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Abstract. This paper considers the cycle covering of complete 
multipartite graphs motivated by the design of survivable WDM 
networks, where the requests are routed on sub-networks which are 
protected independently from each other. The problem can be stated as 
follows: for a given graph G, find a cycle covering of the edge set of 

)(nKtλ , where V( Kt (n))=V(G), such that each cycle in the covering 
satisfies the disjoint routing constraint (DRC). Here we consider the case 
where G=Ctn, a ring of size tn and we want to minimize the number of 

cycles ),( λρ tn  in the covering. For the problem, we give the lower 

bound of ),( λρ tn , and obtain the optimal solutions when n is even or 
n is odd and both λ and t are even. 
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1. Introduction 

Wavelength division multiplexing (WDM) technology has the potential to 
satisfy the ever-increasing bandwidth needs of network users on a sustained 
basis. Wavelength division multiplexing is now being widely used for 
expanding capacity in optical networks. In a WDM network, each fiber link can 
carry high-rate traffic at many different wavelengths, thus multiple channels 
can be created within a single fiber. There are two basic architectures used in 
WDM networks: ring and mesh. The majority of optical networks in operation 
today have been built based on the ring architecture. The reader is referred to 
[9-14] for the relevant work.  

Here we consider a covering problem arising from the decomposition of a 
survivable WDM network, where the communication requests are routed on 
sub-networks which are protected independently from each other. We model 
the WDM network by a graph, called the physical graph and denoted by G. 
The vertices of the graph represent the optical switches and the edges the 
fiber-optics links. In fact, G is an oriented symmetric multigraph; indeed each 
time there is a fiber optic from a node x to a node y there is also the opposite 
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one. We will consider that the graph G is either an undirected cycle of length 
tn, denoted by Ctn, or the symmetric directed cycle *

tnC .  
Routing a request over G consists in finding a path over G between the pair 

of nodes communicating in the request. The protection problem we consider 
consists in covering the family of requests by some small subcycles. Indeed, 
on the cycle we use half of the capacity for the demands, and in case of 
failure we reroute the traffic through the failed link via the remaining part of 
the cycle using the other half of the capacity. It will be interesting to get very 
small cycles as subnetworks as they are easier to manage and less costly to 
reroute. For the reason, one constraint that each cycle formed by some 
requests must be routed vertex disjointly over G, or this is the same as saying 
that we can find a set of vertex disjoint paths corresponding to the set of 
requests over a cycle. We call this property the disjoint routing constraint 
(DRC).  

We can model all the requests as the edge set of a logical graph I 
undirected or not. The vertices represent the nodes of the physical graph and 
the edges correspond to the requests between these nodes. 

Problem 1.1. Find a cycle partition or a cycle covering satisfying DRC 
property of the edges of I with an associated routing over G such that the 
number of cycles is minimized.  

Our aim is to minimize the cost of the network. When G=Ctn, it corresponds 
to minimize the number of cycles in the covering. In summary, we want to find 
the minimum number of cycles in a DRC-covering of I relatively to the cycle 
Ctn. As a variation of the problem, we can also add some restriction to the 
cycles in the covering, for example, we can consider the case when the size 
of the cycles is uniform or is bounded. In [1], Bermond et al. discussed the 
problem of DRC-covering for the logical graph I is the complete graph Kn (or 
the symmetric complete digraph *

nK ), and the physical graph G is a cycle. 
Bermond and Yu [2] extended the results to G be a torus (instead of cycle). 
Liang and Han [3] discussed the problem of DRC-covering for the logical 
graph I is nKλ  and nnK ,λ (or *

nKλ  and *
,nnKλ ). Recently, the survey [15] 

lists the results on DRC cycle coverings. In this paper, we will discuss the 
case for the logical graph I is )(nKtλ . 

2. Definitions and notation 

Let Z be a ring of integers and Zm the residue class group modulo m with 
residue classes {0,1,…,m-1}. In what follows, the notations, [a,b]={x∈Z | a≤x
≤b}, [a,b]k={ x∈Z | a≤x≤b, x≡a (mod k) } for a,b∈  Z and ⎡ ⎤x =min{y | y∈Z, 
y≥x} are used frequently.  

