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Abstract. In recent years, several proposals have been based on Artificial Intelli-
gence techniques for automatically detecting the presence of pests and diseases in
crops from images usually taken with a camera. By training with pictures of af-
fected crops and healthy crops, artificial intelligence techniques learn to distinguish
one from the other. Furthermore, in the long term, it is intended that the tools de-
veloped from such approaches will allow the automation and increased frequency
of plant analysis, thus increasing the possibility of determining and predicting crop
health and potential biotic risks. However, the great diversity of proposed solutions
leads us to the need to study them, present possible situations for their improvement,
such as image preprocessing, and analyse the robustness of the proposals examined
against more realistic pictures than those existing in the datasets typically used.
Taking all this into account, this paper embarks on a comprehensive exploration
of various AI techniques leveraging leaf images for the autonomous detection of
plant diseases. By fostering a deeper understanding of the strengths and limitations
of these methodologies, this research contributes to the vanguard of agricultural
disease detection, propelling innovation, and fostering the maturation of AI-driven
solutions in this critical domain.

Keywords: Plant Disease Detection, Classification, Image Preprocessing, Deep Learn-
ing.

1. Introduction

The growing interest of the agri-food sector in the new solutions that digitalisation can
provide, and the support given to their development by public administrations and differ-
ent organisations, is facilitating an increasing number of technological initiatives at the
international and national levels.

One factor influencing crop yields is the possible incidence of pests and diseases. To
reduce their impact, farmers make recurrent use of phytosanitary products. In this way,

⋆ This paper is an extended version of an ASSIA workshop paper.
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the development of potentially dangerous populations can be controlled, thus ensuring
production. This group also includes herbicides, which prevent competition for nutrients,
water, and the establishment of the main crops with other unwanted plants.

In many cases, given the uncertainty of the time of pest emergence and its virulence,
farmers often carry out preventive treatments. Over the last few years, the cost of these
treatments has shown a clear upward trend. For example, in Spain, the average price per
hectare has gone from 50 euros in 2009 to 88 euros in 2019 4. In other words, in just 11
years, this component has undergone an increase of more than 76%.

Within the same EU strategy to reduce the environmental impact of European agricul-
ture, another objective has been set to reduce the use of phytosanitary products by 50%
and make more rational use of these products from both an environmental and economic
point of view. To achieve this, digitalisation is presented as an essential tool. In this sense,
disease detection and pest evolution models can be created so that treatments are only
carried out when they pose a risk to production.

According to this, plant disease is nowadays a significant concern in agriculture. There
are many involved counterparts, from economic to climatic and social consequences.
Early disease detection and control is one of the cornerstones of preventing economic
waste and production losses. Plant disease detection is a complex task and has been tra-
ditionally done by ocular inspection and through the personal experience of farmers.
One of the main concerns is to be as quick as possible to detect the disease before it
spreads through the land. Furthermore, the plant is not necessarily affected by a single
disease; multiple conditions can show up simultaneously, increasing the detection diffi-
culty. Hence, the wide variety of plants combined with the different diseases nowadays
makes experts fail in their tasks. With the significant increase of digital imagery, there is
an opportunity to generalise the expert’s knowledge and use image processing for auto-
matic plant disease detection.

Soil analysis is traditionally done using satellite and hyperspectral images, which per-
mits the study of wide land extensions and characteristics that humans cannot see. The
counterpart of this type of analysis is that the quantity of available images is limited, and
that concrete diseases can only be seen at the field level. As for hyperspectral images, the
equipment needed is expensive. To make the disease detector system accessible, it must
be low-cost so anyone can use it. It should work with images in the visible range, that is,
in RGB space.

The current situation in the agricultural sector exacerbates the problems of lack of
experts and, therefore, of time available to detect plant diseases. In this sense, the auto-
matic detection of plant diseases plays a crucial role in overcoming these problems and
providing an alternative solution to the damage caused by plant diseases.

Automatic identification of plant diseases presents several challenges ranging from
problems in the capture process, such as noise or fog over the camera, to unwanted infor-
mation in the images themselves, such as an inappropriate background, the soil itself, or
other plants that interfere with the identification.

Deep learning-based solutions are considered the most suitable for this type of prob-
lem. Deep Learning techniques, particularly Convolutional Neural Networks, rely on
weight optimisations, searching for maxima in the parameter space. In terms of statistical
results, e.g. in edge detection, they have achieved exceptional results, even surpassing hu-

4 https://www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/
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man performance [30]. As a counterpart, due to their nature, neural networks can undergo
with difficulties to adapt to real scenarios when the tested data is considerably different
from the training data [28]. Even so, there are still aspects to be taken into account since
the proposed models are very dependent on the characteristics of the dataset used. Al-
ternative datasets more adjusted to real situations can easily alter the accuracy of deep
learning-based solutions.

This work reviews the most relevant network architectures used in the literature to
detect plant disease. The experiments are conducted to classify individual diseases in plant
images. Moreover, we analyse and compare their performance and investigate whether
preprocessing the images before the training step impacts the correct classification. As it
is difficult to say whether preprocessing has a real impact, we evaluate the different image
set variants over a real image synthetic dataset, analysing the robustness of each network
configuration.

The paper is structured as follows. In Section 2 we review related work in the au-
tomatic detection of plant disease. Then, Section 4 presents the use of preprocessing as
the first step before training image classification networks along with the network fami-
lies used. Following this, Section 5 shows the experimental framework devised. Finally,
a discussion is presented in Section 5.1 along with some conclusions about the results
obtained.

