
UDC 004.428, DOI: 10.2298/csis0902001V

Extensible Java EE-Based Agent Framework and
Its Application on Distributed Library Catalogues

Milan Vidaković1, Branko Milosavljević1, Zora Konjović1, and
Goran Sladić1

1Faculty of Technical Sciences, Trg D. Obradovića 6,
21000 Novi Sad, Serbia

{minja, mbranko, ftn_zora, sladicg}@uns.ac.rs

Abstract. The paper presents the new agent framework XJAF and its
application on distributed library catalogues. The framework is based on
the Java EE technology and uses the concept of the plug-ins for
implementation of the basic framework components. One important
plug-in of the agent framework has been introduced into this system: the
inter-facilitator connection plug-in, which defines how multiple facilitators
form an agent network. The inter-facilitator connection plug-in is
particularly important in both design and implementation phases in the
field of distributed library catalogues. In order to substantiate the above
statement, the framework has been used for implementation of the
agent-based central catalogue of the library information system BISIS.
Also, the framework has been used to implement the agent-based
metadata harvesting system for the networked digital library of theses
and dissertations (NDLTD). Both systems have been implemented at the
University of Novi Sad.

Keywords: agent framework, Java EE, plug-in, extensible, library
catalogue.

1. Introduction

Intelligent agents play an important role in software engineering regarding
their intensive deployment in search and processing of information, as well as
in complex software products, tools and systems. Agents are entities which
are not capable of existing without an agent framework. According to [12], an
agent framework consists of a collection of entities, objects, agents and
autonomous agents. Agent frameworks in [23] represent a set of services
demanded by users or by other frameworks. Agents are providing those
services.

Agents need a programming environment which will create and enable
agents to execute tasks [12, 19, 8, 7]. Beside controlling the life cycle of an
agent, an agent framework also provides messaging and service subsystems
to effectively support agents. Messaging allows agents to communicate to
each other, and service subsystem gives them the possibility of accessing

Milan Vidaković, Branko Milosavljević, Zora Konjović, and Goran Sladić

ComSIS Vol. 6, No. 2, December 2009 2

various resources or executing complex algorithms that do not need to be
implemented in the agent itself. The set of subsystems mentioned above is an
agent framework. An agent framework also provides agent mobility and
security. Agent mobility allows agents to migrate from one agent framework to
another. The security subsystem provides security mechanisms which protect
both agents and frameworks.

When analysing an agent framework, one can identify a certain number of
requirements it needs to meet. First of all, the agent framework needs to
provide working environment for the agents, taking into account security
issues. Also, agent mobility is an important feature to be implemented, and
this feature automatically raises the question of the implementation technique:
to use an existing distributed components technology or make a proprietary
solution. In addition to code execution, an agent framework must provide
message interchange. Agent and service discovery subsystems are important
elements of any agent framework, too.

All of these requirements are subject of the FIPA specification [14]. By
implementing an agent framework compliant with the FIPA specification, it is
possible for the agent framework to cooperate with other agent frameworks.

The application of agent-based solutions in the field of distributed digital
library catalogues contributes easier and more effective usage of such
systems. Agent-based systems provide for better connectivity among libraries
and can implement various complex algorithms related to search activity more
naturally (for example, "parallel" search), which are essential for use of
distributed digital library catalogues.

The paper is organised as follows. Section 2 describes related work.
Section 3 gives the detailed overview of the new agent framework, which is
later used for implementation of the virtual central library catalogue and
metadata harvesting. Section 4 represents two agent implementations using
the XJAF agent framework in the field of distributed digital catalogues. Finally,
the last section gives the conclusion and future work guidelines.

2. Related Work

Early papers on agent frameworks were based on presenting solutions to the
particular problems [28, 9]. This led to specialised systems which use agent
technology to solve specific problems in various fields [24, 41, 20, 3].

On the other hand, general-purpose agent frameworks appeared [17, 5, 1,
18, 4] due to the need to have systems which support arbitrary agents. These
frameworks represent systems which control the life cycle of agents, provide
inter-agent communication and agent mobility. Security issues are also taken
into consideration.

From the technology point of view, agent frameworks are based on either
proprietary solutions or solutions based on the distributed components
technology. Agent frameworks like JAF (Java Agent Framework) [17] and JAT
(Java Agent Template) [18] are based on proprietary solutions, while Aglets

Extensible Java EE-Based Agent Framework and Its Application on Distributed Library
Catalogues

ComSIS Vol. 6, No. 2, December 2009 3

[1], JADE (Java Agent DEvelpment framework) [4] and SAFT [7] are based on
the RMI, CORBA and Java EE technology.

A lot of papers are related to the security issues in agent frameworks [40,
6, 34, 21, 42, 15, 38]. Security issues regarding agent frameworks include:
providing message integrity, code protection during agent migration and
protecting agent frameworks from malicious agents.

Most of the existing agent frameworks meet all or most of the mentioned
requirements. However, the implementation elements of agent frameworks
are hard-coded and cannot be changed. If there is a need to use another
algorithm in an element of the framework, it is practically impossible to use it
without recompiling it (if possible at all).

There is also one concept which is not investigated enough in agent
frameworks – inter-facilitator connectivity mechanism. There are papers [13,
22] which deal with the concept of Multi-Agent Organization in terms of
providing inter-relationship between agents, as well as implementing load-
balancing. The paper [13] offers the definition of agent organisation (Multi-
Agent Organisation) which is a way of providing inter-relationships between
agents. Multi-Agent Organisation represents one means of distributing tasks,
data and resources. Load-balancing can also be the reason to organise agent
frameworks. In [22] it is stated that hierarchical organisation of agent
frameworks can give much better results than having a large number of
agents in a single agent framework. Also, most agent frameworks use
networks, but without awareness of the network environment. In order to
communicate, the two agents must know exact IP addresses of each other’s
host computers. These issues in particular are addressed in this paper as a
part of the ConnectionManager component (in the section 3.4.).

The agent framework XJAF (eXtensible JavaEE-based Agent Framework)
[35] presented in the paper is based on the Java EE technology and is
compliant with the FIPA specification. All important elements of the framework
are implemented as plug-ins, which provides for flexibility in both design and
implementation.

