
UDC 004.41, DOI: 10.2298/CSIS0901001B

Development of a Modern Curriculum in Software
Engineering at Master Level across Countries

Klaus Bothe1, Zoran Budimac2, Rebeca Cortazar3, Mirjana Ivanović2, and
Hussein Zedan4

1Dept. of Informatics, Humboldt University Berlin
Unter den Linden 6, 10099 Berlin, Germany

bothe@informatik.hu-berlin.de
2Dept. of Mathematics and Informatics, University of Novi Sad

Trg. Dositeja Obradovića 4, 21000 Novi Sad, Serbia
{zjb, mira}@dim.uns.ac.rs

3Dept. of Software Engineering, University of Deusto
Apdo. 1, 48080 Bilbao, Spain

cortazar@eside.deusto.es
4Software Technology Research Laboratory, De Montfort University

Hawthron Building, LE1 9BH Leicester, UK
zedan@dmu.ac.uk

Abstract: A strong need for new approaches and new curricula in
different disciplines in European education area still exists. It is
especially the case in the field of software engineering which has
traditionally been underdeveloped in some areas. The curriculum
presented in this paper is oriented towards undergraduate students of
informatics and engineering. The proposed approach takes into account
integration trends in European educational area and requirements of the
labour market. The aim of this paper is to discuss the body of knowledge
that should be provided by a modern curriculum in software engineering
at a master level. Also the techniques used in development and
implementation of such curriculum at different universities will be
described. The presented ideas are based on the experience gained in
the 3 year TEMPUS1 project “Joint MSc Curriculum in Software
Engineering”, which established joint master studies in software
engineering. Over a three-year interval, the project managed to define a
new and joint curriculum, create teaching materials and deliver the
curriculum in two institutions.
Key words: Curriculum development, Software engineering education,
Teaching methodologies.

1 TEMPUS - Tempus is one of a number of European Community programmes designed to help
the process of social and economic reform and/or development in the EU partner countries.
The Tempus Programme focuses on the development of the higher education systems in these
countries through cooperation with institutions from the EU Member States.

Klaus Bothe, Zoran Budimac, Rebeca Cortazar, Mirjana Ivanović, and Hussein Zedan

2 ComSIS Vol. 6, No. 1, June 2009

1. Introduction

Given software systems’ pervasiveness in everyday life, the need for
professionals who can build on modern software engineering foundations is
critical. Meeting this need requires a focus on software engineering education
at both bachelor and master levels [30]. Unfortunately, West Balkan countries
represent rather small region for education of software engineers at the
bachelor level, but there is a strong need for software engineers in software
companies. Therefore the most acceptable solution is to introduce master
studies in software engineering (later on: SE) at local universities.

However, development of master curriculum in software engineering is not
an easy task, especially concerning methodological and pedagogical issues.
Over the years the teaching of software engineering has changed only
slightly. Many practitioners believe that universities are not doing a good job
and many academics argue that industry does not use the latest, best
technology [23]. Consequently, both industry and academia have recognized
the need for adjustments in software engineering education to effectively train
the future generations of software engineers. The challenge in designing a
curriculum for software engineering studies is to find a way to combine formal
with practical learning, technical with non-technical skills [5], [8], [12], [17]. To
do this, simulation of a real-world environment at the university is needed.

The aforementioned situation in West Balkan countries and experiences
gathered during a longlasting DAAD project2 influenced the design of Joint
Master Curriculum in SE (JMCSE) [4], [15], [18]. The paper outlines the
philosophy, main characteristics and some of the principles and experiences
of designing and implementing such a curriculum. The project successfully
fulfilled all of its goals. Over a three-year period the consortium managed to
define new and joint curriculum in a relatively new educational field such as
software engineering; to have it adopted in three institutions (Novi Sad,
Serbia; Skopje, FYR Macedonia; and Leicester, UK); and to deliver it in two
countries (Novi Sad, Serbia; Skopje, FYR Macedonia).

The rest of paper is organized as follows. Section 2 describes the state in
education in software engineering which influenced the creation of our
curriculum. In section 3 the main goals and activities of the project are
outlined. Section 4 explains in more details the development of teaching
materials. Discussion on how we are trying the decrease the level of ‘spoon
feeding’ is given in section 5. Section 6 delivers our experiences from the first
two years of running the studies, while section 7 concludes the paper.

2 Project - "Software Engineering: Computer Science Education and Research Cooperation",
support of DAAD and auspices of Stability Pact for South Eastern Europe Sponsored by
Germany.

Development of a Modern Curriculum in Software Engineering at Master Level across
Countries

ComSIS Vol. 6, No. 1, June 2009 3

2. Current State in SE Education and Curricula
Development

More and more employees in software development industry are learning
nowadays how to do (some) programming aided by tools for the mass
market. This creates high competition and could eventually force the real
professionals to stand out. Therefore it is very important to be informed about
this situation in the industry at the university level of education and to follow
the real industry needs and expectations [11], [16], [22], [24], [29].

In the last several years foreign software companies have entered the
West Balkan region. Soon it turned out that they needed a lot more
knowledgeable and skilled professionals then they could find. Also “older”
graduates had a problem of coping with the newest trends. On the other
hand, universities in the region started to accept the changes coming from the
newest European educational trends. This pushed universities to cooperate
closely in defining and implementing common or joint curricula in different ICT
domains.

Some of the most developed countries have started to require licensing
[26] for software engineers. Accreditation standards also serve as a source of
requirements for validating software engineering curricula design [9]. These
trends have important influences and consequences for universities and push
them towards making essential restructuring in their curricula. The aim of a
top educational curriculum is to train people who will belong to the top tier.
While teaching only the use of tools that are fashionable at a certain point of
time may bring you short-term popularity among students, doing so is not
necessarily the best service you can give to future professionals. What really
matters is teaching them to think critically, which will accompany them
throughout their careers and help them grow in this ever-changing field [7],
[20], [21], [24]. The University curricula must look beyond tools to the
fundamental concepts that remain for a longer period of time. Curriculum
recommendations proposed by ACM [1] and IEEE [28], contain plenty
recommendations and arguments on how to teach individual courses as well
as on how to structure curricula depending on the size of the department,
number of faculty members, and orientation of the faculty. These
recommendations can always be taken as the starting point when
(re)constructing a curriculum.