We use the notation of graph theory so that Kn, Kt(n) and Cm will, 
respectively, denote the complete graph on n vertices, the complete t-partite 
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graph with parts of sizes n, and the m-cycle. λ copies of Kt(n) is denoted by 
)(nKtλ . Let the vertices of the physical graph Ctn be labeled with integers 

modulo tn, represented by the set {0,1,2,...,tn-1}. For that, let us arrange the 
vertices of Ctn in the following order: 0,1,2,...,tn-1. Let Xi={x | x∈Ztn, x≡i (mod 
t)}, i∈ [0,t-1] be parts of the logical graph )(nKtλ . Let us give with a few 

basic definitions again. Let Ω be a set of cycles, and H= )(nKtλ . A Ω-
decomposition (Ω-covering, resp.) of H, denoted by GD(H,Ω) (CD(H,Ω), 
resp.), is a pair (X,B) where X is the vertex set of H and B is a collection of 
subgraphs of Kt(n), such that each subgraph is isomorphic to some cycle inΩ 
and each edge in Kt(n) is joined in exactly (at least, resp.) λsubgraphs of B. 
A Ω-covering is said to be minimum, denoted by MCD(H,Ω), if no other such
Ω-covering has fewer subgraphs. The number of subgraphs in a minimumΩ-
covering is called the covering number, denoted by c(H,Ω).  

If a Ω-decomposition (minimumΩ-covering, resp.) satisfies DRC property, 
we call it is a DRC-decomposition (DRC-covering, resp.). In the following, we 
denote ),( λρ tn  the minimum number of cycles needed in such a DRC-

covering of )(nKtλ  and similarly we define ),( λρ t
k n  for the case when the 

cycle size is restricted to be k. It is easy to obtain the following result.  
Proposition 2.1. ),( λρ tn ≥c( )(nKtλ ,Ω), and ),( λρ t

k n ≥c( )(nKtλ ,
Ω) if Ω={Ck}.  

It is easy to see that a cycle Ck satisfies DRC if and only if its vertices can 
be ordered cyclically modulo tn, that is if the vertices can be written 
(a1,a2,…,ak) with 0≤a1≤a2≤…≤ak≤tn-1. For convenience sake, we denote 
the Ck by (a1,a2,…,ak,a1). 

3. The main results 

In this section, our main aim will be to find the minimum number ),( λρ tn  of 

cycles in a DRC-covering of )(nKtλ . 
Theorem 3.1. Let n, t and λ be positive integers. The lower bound of 

),( λρ tn  is as follows. 

(1) When t and n are odd, ),( λρ tn ≥λ (t-1)(tn2+1)/8.  

(2) When t is even and n is odd, ),( λρ tn ≥[ λ t(tn2-n2+1)+4]/8 if λis 

odd, ),( λρ tn ≥λ t(tn2-n2+1)/8  if λ is even.  

(3) When n is even, ),( λρ tn ≥λ t(t-1)n2/8.  
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Proof. Let Cj, 1 ≤ j ≤ ),( λρ tn , be the cycles of a DRC-covering 

of )(nKtλ , the disjoint routing property implies that the vertices of any Cj are 

cyclically ordered modulo tn. Thus the Cj can be written ( ja1 , ja2 , …, j
k j
a , ja1 ) 

with 0≤ ja1 ≤
ja2 ≤ . . . ≤ j

k j
a ≤tn-1. 

Let j
iδ = j

ia 1+ - j
ia , 1≤i≤kj-1, and j

k j
δ =tn+ ja1 - j

k j
a . The disjoint routing 

property implies ∑i
j
iδ =tn. For an edge xy of )(nKtλ  with x<y, we call 

difference of the edge the value y-x if y-x≤tn/2 or x+tn-y otherwise.  
Case 1. When t and n are odd 
The covering must contains ntλ  edges of difference d, d∈ [1,(tn-1)/2]-

[t,(tn-1)/2]t. We have 
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nt ),( λρ tn ≥ 8/)1)(1( 2 +− tntntλ .  

Therefore, ),( λρ tn ≥ 8/)1)(1( 2 +− tntλ . 
Case 2. When t is even and n is odd 
(i) If λ is odd, the covering must contains ntλ  edges of difference d, d∈

[1,(tn-2)/2]-[t,(tn-2)/2]t, and contain 2/ntλ edges of difference tn/2. 
Furthermore, since the degree of the nodes in )(nKtλ  is odd, and the 
degree of the nodes of a cycle is even, the covering must contains extra 
edges. Thus, there are at least nt/2 extra edges of difference at least 1 in the 
covering. Consequently, 
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If the covering contains ),( λρ tn  cycles, we obtain  

nt ),( λρ tn ≥ 8/]4)1([ 22 ++− ntnttn λ . 

Therefore, ),( λρ tn ≥ 8/]4)1([ 22 ++− ntntλ . 
(ii) If λ is even, then the covering must contains ntλ  edges of difference 

d, d∈[1,(tn-2)/2]-[t,(tn-2)/2]t, and contains 2/ntλ  edges of difference tn/2. 
Consequently,  
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Therefore, ),( λρ tn ≥ 8/)1( 22 +− ntntλ .  
Case 3. When n is even  
The covering must contains ntλ  edges of difference d, d∈[1,tn/2]-[t,tn/2]t. 