There are several agent-based implementations of digital libraries [25, 32,
29]. The Daffodil project is a virtual digital library which enables searching
over a federation of heterogeneous digital libraries. Its initial implementation
enabled integrated search of more than eighteen digital collections and other
resources (including ACM digital library, Springer, Google, GetInfo, HCIBib
Human Computer Interaction Resources, the Collection of Computer Science
Bibliographies, the Digital Bibliography & Library Project, the Directory of
Open Access Journals, the Scirus scientific resources search engine, and
Cornell University’s ArXIv online database). The system supports
collaborative search and provides information of new or changed objects
related to previous searches. The system supports both low-level and high-
level search functions. Low-level information search is mostly comprised of
“moves”. These basic moves might include adding a keyword to a search, or
following a link. The relevant Daffodil tools include a personal library and
interactive tools such as the “Did you mean…” feature that checks the search
terms in a query and makes suggestions/corrections. The high-level search

Milan Vidaković, Branko Milosavljević, Zora Konjović, and Goran Sladić

ComSIS Vol. 6, No. 2, December 2009 4

includes the following features: reference and citation management, journal
and conference proceedings search, author search, the classification tool
(presents a topic and domain-based representation scheme), and the
thesaurus tool. The backend of the Daffodil architecture is based on the
CORBA agent architecture.

The University of Michigan Digital Library (UMDL) [32] project is an agent-
based solution that enables users to search through heterogeneous digital
libraries. The agents at work in the UMDL process user searches and display
the results, filter large quantities of information, monitor usage patterns, and
pass information on to other agents for further processing. The agent core
consists of three types of agents: user interface agents, mediation agents,
and collection agents. User interface agents conduct interviews with users to
establish their needs and to specify areas of interest, so that the system can
notify the user of items of potential relevance. Mediation agents coordinate
search of many distinct but networked collections by taking orders from
interface agents. Collection agents are associated with each specific
collection and can handle search within specific collections of text, images,
graphics, audio and video.

The MALIBU project [29], implemented in the United Kingdom, is also an
agent-based digital library solution. It is used to enable search over different
kinds of resources and media, making this system a kind of a hybrid library.
The search engine is agent-based and it has the following features: keyword,
author, and title search, profile management (this feature allowed the user to
select only those targets which might be most suited to their research needs),
and exportation of results via email, HTML, plain text, RTF or RDF. There are
two types of agents: a central communication agent and a query agent. A
central communication agent does the interaction with the user and employes
the appropriate query agent for the search. A query agent is used to perform
the search over a designated target. A special ontology is developed for
MALIBU agents which enables proper communication among them.

An exhaustive overview of use of intelligent agents in modern libraries is
presented in [33]. According to this paper, agents can be used as flexible
infrastructure providing for efficient search within the personalized information
environment. The same source also gives notes on challenges related to
application of agent technology in libraries.

3. EXtensible Java EE-Based Agent Framework (XJAF)

At the very beginning of this section we shall make reference to some
implementation issues of the agent framework XJAF which is presented in
this paper. The Java EE technology is used for implementation of the agent
framework XJAF [38, 37]. The Java EE technology is particularly useful
because it comprises a large set of technologies and provides for scalability,
reliability and has the large number of implementations. One element of the
Java EE technology is particularly useful – the EJB (Enterprise JavaBeans)

Extensible Java EE-Based Agent Framework and Its Application on Distributed Library
Catalogues

ComSIS Vol. 6, No. 2, December 2009 5

technology. This is a technology of distributed software components which
are created, executed and destroyed in the application servers. The typical
life cycle of an EJB component is: the component is found in the application
server container, used and put back into the container. All performance-
related issues like load-balancing, distribution-per-server, etc. are left to the
implementation of the application server. Beside supporting distributed
components, Java EE also has all other technologies for the agent framework
implementation: JMS (Java Message Service) for message exchange, JNDI
(Java Naming and Directory Interface) for directory implementation, Java
Security, etc.

A XJAF system consists of a Java client, the FacilitatorProxy component
which hides all implementation details from the client (i.e. JNDI lookup, JMS
message composition, etc.), and the Facilitator component. The main
component of the framework is the Facilitator component which is deployed in
the application server (Figure 1).

Client
Application

Facilitator
Proxy

Facilitator

Fig. 1. Component diagram of XJAF system

The Facilitator component, which is the main component of the framework
is implemented as an EJB component. This component is deployed in the
Java EE application server and is not directly used by the client. For this
purpose, the FacilitatorProxy component is used. It connects the client
application and the Facilitator component. The Facilitator component is
represented in the Figure 2.

The facilitator forwards parts of its job to corresponding managers. The
managers are instances of classes implementing the corresponding
managerial interfaces. The AgentManager interface is responsible for
allocating and releasing agents. It represents the Agent Directory Service
component of the FIPA specification. The TaskManager interface manages
the tasks. It stores tasks, assigns tasks to corresponding agents and provides
a way of notifying the client of the results. The MessageManager interface is
responsible for inter-agent communication and it actually represents the
Transport Message component of the FIPA specification. The
ConnectionManager interface manages inter-facilitator connections and
relations. The SecurityManager interface defines security aspects of the
agent framework. The ServiceManager interface defines service directory
and represents the Service Directory for Services component of the FIPA
specification.

Milan Vidaković, Branko Milosavljević, Zora Konjović, and Goran Sladić

ComSIS Vol. 6, No. 2, December 2009 6

FacilitatorEJB

SimpleAgentManager

AgentManager

SimpleConnectionManager

ConnectionManager

SimpleTaskManager

TaskManager

SimpleMessageManager

MessageManager

SimpleSecurityManager

SecurityManager

ServiceManager

SimpleServiceManager

Fig. 2. The Facilitator component

The classes which implement the mentioned interfaces respect the
corresponding algorithms for individual functions. The system is designed so
that it is possible to choose an arbitrary manager when configuring, provided
that it implements the given interface. This enables use of arbitrary managers
whose existence is not necessary at compile-time, but is at the time of
initialisation (the plug-in concept). This also allows the user to choose the
appropriate strategy for implementation of the agent framework. This strategy
is implemented by plugging-in the appropriate manager (done merely by
configuring) of the agent framework rather than compiling

3.1. Facilitator Component

The Facilitator component realises the facilitator functionality. The facilitator
forwards parts of its job to the corresponding managers. The managers are
instances of classes implementing the corresponding managerial interfaces.

Extensible Java EE-Based Agent Framework and Its Application on Distributed Library
Catalogues

ComSIS Vol. 6, No. 2, December 2009 7

MessageListener

FacilitatorMDB

ConnectionManager

AgentManager

MessageManager

SecurityManager

TaskManager

FacilitatorProxy

ServiceManager

FacilitatorEJB

Facilitator

Fig. 3. The Facilitator component implemented as an EJB component

The Facilitator component is implemented as an EJB component
(FacilitatorEJB class). This class is actually the SessionBean EJB
component. The FacilitatorEJB class implements the Facilitator
interface (defines the Remote interface, e.g. business methods available to
users).
FacilitatorProxy class is a bridge between the client application and

the Facilitator component. FacilitatorMDB is a MessageDrivenBean EJB
component and is used for JMS communication between the Facilitator
component and the rest of the system.