In order to develop a modern curriculum in software engineering [27] it is
also important to have in mind the following harmonizing elements [24]:
− principles: lasting concepts that underlie the whole field;
− practices: problem-solving techniques that good professionals apply

regularly;
− applications: areas in which the principles and practices find their best

expression;
− tools: state-of-the-art products that facilitate the application of principles

and practices;

Klaus Bothe, Zoran Budimac, Rebeca Cortazar, Mirjana Ivanović, and Hussein Zedan

4 ComSIS Vol. 6, No. 1, June 2009

− mathematics: the formal basis that makes it possible to understand
everything else.

On the other hand, students require not only excellence in technical

expertise but also social competence [14]. Typically, software engineers are
leading or are involved in team projects, which are often distributed, mobile,
and in which members have diverse skills, different backgrounds, and may
speak different languages.

Any team of teachers devoted to the curriculum development in software
engineering has to have in mind the above-mentioned elements and
principles as a starting point in thinking of courses, technologies/tools,
methodology and pedagogy.

3. Joint Master Curriculum Development and Content

From September 2004 until August 2007 we were involved in the process of
development and implementation of “Joint MSc Curriculum in Software
Engineering” (JMCSE) under Tempus grant CD-JEP-18035-2003. Three
institutions from Serbia, one from Macedonia, three from the European Union
(EU), and two individual experts (from Bulgaria and Romania) were members
of the project consortium: Humboldt University, Berlin, Germany (as Grant-
holder); Deusto University, Bilbao, Spain; De Montfort University, Leicester,
UK; University of Novi Sad (as Co-ordinator), University of Belgrade,
University of Niš, all from Serbia; and University ‘Sts. Cyril and Methodius’,
Skopje from FYR Macedonia.

Up to the beginning of the project, studies leading to MSc degree were
organized quite differently in the West Balkan region:
− students mostly worked individually with consultations with lecturers and

without regular lectures/exercises;
− the list of courses was often too broad and too theoretically-oriented;
− most studies led to a general degree of MSc in informatics without

particular specialization.

Most students completing an MSc degree were those wishing to pursue an

academic career and were rarely employed in the industry. Because of that,
significant changes in university education in informatics (and software
engineering) in the region were necessary and urgent. There were four major
goals of the project:
1. to create a new master curriculum in software engineering according to

above-mentioned principles, Bologna declaration, current practice in EU,
and local industry needs;

2. to make it joint for as many participants as possible;
3. to produce teaching and learning materials for as many new courses as

possible;
4. to start with lectures as soon as possible.

Development of a Modern Curriculum in Software Engineering at Master Level across
Countries

ComSIS Vol. 6, No. 1, June 2009 5

Of several possible definitions of a joint curriculum, the strongest one has
been chosen – all participating institutions should adopt the same curriculum,
thus enabling sharing facilities, lecturers and students. The weakest definition
would be: adjusting existing curricula and sending students to other
participating institutions for a semester or two. Adopting such a weak
definition would, however, highly influence the first goal of the project – to
create a new curriculum according to high standards and needs.

The consortium members from the EU [18] helped in fulfilling these goals
with their immense expertise in all phases of definition and implementation of
the curriculum. The EU consortium members were respectable institutions,
highly experienced in software engineering research and education and
already adopting many of the principles that the new curriculum should attain.

The created curriculum has been independently reviewed by the leading
European professional organization ‘European Software Institute’ (ESI,
Bilbao, Spain). The review was positive and confirmed its importance and
good quality for education of software engineering professionals.

3.1. Project Activities and Basic Decisions

The JMCSE was designed to meet the needs of the beneficiary universities
and did not pretend to meet the requirements of all educational systems in the
European educational area. It has been created for all B.Sc. in general
informatics (with background in both science and technical faculties) and also
with the aim to support student mobility between West Balkan universities
participating in the project.

The first basic principle behind our Joint Curriculum was that it should
represent a significant step to a European-wide employment. The curriculum
should ensure that graduates are prepared for positions in the whole Europe
with the knowledge and skills required for future competitiveness.

Second basic principle of the Joint Curriculum was that it should include a
solid body of fundamental knowledge and should not aim to teach everything
that the graduates would need later and that it should provide a basis for
lifelong learning [16]. Of course, it does not mean that training in practical
issues should be ignored.

Third basic principle was that all courses including theoretical ones should
be SE-oriented or have a significant software engineering flavour.

The basic principles of JMCSE have been agreed and accepted by the
project consortium in October 2005, after a year of consultations, discussions,
and analyses. Most of the efforts in this phase of the project were devoted to
the second project goal – to create the joint curriculum, taking care of
institutions’ traditions, backgrounds (technical vs. science), basic Bologna
decisions for the first two cycles (3+2 or 4+1); and even traces of vanity.

The resulting principles enabled the creation of the firm-enough joint
curriculum, while leaving enough flexibility for every institution to adjust it to its
own needs and tradition. By the end of the project three institutions (Novi Sad,
Serbia; Skopje, FYR Macedonia; Leicester, UK) adopted it officially. The first

Klaus Bothe, Zoran Budimac, Rebeca Cortazar, Mirjana Ivanović, and Hussein Zedan

6 ComSIS Vol. 6, No. 1, June 2009

two institutions adopted it fully as suggested by the project’s documents, while
Leicester adopted its subset (but according to rules for a joint curriculum).
Belgrade and Niš (both from Serbia) adopted it partly at the moment, due to
ongoing reforms at the universities.

