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Abstract. Blockchain technology gained popularity thanks to its decentralized and
transparent features. However, it suffers from a lack of privacy as it stores data pub-
licly and has difficulty to handle data updates due to its main feature known as im-
mutability. In this paper, we propose a decentralized data storage and access frame-
work that combines blockchain technology with Distributed Hash Table (DHT), a
role-based access control model, and multiple encryption mechanisms. Our frame-
work stores metadata and DHT keys on the blockchain, while encrypted data is
managed on the DHT, which enables data owners to control their data. It allows
authorized actors to store and read their data in a decentralized storage system. We
design REST APIs to ensure interoperability over the Web. Concerning data up-
dates, we propose a pointer system that allows data owners to access their update
history, which solves the issue of data updates while preserving the benefits of using
the blockchain. We illustrate our solution with a wood supply chain use case and
propose a traceability algorithm that allows the actors of the wood supply chain to
trace the data and verify product origin. Our framework design allows authorized
users to access the data and protects data against linking, eavesdropping, spoofing,
and modification attacks. Moreover, we provide a proof-of-concept implementation,
security and privacy analysis, and evaluation for time consumption and scalability.
The experimental results demonstrate the feasibility, security, privacy, and scalabil-
ity of the proposed solution.

Keywords: Blockchain, Distributed Hash Table, Security, Privacy, Decentralized
framework.

1. Introduction

With increasing the number of internet users, large amounts of data are being generated
each day [18]. Cloud computing provides the facility to store, access, and share data
with other users anytime. The main limitation of the cloud paradigm is its centralized
storage design, which leads to a single point of failure issue. Cloud storage systems rely
on Trusted Third Party (TTP) to collect and store users’ privacy-sensitive data, which
is more vulnerable to security and attacks. To address these challenges, blockchain has
become popular as a decentralized and transparent data management facility [23], [42]

⋆ This is an extended version of our previous paper [2].
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that enables users to share and store information without any TTP. A blockchain is a peer-
to-peer distributed ledger in which a list of records called blocks are linked with each
other and secured using a cryptographic hash function [35]. It stores data on distributed
nodes through a consensus mechanism that guarantees participant’s trust by having the
same copy of the data [34], [37].

However, blockchain allows anyone to read and write contents, which may raise data
security issues [40], and does not handle privacy-sensitive data [21] by default. This is
a limitation since data owners may not want to disclose their sensitive information (e.g
statistics about their business activities) on the blockchain. Scalability is also an issue, as
the data is replicated on every peer, storing large quantities has a prohibitive cost. Besides
this, immutability of blockchain, while an important feature, prevents data modifications.

In this paper, we propose a privacy-aware decentralized data storage and management
framework that enables actors to write, read, delete, update, and access their transactions
history. Our solution allows data owners to control and secure their data in a decentralized
ledger. Building on previous work [2], our proposed framework is scalable enough to
handle an increasing number of actors while performing data write, read, update, and
delete operations. The main contributions of this paper are as follows:

– We propose a metadata extension based on existing research [1]. Our extension en-
sures privacy-aware data access and enables trust between actors by recording each
actor’s actions on data.

– We propose a pointer system to manage the history of values that are stored in the
DHT for a single piece of data. It allows the data owner to maintain and access their
transactions history in case of any updates in the pre-stored data.

– We propose a traceability algorithm that enables actors to trace their data and verify
the product’s origin in a decentralized platform.

– We design and evaluate our decentralized framework against linking, eavesdropping,
spoofing, and modification attacks.

– We provide a critical comparison of the proposed solution with state-of the-art decen-
tralized solutions to show the research gap.

– We also provide implementation details with security and privacy analysis and perfor-
mance evaluation of our framework over a wood supply chain scenario to demonstrate
its feasibility.

This paper is structured as follows. Section 2 discusses the motivating scenario that high-
lights the research challenges. Section 3 provides some background knowledge together
with an overview of existing decentralized solutions for data storage and their shortcom-
ings. Section 4 provides the detailed discussion of our contribution with proposed algo-
rithms. Section 5 shows the experimental results, analysis, and performance evaluation of
our proposed framework. Finally, section 6 summarizes our results and gives guidelines
for the future work.

2. Motivating Scenario and Research Problem

In this section, we first explain the wood supply chain scenario that motivates our work.
We then describe the research problems that we address in this paper.
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2.1. Motivating Scenario

Our scenario takes place in the context of the wood supply chain that motivates the need
for decentralized solution and highlights our research problems. The wood supply chain
includes the whole process from wood logs, production, transportation, and sell to the
end customers. It enables the actors of the wood supply chain to verify the wood origin,
transport, processing, and manufacturing. As depicted in Figure 1, we identified six actors
that participate in the wood supply chain.

– Forest manager
The forest manager identifies the trees that are good to make furniture (e.g oak) and
cuts them into logs.

– Transporter
The transporter loads wood logs from the forest and transports them to the sawmill.

– Sawmill manager
It processes the logs and stores them for a specific time duration.

– Product assembler
It divides logs into pieces for further processing.

– Product seller owner
The product seller owner sells the furniture to the end customer.

– Customer
The customer takes the wooden furniture and confirms the origin of the wood using
the proposed traceability algorithm (see Section 4.4).

Forest manager Transporter Sawmill manager Product assembler Product seller Customers

supplychain  
operations

Fig. 1. Wood supply chain and its actors

This scenario highlights the need for decentralized data management, security, pri-
vacy, traceability, and data updates [36]. Frauds are common in the wood supply chain,
for example, during transportation actors can replace high quality wood with low quality
wood [30]. Therefore, all actors participating in the supply chain want to trace products to
prevent frauds. To overcome this problem, Radio Frequency Identification (RFID) chips
are used with the wood to manage wood traceability [31]. However, existing solutions
involve centralized storage to maintain the record of RFID data, thus making single point
of failure a major concern [26].