3.2. Agent Management Component

The AgentManager component manages agents. It actually represents agent
directory and is used for agent allocation and release. It also controls the
agent life cycle. Controlling the agent life cycle means creating and destroying
an agent. This manager uses the EJB technology to implement agents.
However, agents are not EJB components. Rather, they are common Java
classes which are embedded into the EJB holder components – components
designed just to hold agents. This approach is adopted because it would have
restricted agents a great deal if they had been EJB components. One of the
reasons for not having agents as EJB components is that agent mobility
requires that agents should be able to migrate from one framework to

Milan Vidaković, Branko Milosavljević, Zora Konjović, and Goran Sladić

ComSIS Vol. 6, No. 2, December 2009 8

another. If an agent had been an EJB component, it would have been rather
complicated to migrate it from one application server to another.

An example of embedding an agent into an EJB holder (the
AgentHolderBean class) component is given in the following listing.

public Object getAgent(String agentClassName)
 throws AgentNotFoundException {
 // Create one AgentHolder.
 AgentHolder agentHolder = null;
 try {
 InitialContext context = new InitialContext();
 agentHolder = (AgentHolder)context.lookup(
 "AgentHolderBean/local");
 agentHolder.init(agentClassName);
 } catch(Exception e)
 throw new AgentNotFoundException(
 "AgentManager error: " +
 e.getMessage());
 return agentHolder;
}

The listing above displays creation of a customized EJB component which

is used to store an agent. When creating an EJB component, the agent class
name is forwarded to the init() method of the AgentHolderBean class,
as displayed in the next listing.

/** Agent assigned to this agent holder */
private Agent agent;
public void init(String agentClassName)
 throws CreateException {
 // Create an agent and store it.
 try {
 agent = loadClass(agentClassName);
 } catch (Exception ex) {
 ex.printStackTrace();
 throw new CreateException(
 "Could not create agent: "+
 agentClassName + ": " +
 ex.getMessage());
 }
}

This approach is useful when an agent moves from one framework to
another. In that case, only the agent is moved to the destination and placed
into the new agent holder. Figure 4 displays agent mobility scenario.

Extensible Java EE-Based Agent Framework and Its Application on Distributed Library
Catalogues

ComSIS Vol. 6, No. 2, December 2009 9

locAgent :
Agent

locFacilitator :
Facilitator

remoteAgFacilitator :
Facilitator

remoteAgManager :
AgentManager

remoteAgent :
Agent

locAgManager :
AgentManager

moveTo()
acceptAgent()

newAgentID

create()

getAgent()

newAgentID

reprogramAgent()

releaseAgent()

onArrival()

Fig. 4. Moving agents from one framework to another

Agent migration is done by checking availability with the destination
facilitator. If the destination facilitator does accept the agent, it will create an
agent holder and receive the serialized agent and place it into the holder (the
reprogramAgent() method). All internal references to an agent are
redirected to the new location. The agent as a Java class just needs to
implement the Agent interface which extends the java.io.Serializable
interface. This makes it possible that the agent is serialized and moved
through the network.

3.3. Task Storage and Reporting Component

The TaskManager component manages tasks to be performed by the agent
framework. It is realised through the class which implements the
TaskManager interface. It also provides a way of notifying the client about
the task execution progress.

Each task is stored in this component. When completed, it is removed from
it. Tasks are instances of classes which implement the AgentTask interface.
There are two types of task execution: programmatically or by sending a
KQML message to the agent.

When executing a task programmatically, an instance of the task is created
and forwarded to the Facilitator component. This component looks for the

Milan Vidaković, Branko Milosavljević, Zora Konjović, and Goran Sladić

ComSIS Vol. 6, No. 2, December 2009 10

appropriate agent and forwards the task to it by invoking the execute()
method of the agent. When the agent completes the task, it returns the result
as an instance of the AgentResult class. This result is sent to the client
using the FacilitatorProxy component.

When executing a task by sending a KQML message to the agent, the
client application sends the KQML message to the Facilitator component. This
component looks for the appropriate agent and sends the message to it.
When the task is completed, the agent replies to the original message and the
message is forwarded to the client using the FacilitatorProxy component.

This agent framework uses the concept of listeners for communication
between the client application and the framework. A listener is a Java class
which has specialised methods to be invoked when the appropriate type of
event occurs. In this case, there are four types of events:

1. the job started (when the agent has received the task),

2. the job performing (when the single step of the job is performed),

3. the job completed (when the whole task is performed) and

4. the KQML message received (the KQML message is sent to the client
application).

facilitator :
FacilitatorEJB

client :
ClientClass

proxy :
FacilitatorProxy

fMDB :
FacilitatorMDB

agent :
SomeAgent

execute() sendJMSMessage() execute() execute()

return

sendJMSMessage()

listener.actionPerformed()

Fig. 5. Programmatically invoked task execution is done asynchronously

The first three types of events occur when the task is realised
programmatically. A task can be done in a single step, in which case the first
and the third messages appear in the given order. If a task needs more steps
to be performed, the job started event is generated, then an arbitrary number
of the job performing events is generated, and at the end, the job completed
event is generated. The fourth type of event occurs when an agent sends a
KQML message to the client. The concept of listeners provides asynchronous

Extensible Java EE-Based Agent Framework and Its Application on Distributed Library
Catalogues

ComSIS Vol. 6, No. 2, December 2009 11

task execution. This is due to the use of JMS as both the transport layer for
the task and the result. JMS provides asynchronous message exchange
which is in this case used to send tasks and receive results embedded in JMS
messages.

Figure 5 displays the sequence diagram of programmatically invoked task
execution.

FacilitatorEJB

Serializable

AgentTask

AgentResult

AgentTaskManager

AgentEvent

AgentListener

Fig. 6. Classes and interfaces used for the task execution

The client creates an instance of the task and forwards it to the
FacilitatorProxy component. This component creates a JMS message and
sends it to the FacilitatorMDB bean. This bean is a Message-Driven EJB
bean and when it receives the message, it forwards it to the Facilitator
component. The Facilitator component looks for the appropriate agent and
sends the task to it. Before, during and after completion, appropriate JMS
messages are sent from the Facilitator component to the FacilitatorProxy
component and, as a result, appropriate listeners are invoked in the client
application. Listeners hold the appropriate event class which implements the
AgentEvent interface, and that class holds the result of execution in the
AgentResult class, as displayed in the Figure 6.