It has to be emphasized that this has been a great achievement because
three institutions from three countries (with different educational systems,
rules, procedures, and higher education laws) adopted the curriculum. The
achievement is even greater because the process took place in uncertain
legal and procedural conditions and concurrently with deep and general
university reforms in Serbia and FYR Macedonia.

The forthcoming sections will in more detail discuss the principles and
documents of the accepted joint curriculum.

3.2. Structure of the Joint Curriculum

The curriculum JMCSE has been designed for a wide range of graduate
students (general computer science, business informatics, practical
informatics, engineering, economics, even mathematics) that have different
pre-knowledge in the software engineering field. Also, it has been designed
for “older” graduates, who have a problem of coping with the newest trends in
their jobs, and would like to continue their education. As the general
guidelines for those who wish to attend the JMCSE, the expected
competencies for every student were provided. These guidelines can be also
used by the institution to decide whether or not an induction is necessary.

− Fundamental knowledge in basic fields of mathematics;
− Ability to think logically, formulate of prerequisites, and derive conclusions

in a formal or formalized way;
− Ability to understand and formulate problems, and model them to enable

analysis and solving;
− Programming skills in at least procedural and object-oriented paradigms;
− Understanding of all phases in the software development cycle:

requirements, analysis, design, implementation, testing, maintenance;
− Practical skills in using programming environments, database management

systems (DBMS), and computer-aided software engineering (CASE) tools;
− Understanding of current trends in the development of informatics
− Ability to adapt to new circumstances, i.e. ability to learn new models,

techniques and technologies as they emerge and appreciate the necessity
of such continuing professional development;

− Appreciation of basic ethical and social responsibilities.

As noted, the project consortium recognized the various challenges in

developing the joint curriculum due to the different environments, rules and
regulations that govern education at different universities and countries.
Therefore, instead of defining a fixed curriculum, we defined a curriculum
template that could be implemented in several different ways by the

Development of a Modern Curriculum in Software Engineering at Master Level across
Countries

ComSIS Vol. 6, No. 1, June 2009 7

participating institutions, maintaining the overall goals and principles.
Universities which implemented the curriculum shared:
− Goals, structure, and the course list of the curriculum,
− Principles for adopting the curriculum,
− Quality assurance and control mechanism,
− Pool of fully implemented core courses according to:

− Course templates and
− Principles for the development of courses.

The value of master studies was adopted to be 90 ECTS (European credit

transfer system) credits. one ECTS credit is worth 20 hours of total student's
workload and there are 21 - 24 contact hours per week. The studies are
organized into three semesters (1 semester = 15 weeks). The first two
semesters consist of lectures, while the third one is devoted to the final
project/thesis. General program of studies is as follows:
− Induction Layer: A couple of introductory courses will be offered before

the 1st official semester for students without sufficient pre-knowledge in
the domain of programming techniques, software and other similar
subjects necessary to follow core and elective courses (i.e. for those who
graduated in economics, technical domains, employees who would like
to continue education).

− First semester: Core courses (30 ECTS)

− Second semester: Elective courses (30 ECTS)

− Third semester: Final project (30 ECTS)

3.3 Principles for Instantiation of the Curriculum by the Institution

All courses are one-semester long and equally weighted. The total number of
courses is 8 or 10 (4+4 or 5+5) and it depends on the particular beneficiary
institution rules, study models and local university polices. At least 8 must be
taken from the pool of existing courses (see section 4.2). The remaining two
courses (if at all existing) can be defined freely by the institution. The value of
each course is 6 ECTS (in case of 5 courses per semester) or 7.5 ECTS (in
case of 4 courses per semester) [19]. In the latter case additional homework
must be given to students in order to reach the value of 7.5 ECTS credits per
every course. The number of contact hours for each course is 4 per week.

Induction layer. The courses given here can be implemented directly but

can also serve as guidelines to institutions how to map them into
corresponding undergraduate courses.

Klaus Bothe, Zoran Budimac, Rebeca Cortazar, Mirjana Ivanović, and Hussein Zedan

8 ComSIS Vol. 6, No. 1, June 2009

Core courses. Every institution can choose 4 (or 5) courses from the list of
core courses that will be obligatory for the students in the 1st semester. The
institution can change its choice each year and have to direct students to the
core courses of other institutions belonging to the JMCSE.

Optional courses. In the 2nd semester students can choose 4 (or 5)

courses from the following set of courses:
a) The rest of core courses
b) Optional courses from the home institution and from the other

institutions belonging to the JMCSE. Institutions can organize the
optional courses into strands.

The Institution does not have to offer all available optional courses each
year. The Institution can include new course(s) into the set of optional
courses, providing that they pass through the same quality procedures as the
originally existing courses. The consortium of institutions implementing the
joint studies should agree on the aims and learning outcomes of the new
courses. Each institution implementing the curriculum will select appropriate
technologies and products to be used for implementation and exemplification
purposes, according to suggestions given in course templates.

These master studies enable students to work as professionals in
development of large software or software-intensive systems. Apart from that,
the joint master curriculum and appropriate delivered courses and subjects,
during education, provide students with an additional qualification in different
software engineering domains and the means to continue towards a PhD
degree and scientific research.

4. Curriculum Courses

As suggested in [6] any curriculum can be seen as a system. The
components of this system are courses, labs, coursework, final project, etc.
Each component has its requirement specification. For example, a course
description specifies outcomes, content, teaching methodologies,
considerations and other course requirements. Therefore any curriculum is a
collection of specifications.

 A “hot problem” of this approach is the implementation, i. e. “staffing the
curriculum”. None of the beneficiary universities has been able to implement
such a curriculum in a high-quality manner independently (due to shortage of
absolutely adequate experts and other resources). The best solution for
applying this curriculum at different universities was to accumulate experts’
resources of the partners and implement the curriculum jointly using students’
and teachers’ mobility like in [20].

Development of a Modern Curriculum in Software Engineering at Master Level across
Countries

ComSIS Vol. 6, No. 1, June 2009 9

4.1. Competences and Learning Outcomes

We expect that a student following this curriculum will acquire some general
competences and reach specific learning outcomes [19].