Thus,  
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If the covering contains ),( λρ tn  cycles, we obtain  

nt ),( λρ tn ≥ 8/)1(32 −tntλ . 

Therefore, ),( λρ tn ≥ 8/)1(2 −ttnλ .                                                         □  
Lemma 3.2. Let λ be a positive integer and Ω be a set of cycles. If there 

exists a DRC-decomposition of Kn,n by Ω , then there exists a DRC-
decomposition of )(nKtλ  byΩ for any integer t≥2.  

Proof. Let the t parts of Kt(n) be Xi={ jt+i | j∈[0,n-1] }, i∈[0,t-1]. Since there 
exists a DRC-decomposition of Kn,n by Ω, then when i, j∈[0,t-1] and i<j, there 
exists a DRC-decomposition of Kn,n with bipartition (Xi,Xj) by Ω, and let its 
cycle-set be Bi,j. It is easy to verify that 1

1
1
1

−
+=

−
= ∪∪ t

ij
t
i  Bi,j is a cycle-set of the 

DRC-decomposition of Kt(n) by Ω. Each cycle in the DRC-decomposition of 
Kt(n) repeats λ  times, we obtain the required DRC-decomposition of 

)(nKtλ .                                                                                                      □ 
Theorem 3.3. Let n be even and λ  be positive integer. Then 

),( λρ tn = ),(4 λρ tn = 8/)1( 2ntt −λ . 

Proof. When n≡0 (mod 4), we construct a DRC-decomposition of nnK ,λ  

as follows: (i,i+2j-1,i+n,i+n+2j-1,i), 0≤i≤n-1 and 1≤j≤n/4, and each cycle of 
them repeats λ times. One can check that these cycles satisfy DRC and 
each edge of nnK ,λ  is covered by one of these cycles. Then 

4/4/),( 22
4 nnnn λλλρ =⋅= .  

When n≡2 (mod 4), if n=2, then one C4 is (0,1,2,3,0). If n>2, we construct a 
DRC-decomposition of Kn,n as follows: 

(i,i+2j-1,i+n,i+n+2j-1,i), 0≤i≤n-1 and 1≤j≤(n-2)/4,  
(i,i+n/2,i+n,i+3n/2,i), 0≤i≤(n-2)/2.  
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Note that these cycles satisfy DRC property. Each cycle of them repeats λ
times, we obtain a DRC-decomposition of nnK ,λ . Therefore, we have 

4/]2/4/)2([),( 22
4 nnnnn λλλρ =+−= .  

From Lemma 3.2, there is ),(4 λρ tn = ( ) 42
2nt λ = 8

)1( 2ntt −λ . Since ),(4 λρ tn ≥

),( λρ tn , ),( λρ tn = ),(4 λρ tn = 8/)1( 2ntt −λ  by Theorem 3.1.              □ 
Lemma 3.4. (Liang and Han, [3]) When t and λ are even, there exists a 

DRC-covering of tKλ  with 8/),( 2tt λλρ =  cycles. 
Theorem 3.5. Let n be odd. When λ  and t are even, 

),( λρ tn = 8/]1)1[( 2 +− nttλ . 
Proof. From [3] Theorem 3.8, there exists a DRC-decomposition of 2Kn,n-

2K2 with (n2-1)/2 cycles. Where 2K2 is a graph with 2-repeat edge {1,n+1}. 
2Kt(n)- ( )t2 ( 2Kn,n-2K2) form a graph 2Kt, and the 2Kt can be covered by t2/4 

cycles from Lemma 3.4. Therefore, the 2Kt(n) can be covered by ( )t2 (n2-1)/2+ 
t2/4=2[t(t-1)n2+t]/8 cycles. Let λ=2k. Each cycle in DRC-covering of 2Kt(n) 
repeats k times, we obtain the required DRC-covering of )(nKtλ .    □ 

4. Related results 

In this section, we will discuss the case when the size of the cycles is uniform 
or is bounded. 

Theorem 4.1. ),(3 λρ tn = ⎡ ⎤⎡ ⎤ 12/)1(3/ +−tntn λ  when one of the 
following congruences is satisfied:  

(1) λ≡2 (mod 6), n≡1 or 2 (mod 3) and t≡2 (mod 3);  
(2) λ≡5 (mod 6), n≡2 or 4 (mod 6) and t≡2 (mod 3);  
(3) λ≡5 (mod 6), n≡1 or 5 (mod 6) and t≡5 (mod 6),  

and ),(3 λρ tn = ⎡ ⎤⎡ ⎤2/)1(3/ −tntn λ  otherwise.  
Proof. From Theorem 4.1 in [7], we obtain the result.                               □ 
Theorem 4.2. When n≡0 (mod 2), there is )1,( 2

4 nρ =n2/4. When n≡1 

(mod 4), there is )1,( 2
4 nρ =(n2+n+2)/4. When n ≡ 3 (mod 4), there is 

)1,( 2
4 nρ =(n2+n)/4.  