3.4. Inter-facilitator connection component

The ConnectionManager component defines an inter-facilitator connectivity
mechanism. This mechanism defines how separate facilitators form a
network. Each facilitator is a node in this network and is automatically
registered on the network at the initialisation time. This means that the
programmer does not have to know the exact address of an arbitrary

Milan Vidaković, Branko Milosavljević, Zora Konjović, and Goran Sladić

ComSIS Vol. 6, No. 2, December 2009 12

facilitator and does not have to maintain the list of all available facilitators.
Instead, the nodes are registered automatically and the list of all available
facilitators is maintained automatically. If each agent framework is connected
to a particular system, this automatically makes the network of those systems
available (e.g. the library network by the use of the agent network).

One example of an agent network is displayed in the Figure 7. This
network is organised as a hierarchical network of agent frameworks. Each
node in this network is a single agent framework which is registered on the
network at the initialisation time. This organisation provides dynamic network
setup since all frameworks register during setup and unregister during shut
down. All nodes in this organisation can access other nodes through their
ConnectionManager components (Figure 8).

Primary Facilitator

Facilitator1

Facilitator2 Facilitator3

Facilitator4

Facilitator5 Facilitator6

Fig. 7. Example of an agent framework network

When an agent wants to communicate to another agent which is not in the
same facilitator, it does not need to know its exact location. The
ConnectionManager component maintains the map of locations and agents.
This means that only the ID of an agent is required for communication
between them.

Extensible Java EE-Based Agent Framework and Its Application on Distributed Library
Catalogues

ComSIS Vol. 6, No. 2, December 2009 13

ConnectionManager

FacilitatorEJB

ConnectionManager

FacilitatorEJB

SimpleConnectionManagerSimpleConnectionManager

Network

Fig. 8. ConnectionManager components provide links between frameworks

3.5. Security Component

The security subsystem is a very important element of an agent framework.
The security subsystem provides data and agent code confidentiality and
integrity during agent migration or data exchange. To provide for data and
code integrity, it is necessary to apply cryptographic and digital signature
mechanisms. Framework can encrypt and/or sign agent code before sending
it to another agent framework. Also, the agent may use framework security
service to encrypt and/or sign data sent to other agents. The access control
segment of security subsystem insures integrity of data and code. It provides
for integrity of data exchanged between agents and also protects agent
framework from malicious agents. To protect a framework from malicious
agents, it is necessary to use existing programming language security
mechanisms (in the Java programming language, it is implemented in the
java.lang.SecurityManager class). To establish access control, access
control policies need to be defined. These policies contain permissions that
allow (or forbid) agents to access different resources in the system.

The security subsystem can be programmed using proprietary solutions,
but it is more convenient to use existing solutions provided by application
servers. The lowest level of security support that can be used from application
servers is user authentication and authorization. This feature provides
application server components access control and, therefore, it also provides
agent access control.

Most application servers support encrypted communication between clients
and server components, as well as encrypted communication between
application servers. Digital signatures and verification using certificates are
also supported by some application servers. If security support in an existing
application server does not exist or is not strong enough, it is possible to

Milan Vidaković, Branko Milosavljević, Zora Konjović, and Goran Sladić

ComSIS Vol. 6, No. 2, December 2009 14

apply proprietary cryptographic methods and plug them in the XJAF agent
framework. To do so, it is necessary to implement the SecurityManager
component of the framework. This component should be a class that
implements the SecurityManager interface. This interface supports
methods for data encryption/decryption, as well as methods for digital
signatures/verification and also methods for enforcing access control. The
Figure 9 shows an implementation of the SecurityManager component.

FacilitatorEJB

java.lang.SecurityManager

SecurityManager

SimpleSecurityManager

Fig. 9. An implementation of the SecurityManager component

The SecurityManager interface does not specify the security system. It
merely lists all necessary methods to be implemented for full security support
of XJAF. In the paper [38], an implementation of the security manager is
given. It supports different algorithms for symmetric and asymmetric
encryption, as well as digital signatures. Key management is based on PKI
(Public Key Infrastructure) infrastructure. The system can use existing PKI
implementations to provide key management functionality. Access control is
based on the JAAS (Java Authentication and Authorization Service) system.
The security policies used by XJAF’s JAAS implementation can be kept in
XML files or in the database.

By implementing the SecurityManager interface, the SecurityManager
component provides for data and code integrity. However, to protect an agent
framework from malicious agents, a different technique is required. Protection
from agents consists of protecting the local resources and file system. This
level of protection can be implemented by extending the
java.lang.SecurityManager class. This class provides access control
for accessing network resources, object creation, local file system, system
attributes, clipboard, threads, etc. By extending this class and implementing

Extensible Java EE-Based Agent Framework and Its Application on Distributed Library
Catalogues

ComSIS Vol. 6, No. 2, December 2009 15

appropriate methods, it is possible to protect the agent framework from
malicious agents as shown in [38].

3.6. Message Management

Communication between agents is done using KQML messages. KQML
message exchange is managed by the MessageManager component. This
component uses the JMS system as a low-level layer of communication. The
Figure 10 shows how the JMS system is used for message exchange.

Agent

FacilitatorEJB

Context

TopicConnection

TopicConnectionFactory

KQMLMessage

Facilitator

Message

MessageManager

TopicSession

SimpleMessageManager

TopicPublisher

Fig. 10. The MessageManager component uses JMS for message exchange

When an agent sends a KQML message to another agent, it is embedded
into a JMS message. The JMS message is sent to all agent frameworks
subscribed to this service, but only the agent framework having the
destination agent will receive the message and extract the KQML message
from it. This KQML message is then sent to the agent by invoking the
onKQMLMessage() method defined in the Agent interface. This interface is
implemented by all agents in this framework.

Milan Vidaković, Branko Milosavljević, Zora Konjović, and Goran Sladić

ComSIS Vol. 6, No. 2, December 2009 16

3.7. Service Manager

The ServiceManager component implements the service directory subsystem.
This component manages the set of services available to agents as shown in
the Figure 11.

Facilitator ServiceManager

Service
repository

Service

Fig. 11. An implementation of the ServiceManager component

The ServiceManager component includes the service repository which
holds all available services. Services can be added, removed, searched and
used. When the service is not needed anymore, it must be returned to the
repository. Services are implemented as Java classes which implement the
Service interface. This interface defines the single method to be
implemented – the return() method which is invoked when the service is
returned to the repository. This enables finalisation tasks to be performed
when the service is returned to the repository.