2. Related Work

Automatic plant disease detection is a classification problem done through the analysis
of image features, which can be as various as geometric or colour features. In addition,
specific indexes such as the NDVI-index, which measure the level of green on images,
are commonly used (but in hyperspectral images). As a similar index type, but for visible
range images, alternatives are used, such as the VARI index or the vNDVI index [7].

As indicated by Barbedo [3] and Hasan [16], there are a series of challenges when
identifying plant diseases and managing crops automatically (as seen in Figure 1). One of
the main problems with focussing the interest on the plant or leaf itself is the background
removal, which can be soil or other plants. In addition, capture level problems can be
an issue as brightness or occlusions. In terms of the disease itself, there might not be a
unique disease or different diseases can have similar characteristics or might not be ideally
defined.

Some of these challenges might be tackled through a pre-processing step, where an
image is treated, so that spurious information is removed, e.g. background segmentation
or texture removal (smoothing [25, 29]) or even image improvement (e.g. contrast en-
hancement [23]).

Once the images have been processed, they can be classified by two types of tech-
niques. On the one hand, Machine Learning (ML) techniques aim at classifying plant dis-
eases based on different features extracted from images (geometric characteristics, colour
information, gradients, etc.). Different classifiers such as Support Vector Machines [6,31],
K-means classifier [13], and Random Forest [20] are used to detect different plant dis-
eases. These techniques need a very precise human-made solution (ground truth) and as-
sistance to be performant. They work well when there is a limited amount of data. On the
other hand, despite their lack of explainability, Deep Learning (DL) approaches have been
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Fig. 1. Challenges in plant disease detection and crop management [16]

extensively used nowadays and report promising results. In the literature, some recurrent
examples of well-known Convolutional Neural Networks (CNNs) are used to detect plant
diseases. As is well known, even if there are increasingly more available images to work
with, the quantity/quality is limited to learning in a specific task. In those cases, Transfer
Learning is used to build a network based on pre-trained information and adapted to the
concerned task. These networks are pre-trained on large datasets e.g. ImageNet [8]. This
process takes the first layer of the trained network and removes the last layers adapting
them to the specific task and training only these last steps. In this way, the specific task is
not trained from scratch, and the computing time is shortened. The most common and ef-
ficient networks in the literature are Alexnet [21], ResNet50 [18], VGG16 [36], Inception
V3 [37]. EfficientNet [38] can also be considered a group of networks, as there are 8 types
of subnets.

We can see in [14] that their model, based on ResNet50 and pre-trained on Imagenet, is
robust against field information (soil, background, etc...), obtaining an accuracy of 98.5%
with synthetic soil background and 72.03% on real field images. They work with data aug-
mentation and real field images from plants to do so. In addition, as the same disease on
different plants is considered a different class, the authors propose to use a species-specific
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classification as the disease symptoms can be pretty similar. In this way, geometric, colour,
and texture features are learnt and then incorporated into the baseline model.

Atila et al. propose in [2] the use of EfficientNet in its different variants (B0 to B7).
The particularity of this neural network is that, as a first step, it determines the best scaling
dimensions and it does not use the well-known Rectifier Linear Unit (ReLU) as an activa-
tion function, using the Swish function instead. In this work, the model is pre-trained with
ImageNet and adapted by removing the Fully Conected layers with 1000 outputs to fit the
39 possible outputs of the PlantVillage dataset. The results obtained with their proposal
get an accuracy beyond 99.6% compared to state-of-the-art neural nets, all pre-trained
with ImageNet.

An interesting approach is that of Schwarz Schuler et al. [35] which propose an
InceptionV3 based architecture where the image processing is separated into two branches
where each image channel, in Lab colour space, is treated separately and then fused to
better adapt to the inherent characteristics of each channel. The authors test their approach
by varying the importance of each channel with the percentage of filters used for each of
the branches. The performance of the process in all cases is greater than 99% of accuracy.

An alternative approach to mostly used network architecture is that of Capsule Net-
works [32] which fixes one of the significant drawbacks of a standard CNN. CNNs do not
consider the possible feature hierarchy in an image considering similar images as equal
even when they are not. In the work presented by Samin et al. [33] the Capsule Network
approach is used without using Transfer Learning, obtaining an accuracy of 93.07%.

More recently, a lightweight CNN approach was based on Inception and Residual
connection [17]. The proposed approach extracts better features from the input images.
This is done by replacing the standard convolution by a depth-wise separable convolution
combined with a point-wise convolution, which results in fewer parameters as well as
a speed-up in the processing. The resulting performance with the approach presented is
99.39% accuracy.

After studying the state-of-the-art, it can be seen that there are currently a multitude
of proposals, most of them based on deep learning techniques that offer promising re-
sults from the existing datasets. However, there are specific gaps that we think should be
analysed. On the one hand, some works suggest the need for image pre-processing before
classification; in our opinion, this aspect should be studied in greater detail as it may allow
for an improvement in the classification process. On the other hand, most of the works are
evaluated against a so-called ideal dataset. Using more realistic datasets to validate exist-
ing models would allow for analysis of their possible robustness. Nevertheless, [5] is an
interesting approach, but as they are working with infrared images, they would need to
use infrared cameras when applied to the real world, which are expensive to deploy.

