnostic tests [6]. As a 
result of these tests, the missing data process is classified as either MAR or 
MCAR, which then determines the appropriate types of potential analysis 
processes. In microarray data analysis, MCAR is the most common available 
type and a wide range of potential techniques are suited for it [7]. 

1.2. Dealing with Missing Values 

As mentioned before, different alternatives are available to deal with missing 
values, in addition to those mentioned before; next we categorize these 
methods into three general classes [6]: 

Eliminate Data Objects or Attributes. A simple and effective strategy is to 
eliminate objects with missing values. However, even a partially specified 
data object contains some information, and if many objects have missing 
values, then a reliable analysis can be difficult or impossible to be obtained 
[6]. 

Estimate Missing Values. Sometimes missing data can be reliably 
estimated. For example, consider a time series that changes in a reasonably 
smooth fashion, but has a few, widely scattered missing values. In such 
cases, the missing values can be estimated by using the remaining values. 

Ignore the Missing Values During Analysis. Many data mining 
approaches can be modified to ignore missing values. For example, suppose 
that objects are being clustered on the similarity between pairs of data objects 
needs to be calculated. If one or both objects of a pair have missing values for 
some attributes, then the similarity can be calculated by using only the 
attributes that do not have missing values. Likewise, many classification 
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schemes can be modified to work with missing values. The accuracy of this 
approach depends on the total number of the missing values in the 
microarray. Estimation of missing data is a well-studied problem in the 
statistical literature and imputation methods have traditionally been used in 
"several data analysis applications [3],[7]". Recently, such methods have 
been reinvented and extensively applied to the imputation of microarray data 
[3]. Details of missing values methods handling in microarrays will be fully 
discussed in the subsequent sections. 

2. Missing Values Imputation Methods 

Based on the review of the missing values imputation methods literature and 
its issues, few different missing values imputation algorithms are presented in 
the context of microarray data analysis. In order to obtain an in-depth 
understanding of the current research in missing values imputation methods, 
the following sections investigate each of these methods and explore the 
performance of each one and the differences between them. 

2.1. Weighted K-Nearest Neighbors (KNNimpute) 

KNNimpute is a standard missing value imputation method introduced by 
Troyanskaya et al. (2001) [3]. The KNN-based method takes advantage of the 
correlation structure in microarray data by selecting genes with expression 
profiles similar to the gene of interest to impute missing values. Accordingly, 
the imputation process is typically divided into two steps. In the first step, a 
set of genes nearest to the gene with a missing value is selected. To explain 
the way that this step works, consider gene g in experiment i so, let's say Vg,i 
is missing value, thus, this method would find k other genes, with a known 
value for experiment i, and with the expression profile most similar to g 
considering all the experiments. The authors examined a number of metrics 
for gene similarity (Pearson correlation, Euclidean distance, variance 
minimization). In spite of its sensitivity to outliers which could be present in 
microarray data, Euclidean distance was found to be a sufficiently accurate 
norm. The reason behind this finding lies in using the log-transform to 
normalize the data, what in turn reduces the effect of outliers on gene 
similarity determination. 

The second step involves the prediction of the missing value using the 
observed values of the selected genes. At this stage, a weighted average of 
values in experiment I from the k closest genes is then used as an estimate 
for the missing value in gene g. In the weighted average, the contribution of 
each gene is weighted by the similarity of its expression to that of gene g by 
using the following equation: 



Microarray Missing Values Imputation Methods: Critical Analysis Review 

ComSIS Vol. 6, No. 2, December 2009 169 

∑
=

= k

i
i

i
i

D

D
W

1
1

1
 

(1) 

Where k is the number of selected genes and Di is the distance between 
the i-th gene and the gene to be imputed. 

Evaluation Methods and Results. KNNimpute was evaluated over 
different data sets and over different values of k. Two of the data sets were 
time-series data, and one contained a non-time series subset of experiments. 
One of the time-series data set had less apparent noise than the other. The 
missing values in the original expression profile were removed, yielding 
complete data sets. Then, between 1% and 20% of the data was deleted 
randomly to create the test sets, and each method was used to recover the 
introduced missing values. The accuracy of imputation method was evaluated 
by calculating the error between actual values and imputed values after 
missing values were estimated. The metric used to assess the accuracy of 
estimation was the root mean square error (RMSE). RMSE was calculated as 
follows, 
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Where Ri is the real value, Ii is the imputed value, and N is the number of 
missing values. This gives small values for the method that best minimizes 
the squared errors between the estimated values and the real values. The 
imputation method achieving the smallest RMSE gives the most correct 
picture of the complete data matrix when estimated values are included. From 
the results obtained, the authors concluded that the KNNimpute is very 
accurate, with the estimated values showing only 6-26% average deviation 
from the true values, depending on the type of data and fraction of values 
missing. The algorithm is also robust to the increase in the proportion of 
values missing, with a maximum of 10% decrease in accuracy with 20% of 
the data missing. In addition, the method is relatively insensitive to the exact 
value of K within the range of 10-20 neighbours. Performance declines when 
a lower number of neighbours are used for estimation, primarily due to 
overemphasis of a few dominant expression patterns. However, when the 
same gene is present twice on the arrays, the method appropriately gives a 
very strong weight to that gene in the estimation. KNNimpute can accurately 
estimate data for matrices with as low as six columns [3]. However, it is not 
reasonable to use this method on matrices with less than four columns [3]. In 
principle KNN imputation works much better than the other traditional 
methods (i.e. row average, median average) but it requires to have enough 
complete patterns (patterns with no missing values) in the data set to be 
confident of finding the correct neighbors of the patterns with missing values. 
It also requires enough existing values in the patterns with missing values in 
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order to be able to determine their neighbors. The estimation ability of these 
advanced methods depends on important model parameters, such as the K-
value in KNNimpute. At present, there is no known theoretical way, however, 
to determine these parameters appropriately. 