General competencies include:

− Ability to work in an interdisciplinary team
− Capacity for critical analysis and synthesis
− Capacity for applying knowledge in practice
− Capacity for generating new ideas (creativity)
− Capacity to learn
− Decision-making
− Knowledge of a second language
− Research skills

Specific learning outcomes include:

− Show mastery and critical thinking of the software engineering
knowledge and skills and professional issues necessary to begin
practice/research as a software engineer.

− Work as individual or as part of a team to develop and deliver high
quality software artefacts, being able to analyze their level of quality.

− Identify, analyse, and reconcile conflicting project objectives, finding
acceptable compromises within limitations of cost, time, knowledge,
existing systems and organizations.

− Analyse, design and document appropriate solutions in more than one
application domain using software engineering approaches that integrate
ethical, social, legal and economic concerns

− Demonstrate an understanding of and critically analyze and apply current
theories, models and techniques that provide a basis for problem
identification and analysis, software design, development,
implementation, verification and documentation.

− Demonstrate an appreciation and understanding of the importance of
negotiation, effective work habits, leadership and good communication
with stakeholders in a typical, industry-strength software environment.

− Learn new theories, models, techniques and technologies as they
emerge and appreciate the necessity of such continuing professional
development.

Each course has a multi-layer structure and implements three levels of

knowledge and outcomes. The outcomes of courses are defined in terms of
abilities: foundations, core, and advanced. Any course is specified in terms of
prerequisite abilities, developed abilities, and trained abilities. The set of

Klaus Bothe, Zoran Budimac, Rebeca Cortazar, Mirjana Ivanović, and Hussein Zedan

10 ComSIS Vol. 6, No. 1, June 2009

trained abilities may be empty for some courses. So, any course adds new
value to the students in two ways: firstly, the course develops some new
abilities; secondly, it may train some previously gained abilities, improve them
and thus increase the level of professionalism of the students (see Table 1).

Table 1. Classification of knowledge and abilities

No Level of Abilities Level of
 knowledge professionalism
1 Foundations Be able to describe basic concepts. Be aware

2 Core Be able to explain basic concepts
and methods. Understand

 Be able to apply general theoretical
knowledge to solve model
problems.

Be able to
participate in
student projects

3 Advanced
Be able to apply career-oriented
theoretical knowledge and skills to
solve real-life problems.

Be professional

 Be able to predict consequences
and impacts of professional
decisions.

Be expert

 Be able to propose innovative
solutions of real- life problems. Be pioneer

4.2. Course Study Pack

Having in mind all the above mentioned recommendations, other curriculum
developments and different requirements for our curriculum we proposed the
following courses [19].

Induction layer courses: Introduction to software engineering; Principles

of programming, coding and testing; Project management; System modelling
and design.

Core courses: Research methods; Requirements engineering;

Architecture, design, and patterns; Software testing; System integration;
Information system development process.

Optional courses: Software evolution; Component-based development;

Formal methods engineering; Software engineering for critical systems;
Privacy, ethics, and social responsibilities; Applied system thinking; Business
modelling; E-business; Business process re-engineering; Service quality
management; Software engineering for database systems; Advanced topics
in software engineering.

Development of a Modern Curriculum in Software Engineering at Master Level across
Countries

ComSIS Vol. 6, No. 1, June 2009 11

Final project. Detailed project descriptions are made available to students
at the beginning of the curriculum but they start working on them in 3rd
semester. At the beginning of semester a condensed course on selected
topics in project management can be delivered to students. Some suggested
projects are: Electronic Patient Records, Electronic purse, Flight Control
Systems, and E-voting System.

Every fully developed course is described by study pack that contains the

following items [15], [18]:
− A detailed course template that refines the course template and also

contains: a) requirements for the lecturer (job description) for each
course and b) precise rules for examination and coursework;

− Supporting literature for lecturers;
− Presentation material, preferably slides in PPT format;
− Lecture notes, separate or attached to slides (preferably the latter),

explaining the way in which slide contents can be delivered to students;
− Material for theoretical exercises (assignments, rules, solutions…);
− Material for practical exercises (assignments, rules, solutions,

technologies, methodologies, tools…);
− Supporting literature for students (the reference list and/or actual reading

material).

4.3. Course Template

Having defined the structure of the curriculum and the respective course lists,
each of the courses had to be described by a corresponding requirements
specification which we called a course template. A course template defines
the: aims, learning outcomes, syllabus, prerequisite, and recommended
assessment of that course.

AIMS:

Formal methods are those with a firm basis in mathematics. They are often

used in the specification and design of critical systems where failure can cause
catastrophic effects such as death, damage to the environment, loss of money,
etc. However, the use of these methods in large scale design and development is
still not as wide-spread as originally thought. What is needed are mechanisms to
engineer these methods so that they can be used in industry and on large scale
systems.

This course is intended to provide the student with a comprehensive
understanding and critical evaluation of formal methods and to give a detailed
account of a particular technique that is based on automata theory and their
industry-strength support tool (“Statemate”).

Klaus Bothe, Zoran Budimac, Rebeca Cortazar, Mirjana Ivanović, and Hussein Zedan

12 ComSIS Vol. 6, No. 1, June 2009

LEARNING OUTCOMES:

 Upon successful completion of this course, the student will be able to:
 critically evaluate the basis for the need of trustworthiness in large scale

computer systems;
 critically evaluate fundamentals of formal methods;
 appreciate the essential issues of using formal techniques in the whole

system lifecycle and in particular in requirement engineering and
architecture design;

 critically evaluate various types of large scale system from transformational
to hybrid systems;

 critically evaluate the role of tools and methods for engineering the formal
methods.

SYLLABUS CONTENT:

Large scale systems. Taxonomy of formal methods. Transformation vs.

reactive vs. Hybrid systems. Automata theory. State-based development
methods. State chart and activity chart. Statemate semantics and development.
Real-time aspects in (e.g.) Statemate. Case studies.