In summary, the reviewed works exhibit several shortcomings. First, there is a com-
mon challenge in background removal, which includes soil or other plants. This issue can
be addressed through pre-processing steps, such as background segmentation and texture
removal. Additionally, the variability in disease symptoms and the lack of a unique or
well-defined disease pose challenges. To tackle this, the proposed work employs a species-
specific classification approach, which considers the similarity of symptoms among dis-
eases within a species. Moreover, most of the existing works rely on ideal datasets for
evaluation, which may not reflect real-world conditions. To address this, the proposed
work emphasizes the need for more realistic datasets to validate models and analyze their
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robustness. Additionally, some works suggest image pre-processing before classification,
and the proposed work aims to delve deeper into this aspect to potentially improve the
classification process. Finally, while the reviewed works primarily focus on deep learning
techniques, the proposed work offers a comprehensive comparative study of various ap-
proaches, including deep learning and alternative network architectures. This comparative
analysis helps identify the strengths and weaknesses of different methods and contributes
to a better understanding of plant disease detection techniques. In the following section,
the proposed study is presented.

3. Contextualizing Plant Disease Detection

This section provides a comprehensive overview of the problem statement, research ob-
jectives, and motivation driving our study on evaluating a collection of different neural
network architectures for plant disease detection.

3.1. Problem Statement

The accurate classification of plant diseases is a matter of utmost importance in contempo-
rary agriculture. With the global population rising and increasing pressure on sustainable
food production, the need for precise disease detection has never been greater.

Early and precise disease identification facilitates timely intervention, curbing the
spread of infections and minimising crop losses. This ensures a stable food supply to meet
the demands of growing populations. Accurate classification ensures that infected produc-
tions are promptly identified and removed, safeguarding consumer health and maintaining
the reputation of agricultural products. Reducing chemical pesticide use and optimising
resource allocation in farming can be achieved through targeted disease management,
contributing significantly to sustainable agricultural practices.

However, several challenges and implications loom over the issue of plant disease
classification. Misclassification can lead to unnecessary treatments or neglect of infected
plants, resulting in economic losses for farmers. In addition, it can lead to environmen-
tal pollution and harm to non-target species and compromise food security by reducing
crop yields and impacting the availability and affordability of agricultural products. Ac-
curate datasets for plant disease classification are essential for advancing research in crop
protection and breeding resilient plant varieties.

3.2. Objectives and motivation

Our proposal investigates various deep learning models’ effectiveness in the automated
detection and classification of plant diseases, rigorously evaluating their performance.
Based on the performance measures obtained, we determine which neural network archi-
tectures and transfer learning strategies yield the best results for plant disease detection.
With the proposed experiments, we bridge the gap between research and practical applica-
tion by developing a user-friendly tool that can assist farmers in identifying plant diseases
quickly and accurately.

Our motivation to embark on this study is grounded in the pressing need to address the
challenges posed by plant diseases in agriculture. We aspire to provide a practical and ef-
ficient solution to the longstanding problem of plant disease detection, making a tangible
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impact on the agricultural industry. Ensuring a stable and secure food supply for current
and future generations is a driving force behind our work, guarding crop yields against the
persistent threat of plant diseases, contributing to reducing environmental impact due to
excessive pesticide use and promoting responsible farming practices. By exploring novel
approaches for automated disease detection in plants, we seek to advance the fields of
computer vision and machine learning, pushing the boundaries of technological innova-
tion.

4. Preprocessing and Classification models

In this Section, we briefly present the preprocessing step that we use as a primary task to
train the networks and build specific sets of images with regularisation and sharpening.
We also present the different network architectures we put to the test and the different
parameters we configure.

4.1. Preprocessing

As the first task in this work, we consider the preprocessing step inspired by the Bezdek
Breakdown Structure (BBS) [4] for edge detection. Four steps characterise the process:
image conditioning, feature extraction, blending and scaling.

This structure helps to understand edge detection as four independent phases. For
our purpose of interpreting plant leaf classification using Convolutional Neural Networks
(CNN), in some way, we take the first step of the BBS as the input of our neural system.
We do not consider the rest of the steps as they are edge-detection-specific.

Image conditioning focuses on removing noise, or additional information that is not
needed for the process it is undergoing (in this case, feature extraction in the different
layers of the network).

It is a cornerstone task as it removes spurious information on the image due to the
capture process or reduces texture information. In our approach, we propose to use The
Gravitational Smoothing (GS) process [25] as a conditioning step in the preprocessing.
This preprocessing step is done to all the images of the dataset in order to obtain a vari-
ation that will be used for training purposes individually without mixing the new images
with the original ones.

GS is a content-aware smoothing method that adapts the image regularisation based
on local information, as opposed to Gaussian smoothing, whose main problem is the
blurring of objects in the image. GS simulates the movement of pixels in a 5D spatial-tonal
space, bringing closer or moving away similar/dissimilar pixels. This behaviour allows us
to control the blurring effect by removing unwanted information such as textures while
preserving abrupt tonal changes (e.g. significant colour variation). In this technique, each
pixel is considered a particle in the space that exerts an attractive or repulsive force on
every surrounding pixel. Then the total force over a pixel is the sum of all individual forces
around a pixel. Each force is computed as the product of a gravitational constant G and
the inverse of the distance in the spatial-tonal space. Additionally, this force model can be
used oppositely, changing the direction of the forces. Using GS in this way enhances the
image’s characteristics, highlighting the differences, which in our case can be beneficial
to detect the diseased regions better. An example of the resulting images obtained can be
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seen in Figures 2(a)-2(b), where we apply the smoothing and sharpening version of GS to
an original leaf image.

4.2. Deep Neuronal Network Description

Different network architectures were evaluated to perform this classification of plant dis-
eases to determine which configuration allowed the best results to be obtained. Different
aspects were taken into account, such as transfer learning, data augmentation and the
end device: server or edge device. In order to obtain the different networks, a series of
hyperparameters were modified to each of the networks. In order to determine which con-
figuration allowed the best results to be obtained.