2.2. Enhanced KNNimpute Method 

Sequential K-Nearest Neighbor (SKNN) Methods. Sequential k-nearest 
neighbor (SKNN) method is a cluster-based method that uses the imputed 
missing values in a later imputation. SKNN method differs from traditional 
KNNimpute in that it imputes the missing values sequentially from the gene 
having the least missing values, and uses the imputed values for the 
subsequent imputations. After separating the data set into complete and 
incomplete sets, all missing values in a gene are filled with the weighted 
mean value of the corresponding column of the nearest neighbor genes in the 
complete set. Once all missing values of a gene are imputed, the imputed 
gene is moved into the complete set and used for the imputation of the rest of 
genes in the incomplete set [8]. The data sets used in this work were selected 
from a study of gene expression in yeast Saccharomyces cerevisiae cell-
cycle regulation [9], calcineurin/crz1p signaling pathway [10] and certain 
environmental changes [11]. These data sets were classified into time series 
data set, mixed (time-series and nontime series) data set and non-time series 
data set respectively [8]. The efficiency of this algorithm is greatly improved in 
its accuracy and computational complexity over the traditional KNN-based 
method. The performance of SKNN was higher than KNNimpute method for 
the data with high missing rates and large number of experiments [8]. 

The GO-based KNNimpute Method. Gene ontology (GO) is a structured 
network of defined terms which describe gene product attributes [12]. The 
goal of the gene ontology is to produce a dynamic, controlled vocabulary that 
can be applied to all eukaryotes even as knowledge of gene and protein roles 
in cells is accumulating and changing [12]. To this end, three independent 
ontologies accessible on the World-Wide Web (http://www.geneontology.org) 
are being constructed: biological process, molecular function and cellular 
component. The GO-based KNNimpute method uses the gene semantic 
similarity that originated from gene ontology annotations to improve the 
performance of KNNimpute method. The semantic dissimilarity is external 
information on the functional similarity of two genes that is used to select the 
relevant genes for missing value imputation. The relative contribution of each 
information source was automatically estimated from the data using adaptive 
weight value estimation. Using the gene ontology files downloaded from the 
GO web site, the ontology tree is created. The semantic dissimilarity between 
two genes g1 and g2 is calculated using the created ontology tree and is used 
as a correlation reference between those two genes. 

The results obtained enhanced the performance of KNNimpute algorithm 
considerably, especially when the number of experimental conditions is small 
and the percent age of missing values is high. Consequently, gene ontology 
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method is a complementary method for KNNimpute algorithm better suited for 
small number of experiments [13]. However, more research is needed to 
check the validity of this method on different missing values imputation 
methods to either complement the algorithm or improve the performance of 
that algorithm. 

2.3. Singular Value Decomposition (SVD)-Based Method 

Singular value decomposition is used to obtain a set of mutually orthogonal 
expression patterns that can be linearly combined to approximate the 
expression of all genes in the data set [3]. SVDimpute is studied and 
implemented in the context of microarray data also by Troyanskaya et al. 
(2001) [3]. To explain the operation of this method, assume that there are m 
samples in matrix data Y. Let t be the number of missing entries in a row R, 
1≤ t ≤ n; assume the missing entries are in columns s1, …., st. Let B be the 
complete rows of Y. In Singular Value Decomposition the m×n matrix, m > n, 
is expressed as the product of three matrices:  

∑= TVUY  (3) 

where the m × m matrix U and the n × n matrix V are orthogonal matrices, 
and ∑ is an m×n that contains all zeros excepts for the diagonal 
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exact number (K) of significant eigengenes better for the estimation needs to 
be determined empirically by evaluating performance of SVDimpute algorithm 
while varying K.  