Therefore, blockchain, as a decentralized ledger technology that stores transactions in
such a way that all participants can easily access them without requiring any TTP, comes
as an interesting technology for solving the single point of failure issue. Each block of the
blockchain keeps the hash of its previous block to make it impossible to modify the stored
transactions thus ensuring immutability [25,13]. We can say that data cannot be modified
once it has been recorded on the blockchain. However, our scenario highlights that actors
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of the wood supply chain need to write, read, and update data about their product. As well,
they do not want to have their business information publicly available due to security and
privacy concerns. There is a need for a solution that overcomes the immutability feature
of blockchain, to enable actors to perform update operation on recorded data. At the same
time, the designed solution must protect data from unauthorized access and guarantee data
access depending on the actor’s permission. The identified requirements highlight our
motivation to design decentralized data storage and management solution to ensure data
access and updates, manage transactions history, security, privacy, data owner’s control
on their data, and product traceability in a single framework.

2.2. Research Problems

According to the wood supply chain scenario discussed above, using blockchain technol-
ogy in supply chains requires taking into account the following research problems:

– Data modification
Our scenario highlights that actors want to update data at each point of the supply
chain (e.g wood location changes). However, it is not possible to update data once it
has been recorded on the blockchain, due to its immutability feature. The challenge
is to work around the original blockchain design to enable data updates.

– Data security and privacy
Data stored on a blockchain is publicly accessible, highlighting the need for pro-
tection from unauthorized access. In other words, different actors shall be granted
different access to specific data pieces according to their permissions. The challenge
is to provide a decentralized solution that preserves privacy-sensitive data from unau-
thorized access to ensure data security and privacy.

To address those challenges, we rely on joint usage of blockchain and Distributed
Hash Table (DHT), presented in the following to facilitate further understanding of the
paper, together with an overview of existing work and its limitations.

3. Background Knowledge and Related Work

In this section, we introduce the basic concepts underpinning blockchain technology and
Distributed Hash Table (DHT), we then explain their use in the context of decentralized
data storage. We follow with a survey and analysis of existing decentralized data stor-
age solutions. We compare our proposed solution with existing work and summarize the
results in Table 1.

3.1. Basic Concepts: Blockchain and DHT

In 2008, blockchain technology [22] was introduced to the world and became popular
due to its decentralized feature. The blockchain is a decentralized database that stores
all the transactions that take place on the network. All participants on the network have
the same copy of the transactions. Before adding each block to the blockchain, miners
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accept and verify the transactions using a consensus algorithm such as proof of work. By
using proof of work or similar mechanism [15], miners solve very difficult mathematical
calculations that should be accepted by other miners on the network [3]. After verifying
the correctness of transactions by other miners, a block is appended to the end of the chain
[24]. Each block is comprised of a block version, timestamps, consensus signature, parent
block hash, and many transactions. The parent block stores the hash of its previous block
to form a blockchain that ensures the immutability of the stored data [32]. The hash is a
unique value that ensures integrity of the entire blockchain from the initial block (known
as genesis block) to the last.

A distributed hash table (DHT) is a decentralized data storage system that stores data
as (key, value) pairs over a set of nodes that distribute the storage, possibly with some level
of replication. As an example, a well-known DHT implementation is Kademlia [19]. Each
node in the DHT maintains the keys it is responsible for and their corresponding values.
A key is a unique identifier to its corresponding data value. Each key is generated by
applying a hash function to the value. A DHT is based on two main tasks: PUT(key, value)
is used to add new data, while GET(key) is used to retrieve the data, that is associated
with the given key. A DHT node contains a routing table that maintains the identifier of
its neighbor nodes. To find a (key, value) pair, a requesting node contacts the multiple
nodes in the network until it reaches the destination node and finds the (key, value) pair.
DHT has an advantage in terms of fault-tolerance because (key, value) pairs are replicated
on multiple nodes in the network, that ensures data availability [43]. In addition, and as
opposed to blockchain, it is scalable enough to manage large data volumes.

3.2. Blockchain and DHT-based data storage

There is a large amount of literature that combines DHT with blockchain to provide de-
centralized data storage. A framework to manage personal data is proposed in [43]. The
solution stores encrypted data (with shared key) on DHT and its pointer on the blockchain.
Both service and user can query the data. However, existing work supports one type of
encryption. Most work use a shared symmetric key for data encryption/decryption, as in
[43], to query the data. In contrast, our framework provides run-time flexibility, which
provides various types of data encryption and decryption during execution depending on
users’ needs and application requirements. In [43], it is not clearly explained how sym-
metric keys are protected from unauthorized access and where they are stored. In our
work, we encrypt symmetric key with the public key of the data owner, and store it on the
DHT together with the data, so that later the data owner can access the data.

In [28], a distributed access control and data management framework is presented. The
framework enables secure IoT (Internet of Things) data sharing by combining blockchain
with off-chain storage (i.e DHT). Fine-grained access control permissions are stored on
the blockchain and are publicly visible, which raises privacy issues. Also, it is not possible
to update access control permissions due to public blockchain immutability nature. On the
other hand, our proposed framework is flexible to update access control permissions. We
also maintain data owner anonymity for sharing data.

In [1], the authors propose a decentralized data storage for PingER (Ping End-to-End
Reporting) framework. The proposed framework stores metadata of the daily PingER files
on a permissioned blockchain, while the original data is stored off-chain. However, their
solution writes monitoring agent name and file locations on the permissioned blockchain,



1240 Sidra Aslam and Michael Mrissa

which is immutable and shared with other participants on the network. In addition, this
solution does not record the data modification history in case of any modification in the
data. Our framework design relies on the PingER proposal for the metadata structure,
however, we integrate privacy and security management to enable role-based access con-
trol and privacy protection. Our solution enables data owners to control and access their
private data. We also provide a solution to manage the previous versions of data using
pointers that enable authorized users to access their transaction history. In addition, our
work includes proof of concept prototype as well as empirical performance evaluation,
which is not the case in PingER.

Table 1. Our proposed framework comparison with existing work

Solutions Decentralization Data
Privacy

Data
Updates

Transaction
History
Support

Attacks
Prevention

[43] Yes Yes No No No
[28] Yes No No No No
[1] Yes No No No No
[8] Yes No No No No
[16] Partial No No No No
[5] Yes Yes No No No
[38] Yes No No No No
[11] Partial Yes No No No
[41] Partial Yes No No No
[7] Partial Yes No No Yes
[27] Yes Yes No No No
Our solution Yes Yes Yes Yes Yes

The authors in [8], propose the LightChain framework, which is a permissionless
blockchain that operates over participating peers of a skip graph DHT. The proposed
framework enables all participating peers to access blocks and transactions by using a
skip graph overlay. LightChain allows every peer to join the blockchain without any re-
strictions. However, blocks and transactions are addressable and accessible to everyone on
the network. In contrast to the existing framework, our solution uses Role-based Access
Control (RBAC) model that allows only authorized users to access blocks and transac-
tions. We store metadata with a pointer on the blockchain, which enables other actors to
keep track of data changes with the help of this metadata.