The hyperparameters presented below were the result of an extensive iterative process.
These specific hyperparameters were identified as the ones yielding the most favorable
outcomes during the validation phase. Notably, the decision to set the number of training
epochs at 7 emerged from a careful consideration of model performance. Extensive ex-
perimentation revealed that increasing the number of epochs led to a phenomenon known
as overtraining, where the model became overly specialized to the training data, compro-
mising its generalization capability. Conversely, reducing the number of epochs resulted
in markedly suboptimal results, indicating the need for a moderate yet effective training
duration. This strategic choice of 7 epochs reflects a delicate balance, ensuring that the
model captures underlying patterns without succumbing to overfitting, thus optimizing its
predictive capacity.

– Epochs: 7
– Network: InceptionV3, MobilenetV2, NASNetMobile, Efficientnet-B0, EfficientnetV2-

Imagenet1k, EfficientNet-Imagenet21k
– Learning rate: 0.001
– Transfer learning (Tl): Yes or No
– Data augmentation (Da): Yes or No
– Dataset: Raw, Mixed, Smoothed, Sharpened

Each of the different networks used has several characteristics that make them stand
out from each other. Out of these characteristics we can highlight the ability to be used in
systems with ARM architecture. Specifically, if it is possible to run the model efficiently
on Edge devices, TPU (Tensor Processing Unit), CPU or GPU. The characteristics of each
of the networks used are described below.

Inceptionv3 [37], [26] is an image recognition architecture that has been shown to
achieve an accuracy of better than 78.1% on the ImageNet dataset. The Inceptionv3 model
comprises symmetric and asymmetric building blocks, including convolutions, mean re-
duction, maximum clustering, concatenations, dropouts and fully connected layers. Batch
normalisation is a widely used technique in Inception v3 and is applied to activation in-
puts. Inception v3 uses the Softmax function to perform the loss function calculation,
which is ideal for non-binary classifications.

The MobileNetV2 [34] network is an evolution of its predecessor MobileNetV1.
These networks belong to a family of neural networks widely used in computer vision.
They are general-purpose networks designed especially for use on mobile devices and
work very well on devices such as a Raspberry Pi [12]. MobileNetV2 is a significant
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improvement over MobileNetV1 and presents a breakthrough in visual recognition on
low-power devices. It enables devices to perform classification, object detection and se-
mantic segmentation. In the NASNetMobile [27] network, the authors propose to search
for an architectural block using a small dataset, in order to then be transferred to a larger
dataset. In the NASNet network, they first seek to obtain the best convolutional layer using
the CIFAR-10 dataset. Once this layer is obtained, it is applied to the ImageNet dataset,
stacking more copies of the obtained convolutional layer. At the same time, the authors of
the NASNet network propose a new regularisation technique called ScheduledDropPath,
which significantly improves generalisation in NASNet models. One of the advantages of
the NASNet network is the reduction of the generated model size.

EfficientNet [38] is a convolutional neural network architecture and scaling method
that uniformly scales all depth/width/resolution dimensions using a composite coefficient.
Unlike conventional practice that arbitrarily scales these factors, the EfficientNet scaling
method uniformly scales the network’s width, depth and resolution with a set of fixed
scaling coefficients.

EfficientNet-B0 [38] is one of the configurations of the EfficientNet family that aims
to scale ConvNets, maintaining and even surpassing their efficiency. Scaling is uniformly
performed by a given coefficient unlike other methods where it is done arbitrarily. The
variant B0 is the basic one and is based on the bottleneck residual blocks from Mo-
bileNetV2. EfficientnetV2-B0 [39] is an evolution of the previous family of neural nets
that improves in terms of training times and parameter efficiency. In addition, the authors
perform a reduction of a network that is almost 6.8 times smaller. In our experiments,
we use two variants of EfficientNetV2-B0, one pre-trained over a subset of Imagenet
(EfficientnetV2-Imagenet1k) and the other over the complete Imagenet (EfficientNet-
Imagenet21k).

4.3. Discussion

The use of different types of neural network models makes it possible to determine which
type of network has the best classification rate. However, the use of convolutional neural
networks (CNNs) has been widely used in the classification of plant diseases from RGB
images [22]. However, these models do not necessarily focus on the visible parts affected
by a plant disease for classification, and can sometimes take into account irrelevant back-
grounds or healthy parts of the plant.

However, each of the models you mentioned, InceptionV3, MobileNetV2, Efficient-
Net and EfficientNetV2-B0, has unique architectural features that may make them suitable
for plant disease classification. Here is a brief discussion of each:

1. InceptionV3: This model is known for its inception modules, which allow for effi-
cient computation and deep networks through a carefully crafted design1. The in-
ception modules help the network learn useful representations at multiple scales,
which can be beneficial for plant disease classification where symptoms can vary
in size [10].

2. MobileNetV2: This model introduces two new features to the architecture: Linear
Bottlenecks and Inverted Residuals [11] [24]. The use of linear bottlenecks is to
maintain the representational power. The inverted residuals allow for a reduction in
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computational complexity. This makes MobileNetV2 a lightweight model that can be
used on devices with limited computational resources.

3. EfficientNet: EfficientNet uses a new scaling method that uniformly scales all di-
mensions of depth/width/resolution using a simple yet highly effective compound co-
efficient. This could potentially capture more complex features in the images, making
it suitable for plant disease classification [1].

4. EfficientNetV2-B0: This model improves upon EfficientNet by introducing a form
of progressive learning mechanism which expands the network topology gradually
over the course of training process improving the model’s learning capacity. This
could be particularly useful in plant disease classification where the dataset might be
imbalanced [9].