Let R1,……,Rk be the first K rows of VT , and let R be a row of Y with the 
first t entries missing. The estimation procedure of SVDimpute performs a 
linear regression of the last n - t column of R against the last n - t columns of 
R1,…..,Rk. Let ck be the regression coefficients. Then the missing entries of R 
are estimated by: 
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SVDimpute first performs SVD on B, then it uses the estimation procedure 
on each incomplete row of Y. Let Ŷ  be the imputed matrix. SVDimpute 
repeatedly performs SVD on Ŷ by the estimation procedure, until the root 
mean squared error between two consecutive sY 'ˆ falls below 0.01 [3]. 
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SVDimpute was tested under the same data sets used by KNNimpute. 
SVDimpute estimation provided considerably higher accuracy than row 
average on all data sets, but SVDimpute yielded best results on time-series 
data with low noise levels. The increasing proportion of missing entries 
deteriorated the performance of SVDimpute   algorithm sharply. Finally, 
SVDimpute was very sensitive to the exact parameters used (number of 
nearest neighbors K) with a sharp deterioration in performance for non-
optimal fraction of missing values [3]. 

2.4. Least Squares Imputation - Based Methods 

Least Squares Imputation (LSimpute) 

LSimpute is a regression-based estimation method that exploits the 
correlation between genes. To estimate the missing value Vg,i from gene 
expression matrix Y, the k-most correlated genes are first selected, 
considering all samples except i, and containing non-missing values for gene 
g. The LS regression method then estimates the missing value Vg,i. By having 
the flexibility to adjust the number of predictor genes k in the regression, 
LSimpute performs better when data have a strong local correlation structure 
[4]. From the discussion preceded, we observe that LSimpute works similarly 
to KNNimpute method, but instead of using equation (1) to impute the missing 
values it uses the Least Square regression method. To estimate the 
performance of the LSimpute algorithm, root mean square deviation (RMSD) 
was used: 

2
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Where Ri is the real value, Ii is the imputed value, and N is the number of 
missing values. In contrast to KNNimpute which uses Euclidean distance to 
measure the correlation, LSimpute method considers the negative correlation 
between genes in estimation model as well as positively correlated genes. To 
test the LSimpute algorithm, three data sets were selected [4]. Two cancer 
studies and one time series study [4]. One data set came from the NCI60 
study [16]. The second data set came from a lymphoma study [17]. The third 
data set was from an infection time series study [18]. The LSimpute is 
demonstrated to perform better than KNNimpute on three example data sets 
with 5-25% of the data missing. Furthermore, The results obtained on data 
sets with 10% missing values reveals an RMSD between missing value 
estimates and the real values that is 15-20% smaller than that obtained using 
KNNimpute. 
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Local Least Squares Imputation (LLSimpute) 

The LLSimpute algorithm uses the KNN process to select the most correlated 
genes and then predicts the missing value (Vg,i) using the least squares 
formulation for the neighbourhood gene and the non-missing entries w1 of g1; 
where w1 represents the vector of non-missing entries for gene vector g1 [19]. 
Specifically, the local least squares imputation first chooses K nearest 
neighbouring genes using the distance measure defined in the above section 
(K to be determined). These genes are regarded as coherent genes to the 
target gene. The missing values in these coherent genes are filled with their 
respective row averages. Then, based on these K neighbouring gene vectors, 
matrices A and B and a vector w are formed. If the missing value is to be 
estimated by the K-most correlated genes, each element of the matrix A and 
B, and a vector w are constructed as: 
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Where i is the number of experiments, α1 and α2 are the missing values 

and gs1, ....., gsk are the k genes that are most similar to g. Then LLS 
proceeds to compute a K-dimensional coefficient vector x such that the 
square 
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Let x denote the vector such that the square is minimized, that is, 

, x.........   x xw kk2211 ααα +++≅  (7) 

Where xi are the coefficients of the linear combination, found from the least 
squares formulation (3.5). And, the missing values in g can be estimated by 

kk1221111 xB  ..........  xB  B  +++=α , (8) 

kk2222122 xB ...........  xB  B  +++=α , (9) 

Where α1 and α2 are the first and the second missing values in the target 
gene. Thus, for estimating the missing values of each gene, we need to build 
the matrices A and B and a vector w, and solve the system for all missing 
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values. In addition to the human colorectal cancer (CRC) data set [19], 
LLSimpute was tested under the same data sets used by KNNimpute. The 
performance of the missing value estimation was evaluated by the normalized 
root mean square (NRMSE): 

]variance[R

)I-(R1/N

i

1

2
ii∑

==

N

iNRMSE  
(10) 

Where the Ri is the real value and Ii is the imputed value. The mean and 
the variance were calculated over missing entries in the whole matrix. The 
LLSimpute method takes advantage of the local similarity structures in 
addition to the optimization process by the least squares. In the results 
presented, LLSimpute outperformed BPCA (discussed in the next section) as 
well as KNNimpute when K is large; and it also outperformed the LSimpute 
method. The results showed that LLSimpute was also less sensitive to the 
noise level, being considered as an accurate reference method to compare 
with [19]. 