3.8. Implementation

The framework was initially implemented on the two Java EE application
servers – JBoss (v.4.0.2) and Orion (v.2.0.5). These application servers were
EJB2.1 compliant. It was possible to implement some nodes in the agent
network on the JBoss application server and other nodes on the Orion
application server. The difference in deployment on two different application
servers was in configuration files only. This proved that the XJAF agent
framework can operate on different application servers. The current version of
the XJAF agent framework is modified to fit the EJB3.0 version and
implemented on the JBoss v.4.2.3 GA application server. Transfer to the
EJB3.0 version gave the implementation much needed simplicity (offered by
the EJB3.0 standard).

Extensible Java EE-Based Agent Framework and Its Application on Distributed Library
Catalogues

ComSIS Vol. 6, No. 2, December 2009 17

4. Two Applications on Distributed Library Catalogues

According to [43], there are several areas where intelligent agents might be
used: mediation between the user and information system, virtual reference,
automated serials processing, automated interlibrary loan processing,
acquisitions and circulation. In addition, cataloguing, and online interactive
tutorials are also areas where agents might be beneficial and reduce
workload. Since search can be done in heterogeneous environments, it is
particularly useful to use agents, since they can perform various tasks in
different environments, while being able to communicate to each other and
thus being able to refine the search. According to the [33], existing library
systems must meet the following three requirements in order to be able to
implement agent technology: the domain should be distributed, the system
should consist of independent cooperating components, and the system
should contain pre-existing or legacy applications. Two implementations
presented in this paper (agent-based central catalogue and agent-based
metadata harvesting) meet all three requirements.

In the field of the library information systems there is a need for the
centralised catalogue in a library network, which would enable users to
search through all library records from the network. It can be done in two
ways: to create one centralised library records database, which is loaded from
all the nodes in the network, or to create a virtual central catalogue, which
enables search over those incorporated libraries.

The first solution has the following advantages over the second one: all the
records are in a single database. Since all the data are in a single database,
that kind of search is faster than the distributed search. However, if the central
catalogue is off-line, then no search is possible. Also, if the resulting database
is too big [16], then it is not suitable for storing into a single database.

Since the second solution is a distributed search, it corrects last two
drawbacks of the centralised solution – the search is distributed over the
network, and the load is balanced over the nodes. Also, each node can take
the role of the central node, enabling the system to function even if the central
node is off-line. The distributed search can be implemented using agent
technology since agents can move over the network in order to gather library
data. Also, they can communicate to each other or to agent frameworks in
order to either transfer the gathered data or send search tasks to other
agents. An agent framework offers an automated way of registering library
nodes so that topology of the network is not maintained manually. The agent-
based distributed search is presented in this paper as an implementation of
the central catalogue for library record databases [30, 36]. The agent-based
central catalogue implementation uses mobile agents which migrate over the
library network collecting bibliographical data that satisfy the query issued at
the central node.

In the field of the metadata harvesting [39], there is the need for distributed
collection of data. The data to be collected is stored in various catalogues,
which are distributed over the network. To collect such data, it is necessary to
implement a kind of distributed software entities that would be able to find,

Milan Vidaković, Branko Milosavljević, Zora Konjović, and Goran Sladić

ComSIS Vol. 6, No. 2, December 2009 18

extract and deliver the data as a single result. All these tasks can be
performed using agents, since agent infrastructure offers the possibility of
discovering the appropriate agents, means of communication between those
agents and services that are necessary for accessing different data providers.
The agent-based metadata harvesting implementation with features
mentioned above is presented in this paper. In this implementation, the
central agent tries to find the appropriate agents in the NDLTD network and
send them the task of gathering metadata. Partial results are gathered and
presented as a single result.

4.1. Agent-based Central Catalogue

The agent-based central catalogue has been designed to enable users
(mostly librarians) to be able to search for library records on the library
network. Most library information systems have the local library record
database. These library information systems can form library network that
would incorporate all local library record databases. In this case, it would be
necessary to implement the virtual central catalogue for library records that
would enable search over those incorporated databases. Library record
database search has been implemented using software agents on the XJAF
agent framework. For each library server there is one software agent that is
capable of searching the database. The query that has been issued to the
central catalogue is distributed to all agents, and all of them are executing that
query simultaneously. All query results are incorporated into one joint result
that is presented to the central catalogue.

Agent implementation of the central catalogue is based on agents that are
searching local library record databases. For each local database, there is
one agent which will be used to search that database. The central catalogue
query is forwarded to all agents and all of them perform database search
simultaneously. Search results are gathered in the central catalogue and
incorporated into the joint query result.

The Figure 12 displays the virtual central catalogue that consists of two
local BISIS library servers. Each local library server is connected to the local
agent framework (XJAF 1 and XJAF 2) which provides working environment
for the library agents that are used to perform library search. This system
incorporates all local library records into one virtual central catalogue.

Extensible Java EE-Based Agent Framework and Its Application on Distributed Library
Catalogues

ComSIS Vol. 6, No. 2, December 2009 19

Central
Catalogue

Root
XJAF

XJAF 1

BISIS
Server 1

XJAF 2

BISIS
Server 2

Fig. 12. Component diagram of the Central catalogue with two local library servers

The Figure 13 displays sequence diagram which illustrates agent search
execution over the library network. Users post queries to the central
catalogue. The central catalogue is connected to the central agent framework
(the AgentFramework class) that holds library agents (represented by the
LibraryAgent class). It requests the list of available library agents that will
perform local database search. The list of available agents is passed to the
central catalogue. It forwards the query to all available agents. The library
agents start to migrate (the moveTo message) to the local agent frameworks
where they will perform database search (using the LibraryService class
that will receive the executeQuery message). Each agent sends the search
result to the central catalogue (the result message). The central catalogue
incorporates all received messages into one result (the
incorporateAllResults message) and returns that result to the user.
The Figure 14 displays the result of the search over the library network,
displayed in the librarian application.

The library agent accesses the local BISIS server (the BISISServer
class) using the library service (the LibraryService class). The library
service represents a standardised system for accessing an arbitrary library
information system. For the particular BISIS system, it has been adjusted to
work with it. This means that the central catalogue is not tied to one particular
type of library software. Instead, it enables creation of a heterogeneous library
server network. Only one condition must be fulfilled: for each type of library
software there must be an appropriate library service. This service will provide
unified library record access that is independent of the library software type.