The choice of a model may depend on several aspects, such as the size and quality of
the dataset, the available computing resources and the specific needs of the task. For exam-
ple, MobileNetV2 may be the best choice if you are working with limited computational
resources due to its remarkable efficiency. On the other hand, if you are dealing with a
large and intricate dataset, EfficientNet or EfficientNetV2-B0 might be more suitable op-
tions given their ability to handle complex features. The choice of a model may depend
on several aspects, such as the size and quality of the dataset, the available computing
resources and the specific needs of the task. For example, MobileNetV2 may be the best
choice when working with limited computing resources due to its remarkable efficiency.
On the other hand, when datasets are large and intricate, EfficientNet or EfficientNetV2-
B0 may be more suitable options given their ability to handle complex features. On the
other hand, it is important to generate instances that reflect real-world scenarios, all in
order to improve the performance of the machine learning model. However, it is crucial to
understand that not all data augmentation techniques are a one-size-fits-all solution for all
datasets. In the experiments conducted, image transformations and rotations were applied,
a technique that is usually reserved for image datasets.

5. Experimental Framework

In this Section, we compare the most usual proposals found in the literature for plant
disease detection. In Section 5.1, we briefly introduce the dataset used for our experiments
as well as the performance measures we used to quantify the results. In Section 5.2, we
show the quantitative results obtained in the comparison along with its analysis.

5.1. Dataset and Quantification of the Results

For our experiments, we have put to the test our proposal with the PlanVillage dataset [19]
which contains 54303 images of healthy and diseased leaf plants classified by species and
disease, having a total of 38 classes.

In addition, the data set has three different types of images available. The main raw
image is an RGB colour space image taken on a uniform background. In addition, there
is a grey-scale version of the previous image. And finally, a segmented version, where the
background has been removed and only contains the leaf information.

From the original dataset, we prepare four different derivatives:
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– RAW: It consists of images of the original dataset with colour and background.
– Mixed: Contains a mixture of RAW images, rotated and with background removed.
– Smoo: This dataset contains images of RAW where the background has been re-

moved, and the leaf has been smoothed with the gravitational algorithm.
– Sharp: The images in this dataset are similar to those in Smoo but inverting the sense

of the force over each pixel and sharpening the tonal variations.

(a) RAW (b) Smoothed (c) Sharpened (d) Synthetic

Fig. 2. Example images in PlantVillage dataset [19] from class Grape Esca (Black Measles) with
the different preprocessings and from the PlantVillage synthetic dataset. (a) shows the original raw
image, (b) is the preprocessed image applying smoothing, (c) is the preprocessed image using sharp-
ening and (d) is the generated image adding grass background

The dataset and its derivatives were divided into three subsets with an 80/20 ratio,
80% for training, 10% for testing and the remaining 10% for validation.

Furthermore, to verify the robustness of each of the tested configurations, we trained
them with a modified version of the PlantVillage dataset, where the uniform background
was removed and replaced with a field image. In this way, more realistic images are sim-
ulated. This modified dataset introduced in [15] is called synthetic PlantVillage dataset
(Synth-PV).

To interpret the results obtained in the confusion matrices, where True Positive (TP ),
True Negative (TN ), False Positive (FP ) and False Negative (FN ) are extracted, we
quantify the results using the following well-known Precision (Prec), Recall (Rec) and
Fβ measures:

Prec =
TP

TP + FP
, Rec =

TP

TP + FN
, Fβ = (1 + β2)

Prec ·Rec

β2 · Prec+Rec
.

We select the values of β = 0.5 and β = 1 as the most commonly used in the
literature. In particular, The F1 score balances precision and recall, making it valuable
when both measures are important. Taking the harmonic mean of precision and recall
provides a more comprehensive assessment of a model’s performance, especially in tasks
where false positives and false negatives have distinct consequences, such as medical
diagnosis or plant disease detection. In addition, we use Accuracy and Loss metrics for
the training and validation phases.

Combining all the six selected networks, we are to analyse along with the possible
parameters that we configure (transfer learning and data augmentation) with two possibil-
ities each one and the four different sets generated from the original PlantVillage dataset,
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we have 96 different configurations. To facilitate analysis and visualisation of the results,
we separate the 96 experiments into two blocks separated by whether they are mobile-
orientated network architectures (Inception v3, MobileNetV2, NASNetMobile), shown
in Table 1, or high-performance-computer-orientated (EfficientNet-based), presented in
Table 2.

5.2. Discussion

In this subsection, we expose and analyse the results obtained with the training and testing
with the different network models over the original PlantVillage dataset with the proposed
preprocessing step in the first phase. We then show the test results obtained with the
previously trained models in the synthetic PlantVillage dataset.

We show the different results of the train, validation, and test in Tables 1-2. We can
see that the accuracy obtained during the training phase is very similar and relatively high
for all the experiments, going from 0.850 to 0.993. This great value decays as validation
is performed. In this case, we obtain values between 0.578 and 0.992. The results indi-
cate that all those networks prepared for mobile devices get lower results, which is the
expected behaviour, as they are optimised for limited-power devices. Despite their op-
timized architecture designed for limited devices, these models perform quite well. For
instance, NasNetMobile achieves an accuracy validation score of 0.968, which is not too
far behind the top performer, EfficientNetV2, with a validation accuracy of 0.992. As a
general overview, we can extract from the training results, on the one hand, that fine-
tuning (Ft) and data augmentation are not beneficial if we look at the training accuracy
but permits us to retain it in the validation step for the mobile-oriented Nets. On the other
hand, when viewing EfficientNet experiments, we can see that data augmentation does not
benefit the training and validation accuracy, as the best results are obtained only by fine-
tuning. During the training and validation phase, the best performers are E63 and E64, that
is, EfficientNet-B0 and EfficientNetV2-B0 using fine-tuning but not data augmentation.