2.5. Bayesian Principal Component Analysis (BPCA) 

Bayesian Principal Component Analysis (BPCA) is an estimation method that 
uses the probabilistic Bayesian theory to impute the missing values [2]. The 
entire data set of gene expression profiles is represented by a Y expression 
matrix. BPCA divides the data set into two sets (complete and non-complete). 
Then BPCA estimates missing values Ymiss in data matrix Y using those genes 
Yobs having no missing values. The probabilistic PCA (PPCA) is calculated 
using Bayes’ theorem and the Bayesian estimation calculates posterior 
distribution of model parameter θ and input matrix X containing gene 
expression samples using: 

))p( |Y p(X,  ) Y|X,p( θθαθ  (21) 

where p(θ) is called as the prior distribution which denotes a priori preference 
to θ and X. Missing values are estimated using a Bayesian estimation 
algorithm, which is executed for both θ and Ymiss and calculates distributions 
for θ and Ymiss, q(θ) and q(Ymiss) [2] using: 

)  ,Y|p(Y  )q(Y true
obsmissmiss θ=  (32) 

Where θtrue is the posterior of the missing value. Finally, the missing values 
in the gene expression matrix are imputed using: 

missmissmiss dYYqY∫=′ )( Y miss  (43) 
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BPCA takes advantage of the global correlation in the data sets, and thus, 
has the advantage of prediction speed incurring a computational complexity, 
which is one degree less than for both KNN and LSImpute [2]. For imputation 
purposes, however, improved estimation accuracy is always a greater priority 
than speed. Four test data sets taken from yeast cell-cycle [20] and human 
colorectal cancer clinical (CRC) [21] were prepared. Two methods were used 
to introduce the artificial missing entries: Rate-based way and Histogram-
based way. In rate-based way, the entries were selected randomly in a 
specific percentage. Whereas, in Histogram- based way, the column-wise 
number of missing entries from original expression matrix were obtained. 
Then the corresponding entries of the artificial expression were removed. The 
performance of the missing value estimation was evaluated by NRMSE 
(Equation 10).  

The method was evaluated by comparing it to KNNimpute and SVDimpute 
using various microarray data sets. The results obtained using this method 
showed marked improvement in estimation performance. From the 
experiments conducted, the K value can be determined automatically without 
a priori knowledge on the data set. Therefore, in BPCA the value of K can be 
estimated as K = D - 1 for every data set, where D is the number of samples. 
BPCA produced better results than KNNimpute or SVDimpute at the optimal 
K-value for each method. However, if the genes have dominant local similarity 
structures, the KNNimpute performs better than BPCA, as BPCA assumes 
the missing values in an expression matrix occur randomly and independently 
of other features in the matrix. Furthermore, normalization for the expression 
matrix before the missing value estimation process is not suggested when 
using BPCA, because their results showed that row-wise or column-wise 
normalization degraded the missing value estimation ability. 

2.6. Fixed Rank Approximation Method 

Fixed Rank Approximation Method (FRAA) is introduced by Friedland et al. 
(2005) [22]. FRAA uses an optimization algorithm in which the estimation of 
missing entries is done simultaneously, i.e., the estimation of one missing 
entry influences the estimation of the other missing entries [22]. If the gene 
expression matrix Y has missing data, the algorithm completes its entries to 
obtain a matrix Y′, such that the rank of Y′ is equal to (or does not exceed) d, 
where d the number of significant singular values of Y [22]. Solving this 
problem requires an optimization algorithm for finding Y′ using the techniques 
for inverse eigenvalue. FRAA is a global method, which finds the optimal 
values of the missing entries such that the obtained Y′ minimizes the object 
function fl(X). Here fl(X) is the sum of the squares of all but the first l singular 
values of an n×m matrix X. The minimum of fl(X) is considered on the set S, 
which is the set of all possible choices of matrices X = (xij), such that (xij) = gij 
if the entry gij is known. The completion matrix is computed iteratively, by a 
local minimization of fl(X) on S [22]. FRAA is a robust algorithm [19]. However, 
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it could not outperform KNNimpute even though it is more accurate than 
replacing missing values with 0's or with row means [22]. 

2.7. Gaussian Mixture Clustering Method 

Gaussian mixture clustering is a partitional clustering technique that estimates 
probability density functions (PDF) for each class, and then performs 
classification based on an expectation-maximization (EM) algorithm [5]. In 
statistical computing, an expectation-maximization (EM) algorithm is an 
algorithm for finding maximum likelihood estimates of parameters in 
probabilistic models. Ouyang et al.(2004) used Gaussian mixture clustering 
principle to introduce the GMCimpute missing imputation algorithm. In this 
method, the data are modeled by Gaussian mixtures, and missing entries are 
estimated by the expectation maximization algorithm [5]. GMC takes the 
approach of model averaging. The microarray data are clustered into K-
component Gaussian mixtures by the classification expectation maximization 
algorithm. Then, the missing values are estimated by the expectation 
maximization algorithm as the arithmetic mean of the K estimates [5]. 