PREREQUISITES: None

RECOMMENDED ASSESMENT: Coursework and unseen paper

Fig. 1. Course template example

As an example, figure 1 provides the course template of the optional
course “Formal Methods Engineering” [19].

Definition of course templates was a joint activity of the whole consortium.
Developing teaching materials was considered as an individual activity,
monitored by the consortium. Each course has been assigned to a single
course developer (in some cases, two staff members have been involved).
Developers of teaching materials had to implement everything outlined in the
course templates. During that activity, several visits of beneficiary partners’
staff took place to the advisory partners (UK, Germany, Spain) providing
teacher retraining to develop expertise.

5. Teaching Methodology

5.1. Traditional Challenges of Teaching Software Engineering

Teaching software engineering has never been easy and no consensus has
emerged about what is the best way to do it [8], [9], [25], [27]. New or

Development of a Modern Curriculum in Software Engineering at Master Level across
Countries

ComSIS Vol. 6, No. 1, June 2009 13

experienced engineering educators may have a sincere desire to enhance
student learning but are not sure which approach to take. Indeed, one may
choose from a wide array of well promoted learning enhancing pedagogies,
such as active learning, cooperative learning, and problem-based learning,
but, in practice, a basic question of how and which teaching method to
choose still remains unclear [13].

The main reason is that the complexity of software engineering comes from
the complexity of problems and it is impossible to construct real-world
complexity in a classroom. Unfortunately, in software engineering if you peel
away complexity, you are left with unrealistic, inappropriate problems. As
software engineering is a multi-faceted discipline, there are many tradeoffs
that a teacher must make, thus limiting the experience of the student. Some
of the common tradeoffs are [23]:
− Practice versus theory.
− Development versus management.
− Product versus process.
− Formal versus empirical.

The above mentioned skills of a software engineer are of technical nature,
but non-technical skills that are also essential to the success of the software
engineer include: communication with other participants in software
development process and the ability to work in a team. Working in a team
(essential for a software engineer) [2], [3] requires making room for others.
Most of universities do little in education in general, and in software
engineering courses in particular, to teach teamwork.

Common pedagogies to have the most relevance for engineering education
are [13]: traditional pedagogies; active/engagement pedagogies, and mixed
methods. Three most important traditional pedagogies are: subject-based
learning, cookbook laboratories, and group work.

However, curriculum developers and corresponding teachers have to bear
in mind some additional factors to evaluate risks and benefits of a particular
pedagogy for a course they intend to teach. These have been identified as
factors relating to students, instructor, course, and institution. In our case:

Students’ factors. Most of our students that are now studying according to
the newly developed curriculum, had some experience in different software
development companies and most of them are used to work in different-sized
teams. Also most of them were highly motivated to experience new
methodological and pedagogical approaches and willingly and actively
participated in class discussions, exchange of experiences from their
everyday work, and teamwork projects.

Instructor factors. All teachers and assistants joined TEMPUS [18] project
with high motivation to prepare new teaching materials for assigned courses.
They very much appreciated help, guidance and supervision of European
colleagues during retraining process. Also they all agreed to innovate their
style of teaching including: combination of subject-based and project-based
teaching, organizing theoretical exercises as active-discussion sessions, and
organizing practical exercises in form of different-sized projects (mostly for
teamwork manner).

Klaus Bothe, Zoran Budimac, Rebeca Cortazar, Mirjana Ivanović, and Hussein Zedan

14 ComSIS Vol. 6, No. 1, June 2009

 Course factors involve: learning objectives, future implications, and
pedagogical resources, all of which has been outlined in the course
templates.

 Institutional factors. Beneficiary institutions with great satisfaction
accepted the idea to introduce a modern master curriculum in software
engineering. Under the project funds, all universities obtained new equipment.
Most of the staff have tenure status and were able to devote important part of
their working hours for preparation of course material and being re-trained.

5.2. Our Methodological Approach

A successful software engineer must possess a wide range of skills and
talents [23]. We tried to adopt new methodological approach when delivering
particular courses and appropriate subjects. Faced with different
methodological, pedagogical and even ethical possibilities in defining the
pedagogical model for courses in our curriculum we had to resolve the usual
regional particularity in university education.

We moved course developers to prepare during the course a group project
that would include all important aspects of software development and also to
realise it emphasizing teamwork. We would like to make connection to local
industry and software companies in order to define projects (even
reproducing some existing projects, or working on a mirror project) running
over several years, with each new generation of students taking over the
result of the preceding one and developing it further.

Project-based teaching has been gaining interest in the last few years in
different areas. Reasons mentioned for the adoption of a project-based
approach are that it engages the student and therefore increases motivation,
and that in certain fields learning by doing is the most effective way. Apart
from highly practical approach we have adopted for different courses in our
curriculum we have tried to employ other methodologies in order to make
students more active and motivated. In other words, we are trying to avoid
‘spoon-feeding’ as much as possible, in the following ways:
a) Teamwork, especially for larger students’ projects.

For a variety of courses students have to accomplish some larger software
projects. Usually they are divided into teams [3] according to their own choice.
This approach has several advantages [2]. The first is simplicity from the
managerial point of view. Second is that opportunity for a student to sign up
for the team of her/his choice creates a tendency to base the choice on
personal relationships. Thus, the time needed for adjustments and adaptation
of team members is drastically shortened. Third, efficiency of teams created
in this manner tends to be rather high. It also has a major disadvantage that in
real-life situations they will not be in such positions and will have to work with
different team members. However, there are more advantages than
disadvantages and we can be satisfied with adopted pedagogies.

Development of a Modern Curriculum in Software Engineering at Master Level across
Countries

ComSIS Vol. 6, No. 1, June 2009 15

b) Active-learning during exercises but also during lectures.
Teachers and assistants are trying to make active conversation with

students by:
a. asking them to answer some questions related to the subject;
b. presenting them smaller problems (similar to the one previously

taught or exercised) and pushing them to make a discussion in
order to define main steps of a solution (most active are employed
students with significant experience in work on real-life projects);

c. asking them to quote examples from real-life, similar to the one
presented during class, to discus similarities and differences, and
deeply analyze them.

c) Presentation of the real-life situations and problems in order to
provoke discussions between the teachers (or assistants) and
students.