If we observe more locally at each network type, for Inception v3, the best perfor-
mance in terms of validation accuracy is E2, using the Raw data set and without fine-
tuning or data augmentation. The same behaviour happens with MobileNetV2, but in
the case of NASNetMobile, the best performer in this terms is also obtained in the Raw
dataset but using fine-tuning and data augmentation. Regarding EfficientNet results, the
best performer configuration using EfficientNet-B0 uses fine-tuning and data augmenta-
tion over the Raw dataset, just the opposite to mobile-orientated designs. When observing
both EfficientNetV2-B0 with transfer learning from a subset of Imagenet and the com-
plete one, we can see that we have to use fine-tuning but not data augmentation to obtain
the best result.

Once the models are trained, we evaluate them during the test phase obtaining the
quantitative results in Tables 3-4 with the measures indicated in Section 5.1. We tested
our trained models with the corresponding test partition images of each model, and to
analyse its robustness to real field images, we also tested each model with the Synthetic-
PV dataset. As can be seen, the best performers with the original dataset usually decay
with the synthetic one. For example, in the case of experiments with mobile-oriented nets
(E1 − E48), the best performer in terms of original images is E21, but its performance
decays by approximately 76%, and the best one in terms of real synthetic images is E17
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maintaining its performance with a decay 24 %. This tells us it is more robust to interfer-
ence from the leaf context. The same behaviour occurs in the case of EfficientNet-based
experiments. The best performer is not robust and loses 76% of its performance. Instead,
the best performance in the Synthetic dataset has a decay of 25 %.

In a more detailed analysis of the test results, looking at ∇F1 by network type, we
can see that with Inception v3 and MobileNetV2, excluding E14 due to its low results
in both the original and synthetic data sets, the most stable configurations are E2 and
E18, which match the results of the training phase. In the case of NASNetMobile, the
stables experiment is E42, which is not among the best performers in the training phase.
Additionally, the best performer using NASNetMobile during training decays 46%.

On the other side, as for EfficientNet-B0 experiments, the more robust configuration
is E75, which has been trained over the Mixed dataset. However, close to the most stable
experiment, we find those who have been trained with Smoo and Sharp preprocessing,
such as E81 or E60, respectively. In the case of EfficientNetV2-B0 with transfer learning
with the Imagenet subset, we obtain slightly less stable results, being the best E61, that is,
using the Mixed dataset. With this network family, all other configurations have more than
50% performance variation. Finally, looking at the EfficientNetV2-B0 with the complete
Imagenet transfer learning, the most stable configuration is E74, trained with the Mixed
dataset. Then, With a nearly a 30% decay in the F1 measure, we have configurations
trained with Smoo preprocessing (E56 and E80).

As a result of the database validation process, a series of metrics were extracted for
each of the experiments conducted to determine which of the experiments and which
network architecture is the best for classifying plant diseases. Figure 3 shows a plot of
the Nightingale rose, which is a plot on a polar coordinate grid. This radial graph divided
each of the 48 experiments into equal segments. The distance of each segment from the
centre of the polar axis depends on the value of each score it represents. In this way, each
of the rings from the centre of the polar grid represents a higher value of each score. Four
colours will be used to differentiate each of the sockets in the following graphs, the blue
colour represents the F1 score of the models, the yellow colour represents the F0.5, the
green colour represents the Recall, and the red colour represents the Precision.

Figure 3 shows the scores obtained from the 96 experiments with the different net-
works. Figure 3 (a) shows the scores for the networks launched on Edge devices: Mo-
bileNet, Inception v3 and NASNetMobile. Figure 3 (b) shows the scores obtained for
EfficientNet networks, which can be executed on devices with higher-performance com-
puters. As shown in Figure 3 (a), the scores obtained are very unstable compared to those
in Figure 3 (b).

Although both networks used the same dataset, the internal architectures of each net-
work make a difference.

To sum up, in this work we have analysed different network architectures and con-
figurations for the automatic detection of plant disease. We have also tested our trained
models, evaluating their robustness and behaviour with different image alterations and
synthetic images that simulate a real environment.

The results obtained have shown in a primal analysis that the best performers dur-
ing the training phase tend to have a significant decay in the test phase on real-context
simulated images. Therefore, models with near-the-top best performers but slightly more
restrained results are more stable when used in real scenarios. We have also noticed that
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# Network Ft Da Data Accuracy T Accuracy V Loss T Loss V