To explain the GMCimpute method, we start explaining the Gaussian 
mixture clustering step. In mixture clustering, the number of clusters K must 
be specified in advance. This can be satisfied by any statistical test (e.g., 
statistic B and Gap statistic [23]). Then, the mixtures are initialized by 
partitioning the data set into K subsets. The initial Gaussian mean µi, i = 
1,……,G (where G is the number of Gaussians) for mixture clusters can be 
determined by using K-means clustering with the Euclidean distance. Third, 
the covariance matrices, Vi are initialized as the distance to the nearest 
clusters. Fourth, initializing the weights π = 1/G so that all Gaussians are 
equally likely. Each cluster K produced is mathematically represented as a 
weights sum of Gaussians: 
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 (54) 

Where G is the number of Gaussians, the π’s are the weights. In a 
Gaussian mixture, each cluster is modeled by a multivariate normal 
distribution. The parameters of component K comprise the mean vector µi and 
the covariance matrix Vk, and the probability density function is: 
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Where µi is the mean of the Gaussian and Vi is the covariance matrix of the 
Gaussian. The second step uses the iterative Classification Expectation 
Maximization algorithm (CEM) to maximize the likehood of the mixture. There 
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are three steps in CEM. In the maximization step, µi, Vi and τip are estimated 
from the partition: 
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GMCimpute method computes the τip which is defined as probability of 
cluster-I given X, equal to the formula. The denominator is the probability of X 
to be in the class, and the numerator is the PDF of cluster-I multiplied by its 
weight. After we calculate τip, use it to estimate new weights, means and 
covariance. And then, we use the new mean, weight, and covariance to 
estimate new τ. Iteratively update the weights, means and covariances: 
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Then, GMCimpute method recomputes τip using the new weights, means 
and covariances. Stop training if 

thresholdtt ipipip ≤−+=∆ )()1( τττ  (20) 

Otherwise, continue the iterative updates. The GMCimpute estimated the 
missing entries row by row by applying equation. 20 until the convergence 
occur. Two data sets were chosen to test the algorithm: the first form the 
yeast cell cycle data and the yeast environment stress time series data [5]. 
RMSE metric (Equation 2) was used to evaluate the performance of the 
algorithm. GMCimpute, KNNimpute and SVDimpute were tested and 
compared on the two data sets. From the results obtained, GMCimpute was 
the best among the three methods for both data sets, and SVDimpute was 
better than KNNimpute on cell cycle data, and SVDimpute is better than 
SVDimpute on stress time series data. 

2.8. Support Vector Regression 

The SVR is a nonlinear algorithm which characterizes the properties of 
learning machines that enable the algorithm to generalize well to unseen or 
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missing data [24]. To explain the basic idea behind this algorithm, suppose 
we are given some training data f(x1, y1),……, (xl, yl) ⊂X × R where X 
denotes the space of the input patterns. The goal of SV regression is to find a 
function that has at most ε  deviation from the actually obtained targets yi for 
all the training data. In other words, we do not care about errors as long as 
they are less thanε , but will not accept any deviation larger than this. In 
missing value imputation, this fact assures that the difference between the 
predicted value and the actual value will be in the ε  range [24]. The SVR 
algorithm consists of two steps: first, the SVR uses kernel function to 
transform the samples from the input space into a higher dimension space. 
Then SVR searches for the global optimal solution to the corresponding 
problem using the quadratic programming by finding the corresponding 
support vectors [24]. The performance of SVR algorithm is highly dependent 
on the type of the kernel function used. Furthermore, there is a computational 
complexity introduced in this algorithm when solving the missing value 
(finding the b value). To find the value of each missing point, optimization 
techniques are applied. 

Six data sets were used to evaluate the performance of the support vector 
regression (SVR) and orthogonal coding scheme. The first two data sets 
focus on identification of the cell-cycle regulated genes in yeast 
Saccharomyces cerevisiae, and are all time series data sets [20]. The third 
data set is from Gaschs experiments [11] focusing on the response to the 
environment changes of genes in yeast. The fourth data set is original cDNA 
microarray data relevant to human colorectal cancer (CRC) [21]. The fifth data 
set is a gene expression data set relevant to the molecular pharmacology of 
cancer, which contains gene expression profiles in 60 human cancer cell lines 
in a drug discovery screen [25]. The last data set is the same data set used in 
Kim et al. (2005) [19] focusing on the cell-cycle-regulated genes. The 
performance of this algorithm was measured by using the NRMSE (Equation 
10). The performance of the SVR has been compared with three imputing 
approaches: KNN, BPCA and LLS impute methods. When the SVR applied 
on the noisy data set, which was classified a challenging data set by 
Troyanskaya [3], and when the percentage of missing values in the data set 
was below 20%, the SVR achieved its best results. When the percentage of 
missing values reached 20%, the NRMSE of the SVR was a little higher than 
those of the BPCA and the LLS impute methods, and still much better than 
that of the KNN impute method. Furthermore, SVR was tested on the other 
data sets and the results were nearly similar to the other methods. 