Table 1 presents a global overview of existing work with respect to the following fea-
tures: decentralization, data privacy, data updates, transaction history support, and attacks
prevention. The table shows that some existing solutions ensure decentralization, data pri-
vacy, and attacks prevention [43,7]. However, some solutions did not address data updates
and transaction history support [28,1,8,27].

3.3. Other Decentralized Data Storage Solutions
An Ethereum-based blockchain platform is presented in [16]. The proposed solution al-
lows companies partners to share data with each other. Original data are stored on off-
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chain storage such as MySQL, while a hash sum of corresponding data is sent to the
blockchain. However, MySQL database is not scalable as DHT to manage a large amount
of data [12]. In addition, MySQL database becomes a single point of failure. In our so-
lution, we use a DHT to store data as (key, value) pair, which can handle a large amount
of data easily. In our framework, any authenticated user can efficiently retrieve the value
with the help of a corresponding key. As well, our solution is fully decentralized and
eliminates the risk of single point of failure.

In [5], the authors propose a framework called u-share. It is a blockchain-based frame-
work to maintain the owner’s data traceability while sharing data with their friends and
family. The proposed framework is based on a software client to share the private keys
with corresponding circle members, keeps a record of shared keys, and encrypt the data
using the circle’s public key before to share it. However, sharing private key raises secu-
rity issues. Additionally, the existing framework relies on one type of encryption method.
Compared to the existing u-share framework, our proposed solution allows actors to di-
rectly generate their public and private keys at run time and control of their private keys.
Our solution allows data owners to directly encrypt, decrypt, and share their data with
other actors by using different types of encryption methods.

The authors in [29] present a blockchain-based framework that enables users to share
their data with other users. A smart contract is used to store data sharing policies that con-
trol users’ access to the data, while users’ private data is stored on the off-chain storage
called multi-chain. However, policies stored on the smart contract are immutable. In con-
trast, our solution enables data owners to update access control permissions. In addition,
we ensure data owner anonymity to share data.

In [38], a decentralized supply chain system to keep track of goods and recipe ingre-
dients is presented. The proposed framework uses a smart contract to handle the exchange
of goods on a distributed ledger. The main limitation of this solution is the immutability
and availability of data to everyone, which could lead to privacy and data modification
concerns. On the other hand, our solution stores encrypted data on DHT to ensures data
privacy. In addition, our framework allows actors to update data at each point of the chain.

In [11], a blockchain-based food supply chain traceability through smart contract is
presented. The proposed framework uses blockchain to store data hash while correspond-
ing data are stored on IPFS (InterPlanetary File System) off-chain storage. IPFS is a peer-
to-peer storage network where data stores on the peers of the network [17]. However, a
manufacturer node server is used to handle all modules of the framework, which subjects
to a single point of failure. On the other hand, our framework modules are fully decen-
tralized and independent of any central orchestrator. For the sake of simplicity, we use a
registry server to connect nodes to each other, however, decentralized discovery protocol
can easily be used instead of registry server [9].

In [41], the authors propose a decentralized IoT data sharing solution using IOTA
Tangle and IPFS technology. The proposed solution uses centralized data handling unit
(such as a local server) to collect and encrypt the data using asymmetric encryption, which
becomes a single point of failure. In contrast, our proposed solution manage and store
data without any central party. The IPFS is used to upload the encrypted data, while the
corresponding hash and metadata are managed on the IOTA Tangle. However, the IPFS
network is immutable and stores files and its content permanently [14]. On the other hand,
we use DHT to store the data and we extend it to allow data modification at any time.
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In contrast, our solution allows going through the history of data values and supports
querying it.

The authors in [33] propose a blockchain-based framework that maintains the trace-
ability of the food supply chain. RFID technology is used to automatically identify objects
through radio frequency signals. However, blockchain technology is not scalable to store
a large amount of data. In contrast to this solution, we propose to only store metadata and
pointer on the blockchain, while original data is stored on a DHT, which better supports
storing large amounts of data. In addition, our framework supports data mutability, thanks
to the DHT, whereas blockchain is immutable and shows more difficulty to handle large
amounts of data.

In [4] the authors discuss the distributed cloud storage system called Storj. It is a trust-
based storage system between host and customer. In this system, people sell their free
storage hardware space and earn money. Customers encrypt (using AES256-CTR) their
data before storing it on the network. Storj allows the data owner to control and access
their data on the network. However, Storj is very costly and depends on a centralized
architecture to conclude storage data and payments [7,10]. In contrast, our solution is
fully decentralized architecture and avoids a single point of failure. In addition, Storj uses
one type of encryption method to establish trust between customer and host [39]. As
compared to this, our solution offers different types of encryption methods and enables
trust in the decentralized system instead of participants on the network.

In [27] the authors discuss a decentralized data storage framework that combines Solid
Pods with blockchain technology. Solid (Social Linked Data) relies on RDF (Resource
Description Framework) and semantic web to manage data. Solid enables people to store
their personal data in Pods (Personal online data stores) hosted at the location according
to the people’s wish. The proposed framework discusses the following two cases to ensure
data confidentiality. The first is to store file hash on the blockchain while Solid Pods is
used to store the data. Second, they use smart contract to store the data on a Blockchain
whereas solid pods are used to store the software wallet (public and private key pair). User
can access their data using the software wallet. However, Solid Pods itself does not ensure
data verification and trust [6]. In addition, it does not support storing large amounts of data
as DHT does [20]. In contrast, our framework allows to manage large amounts of data in
a decentralized way due to the use of a DHT. Therefore, our approach to data storage
is quite different as we do not adopt a user-based isolated storage but rather a globally
decentralized storage that relies on the network peers to ensure security and privacy.