Milan Vidaković, Branko Milosavljević, Zora Konjović, and Goran Sladić

ComSIS Vol. 6, No. 2, December 2009 20

This also means that agents do not need to be adjusted to each type of library
software, because library service comes between agents and library servers.

CentralCatalogue :
CentralCatalogue

CentralAgentFramework :
AgentFramework

LibraryAgent :
LibraryAgent

LibraryService :
LibraryService

LocalBISISServer :
BISISServer

recommendAll()

libraryAgents

moveTo()

executeQuery()
executeQuery()

executeQuery()

resut

result

result

incorporateAllResults

for each
agent

Fig. 13. Agent search execution sequence diagram

Main advantage of the central catalogue over the conventional solutions
[30, 10] is the possibility to easily include heterogenous library information
systems. This can be achieved by developing the appropriate agent service
within the local agent framework. This approach allows code reusability since
the same agent code can be used to search different library information
systems.

An additional advantage is a dynamic setup of library nodes. It means that
a node can be added or removed automatically, without the need to
reconfigure existing topology. This is done via the XJAF framework.

Extensible Java EE-Based Agent Framework and Its Application on Distributed Library
Catalogues

ComSIS Vol. 6, No. 2, December 2009 21

Fig. 14. Query results displayed in the librarian application

4.2. Metadata Harvesting Using Agents

The Open Archive Initiative (OAI) [39, 31] is an initiative for foundation of
electronic archives, primarily archives of scholarly and scientific papers. In the
context of OAI, the term archive means repository of stored information,
mainly the repository of scholarly papers. The framework for data interchange
is defined by the Protocol for Metadata Harvesting (PMH). OAI-PMH
metadata harvesting is used as a standard protocol within the Networked
Digital Library of Theses and Dissertations (NDLTD) [26]. NDLTD aims at
building a digital library of Electronic Theses and Dissertations (ETD)
authored by students of member institutions. Each member of OAI can have
both or either of the following roles:
- Data Providers: systems which support the OAI-PMH as a means of

exposing metadata and

- Service Providers: services which use metadata harvested via the OAI-
PMH as a basis for building value-added services.

At the University of Novi Sad, the NDLTD implementation [11] was
developed as a system for entering and searching electronic versions of
theses and dissertations.

The XJAF agent framework is used to harvest metadata from providers. It
is done by using XJAF agents, which are actually harvesting metadata in
compliance with the OAI-PMH standard. One of the problems in metadata
harvesting is the ability to maintain the network of providers, meaning that the
network should be aware of the nodes that are added or removed without
manual intervention. The approach in this paper is to create a network of

Milan Vidaković, Branko Milosavljević, Zora Konjović, and Goran Sladić

ComSIS Vol. 6, No. 2, December 2009 22

providers via XJAF agent facilitators. There are two distinctive cases: the first
one in which it is possible to link a dedicated facilitator to a data provider, and
the second case in which there are some data providers which cannot have
dedicated facilitator linked. The provider which has a dedicated facilitator
(named Local Data Provider) is automatically added to the network without
any additional configuring. The providers which do not have dedicated
facilitators linked (named Remote Data Providers) are added to the
configuration file, maintained manually. Agents harvest metadata using the
network of facilitators and corresponding Data Providers as displayed in the
Figure 15.

Facilitator 1

Facilitator
2

Facilitator
3

Facilitator
4

Facilitator5LocalData
Provider 2

LocalData
Provider 5

RemoteData
Provider 1

RemoteData
Provider 2

LocalData
Provider 4

LocalData
Provider 1

Fig. 15. Agent network forms OAI-PMH network

Each agent framework may have a corresponding Data Provider linked. If a
Data Provider is linked to the agent framework, agents from that framework
will search Data Provider as a local resource. If it is not linked, agents will be
supplied with a list of Data Providers to be searched and harvested. In that
case, the list of Data Providers must be maintained manually.

Agents use the specialised service to access metadata – OAIPMHService.
This service communicates with the Data Provider under the OAI-PMH
protocol which comprises both metadata search and acquisition. For
communication between Data Providers and harvesters, the specialised web
service was developed. OAIPMHService uses this web service in order to
search and obtain metadata. The Figure 16 shows the sequence diagram of
metadata harvesting using XJAF agents and the OAIPMHService service.

Extensible Java EE-Based Agent Framework and Its Application on Distributed Library
Catalogues

ComSIS Vol. 6, No. 2, December 2009 23

Client : Client LocalOAIPMHAgent :
OAIPMHAgent

LocalOAIPMHService :
OAIPMHService

LocalFacilitator :
Facilitator

RemoteFacilitator :
Facilitator

RemoteOAIPMHAgent :
DistributedOAIPMHAgent

RemoteOAIPMHService :
OAIPMHService

execute()
executeAction()

Result

getAllFacilitators()
List

recommendOne()

RemoteOAIPMHAgent

sendKQMLMessage("achieve...")

executeAction()
Result

sendKQMLMessage("tell...")
Result

for each facilitator
in list

Fig. 16. Sequence diagram of the metadata harvesting

There are two types of agents: a main agent (OAIPMHAgent) and a
subordinated agent (DistributedOAIPMHAgent). The OAIPMHAgent agent is
designed to receive metadata harvesting task and search the local Data
Provider. In addition, it engages DistributedOAIPMHAgent agents at each
agent network node. DistributedOAIPMHAgent agents search corresponding
Data Providers (attached to their local facilitators), gather results and send
them to the invoking agent.

There are two types of DistributedOAIPMHAgent engagement: local
engagement and remote engagement. The former is applied to Data Provider
with dedicated facilitator. The latter is applied if there is no dedicated
facilitator attached to Data Provider. In this case, the agent receives the list of
Data Providers which will be searched and harvested.

The OAIPMHAgent agent engages DistributedOAIPMHAgent by sending
the KQML message containing the task formulation. The distributed agent
does the metadata harvesting, gathers the results and sends them to the
invoking agent as a KQML message. OAIPMHAgent gathers all the results
and sends them to the client.

There are two main advantages over the conventional solutions [27]:
1. it is a simple mechanism for automatic dynamic forming of the data

provider network;

2. it is a convenient mechanism for building service provider
architecture, because the framework itself provides for network
interconnection feature, so services and agents can indulge in data
processing only – they do not need to deal with interconnection.

Consequently, the source code is considerably smaller. For example, the
code producing the same functionality for the agent-based solution is 7 KB,
while the code for the conventional solution [2] is 46 KB.