2.9. Collateral Missing Value Imputation 

The collateral missing value estimation (CMVE) algorithm is introduced by 
Sehgal et al. (2005) [26]. The authors presented this algorithm based on the 
novel concept of multiple imputations that uses linear programming to 
optimize the missing value parameters. CMVE consists of three steps: first, 
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the algorithm locates the missing value position Yij . Then, it uses the CoV 
equation to compute the absolute covariance of expression vector v of gene I 
using the following equation: 
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Where w is the predictor gene factor and v the expression vector of gene g 
which has the missing values. The algorithm then ranks the (rows) based on 
the CoV and select the most effective rows Rk. The Rk values obtained are 
used to estimate Φ 1 by using the following equation: 

ξβα ++=Φ X1  (22) 

Where ξ is the error term that minimizes the variance in the LS model 
(parameters α and β). For a single regression, the estimate of α and β are, 
respectively, 
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and Y ′being the respective means over X1,…, Xn and Y1,…..,Yn, so the LS 
estimate of Y given X is expressed as: 

 (23) 

Finally, the same process is used to calculate the values of 2Φ and 3Φ  
and the algorithm then will seek the next missing value and repeat the entire 
process again. Four different types of microarray data were used including 
both time series and non-time series data. Two data sets were obtained from 
sporadic mutations of ovarian cancer data (non-time series) and the other two 
were from yeast sporulation data (time series) [26]. The performance of the 
algorithm was compared with three other methods: KNN, BPCA and 
LSImpute. The NRMSE (equation 10) metric was used to evaluate the 
estimation performance of each technique. In term of accuracy and 
robustness, this algorithm outperforms a wide range of randomly introduced 
missing values [26]. More experiments are required to compare this algorithm 
with other highly performed algorithms (e.g., LLS). Moreover, the CMVE 
algorithm should be tested on noisy data. 
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3. Data Sets and Experimental Results 

In this section, we evaluate the performance of each imputation technique to 
predict the missing values using cDNA microarray. Experiments data sets as 
follows:- 

Niehs is the first data set which is based on a study of human cell lines. 
This data is structured from three swaps, thus we have six arrays. In [18], the 
data from the Niehs experiments comparing treated and control human cell 
lines. There are 1907 genes in the Niehs data set and there are no missing 
values. Accordingly, there is a full intensity data matrix of dimension 
1,907x12.  

Gene expression data from the study of Schizophrenia disease is the 
second     example. I this example, the data set is taken from Bowden et al 
(2005) [29], it has been generated in Newcastle university, Australia. It is 
composed of 14 nonpsychiatric control individuals and 14 patients diagnosed 
with schizophrenia, matched in age and gender. There is no recent history of 
substance abuse for all participants of this study as well as there is controvery 
about the effects that certain drugs have in Schizophrenia. The original data 
file contains 6000 genes, after removing genes with one or more missing 
values, the resulting gene expression profile contains 2,901 genes x 14 
experiments. Details of this experiment are available on Bowden et al (2005) 
[29]. 

A Gene expression data from typical studies on primary tumors 
(CCDATA) [18] is the third example that we deal. In this case, the CCDATA 
data set is based on samples from cervical tumors before and after 
radiotherapy and is composed of 16 dye swaps and thus 32 experiments 
arrays. In the original cervical cancer data set, 22% of the data were missing 
which affecting 70% of the 14229 genes. Genes with one or more missing 
values are removed; this will leave 4,246 genes. The resulting intensity data 
matrix will be 4,246 genes x 64 experiments. The data of this example is 
available on the following website: http://genome, www.stanford.edu/listeria 
/gut/ 

The fourth data set is from an infection time series study [5] .Here, all 
the time course data are downloaded and we remove all genes with missing 
values, resulting in a 6,850 x 39 data matrix. The data is available on: 
http://genomebiology.com /2002/4/1/R2. 

The last data set is gene expression data from a study of Parkinson 
Disease (PD) introduced in Brown et al. (2002) [28]. In the original file, 17% 
of the data were missing, affecting 30% of the 9,000 genes .the genes with 
one or more missing values were removed, leaving data from 5,636 genes. 
The resulting intensity data matrix is of dimension 5,636 x 80. Detailed 
information about this data is available in Brown et al. (2002) [28]   

In our study, the data set that is used went through several processing 
steps Firstly; they were log-transformed after being taken from the image (i.e. 
after normalization). Secondly, the rows and columns, which contained too 
many missing valued, were excluded. Thirdly, before using the LSR method, 
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each of the columns was scaled to be between 0 and 1, which means the 
data sets are normalized Mean-normalizing the data will further help in 
regression performance using Euclidean Distance. Finally, the data sets with 
these pre-processing steps were used to construct the complete matrix.  

To evaluate the performance of the missing values estimation methods ,we 
construct the complete matrices by removing all rows containing the missing 
values , and randomly create the artificial missing values from 10% to 25% of 
the matrix entries, the artificial missing entries were introduced in two different 
ways: 

Row-based; randomly select a specific percentage of the entries in the 
complete matrix and remove them, between 10%-25% are removed in each 
row. 