In a summary, most existing data storage solutions are subject to the single point of
failure issue, data mutability or adopt different designs. In the following, we detail our
framework and proposed algorithms in detail.

4. Contribution

In this paper, we propose a secure and privacy-aware decentralized framework to support
data storage, authorized data access, data mutability, management of their update history,
and traceability. This section starts with the metadata structure that is immutable record of
data operations. Then, it describes the overview of our proposed framework and follows
with the detail of its execution or sequence. After that, it details the proposed algorithms.
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Each actor of the framework runs the same code that is structured into a set of components
as depicted in Figure 3.

4.1. Metadata Structure

In [1], authors write metadata such as names and locations only once a day on the permis-
sioned blockchain, which is immutable and they shared this information with all users on
the network. In contrast, we store metadata of each actor’s action (such as data write date
and time) to maintain the actor’s trust. This allows actors to keep track of the data.

We propose a privacy-aware metadata extension discussed in the paper [1], to handle
privacy restrictions on the data. Therefore, our framework encrypts the actor’s private in-
formation (e.g name and location) with encryption mechanisms (illustrated in Algorithm
2), and store this encrypted data on the DHT. Our solution also allows only authorize ac-
tors to update the product location in case if wood drives from one place to another place.
We use a blockchain to store the metadata and DHT key of this encrypted data. Our pro-
posed metadata structure contains the DHT key, previous pointer, data owner’s id, date,
time, and RFID_number as shown in Figure 2. The DHT key is a hash pointer that points
to the data in the DHT. Previous pointer is a hash key of the previous version of the data,
which enables data owners to access their transaction history. In our framework, each ac-
tor has unique data owner id which is used to make a data request and identify who is the
owner of the corresponding data. Our solution records data and time of each operation
(such as data write, read, update, and delete) that is performed on the data. RFID_number
is a unique data id of the log, lumber and product which is used to trace the items in the
chain.

DHT key

DateTime

Metadata Structure

Previous Pointer

RFID_number

DateTime Data Owner ID

Fig. 2. Metadata structure on the blockchain

4.2. Architecture Overview

Our framework uses RESTful APIs to enable actors to communicate with other actors and
support the framework functionalities.

Figure 3 depicts the execution workflow of the proposed framework and its compo-
nents. In our framework, all actors are running the same main program and they call to
registry_server (/peers resource, method ’GET’) to retrieve the list of available
actors (e.g peers) and connect with each other through APIs.

Let us illustrate the operation of our framework with the wood supply chain scenario
developed earlier: an actor, for example a forest manager actor, starts the main program
to store the number of logs and type of wood that he cuts. Then, he will call the /peers
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DHT response
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data

Blockchain  
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Fig. 3. Overview of the decentralized framework

resource of the registry_server with the ’POST’ method to add its public key
and Uniform Resource Locator (URL) to the list of connected peers or actors. After that,
he will send a ’GET’ request to the /peers resource to receive the information of
available peers. Then, he will take a copy of the recent 40 transactions of the blockchain
using /chain resource with a ’GET’ method3.

In the proposed framework, the RBAC component called by the main component is
responsible for checking the permission of the actor. It allows the only authorized actor
to perform operations such as data write, read, delete, and update.

An authorized actor has a choice between multiple types of encryption techniques
to secure their data in a decentralized ledger. Our encryption_component called
by the main component generates keys (a public/private key pair, or a symmetric key)
based on the encryption method chosen by the authorized actor and encrypts the data
accordingly.

We store the encrypted data on the DHT component, while DHT key (a hash pointer of
the data) and metadata are stored on the blockchain component. Later, an authorized
actor can access their data using the DHT key stored on the blockchain component.

Accordingly, an authorized actor can create a new block using /chain resource with
the method ’POST’. To read the data, an actor will call the resource /chain/<id>
with ’GET’ method. If an actor wants to update some part of the data, then it will call
the /chain/<id> resource using ’PUT’ method. Similarly, to delete the data, an au-
thorized actor will make a ’DELETE’ request to the /chain/<id> resource. An actor
can access their public key using the resource /public_key with method ‘GET’.

Figure 4 shows the swagger user interface that enables authorized actors to use the
proposed APIs discussed above.

3 Please note that here we avoid downloading the whole blockchain due to performance issues, but only the
most recent part, the rest being on-demand. This particular aspect of the work is out of the scope of this
paper.
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Fig. 4. Overview of the proposed API using Swagger

The overview of each actor’s actions (such as write, read, update, and delete) on the
data is depicted in figure 5. The data represents in the figure 5 is stored on the DHT com-
ponent, while corresponding metadata is managed on the blockchain component. Please
see the detail of the metadata structure in section 4.1.

W
ood Supply C

hain D
ecentralized Storage

Actors

Forest manager
actor

Records data  
about log

Reads log  
data

Transporter  
actor

Records data about log Updates location of log

Sawmill manager
actor

Records lumber  
data from log data

Reads lumber  
data

Updates lumber  
data

Delete lumber  
data

Product
assembler actor

Records assembly
product  data from

lumber data

Reads assembly  
product  data

Updates assembly  
product data

Delete assembly  
product data

Records product location Reads product data
Product seller  

actor

Customer
Records product, log data 

Actors perform actions on the data 
in the framework 

Updates log  
data

Delete log  
data

Fig. 5. High-level representation of actors actions on the data

4.3. Interaction via RESTful API

In this section, we detail the possible usage of our framework with a sequence diagram
(Figure 6) that illustrates the interaction between an actor (e.g. a forest manager) and the
framework using its RESTful API. We assume that every actor is already registered on the
framework. An actor makes a ‘POST’ request to the /chain resource to write log data
in the framework. Our solution assigns a unique data id (RFID_number) to the log that
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enables authorized actors to trace the log in the chain. In the case of a successful response
(HTTP code 201), it returns the links including the id in the response. Our framework
stores the DHT key of this generated data in the metadata. Therefore, this DHT key points
to the location of the log data on the DHT. The actor can use these links to perform
further actions on the log data by sending another HTTP request as described in the links.
To read the data, an actor would use the GET link that would call the /chain/<id>
resource with method ‘GET’ to retrieve the representation of the log data. In the case
of a successful response (HTTP code 200), our framework returns the representation of
the log data. In case an actor wants to update their data, then they use the PUT link that
makes a ’PUT’ request to the (/chain/<id> resource). It will then write the new
data against the same id. Then, a new metadata structure is created on the blockchain,
and it contains the new DHT key of this updated data and the previous pointer of the old
version of the data. Similarly, to delete the data, an actor may follow the DELETE link
(/chain/<id> resource, method ’DELETE’). Our framework allows the authorized
actor to delete specific data based on the id. After verifying the permission of the actor,
it will delete the data. In this case, a new metadata structure is created on the blockchain
that has a new DHT key with a NULL value.