E1 InceptionV3 ✗ ✗ Mixed .967 .858 .122 .500
E2 InceptionV3 ✗ ✗ Raw .940 .924 .212 .279
E3 InceptionV3 ✗ ✗ Sharp .917 .905 .277 .325
E4 InceptionV3 ✗ ✗ Smoo .939 .915 .213 .297
E5 InceptionV3 ✓ ✗ Mixed .975 .825 .285 .962
E6 InceptionV3 ✓ ✗ Raw .979 .578 .300 .909
E7 InceptionV3 ✓ ✗ Sharp .973 .844 .327 .889
E8 InceptionV3 ✓ ✗ Smoo .971 .902 .323 .569
E9 InceptionV3 ✗ ✓ Mixed .922 .811 .261 .630
E10 InceptionV3 ✗ ✓ Raw .867 .884 .435 .389
E11 InceptionV3 ✗ ✓ Sharp .850 .872 .494 .418
E12 InceptionV3 ✗ ✓ Smoo .876 .912 .414 .300
E13 InceptionV3 ✓ ✓ Mixed .963 .790 .328 .247
E14 InceptionV3 ✓ ✓ Raw .968 .735 .341 .368
E15 InceptionV3 ✓ ✓ Sharp .957 .679 .383 .951
E16 InceptionV3 ✓ ✓ Smoo .955 .909 .383 .549
E17 MobileNetV2 ✗ ✗ Mixed .988 .908 .062 .315
E18 MobileNetV2 ✗ ✗ Raw .980 .966 .095 .138
E19 MobileNetV2 ✗ ✗ Sharp .966 .941 .136 .220
E20 MobileNetV2 ✗ ✗ Smoo .974 .953 .109 .176
E21 MobileNetV2 ✓ ✗ Mixed .980 .878 .178 .533
E22 MobileNetV2 ✓ ✗ Raw .979 .940 .196 .360
E23 MobileNetV2 ✓ ✗ Sharp .974 .958 .210 .279
E24 MobileNetV2 ✓ ✗ Smoo .976 .953 .207 .326
E25 MobileNetV2 ✗ ✓ Mixed .961 .891 .144 .354
E26 MobileNetV2 ✗ ✓ Raw .938 .939 .220 .221
E27 MobileNetV2 ✗ ✓ Sharp .915 .926 .291 .271
E28 MobileNetV2 ✗ ✓ Smoo .930 .942 .242 .206
E29 MobileNetV2 ✓ ✓ Mixed .969 .853 .217 .655
E30 MobileNetV2 ✓ ✓ Raw .972 .959 .229 .257
E31 MobileNetV2 ✓ ✓ Sharp .964 .797 .247 .057
E32 MobileNetV2 ✓ ✓ Smoo .965 .933 .252 .377
E33 NasNetMobile ✗ ✗ Mixed .972 .871 .122 .451
E34 NasNetMobile ✗ ✗ Raw .948 .930 .203 .260
E35 NasNetMobile ✗ ✗ Sharp .928 .915 .264 .309
E36 NasNetMobile ✗ ✗ Smoo .949 .939 .206 .241
E37 NasNetMobile ✓ ✗ Mixed .984 .903 .323 .625
E38 NasNetMobile ✓ ✗ Raw .985 .943 .336 .503
E39 NasNetMobile ✓ ✗ Sharp .980 .957 .360 .430
E40 NasNetMobile ✓ ✗ Smoo .983 .952 .350 .477
E41 NasNetMobile ✗ ✓ Mixed .931 .815 .240 .621
E42 NasNetMobile ✗ ✓ Raw .898 .880 .363 .421
E43 NasNetMobile ✗ ✓ Sharp .874 .893 .429 .385
E44 NasNetMobile ✗ ✓ Smoo .900 .925 .357 .284
E45 NasNetMobile ✓ ✓ Mixed .978 .870 .351 .729
E46 NasNetMobile ✓ ✓ Raw .979 .968 .364 .396
E47 NasNetMobile ✓ ✓ Sharp .971 .935 .389 .503
E48 NasNetMobile ✓ ✓ Smoo .971 .954 .391 .446

Table 1. PlantVillage experiments with 7 Epochs, feature vector model using InceptionV3, Mo-
bileNetV2 and NasNetMobile networks. Fine-tuning (Ft) and Data augmentation (Da) use are in-
dicated with a cross (✗) and a tick (✓), differentiating the train (T) and validation (V) values. The
maximum values for Accuracy and minimum values for Loss are shown in bold
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# Network Ft Da Data Accuracy T Accuracy V Loss T Loss V