Column-based; randomly select a specific percentage of the entries in the 
complete matrix, and remove them. Between 10%-25% are removed in each 
experiment/sample. Column-based methods are only shown in this paper. We 
can evaluate the performance of the missing value estimation by using 
Normalized Root Mean Square Error (NRMSE).  

3.1. Concluding Results 

Table 1 presents a comparative study between the performances of various 
imputation methods. The results of applying four different methods on five 
data sets are shown. From the results shown in Table 1, we see that the 
results reveal that LSR5 method always performs better than the LSR3 
method. For example, when the percentage of entries missing is 20%, the 
NRMSE of LSR5 reaches 0.10395, and the NRMSE of the LSR3 method is 
0.12418 for Niehs data. 

Fig.1 shows the performance of six different methods on five different data 
sets. The horizontal and vertical axes indicate the percentage of entries 
missing in the complete matrix and the NRMSE of each input scheme, 
respectively. With regards to performance comparison with other methods, 
the performance of the LSR impute method assessed over five different data 
sets, has been compared with four imputing approaches namely KNN, LLS, 
LS impute 3 and LS imputes impute methods. The K- value in the KNN 
impute method was preset as 15, according to the recommend range of 10 
and 20 [3], and both LS impute 3, 5 and the LLS impute methods are non – 
parametric methods, so they do not require K value. Figs. 1 to 5 show the 
performance of each method on different data sets. 
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Table 1. Comparison of basic LSR3 and LSR5 methods against KNNimpute, 
Simpute3, 5 and LLSimpute with 10% - 25%. 

 
Techniques 

Instanc
e 

LSR 3 LSR 5 LS 3 LS 5 LLS KNN 

       
Niehs 

10% 
0.10741 0.093610 0.15942 0.09252 0.10234  

Niehs 
15% 

0.12418 0.10395 0.17812 0.10508 0.12112  

Niehs 
20% 

0.15481 0.13911 0.20714 0.13920 0.13408  

Schi 10% 0.98052 0.98389 1.03791 0.97455 0.95456 0.965757 

Schi 15% 0.90436 0.89960 1.00851 0.90453 0.88912 0.91175 

Schi 20% 0.92459 0.92031 1.09819 0.92283 0.975262  

CCData 
10% 

o.18637 0.17479 0.26849 0.17312 0.32889 0.80094 

CCData 
15% 

0.19547 0.18220 0.27397 0.183401 0.34484 0.79821 

CCData 
20% 

0.20293 0.18748 0.27530 0.18868 0.36769  

CCData 
25% 

0.21076 0.194508 0.28147 0.19788 0.38967  

TS 10% 0.26452 0.26345 0.29476 0.25961 0.34111 0.49093 

TS 15% 0.26705 0.26569 0.29483 0.26098 0.34975 0.73361 

TS 20% 0.26465 0.26266 0.29469 0.25816 0.35355  

TS 25% 0.27736 0.27552 0.31029 0.27102 0.37767  

PD 10% 0.68565 0.68559 0.70847 0.67132 0.78062 0.45583 

PD 15% 0.68027 0.66629 0.70515 0.67958 0.77299 0.83692 

PD 20% 0.68453 0.67165 0.71104 0.68359 0.78844  

PD 25% 0.68607 0.67312 0.71182 0.68563 0.79359  
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Fig. 1. Performance of the six methods on Niehs data. The percentage of entries 
missing in the complete matrix and the NRMSE of each missing value estimation 
method are shown in the horizontal and vertical axes, respectively. 

Fig. 1 shows among all other methods, the LSR5 method gives comparable 
NRMSE values. From this Fig. 1, we see that when the percentage of missing 
values in the data set is 15%, the LSR achieves best results. When the 
percentage of the missing values reaches 20%, the NRMSE of the LSR is 
little larger than LLS impute method and LS impute 3. This shows that LSR 
method is comparable with if not better than the previous methods on this 
data set. Both time series data (TS) and the Schizophrenia are preprocessed 
by removing all genes that containing the missing values. Because our 
experiments are based on sample imputation, no samples were removed in 
this experiment, even the ones that contain considerable missing values rate. 
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Fig. 2. Performance of the six methods on Schizophrenia data. 

From Fig. 2 and 3, we see that LSR5 impute method starts to outperform 
the other methods when the missing rate is increased especially on the 
Schizophrenia data set. However, when we apply LSR5 on TS data, the 
NRMSE of LSR5 is a little larger compared to LS impute5. Generally, the LSR 
performs stable across the noisy data. Relevant to many kinds of human 
cancers, including colorectal, ovarian, breast, prostate, as well as Leukemia's 
and melanomas, which involve much more complex regulation mechanisms, 
CCDATA human cancer data requires more reliable algorithms for missing 
value estimation. In Fig. 4, we illustrate the performance of each method on 
this data set. In this case, the LSR5 method performs better than the other 
methods especially when the missing rate is increased. For example, all the 
other methods give an estimate performance with NRMSE between 0.19788 
and 0.38967 for 25% missing, whereas our method gives 0.19451. 
Consequently, the LSR5 impute method performs robustly as the percentage 
of the missing values increase. 
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Fig. 3. Performance of the six methods on TS data. 