Actor

JSON-LD structure of the data on DHT:
{
 "id": "RFID_number",
 "resource": "log",
 "woodtype": "oak",
 "datetime": "2022-03-16, T-19:20:30.45+01:00",
 "location": {"lat": "38,3951",long": "-77,0364"}
}

Received links in the response
"links": {
 "GET": "http://127.0.0.1:8001/chain/<id>",
 "PUT": "http://127.0.0.1:8001/chain/<id>", 
 "DELETE":   "http://127.0.0.1:8001/chain/<id>",
 "POST": "http://127.0.0.1:8001/chain"
}

Framework

Response: 201 - Log data updated

Response: 201 - Log data deleted

POST '/chain' - Create new log data

DELETE '/chain/<id>' - Delete log data

PUT '/chain/<id>' - Update log data

Response: 201 - Log data created, links

GET '/chain/<id>' - Retrieve a representation of log data

Response: 200 - Return representation of log

Fig. 6. Sequence diagram of possible actor interactions with the framework
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4.4. Registration and Data Management

This section presents the proposed algorithms that support our solution including actor
registration using designated REST APIs, data management on the decentralized storage
and on the blockchain, and traceability algorithm to keep track of the data history.

– Actor Registration
Algorithm 1 describes the actor’s connection or registration procedure to the proposed
framework using our RESTful APIs. Once actor would successfully connect to the
framework then they can perform different actions on the data such as write, read,
update etc, and actors can also connect to other actors through HTTP requests. Each
new actor needs to connect to the framework once to perform actions.
Firstly, the actor calls the /peers resource with ’GET’ method to receive the avail-
able peer list (pl). After that, it calls the /peers resource ’POST’ method to add
its public key to the list of available peers and registers to the registry server. Then it
sends a request to other peers to acknowledge the connected peer (/peers resource,
’POST’method). If the current actor is already in the list then it will be disconnected
or removed from the peer list using the /peers resource with ’DELETE’ method.
Then it sends a request to other available peers to acknowledge the disconnected peer.

Algorithm 1 Actor registration algorithm
Input: ca: current actor
Output: pl: peer list, boolean value

▷ GET: HTTP verb GET request (constant)
▷ POST: HTTP verb POST request (constant)
▷ pe: endpoint of the peer (constant)
▷ Req.Method: identify request type (variable)
▷ p: peer in loop (variable)

1: if Req.Method == GET then
2: return pl
3: end if
4: if Req.Method == POST then
5: pl.Append(ca)
6: for each p ∈ pl do
7: RequestsPost(p(pe), ca)
8: end for
9: return true

10: end if
11: if Req.Method == DELETE then
12: pl.Remove(ca)
13: for each p ∈ pl do
14: RequestsDelete(p(pe), ca)
15: end for
16: return true
17: end if
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– Data Management on the DHT
The process to write or store the data including metadata and corresponding DHT
key (a hash pointer of the encrypted data) is shown in Algorithm 2. Our proposed
framework combine blockchain with a DHT in a way that allows authorized actors
to write and update the data about their activities. For instance, if an actor has a role
"data owner" and wants to store their log data such as:
{

"id": "RFID_number",
"resource": "log",
"woodtype": "maple",
"datetime": "2022-06-01, T-11:16:25.45+01:00",
"location":
{

"lat": "14,2472",
"long": "-43,2135"

}
}

Then, Authenticate(actor, role) and CheckPermission(actor,
role, v) verify that the current actor has the right permissions to store their data or
not. The CheckPermission checks if the current actor has a role ’forest manager’
then he is allowed to write, read, update, and delete their data in the decentralized
platform.
After verifying the permission of the current actor, our framework provides different
encryption methods (em) to encrypt the data before storing it on the decentralized
ledger that ensures data security. An authorized actor is allowed to choose between
asymmetric em and symmetric em. Asymmetric encryption is based on sepa-
rate public and private keys. A public key is used to encrypt the data, while a corre-
sponding private key is used to decrypt the data. In our motivating scenario, if a forest
manager actor chooses asymmetric em then data will be encrypted with the data
owner’s public key, so later he can only access his data using his private key.
The authorized actor also has an option to choose symmetric em to encrypt the
data, if he wants to enable other actors to read their data. A symmetric key is based on
a single key to encrypt and decrypt the data. If the data owner chooses symmetric
em, then our framework encrypts the data with the symmetric key and then this
symmetric key will be encrypted with a data owner public key to protect the key
from unauthorized actors.
Upon data read request, the data owner would encrypt this symmetric key using the
requester’s the public key to enable the authorized actors to read the data.
We store this encrypted symmetric key (ek) and encrypted data (ed) on the DHT.
The ed stores on the DHT contains resource, woodtype, location (such as latitude
and longitude) that shows the geographical location of the resource in the wood sup-
ply chain. Then, the function FindLastTransaction takes the data id such as
(rfid_number) as input and returns previous pointer (pp) if it exists otherwise it re-
turns 0. We store the metadata on the blockchain. The metadata includes DHT key
(dk), pp, datetime, data owner id (doid), and data id (rfid_number).
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Algorithm 2 Algorithm for the data write operation
Input: d: data, actor: current actor, role: role of the actor, v: HTTP verb POST, PUT, em:

encryption method, pp: pointer of previous transaction when data is updated
Output: ed: encrypted data, encrypted symmetric key (ek) ▷ pk: public key of data owner

(constant)
▷ doid: id of the data owner (constant)
▷ sk: symmetric key (variable)
▷ dht: variable to store the ed and ek
▷ dk: dht key points to the data in dht (variable)
▷ rfid_number: data id (variable)
▷ datetime: timestamp (variable)
▷ pp: previous pointer (variable)