It is similar to the previous method but it is related to “medium-size”
problems (based on home-work afterwards). Analyzing, discussion and
leading to solution is happens during 2-3 classes and students are supposed
to finish work at home (individually or in a team). After they produce a
solution, special sessions are organized. It is also interesting to mention that
sessions where solutions were discussed, analyzed, and criticized, always
provoked arguing and strong exchange of opinions. This produced very
creative classes. Simulating reality, a high degree of freedom should be given
to students in their solutions, discussions, and opinions. Yet, since students
usually have little or no experience with such kind of work (projects and
teamwork), some level of monitoring, guidance and supervision is needed to
ensure advancements and successful results
d) Preparation of seminar papers.

Usually students are willing to participate in such kind of activities. These
activities usually include several different forms.

a. Reading several scientific papers on the subject and presenting
main ideas, making critical analysis and giving some concluding
remarks.

b. Collecting different sources for some methodology, technology, or
tool and then presenting it, analysing, discussing applicability (in
case of a tool, applying it on different real-life examples).

c. Making report on a part of a project an employed student is
working on in his/her company.

6. Experiences

By the third year of the project we had adopted the JMCSE in Novi Sad
(Serbia) and in Skopje (FYR Macedonia), while adoption in Leicester (UK)
was underway. Having most of the project goals already fulfilled we started
with the lectures in October 2006 in Novi Sad. Lectures in Skopje started a

Klaus Bothe, Zoran Budimac, Rebeca Cortazar, Mirjana Ivanović, and Hussein Zedan

16 ComSIS Vol. 6, No. 1, June 2009

semester later, in February 2007. Students from Niš also joined two courses
for which they had equivalents in their current (i.e. old) curriculum.

During the first year of implementation, students were offered 11 courses,
out of 18 possible. Of those 5 were core courses (out of 6) and 6 were
optional (out of 12). Fourteen guest lecturers delivered eight courses at three
beneficiary universities (Novi Sad, Niš, Skopje) and the funds for 115
students’ mobility were used to support attendance of students to four
courses outside of their home institutions. Three courses were lectured by the
local staff of the University of Novi Sad, while eight courses have been
lectured jointly by the guest lecturers and local lectures (prospective lecturers
in the future). In the latter case the typical scenario was that the guest lecturer
gave majority of the lectures, while the local lecturer took care of coursework
and examinations.

From a global perspective, the results of students’ mobility were that they
experienced the technical challenges and the social and cultural diversity of
global development: the courses with accompanying projects were carried out
in an integrated way across multiple universities, students bringing the
technical and cultural experience gained at one university to another one.

The idea is that in the future, beneficiary universities will realize the
innovative concept of shared courses, delivered jointly by two to four
institutions, resulting in both students’ and teachers’ mobility from different
universities constituting a common team.

Communication, collaboration, and coordination are three main challenges
in global software engineering. The experience (based on the project results,
the inquiries and student interviews) has indicated certain difficulties in
coordination and exercising (in situations when we have a guest teacher and
a local assistant) of distributed projects, especially in the early phases.

In spite of problems in long-lasting communication between students and
guest teachers, and other organizational problems, students acquired
knowledge, competences and experiences in different software engineering
domains and topics, which implies the ability to cope with complexity of
understanding, designing and implementing such systems in the global
marketplace. This comprises techniques from software engineering
disciplines, including requirements engineering, software processes, software
architecture and design, system analysis, testing, verification and validation.

The students were also being educated as global citizens. With specialized
modules in research methodologies and professional ethics being part of the
curriculum we expect to create an impact on the quality of our masters and
societal relevance of their education [20]. By applying similar way of
curriculum implementation in the future, students will be aware of, and trained
to work with diversity (e.g. cultural, social, and economical), know how to
communicate in a global network and a global team, interpret diversity and
exploit it in their professional and personal lives. Early signs show that we
have satisfied both teachers and students.

By the end of the project we had 16 (out of 18) developed study packs –
not all of them were in its full form, however all of them contained lectures
with lecture notes. After the project, Leicester (UK) also adopted the JMCSE

Development of a Modern Curriculum in Software Engineering at Master Level across
Countries

ComSIS Vol. 6, No. 1, June 2009 17

and started with the lectures. At the same time, in Novi Sad and Skopje
began the second year of studies. We are now offering all 6 core courses and
7 optional ones, planning an exchange of 7 teachers and (only) 6 students.
The main reasons for a (much) lower students’ mobility are following: the lack
of funds, a lot of employed students which have no time for mobility, and as
well the lack of suitable infrastructure that would take care of students’ visits
in Skopje and Novi Sad in a routine way.

7. Conclusion

The whole project went through a sequence of phases starting at the end of
2004. These phases covered:
− Definition of the curriculum goals; analysis of the situation at beneficiary

universities; analysis of the special requirements of the local software
industry;

− Based on that, definition of the structure and the contents of the
curriculum;

− Development of teaching materials;
− Delivery of the curriculum.

 During this process, the consortium had to cope with several
challenges.

National educational environments. During the whole development time
we were confronted with ustable educational environments in Serbia and FYR
Macedonia. University reforms were without definite and clear decisions, thus,
even the length of the proposed curriculum was subject to insecurity.

Differences between beneficiary institutions. The curriculum has been
developed for four different faculties with different traditions in education and
research. Correspondingly, their ideas of the curriculum contents were
different from each other. One of the issues was the role of theoretical
foundation in master studies which had been traditionally underestimated by
engineering faculties.

Flexibility. Because of previous issues the consortium defined a
curriculum framework, rather than to prescribe a fixed curriculum for all
institutions. Based on the pool of teaching materials developed for the
proposed course list, each institution has the freedom to select appropriate
ones, according to the common rules.