Milan Vidaković, Branko Milosavljević, Zora Konjović, and Goran Sladić

ComSIS Vol. 6, No. 2, December 2009 24

5. Conclusion

This paper describes the agent framework XJAF developed by the authors
and its implementation to distributed library catalogues. The framework is
based on the Java EE technology. It uses the plug-in technology which
provides additional flexibility, since it allows components to be substituted by
others without rebuilding the whole framework. XJAF is compliant with the
FIPA specification and supports the following concepts: message exchange,
agent mobility, security and agent and service directories. Also, this
framework proposes additional component of the agent framework: the inter-
facilitator connectivity component which defines how separate facilitators form
a network. The XJAF framework has the following characteristics: pluggable
managers, the inter-facilitator connectivity implementation (Communication
Manager component) and enhanced security which is implemented in the
SecurityManager component. XJAF, although based on the Java EE
technology, does not depend on the application server that is used. On the
higher level of abstraction, this extensible agent framework is not tied to the
Java EE technology – it can be implemented in any distributed components
framework (.NET, CORBA, etc.).

XJAF has been applied to two particular applications in the field of
distributed digital library catalogues: the virtual central catalogue, and
metadata harvesting. Two different features of agents have been exploited in
those two applications: mobility and agents inter-relationship. In the virtual
central catalogue, agents migrate from one node to another searching for the
contents specified by the query issued from the central node. In case of
metadata harvesting, one central agent delegates tasks to agents in
subordinate nodes and collects results.

In both cases, use of the agent framework gave a simple and effective
mechanism for dynamic setup of the distributed catalogues network.

The main contribution of this paper is a solution which gives a simple and
flexible mechanism for automatic maintaining of the dynamically changing
network, as well as an environment suitable for implementation of additional
services in distributed libraries.

The future work will be directed towards utilization of the XJAF for value-
added services implementation in distributed libraries, interoperability among
different platforms and improvement of security.

6. References

1. Aglets Home Page, http://www.trl.ibm.com/aglets/ (current October 2009)
2. Arc harvester and search engine, http://sourceforge.net/projects/oaiarc/ (current

October 2009)
3. Bellavista P., Corradi A., Tomasi A., "The mobile agent technology to support and

to access museum information", Proceedings of the 2000 ACM symposium on
Applied computing 2000, Como, Italy, ISBN:1-58113-240-9, pp. 1006-1013. (2000)

Extensible Java EE-Based Agent Framework and Its Application on Distributed Library
Catalogues

ComSIS Vol. 6, No. 2, December 2009 25

4. Bellifemine F., Poggi A., Rimassa G., "JADE – A FIPA-compliant agent
framework", Proceedings of Practical Applications of Intelligent Agents (PAAM'99),
London, pp. 97-108. (1999)

5. Bigus J., "The Agent Building and Learning Environment", White Paper,
http://www.alphaworks.ibm.com/tech/able (current October 2009)

6. Binder W., Roth V., "Secure mobile agent systems using Java: where are we
heading?", Proceedings of the 2002 ACM symposium on Applied computing,
Madrid, Spain, ISBN:1-58113-445-2, pp. 115-119. (2002)

7. Blixt K., Öberg R., "Software Agent Framework Technology", MSc thesis,
Linköping University, Department of Computer and Information Science (2000)

8. Brugali D., Sycara K, "Towards agent oriented application frameworks", ACM
Computing Surveys (CSUR),Volume 32 , Issue 1, ISSN:0360-0300, pp. 21-27.
(2000)

9. Chauhan D., Baker A., "JAFMAS: a multiagent application development system",
Proceedings of the second international conference on Autonomous agents,
Minneapolis, Minnesota, United States, ISBN:0-89791-983-1, pp. 100-107. (1998)

10. COBISS Library Information System, http://www.cobiss.si/cobiss_eng.html (current
October 2009)

11. DIGLIB home page, http://www.diglib.ns.ac.yu/frontOffice/index.jsp?newLang=en
(current October 2009)

12. d'Inverno M., Luck M., "Development and Application of a Formal Agent
Framework", In Proceedings of the First IEEE International Conference on Formal
Engineering Methods, Hiroshima, Japan, pp. 222-231. (1997)

13. Ferber J., "Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence", Addison-Wesley Pub. Co., ISBN:021360489. (1999)

14. FIPA Home Page, http://www.fipa.org (current October 2009)
15. He Q., Sycara K., Finin T., "Personal Security Agent: KQML-Based PKI",

Proceedings of the second international conference on Autonomous agents,
United States, Minneapolis, pp. 377-384. (1998)

16. Jacobs A., The Pathologies of Big Data, Communications of the ACM, Volume 52,
Issue 8-9, pp. 36-44, http://queue.acm.org/detail.cfm?id=1563874 (2009)

17. Java Agent Framework Home Page, http://mas.cs.umass.edu (current October
2009)

18. Java Agent Template Home Page, http://java.stanford.edu (current October 2009)
19. Kautz H. A., Selman B., Coen M., "Bottom-up Design of Software Agents",

Communications of ACM, Volume 37, Issue 7, pp. 143-147. (1994)
20. Kendall E, Krishna M., Suresh, C., Pathak C., "An application framework for

intelligent and mobile agents", ACM Computing Surveys (CSUR), Volume 32 ,
Issue 1, Article No. 20, ISSN:0360-0300. (2000)

21. Kim Tan H., Moreau L., "Certificates for mobile code security", Proceedings of the
17th symposium on Proceedings of the 2002 ACM symposium on applied
computing, Madrid, Spain, ISBN:1-58113-445-2, pp. 76-81. (2002)

22. Lyell M., "Interoperability, standards, and software agent systems", 23'rd Army
Science Conference, Orlando, Florida, USA, December 2-5 (2002)

23. Maamar Z., Moulin B., "An Overview of Software Agent-Oriented Frameworks",
ACM Computing Surveys, Volume 32, Issue 1, Article No. 19, ISSN:0360-0300.
(2000)

24. Nardi B., Miller J., Wright D., "Collaborative, programmable intelligent agents",
Communications of the ACM, Volume 41 , Issue 3, pp. 96-104. (1998)

25. Network of Excellence on Digital Libraries, http://www.delos.info/ (current October
2009)

Milan Vidaković, Branko Milosavljević, Zora Konjović, and Goran Sladić

ComSIS Vol. 6, No. 2, December 2009 26

26. Networked Digital Library of Theses and Dissertations Homepage,
http://www.ndltd.org (current October 2009)

27. Open Archives Initiative Tools, http://www.openarchives.org/pmh/tools/tools.php
(current October 2009)

28. Palaniappan М., Yankelovich N., Fitzmaurice G., Loomis A., Haan B., Coombs J.,
Meyrowitz N., "The envoy framework: an open architecture for agents", ACM
Transactions on Information Systems, Volume 10 , Issue 3, ISSN:1046-8188, pp.
233-264. (1992)