1: if Authenticate(actor, role) then
2: if CheckPermission(actor, role, v) then
3: if em == true then ▷ if true we use asymmetric encryption)
4: ed← Encrypt(d, pk)
5: else ▷ if false we use symmetric encryption)
6: encrypd← Encrypt(d, sk)
7: ek← Encrypt(sk, pk)
8: ed← encrypd, ek
9: end if

10: dk← Digest(ed)
11: dht← SetValue(ed)
12: pp← FindLastTransaction(rfid-number)
13: AddTransaction(dk, pp, datetime, doid, rfid_number)
14: end if
15: end if

– Data Management on the Blockchain
As an extension to the work in [1], we propose a metadata structure that manages
the pointer and connects the different values attached to a specific piece of data to
maintain its history. For example, a forest manager actor, as a data owner, would
write a log information such as:

{
"id": "RFID_number",
"resource": "log",
"woodtype": "maple",
"datetime": "2022-05-03, T-10:12:21.45+01:00",
"location":
{

"lat": "13,2351",
"long": "-15,5142"

}
}

In this case, the proposed solution stores the DHT key as a new pointer of the log data
in the metadata. Later, the data owner can access the data using a data id (RFID_number
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of the corresponding data). An actor can update some parts of the data against the
same data id such as:
{

"id": "RFID_number",
"resource": "log",
"woodtype": "maple",
"datetime": "2022-08-06, T-14:16:23.45+01:00",
"location":
{

"lat": "11,2256",
"long": "-21,1525"

}
}

Our solution allows the data owner to perform different operations (such as update,
read and delete) on their data for the specific RFID_number. In case of data update,
new metadata will be generated on the blockchain that includes a new DHT key of the
updated data and the previous pointer that refers to the previous version of the data
that is stored on the DHT (illustrated in Algorithm 2). Therefore, the DHT key of
the previous version of the transaction becomes the previous pointer which is stored
in the new metadata. The proposed metadata structure also stores the datetime of
the updated data. This way if the data owner wants to see their transactions history,
then the function FindLastTransaction(did) returns the recent version of the
transaction against this data id as RFID_number containing the DHT key of new data
and previous pointer of the updated data. This way an actor can access their update
history. To read the data, an authorized actor can decrypt and access their data in
the decentralized platform. In case, if data is encrypted with the data owner’s public
key then a data owner can use their private key to decrypt and read the data. If the
data is encrypted with a symmetric key then the authorized actor first decrypts the
symmetric key using their private key and then this decrypted symmetric key will be
used to access the data that is stored on the DHT. Similarly, an authorized actor can
delete their data against a specific RFID_number, then a new transaction is created on
the blockchain that includes a new metadata structure. This metadata includes a new
DHT key with a NULL value.

– Traceability
We propose an solution that maintains data id references to ensure traceability. It
enables actors to verify the origin of the final product in the chain. Our solution as-
signs a unique data id (such as RFID_number) to the log, lumber, and product. We
assume that, RFID chips are inserted into the logs and then into the lumbers and final
products. The following code shows the log data in JSON format such as.
{

"id": "RFID_number",
"resource": "log",
"woodtype": "maple",
"datetime": "2022-05-10, T-13:10:20.45+01:00",
"location":
{
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"lat": "25,1324",
"long": "-45,1326"

}
}
A log produces different pieces of lumbers and each lumber has unique id as RFID_number.
The following code shows the lumber data.
{

"id": "RFID_number",
"resource": "lumber",
"datetime": "2022-05-13, T-14:12:23.45+01:00",
"location":
{

"lat": "12,2425",
"long": "-23,1526"

},
"log":
{

"id": "RFID_number"
}

}

The data described above contains a reference id (RFID_number) of the log that was
turned into lumbers. The different pieces of lumbers participate to build a final prod-
uct such as wooden furniture. The following is a JSON representation of product
data.
{

"id": "RFID_number",
"resource": "product",
"datetime": "2022-06-02, T-16:14:26.45+01:00",
"location":
{

"lat": "52,5323",
"long": "-24,3316"

},
"lumber":
{

"id": "RFID_number"
}

}
The product data represented above contains an id reference of lumber that was used
to build it. This way an authorized actor can verify the origin of the wooden product
and can identify where it comes from. The process to trace the data and verifies the
product origin in the wood supply chain is shown in Algorithm 3. For instance, a
customer buys a wooden product such as a bed and he wants to trace this product.
Then, he can use the product id as a data id (such as RFID_number) to keep track of
their origin. The proposed algorithm enables actors to trace the product’s origin using
the data id’s references discussed above.
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In Algorithm 3, the did is an RFID_number of the item in the wood supply chain,
and data (e.g location) of the item changes for the same did. Therefore, we can have
multiple transactions on the blockchain against this did. Whenever the location of
the item would change then new metadata of the same did will be recorded on the
blockchain, and the corresponding data is stored to the DHT. The
FindLastTransaction function returns the last or recent transaction t of this
did, which is a RFID_number. For instance, if we have did of the log then it finds
the last transaction of this log.
This transaction t has the metadata that contains DHT key that points to the data
recorded on the DHT. The function CheckPermission verifies if the current data
requester is authorize to read the data or not depending on their role and HTTP verbs
permission ’GET’. Then, the function GetReferences has the t as input and
takes the did of the items. After that, it gets the previous references of this did.
For example, if we have a input did as product id then it finds the previous ref-
erences such as RFID_number of the lumbers. Then, it checks items (e.g lumbers)
in the list and add items (e.g lumbers references) in the output list (o). Then, the
Traceability function takes i such as lumber as input and call recursively to
find out the log and add them in the list o. In case the list o is empty it is returned
anyway, and it means that the log does not contain any previous reference.

Algorithm 3 Traceability algorithm
Input: did: data id (DHT key)

actor: requester actor, role: requester role, v: HTTP verb GET
Output: o: DHT keys of tracked items

▷ l: items list (variable)

1: l← ∅
2: t← FindLastTransaction(did)
3: if CheckPermission (actor, role, v) then
4: l← GetReferences (t)
5: if l ̸= ∅ then
6: o← ∅
7: for each i ∈ l do
8: o.Append(i)
9: o.Append(Traceability(i))

10: end for
11: return o
12: end if
13: end if
14: return ∅

5. Results and Evaluation

This section presents the results and performance evaluation of the proposed decentral-
ized data storage framework. The evaluation framework is discussed in Section 5.1. The
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security and privacy analysis are presented in Section 5.2. Section 5.3 discusses the per-
formance evaluation of our proposed framework.