Resolving all of these difficulties and defining a framework for joint
curriculum took a year of project activities.

Teaching materials development. The development of teaching materials
from scratch is a time-consuming activity. Although there were existing
teaching materials of EU partners, only some of them were sufficient to serve
the needs of the joint studies. Thus, a larger amount of new materials had to
be produced. Main emphasis had to be placed on reusability: teaching
materials had to be enriched with lecture notes to enable their application by a
lecturer that has not developed the materials. Lecture notes consist of

Klaus Bothe, Zoran Budimac, Rebeca Cortazar, Mirjana Ivanović, and Hussein Zedan

18 ComSIS Vol. 6, No. 1, June 2009

teaching tips (methodological information) as well as additional technical
information.

During this phase, an elaborate quality assurance mechanism for the study
packs was developed by the project consortium. That document was
necessary in order to establish the uniform quality of developed study packs
in distributed environment and in the situation when the producer of study
pack is not necessary the teacher of the corresponding course.

Delivery of the curriculum. In this phase we faced mostly organizational
problems: a) most of the students were already employed and b) guest
lecturers were not available all the time. Therefore it was not easy to find
suitable intersections of their free time for organizing lectures and exercises.
Students’ mobility also proved to be a very demanding task. Due to the lack of
official university/faculty services to support students’ visits, all activities had
to be performed by the teachers themselves.

Despite the mentioned difficulties, the project consortium managed to fulfil
all the given goals – from creation of new and joint curriculum to its delivery in
three institutions (two of them even during the project course).

The main experiences gained so far can be summarized as follows:
Common principles of quality assurance are crucial in such a multi-lateral

project: curriculum validation by a validation panel including academics and
industrialists; quality assurance of teaching materials; common principles of
students’ selection and students’ assessment.

It is rather advantageous that experts of certain special fields are being
responsible to work out the teaching materials in that field. In that way, high
quality of the technical contents could be guaranteed.

The involvement of all partner institutions in the curriculum development
process is necessary for the success of the project, in particular for the
acceptance of the project results.

8. References

1. ACM/IEEE, Computing Curricula 2005, [Online]. Available:
http://www.acm.org/education/curricula.html, (2005)

2. Belikova, M., Navrat, P.: Experiences with Designing a Team Project Module for
Teaching Teamwork to Students, Journal of Computing and Information Technology,
Vol. 13, No. 1, 1 – 10. (2004)

3. Budimac, Z., Putnik, Z., Ivanović, M., Bothe, K., Schuetzler, K.: Conducting a
Joint Course on Software Engineering Based on Students Teamwork, Informatics
in Education Journal, Vol. 7, No. 1, 17-30. (2008)

4. Bothe, K., Budimac, Z., Cortazar, R., Zedan, H.: Developing a joint software
engineering master’s curriculum across countries: report on a multi-national
educational project, e-journal ITALICS, Vol. 6, No. 3. (2007)

5. Bourque, P., Dupuis, R. (ed.): Guide to the Software Engineering Body of
Knowledge, IEEE CS Press (2004)

6. Caplinskas, A.: Curricula engineering: application of systems engineering methods
to the development of university curricula, Information Technology and Control,
Vol. 22, No. 1, 10-21. (2002)

Development of a Modern Curriculum in Software Engineering at Master Level across
Countries

ComSIS Vol. 6, No. 1, June 2009 19

7. Caplinskas, A., Vasilecas, O.: MOCURIS - modern curriculum in information
systems:at master level. In Proceedings of the 10th European Conference on
Information Systems (ECIS2002), Gdansk, Poland, V.1, 184-193. (2002)

8. Ford, G.A., Gibbs, N.E.: A Master of Software Engineering Curriculum –
Recommendations from the Software Engineering Institute, IEEE Computer, Vol.
22, No. 9, 59-70. (1989)

9. Frezza, S. T., Tang, M., Brinkman, B. J.: Creating an Accreditable Software
Engineering Bachelor’s Program, IEEE Software, Vol. 23, No. 6, 27-35. (2006)

10. Gorgone, J.T., Gray, P. (ed.): MSIS 2000. Model Curriculum and Guidelines for
Graduate Degree Programs in Information Systems, Communications of the
Association for Information Systems, Vol. 3, No. 1, pages 61. (2000)

11. Henderson, P.B.: Software engineering education (SEEd), ACM SIGSOFT
Software Engineering Notes, Vol. 28 No. 4. 3-5. (2003)

12. Hislop, G.W., Ellis, H.J.C. et al.: Graduate Software Engineering Education:
Adapting for the BSSE?, In Proceedings of the 17th Conference on Software
Engineering Education and Training (CSEET’04). 1 pp. (2004)

13. Huang, M., Malicky, D., Lord, S.: Choosing an Optimal Pedagogy: A Design
Approach, Proceedings of 36th ASEE/IEEE Frontiers in Education Conference,
October 28 – 31, San Diego, CA, T2C-1-T2C-6. (2006)

14. Inverardi, P., Jazayeri, M.: Software Engineering Education in the Modern Age,
Software Education and Training Sessions at the International Conference on
Software Engineering, ICSE 2005, St. Louis, MO, USA, May 15-21, Revised
Lectures, Springer. (2006)

15. Ivanovic, M., Budimac, Z.: Software Engineering Studies - a Step to Virtual
University, In Proceedings of Second Balkan Conference in Informatics, Ohrid,
Macedonia, November 17-19, (invited lecture), 13-21. (2005)

16. Ivanović, M., Budimac, Z., Dudan, Z.: Lifelong Learning for Small and Medium
Companies in Serbia, In Proceedings of Informatics Education Europe II,
Thesalloniki 29-30 November 2007, 60-67. (2007)