29. Rusbridge, C., “Realizing the Hybrid Library”, D-Lib Magazine, Vol. 4 No. 9,
http://www.dlib.org/dlib/october98/10pinfield.html (current October 2009)

30. Surla, D., et. al., "Distributed library information system BISIS", Group for
Information Technologies, ISBN: 96-7444-006-1. (2004)

31. The Open Archives Initiative Protocol for Metadata Harvesting:
www.openarchives.org/OAI/openarchivesprotocol.html (current October 2009)

32. University of Michigan Digital Library, http://www.si.umich.edu/UMDL/ (current
October 2009)

33. Valeda F. Dent, “Intelligent agent concepts in the modern library“, Library Hi Tech,
Vol. 25, Issue 1, pp. 108-125, http://lefty64.scc- net.rutgers.edu/dlr/ TMP/rutgers-
lib_23854-PDF-1.pdf (current October 2009))

34. Varadharajan V., "Security enhanced mobile agents", Proceedings of the 7th ACM
conference on Computer and communications security, Greece, Athens, pp. 200-
209. (2000)

35. Vidaković M, "Extensible Java-based agent framework", PhD thesis, Faculty of
Engineering, University of Novi Sad, Novi Sad,
http://diglib.ns.ac.yu/ndltd/docs/set2/ndltd344/MinjaDoktorat.pdf (current October
2009)

36. Vidaković, M., Konjović, Z., "One Implementation of Central Catalogue for Local
Library Record Databases", INFOTHECA: Journal of Informatics and
Librarianship, Volume 5, Issue 1-2, pp. 113-119, http://www.unilib.bg.ac.yu/
bibliotekarstvo/infoteka/1_2-
2004/RESENJE%20CENTRALNOG%20KATALOGA%201.pdf (current October
2009)

37. Vidaković, M., Konjović, Z., "EJB Based Intelligent Agents Framework",
Proceedings of the 6th IASTED International Conference on Software Engineering
and Applications (SEA 2002), Cambridge, USA, November 4-6, pp. 343-348.
(2002)

38. Vidaković, M., Sladić, G., Konjović, Z., "Security Management In J2EE Based
Intelligent Agent Framework", Proceedings of the 7th IASTED International
Conference on Software Engineering and Applications (SEA 2003), Marina Del
Rey, USA, November 3-5, pp. 128-133. (2003)

39. Vidaković, M., Sladić, G., Zarić, M., "Metadata Harvesting Using Agent
Technology", Proceedings of the 8th IASTED International Conference on
Software Engineering and Applications (SEA 2004), Cambridge, USA, November
9-11, pp. 489-493. (2004)

40. Vuong S., Fu P., "A security architecture and design for mobile intelligent agent
systems", ACM SIGAPP Applied Computing Review archive, Volume 9 , Issue 3,
pp. 21-30. (2001)

41. Wilson L., Burroughs D., Sucharitaves J., Kumar, A., "An agent-based framework
for linking distributed simulations", Proceedings of the 32nd conference on Winter
simulation, Orlando, Florida, ISBN:1-23456-789-0, pp. 1713 – 1721. (2000)

Extensible Java EE-Based Agent Framework and Its Application on Distributed Library
Catalogues

ComSIS Vol. 6, No. 2, December 2009 27

42. Yuh-Jong H., "Some thoughts on agent trust and delegation", Proceedings of the
fifth international conference on Autonomous agents, Canada, Montreal, pp. 489-
496. (2001)

43. Zick, L., “The work of information mediators: A comparison of librarians and
intelligent software agents”, First Monday, Vol. 5 No. 5, pp. 1-14 (2000)

Milan Vidaković is holding the associate professor position at the Faculty of
Technical Sciences, Novi Sad, Serbia. He received his PhD degree (2003) in
Computer Science from the University of Novi Sad, Faculty of Technical
Sciences. Since 1998 he has been with the Faculty of Technical Sciences in
Novi Sad. Mr. Vidaković participated in several science projects. He published
more than 60 scientific and professional papers. His main research interests
include web and internet programming, distributed computing, software
agents, and language internationalisation and localisation. He can be
contacted at: minja@uns.ac.rs.

Branko Milosavljević is holding the associate professor position at the
Faculty of Technical Sciences, Novi Sad, Serbia. He received his PhD degree
(2003) in Computer Science from the University of Novi Sad, Faculty of
Technical Sciences. Since 1998 he has been with the Faculty of Technical
Sciences in Novi Sad. Mr. Milosavljević participated in several science
projects; in one he was the project leader. He published more than 70
scientific and professional papers. His main research interests include library
information systems, document management, multimedia retrieval, and
access control. He can be contacted at:mbranko@uns.ac.rs.

Zora Konjović has been holding the full professor position at the Faculty of
Technical Sciences, Novi Sad, Serbia since 2003. Mrs. Konjović received her
Bachelor degree in Mathematics from the University of Novi Sad, Faculty
Science in 1973, Master degree in Robotics from the University of Novi Sad,
Faculty of Technical Sciences in 1985, and Ph. D. degree in Robotics from
the University of Novi Sad, Faculty of Technical Sciences in 1992. From 1973
till 1980 she was with the Faculty of Science in Novi Sad, and since 1980 she
has been with the Faculty of Technical Sciences, University of Novi Sad. Mrs.
Konjović participated in 5 scientific and more than 30 professional projects; in
5 she was the project leader. She published more than 150 scientific and
professional papers. She is the corresponding author and can be contacted
at: ftn_zora@uns.ac.rs

Goran Sladić is a teaching assistant and PhD student at the Faculty of
Technical Sciences, Novi Sad, Serbia. His research interests include access
control, context-aware computing, XML technologies, document management
systems and workflow systems. Mr. Sladić received his Bachelor degree
(2002) and Master degree (2006) both in Computer Science from the
University of Novi Sad, Faculty of Technical Sciences. He participated in 6

Milan Vidaković, Branko Milosavljević, Zora Konjović, and Goran Sladić

ComSIS Vol. 6, No. 2, December 2009 28

science projects. Mr. Sladić published 25 scientific and professional papers.
He is a member of the ACM. He can be contacted at: sladicg@uns.ac.rs

Received: December 01, 2008; Accepted: November 11, 2009.