5.1. Evaluation Framework

To implement and evaluate the performance of our framework, we used Python 3.7.0. We
used a Python library4 to implement a blockchain to store the DHT key and metadata. We
implemented a DHT using the Kademlia library5, which allows to store and get data linked
with a given key on the peer-to-peer network. We used the cryptography RSA library
to generate private/public keys and encrypt/decrypt the data. We conducted experiments
and evaluated our framework on a 64-bit Windows operating system, Core i7 1.80 GHz
processor, and 16 GB RAM.

5.2. Privacy and Security Analysis

The proposed solution supports data privacy and enables data owners to own and control
their data in a decentralized platform. Our check permission method prevents unautho-
rized actors to perform operations on data such as data write, read, update, and delete.
In addition, to protect privacy-sensitive data from unauthorized access, our framework
provides multi layers of encryption to ensure privacy and security. The data stored on the
DHT are encrypted before uploading. Even if an unauthorized actor gains access to the
DHT nodes then they can only see the cipher texts and cannot achieve any information
about the data. Moreover, in our solution, we used blockchain and DHT because of their
decentralized and distributed design. This can solve the single-point failure issue, and
ensures data replication and availability. We analyzed and evaluated the security of our
framework under the following threats:

– Linking attack
A linking attack happens when the attacker tries to link various transactions or data
with the corresponding public key. In our design, we use different encryption mech-
anisms to encrypt the data, such as the data owner’s public key, symmetric key, and
requester’s public key. We generate public, private, and symmetric keys at run-time
according to the encryption method chosen by the actor. To secure the symmetric key
from unauthorized access, our framework encrypts the symmetric key with the data
owner’s public key and stores it on the DHT. This way only the authorized user is
allowed to use this symmetric key to decrypt and access their data. For this reason,
an attacker cannot link different transactions to the same public key, because our so-
lution encrypts the data using different encryption mechanisms and public keys.

– Eavesdropping attack
In an eavesdropping attack, an attacker tries to listen to privacy-sensitive information
in the network. To protect against this attack, we encrypt privacy-sensitive data with
the requester’s public key upon data read request. This way only authorized actors
can access and read the data using their private key.

4 https://github.com/satwikkansal/python_blockchain_app/tree/ibm_
blockchain_post

5 https://github.com/bmuller/kademlia

https://github.com/satwikkansal/python_blockchain_app/tree/ibm_blockchain_post
https://github.com/satwikkansal/python_blockchain_app/tree/ibm_blockchain_post
https://github.com/bmuller/kademlia


1254 Sidra Aslam and Michael Mrissa

– Spoofing attack

A spoofing attack happens when a malicious actor uses the ID of another actor and
tries to access the data. In our framework, a malicious user cannot spoof the ID of
another actor because they could not spoof its private key. In our solution, each actor
has a private key that is kept secret and not shared with others.

– Modification attack

A modification attack occurs when an attacker tries to change the data content. In
our framework design, we allow data owners to encrypt the data using their public
key and store the corresponding pointer on the blockchain. Our proposed metadata
design keeps the track of data entry date and time to recognize the changes in the
data. An attacker cannot modify the data because data can only be decrypted with a
data owner’s private key that is kept secret by the data owner.

5.3. Performance Evaluation

We evaluated the results according to time consumption and scalability with respect to the
number of peers. We computed the time consumption of the proposed solution according
to the following parameters: actor’s check permission, data encryption/decryption using
asymmetric or symmetric techniques, DHT access, and blockchain access. We observed
time consumption while performing data write, update, read, delete, and traceability op-
erations. Figure 7 and 8 show the time consumption of the different parts of our solution,
respectively using symmetric encryption and asymmetric encryption.

Fig. 7. Time consumption using symmetric encryption



A Framework for Privacy-aware and Secure... 1255

Fig. 8. Time consumption using asymmetric encryption

The general trend of our measurements shows that DHT access takes most of the
time needed, followed by blockchain access, encryption/decryption and then permission
check, which makes sense since the DHT deals with data storage and is therefore I/O-
bound. We believe however that some low-level optimization is performed at this stage
(see the scalability tests and discussion).

In general, the usage of symmetric or asymmetric encryption does not impact the
solution much, except a slight increase of time consumption if asymmetric encryption is
used. We make sense of these results by acknowledging the higher number of keys and
costly computation that are needed when using asymmetric cryptography.

The most time-consuming operation is, without surprise, the write operation, since it
requires the most from the system. Second comes the update operation which is similar to
a write except it is already related to an existing piece of data. Third comes traceability,
which does not modify the existing data but requires following the history of different
pieces of data. Finally, the delete operation is less costly, and the read operation only
consists in resolving the DHT pointer and if granted, fetching the data.

Moreover, we tested the scalability of our solution with a growing number of actors
1, 100, 200, 300, 400 and obtained a reasonable performance with 400 actors (please note
that increasing the number of actors to more than 400 would lead to additional synchro-
nization problem, which would slow down the speed and performance. These problems
are out of the scope of this paper.) The HTTP requests will be only partially processed
in parallel, since they share the CPU time, and we tested our prototype with a quad-core
CPU. In our solution, actors are the same as blockchain nodes and DHT nodes. We tested
our solution with a number of 400 actors which are considered as 400 nodes.
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Fig. 9. Average time consumption under different number of actors

We calculated the average time consumption of our prototype with an increasing num-
ber of actors. The actor registration operation is performed only once for 1, 100, 200,
300, and 400 actor and the time costs is 0,0034 seconds, 0,0039 seconds, 0,0041 seconds,
0,0046 seconds, and 0,0049 seconds respectively. Therefore, we tested our prototype 100
times for all operations such as write data, update data, read data, delete data, and trace-
ability. After that, we calculated the average time, Standard Deviation (SD), minimum
(min), and maximum (max) values in seconds. Figure 9 depicts the average time consump-
tion between a different number of actors, and detailed results statistics are summarized
in Table 2..