17. Joanne, M. A., Richard, J. LeBlanc, Jr. Et al. : Reflections on Software
Engineering 2004, the ACM/IEEE-CS Guidelines for Undergraduate Programs in
Software Engineering, P. Inverardi and M. Jazayeri (Eds.): ICSE 2005 Education
Track, Lecture Notes in Computer Science, Vol. 4309, Springer-Verlag, Berlin
Heidelberg New York, 11–27. (2006)

18. Joint MSc Curriculum in Software Engineering, project supported by Tempus
under the grant no. CD-JEP-18035-2003., [Online]. Available:
http://perun.im.ns.ac.yu/msc-se/

19. Joint MSc curriculum in software engineering, TEMPUS Project CD_JEP-18035-
2003, Curriculum specification, 3rd release, Version: November 1, pages 40.
(2006)

20. Muccini, H., Beus-Dukic, Lj., Crnkovic, I., Punnekkat, S., Vliet, H. V.: Towards a
European Master Programme on Global Software Engineering, In Proceedings of
Software 20th Conference on Engineering Education & Training - CSEET ’07, 3-5
July 2007, 184 – 194. (2007)

21. Lethbridge, T., LeBlanc, R.J. Jr, et all.: SE2004: Recommendations for
Undergraduate Software Engineering Curricula, IEEE Software, Vol. 23, No. 6, 19-
25. (2006)

22. Lutz, M. J., Bagert, D.: Software Engineering Curriculum Development, IEEE
Software, Vol. 23, No. 6, 16-18. (2006)

23. Mehdi, J.: The Education of a Software Engineer, In Proceedings of 19th IEEE
International Conference Automated Software Engineering Conference, Linz,
Austria, September 22-24, 2004, xviii-xxvii. (2004)

Klaus Bothe, Zoran Budimac, Rebeca Cortazar, Mirjana Ivanović, and Hussein Zedan

20 ComSIS Vol. 6, No. 1, June 2009

24. Meyer, B.: Software Engineering in the Academy, IEEE Computer, Vol. 34, No. 5,
 28 – 35. (2001)

25. Mingins, C., Miller, J., Dick M., Postema, M.: How We Teach Software
Engineering, Journal Object-Oriented Programming, Vol. 9, No. 11, 64-75. (1999)

26. Parnas, D.L.: Software Engineering Programmes Are Not Computer Science
Programmes, CRL Report 361, Communication Research Laboratory, McMaster
Univ., Apr. 1998; IEEE Software, Vol. 16 , No. 6, 19-30. (1999)

27. Show, M.: Software engineering education: a roadmap, In Proceedings of the
Conference on The Future of Software Engineering, Limerick, Ireland, 2000, 371
– 380. (2000)

28. Software Engineering 2004 Curriculum Guidelines for Undergraduate Degree
Programs in Software Engineering: A Volume of the Computing Curricula Series,
tech. report, IEEE CS-ACM Joint Task Force on Computing Curricula, 2004,
[Online]. Available: http://sites.computer.org/ccse.

29. Thompson, J. B., Edwards, H. M.: Third International Summit on Software
Engineering Education (SSEE III) Bridging the University/Industry Gap, ICSE’06,
May 20-28, 2006, Shanghai, China, 1011-1012. (2006)

30. Varol, C., Bayrak, C.: Applied Software Engineering Education, In Proceedings of
ITHET 6th Annual International Conference, July 7 – 9, 2005, Juan Dolio,
Dominican Republic, T3C-25-T3C-29. (2005)

K. Bothe is a professor at the Institute of Informatics, Humboldt University
Berlin. His research interests cover: compiler construction, software
engineering, software testing methodology and tools, programming
languages, e-learning, and logic programming. During the last years, he was
the grantholder of an international DAAD project and of an EU Tempus
project concerned with the development of a Joint Master’s curriculum in
software engineering and the construction of teaching material repositories.

Zoran Budimac is a professor at Faculty of Science, Department of
Mathematics and Informatics, University of Novi Sad. He graduated in 1983
(informatics), received master’s degree (computer science) in 1991 and
doctor’s degree (computer science) in 1994. His research interests include:
mobile agents, e-learning, software engineering, case-based reasoning,
implementation of programming languages. He has been project leader for
several international and several national projects. He has published over 170
scientific papers in proceedings of international conferences and journals, has
written more than 12 university textbooks in different fields of informatics. He
is head of computer science chair.

Rebeca Cortázar is an associate professor in the Software Engineering
Department, Faculty of Engineering, at the University of Deusto in Bilbao
(Spain). Her interests include educational issues in Software Engineering,
Software Measurement and Effort Estimation, Object Orientation and System
Integration Technologies. She is currently lecturing on Object Oriented
Design & Patterns and Integration Technologies. Additionally, she is an
active participant in the promotion of the European Space of Higher

Development of a Modern Curriculum in Software Engineering at Master Level across
Countries

ComSIS Vol. 6, No. 1, June 2009 21

Education, known as the Bologna process, at her institution. Since October
2008, she holds the position of vicedean (International Relations and External
Cooperation) at the Faculty of Engineering. At the present time, she is
involved in several EU Tempus project proposals and participates in IBIM, an
EU-USA ATLANTIS project. Dr. Cortazar received her Ph.D. in Computer
Science from the University of Deusto in Bilbao (1999).

Mirjana Ivanović is a professor at Faculty of Sciences, Department of
Mathematics and Informatics, University of Novi Sad. She graduated in 1983
(informatics), received master’s degree (discrete mathematics and
programming) in 1988 and doctor’s degree (computer science) in 1992. Her
research interests include: multi-agent systems, e-learning and web-based
learning, data mining, case-based reasoning, programming languages and
tools. She actively participates in more than 10 international and several
national projects. She has published over 180 scientific papers in proceedings
of international conferences and journals, has written more than 10 university
textbooks in the field of informatics and ICT.

Professor Hussein Zedan is the Technical Director of the Software
Technology Research Laboratory (STRL) at De Montfort University, UK. His
research interests include formal methods, verification, semantics, critical
systems, re-engineering, computer security, CBD and IS development.

Received: January 13, 2009; Accepted: February 27, 2009.