Proof. When n is even, we obtain )1,( 2
4 nρ =n2/4 from Theorem 3.3. When 

n is odd, from Lemma 2.2 in [8] and Proposition 2.1, we obtain the following 
table. 
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n (mod 4) 1 3 

)1,( 2
4 nρ ≥ (n2+n+2)/4 (n2+n)/4 

 
We distinguish three cases to show this theorem.  
Case 1. When n=3, 5, 7  

K3,3 can be covered by 3 C4 's. They are 
(0,1,2,3,0), (0,1,4,5,0), (2,3,4,5,2). 

K5,5 can be covered by 8 C4 's. They are 
(0,1,2,5,0), (2,3,4,7,2), (4,5,6,9,4), (1,6,7,8,1), 
(0,3,8,9,0), (0,1,4,7,0), (2,3,6,9,2), (1,2,5,8,1). 

K7,7 can be covered by 14 C4 's. They are 
(0,1,2,7,0),   (2,3,4,9,2),       (4,5,6,11,4),    (6,7,8,13,6), 
(1,8,9,10,1), (3,10,11,12,3), (0,5,12,13,0),  (0,3,6,9,0), 
(1,4,7,12,1), (2,5,8,11,2),     (4,5,10,13,4),  (1,6,9,12,1), 
(2,3,8,13,2), (0,7,10,11,0).  

Case 2. When n≡1 (mod 4) (by induction on n) 
The theorem is true for n=5 as shown by Case 1. Suppose that the 

induction hypothesis is true for Kn,n. We will show that it is true for Kn+4,n+4. Let 
the vertices of Kn+4,n+4 be 0,1,...,n-1,A,B,C,D,n,n+1,...,2n-1,E,F,G,H, and 
arrange them in this order. The C4 's of a DRC-covering of Kn+4,n+4 will be  

● the (n2+n+2)/4 C4 's of the covering of Kn,n , 
● the 2n-2 C4 's of a DRC-decomposition of Kn+3,n+3-Kn-1,n-1-K4,4. The vertex 

set of Kn+3,n+3, Kn-1,n-1 and K4,4. are [0,n-2]∪[n+1,2n-1]∪{A,B,C,D,E,F,G,H}, 
[0,n-2]∪[n+1,2n-1] and {A,B,C,D,E,F,G,H}, respectively, 
● the 7 C4 's: (A,B,n,E,A), (B,C,D,H,B), (A,D,n,G,A), (C,E,F,G,C),  

(n-1,A,E,H,n-1), (n-1,C,D,F,n-1), (B,F,G,H,B). 
One can check that all the edges of Kn+4,n+4 are covered and there are 

altogether (n2+n+2)/4+2n-2+7=[(n+4)2+(n+4)+2]/4 C4 's. Therefore, Kn+4,n+4 
satisfies the induction properties. 

Case 3. When n≡3 (mod 4)  (by induction on n)  
The theorem is true for n=7 as shown by Case 1. Suppose that the DRC-

covering of Kn,n has (n2+n)/4 C4 's. The same as Case 2, we obtain that the 
DRC-covering of Kn+4,n+4 has (n2+n)/4+2n-2+7=[(n+4)2+(n+4)]/4 C4 's.          □ 

Lemma 4.3. (see [4, 5]) Let m and n be positive integers with m≥4 even, 
and n≥3 odd. Then Cm|Kn,n-I if and only if m|n(n-1) and m≤2n. 

Lemma 4.4. (Sotteau [6]) The bipartite graph Kr,s can be decomposed into 
cycles of length 2k if and only if r and s are even, r≥k, s≥k, and 2k divides 
rs. 

Theorem 4.5. Let m and n be positive integers with m≥4 even. When n is 
odd, m≤2n and m|n(n-1), there is ⎡ ⎤mnmnnnm /2/)1()1,( 2 +−≥ρ . 

When n is even, m≤n and m|n2, there is mnnm /)1,( 22 ≥ρ .  
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Proof. Since the degree of the nodes in Kn,n is odd and the degree of the 
nodes of a cycle is even, there are at least n extra edges of difference in the 
covering. From Lemma 4.3 we have 

⎡ ⎤mnmnnnm /2/)1()1,( 2 +−≥ρ .  

When n is even, from Lemma 4.4 we have mnnm /)1,( 22 ≥ρ .              □ 
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