As we can see from Figure 9 and Table 2, for the case of 1 actor, write data gives
an average of 0,5712 seconds which is less than the average time of data write for 100,
200, 300, and 400 actors. The update data has an SD of 0,0211 seconds which is close to
the SD of update data for the case of 200 actors. The data read provides an max value of
0,0456 seconds which is less than the may value of read data for the case of 100, 200, 300,
and 400 actors. The delete data takes an average time of 0,0214 seconds which is close to
the average time of delete data for 100 and 200 actors. The traceability data operation has
a min value of 0,0112 seconds and a max value of 0,0312 seconds.
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Table 2. Detailed results under different number of actors

Number of actors Data operations Average Time St Deviation Minimum Maximum

1

Write data 0,5712 0,4321 0,4635 0,6564
Update data 0,0224 0,0211 0,0221 0,0412
Read data 0,0254 0,0113 0,0124 0,0456
Delete data 0,0214 0,0212 0,0213 0,0434
Traceability 0,0201 0,0101 0,0112 0,0312

100

Write data 0,6552 0,5352 0,5432 0,7681
Update data 0,0346 0,0321 0,0334 0,0571
Read data 0,0632 0,0512 0,0542 0,0724
Delete data 0,0233 0,0221 0,0223 0,0342
Traceability 0,0464 0,0413 0,0421 0,0641

200

Write data 0,9325 0,6215 0,6316 1,8622
Update data 0,0356 0,0241 0,0256 0,0392
Read data 0,0738 0,0635 0,0641 0,0956
Delete data 0,0215 0,0153 0,0171 0,0516
Traceability 0,0521 0,0439 0,0472 0,0695

300

Write data 1,2455 0,7529 0,7924 1,9372
Update data 0,0573 0,0543 0,0561 0,0635
Read data 0,0713 0,0537 0,0655 0,0836
Delete data 0,0531 0,0457 0,0461 0,0734
Traceability 0,0636 0,0531 0,0571 0,0913

400

Write data 1,6121 1,3163 1,3223 2,4692
Update data 0,0626 0,0551 0,0569 0,0931
Read data 0,0911 0,0815 0,0857 0,2419
Delete data 0,0882 0,0731 0,0765 1,4271
Traceability 0,0791 0,0682 0,0693 0,0975

For the case of 100 actors, the write operation gives an average of 0,6552 seconds
which is slightly higher than the average time to write data with 1 actor. The update
operation gives an SD time of 0,0321 seconds which is slightly higher than the SD to
update data with 1 actor and 200 actors. The read operation has a SD of 0,0512 seconds
which is slightly close to the SD of read data for 300 actors. The delete operation gives a
min value of 0,0223 seconds which is close to the min value for 1 actor. The traceability
algorithm has an average time of 0,0464 seconds which is less as compared to the average
time for 200, 300, and 400 actors.

Similarly, with the number of 200 actors, the average time to write data is 0,9325
seconds which is slightly higher than the average time to write data for the number of
1 and 100 actors. The update operation provides an SD of 0,0241 seconds which is less
than the SD of update data for the case of 100 actors. The read operation gives an average
time of 0,0738 seconds which is slightly close to the average time to read data for the case
of 300 actors. The delete operation has a min value of 0,0171 seconds which is less than
the min value for 1, 100, 300, and 400 actors. The traceability data operation gives a max
value of 0,0695 seconds which does not show much difference from the max value of 100
actors.

For the case of 300 actors, the write data operation gives an average of 1,2455 seconds
which is slightly higher as compared to the average time to write data for 200 actors. The
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update gives an SD value of 0,0543 seconds which is close to the SD for the number of
400 actors. The read data operation gives a max value of 0,0836 seconds which is less as
compared to the max value to read data for the number of 200 and 400 actors. The delete
operation provides an SD of 0,0457 seconds which is less than the SD for 400 actors. The
traceability takes an average time of 0,0636 seconds which is higher than the average time
for 1, 100, and 200 actors.

For the number of 400 actors, the average time to write data is 1,6121 seconds which
is higher than the average time to write data for 1, 100, 200, and 300 actors. The update
data operation gives an SD of 0,0551 seconds which is close to the SD value of update
data for 300 actors. The read data provides a min value of 0,0857 seconds and a max value
of 0,2419 seconds. The average time to delete data operation is slightly higher than the
average time to update operation for 1, 100, 200, and 300 actors. The traceability provides
a max value of 0,0975 seconds which is close to the max value for 300 actors.

We interpret the reasonable increase in time consumption despite the large increase in
the number of actors as a consequence of the efficiency of DHT access, which is known
to be logarithmic, combined with a number of low-level optimization from the Python
language, together with operating system and hardware optimization mechanisms related
to data management and process execution.

Overall, our experimental results demonstrates that the proposed solution is scalable
and able to manage many actors at the same time. The results show that each operation
take average time less than 1 minute, while increasing the number of actors, therefore, we
can conclude that our solution is acceptable for the end user.

6. Conclusion

In this paper, we present a decentralized data storage and access framework that ensures
data security, privacy, and mutability in wood supply chain scenario. The proposed frame-
work integrates blockchain technology with DHT, a role-based access control model, and
different types of encryption techniques. Our solution allows authorized actors to write,
read, delete, update their data and manage transaction history on a decentralized system.
The proposed traceability algorithm enables authorized actors to trace the product data
in a decentralized ledger. We provided a critical comparative analysis of our work with
existing solutions to show the research gap. The main limitations of existing solutions are
a single point of failure, data mutability, and public availability of the data.

Our prototype design is flexible to expand and can be easily reused for different appli-
cation domains such as medicine, agriculture, etc. We discussed the security and privacy
analysis of our proposed solution and evaluate its performance in terms of time cost and
scalability. The experimental results show that the proposed solution is scalable, secure,
and achieves an acceptable time cost.

In future work, we plan to test our framework with different real-life use-cases and
enhance data access with semantic annotation to identify data concepts that are stored
and in turn exploit this information to drive the RBAC model. We believe the richness
of description logic can contribute to better fine-grained access control and facilitate data
management. Another step forward relates to the possibility to adapt semantically anno-
tated data to specific local interpretation depending on the context of the qeury issuer -
for example, converting data units between countries.
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