The PD data is used to test how much an imputing method is able to take 
advantage of strongly correlated genes in estimating the missing values [28]. 
We can see from Table 1 and Fig. 5 that the LSR5 method outperforms than 
other methods. However, in terms of memory and running time performance, 
the LSR5 method can take better use of strongly correlated genes than the 
other four methods do in estimating the missing values.  
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Fig. 4 Performance of the six methods on CCDATA data. 

In this paper, we use four existing imputation methods to evaluate the 
performance of the LSR impute method. One of the major and advantages of 
the LSR method is that it makes most use of the information from the original 
data sets. The stepwise regression raises the estimation performance 
notably, which contributes to the best performance of the LSR method among 
other methods. The redundant missing values in the samples with many 
missing values are just neglected in the case of KNN and the LLS while the 
LSimpute simply regards them equally when modeling the missing values. 
Another advantage comes from the LSR method itself. The LSR method is 
the method that is based on the structural minimization principle (SMP is a 
family of statistical models that seek to explain the relationship among the 
variables). In doing so, it examines the structure of irrelationships among 
multiple variables in which the global optimal solution is guaranteed [11],[13]. 
The KNN method linearly combines the similar genes by weighting the 
average values of them. The coefficients used in combinations are calculated 
by using Euclidean Distance, which is not an optimal measurement for gene 
or sample similarity. This lets the KNN method performs worst among all 
other methods. The LLS and LSimpute are methods based on linear similarity 
structure. They share the similar linear combination of K- nearest genes as 
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the KNN impute, and surpasses the KNN impute by optimizing the coefficients 
of the nonmissing part of the similar gene using the least square solution. The 
LLS and LS impute methods are based on local similarity structure of the data 
set, which draws back its performance when the total similarity is not very 
clear. In most cases, the LLS method performs worse than LSimpute 5 but 
better than LSimpute 3.   
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Fig. 5 Performance of the six methods on PD data. 

Besides the PD highly correlated data, our method also works well on the 
data sets for those who are more difficult for regression-based methods, 
because of the complex regulation mechanisms involved as in the case of 
CCDATA (Fig.4). Furthermore, the length of the expression profiles in PD 
data is 80 experiments, which is larger than the experiments in other data 
sets (LSR isn't affected by the increase in the number of sample/experiments 
as does by most other methods). This will make it more complex for 
regression. On the other hand, Fig.3 shows that the LSR5 method achieves 
comparative results to the other previous methods. When the percentage of 
missing values becomes too large, the LSR impute method performs little 
worse than do the LSimpute5. This is partly due to the stepwise regression 
search strategy for the parameters sets (the number of samples that are 
chosen form ANOVA step). To maintain proper parameters sets (number of 
samples), the user should specify the range of the parameters been 
searched, so the parameters sets might not be the optimum. The parameter 
selection is also a problem that has to be solved in the linear stepwise 
regression. Even if the parameter set might not be optimum, the result is still 
comparative with other impute methods. Thus, the LSR impute method 
performs well in our presented paper. 
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Finally, using any imputing algorithm requires the creation of a complex 
matrix. Calculating a complete matrix can be carried out by using average, 
zeros or ones as in the case of KNN, LLS, and LSimpute. However, this will 
cause degradation in the performance of the final algorithm results. LSR 
algorithm uses a leading algorithm (LSimpute is used in this paper) to create 
the complete matrix which in turn increases the chances of getting more 
reliable results. However, if the number of samples in microarray is small, the 
performance of LSR declines. Consequently, we don't recommend using LSR 
method over 25% missing and if the number of experiments is less than 15.  

4. Conclusion and Future Works 

To conclude this paper, different missing values imputation algorithms were 
explained. Different metric measures were used to measure the performance 
of the algorithms. Each algorithm was tested under different data sets. 
However, to validate the performance of each algorithm, more test 
experiments are needed to be conducted. Furthermore, to be sure that the 
algorithms are reliable, the same data sets should be used to run the 
experiments. Finally, from the literature presented, we conclude that the LLS 
and SVR algorithms have achieved the best performances. SVR can be 
considered as a complement algorithm for LLS especially when applied to 
noisy data. However, both algorithms suffer from some deficiencies. LLS has 
the problem of assigning the parameter value K. Selecting different K-values 
results in different performances which in turn affects the final metric 
evaluation for this algorithm. Choosing the optimal K-value should be carried 
out each time the algorithm is used. SVR, on the other hand, has two 
disadvantages, first, the choosing of the appropriate kernel function and 
second, its computational complexity. As a future work to be done by others 
and to overcome these drawbacks, we need a new method that automatically 
chooses the parameters of the function and it also has an appropriate 
computational complexity is imperative. 
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