E49 EfficientnetV2-B0-imagenet1k ✗ ✗ Mixed .989 .926 .065 .254
E50 EfficientnetV2-B0-imagenet21k-ft1k ✗ ✗ Mixed .991 .947 .045 .186
E51 Efficientnet-B0 ✗ ✗ Mixed .993 .946 .052 .193
E52 EfficientnetV2-B0-imagenet1k ✗ ✗ Raw .984 .976 .087 .114
E53 EfficientnetV2-B0-imagenet21k-ft1k ✗ ✗ Raw .987 .980 .064 .091
E54 Efficientnet-B0 ✗ ✗ Raw .990 .983 .071 .091
E55 EfficientnetV2-B0-imagenet1k ✗ ✗ Smoo .975 .967 .124 .146
E56 EfficientnetV2-B0-imagenet21k-ft1k ✗ ✗ Smoo .983 .976 .079 .103
E57 Efficientnet-B0 ✗ ✗ Smoo .980 .978 .102 .119
E58 EfficientnetV2-B0-imagenet1k ✗ ✗ Sharp .973 .958 .127 .174
E59 EfficientnetV2-B0-imagenet21k-ft1k ✗ ✗ Sharp .978 .971 .097 .127
E60 Efficientnet-B0 ✗ ✗ Sharp .977 .966 .115 .138
E61 EfficientnetV2-B0-imagenet1k ✓ ✗ Mixed .990 .946 .048 .197
E62 EfficientnetV2-B0-imagenet21k-ft1k ✓ ✗ Mixed .989 .958 .053 .154
E63 Efficientnet-B0 ✓ ✗ Mixed .993 .960 .156 .286
E64 EfficientnetV2-B0-imagenet1k ✓ ✗ Raw .990 .992 .047 .042
E65 EfficientnetV2-B0-imagenet21k-ft1k ✓ ✗ Raw .989 .991 .052 .043
E66 Efficientnet-B0 ✓ ✗ Raw .989 .986 .173 .180
E67 EfficientnetV2-B0-imagenet1k ✓ ✗ Smoo .988 .982 .058 .078
E68 EfficientnetV2-B0-imagenet21k-ft1k ✓ ✗ Smoo .987 .981 .057 .081
E69 Efficientnet-B0 ✓ ✗ Smoo .986 .976 .183 .221
E70 EfficientnetV2-B0-imagenet1k ✓ ✗ Sharp .990 .981 .049 .090
E71 EfficientnetV2-B0-imagenet21k-ft1k ✓ ✗ Sharp .987 .969 .058 .141
E72 Efficientnet-B0 ✓ ✗ Sharp .988 .975 .182 .216
E73 EfficientnetV2-B0-imagenet1k ✗ ✓ Mixed .970 .920 .122 .264
E74 EfficientnetV2-B0-imagenet21k-ft1k ✗ ✓ Mixed .978 .923 .090 .267
E75 Efficientnet-B0 ✗ ✓ Mixed .975 .915 .106 .298
E76 EfficientnetV2-B0-imagenet1k ✗ ✓ Raw .962 .961 .160 .166
E77 EfficientnetV2-B0-imagenet21k-ft1k ✗ ✓ Raw .969 .964 .123 .138
E78 Efficientnet-B0 ✗ ✓ Raw .969 .963 .134 .148
E79 EfficientnetV2-B0-imagenet1k ✗ ✓ Smoo .943 .949 .218 .198
E80 EfficientnetV2-B0-imagenet21k-ft1k ✗ ✓ Smoo .958 .965 .155 .136
E81 Efficientnet-B0 ✗ ✓ Smoo .957 .965 .176 .150
E82 EfficientnetV2-B0-imagenet1k ✗ ✓ Sharp .942 .939 .222 .229
E83 EfficientnetV2-B0-imagenet21k-ft1k ✗ ✓ Sharp .950 .942 .176 .202
E84 Efficientnet-B0 ✗ ✓ Sharp .947 .954 .208 .174
E85 EfficientnetV2-B0-imagenet1k ✓ ✓ Mixed .984 .938 .069 .220
E86 EfficientnetV2-B0-imagenet21k-ft1k ✓ ✓ Mixed .982 .921 .078 .286
E87 Efficientnet-B0 ✓ ✓ Mixed .981 .959 .198 .286
E88 EfficientnetV2-B0-imagenet1k ✓ ✓ Raw .986 .981 .061 .079
E89 EfficientnetV2-B0-imagenet21k-ft1k ✓ ✓ Raw .984 .979 .068 .096
E90 Efficientnet-B0 ✓ ✓ Raw .984 .988 .192 .180
E91 EfficientnetV2-B0-imagenet1k ✓ ✓ Smoo .980 .980 .081 .081
E92 EfficientnetV2-B0-imagenet21k-ft1k ✓ ✓ Smoo .979 .981 .085 .087
E93 Efficientnet-B0 ✓ ✓ Smoo .979 .978 .213 .216
E94 EfficientnetV2-B0-imagenet1k ✓ ✓ Sharp .978 .952 .086 .166
E95 EfficientnetV2-B0-imagenet21k-ft1k ✓ ✓ Sharp .977 .940 .092 .206
E96 Efficientnet-B0 ✓ ✓ Sharp .978 .957 .215 .297

Table 2. PlantVillage experiments with 7 Epochs, feature vector model using EfficientNet-B0,
EfficientNetV2-B0 pre-trained with imagenet-ilsvrc-2012-cls and EfficientNetV2-B0 pre-trained
with full ImageNet and fine-tuned with imagenet1k networks. Fine-tuning (Ft) and Data augmenta-
tion (Da) use are indicated with a cross (✗) and a tick (✓), differentiating the train (T) and validation
(V) values. The maximum values for Accuracy and minimum values for Loss are shown in bold
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# Prec. Prec.′ ∇Prec. Rec. Rec.′ ∇Rec. F0.5 F ′
0.5 ∇F0.5 F1 F ′

1 ∇F1

E1 .901 .643 .258 .917 .538 .379 .902 .552 .350 .905 .519 .386
E2 .807 .733 .074 .843 .691 .152 .806 .699 .107 .812 .681 .131
E3 .893 .652 .241 .884 .479 .405 .888 .516 .372 .884 .461 .423
E4 .907 .612 .295 .879 .496 .383 .893 .520 .373 .883 .476 .407
E5 .849 .579 .270 .681 .341 .340 .724 .356 .368 .673 .304 .369
E6 .855 .502 .353 .860 .296 .564 .843 .285 .558 .838 .245 .593
E7 .911 .493 .418 .857 .268 .589 .887 .281 .606 .866 .237 .629
E8 .862 .527 .334 .817 .291 .526 .833 .294 .538 .812 .247 .565
E9 .878 .645 .232 .881 .495 .386 .876 .525 .351 .875 .475 .400
E10 .813 .694 .119 .827 .568 .259 .805 .586 .219 .802 .549 .253
E11 .878 .654 .223 .844 .495 .349 .866 .541 .324 .854 .484 .370
E12 .890 .647 .243 .876 .505 .371 .884 .529 .355 .879 .486 .393
E13 .915 .314 .601 .894 .209 .685 .901 .175 .726 .890 .164 .726
E14 .709 .637 .071 .504 .399 .104 .547 .426 .121 .479 .371 .107
E15 .883 .549 .333 .862 .215 .647 .866 .264 .602 .856 .192 .663
E16 .915 .318 .597 .915 .181 .734 .902 .122 .780 .899 .109 .790
E17 .958 .709 .249 .968 .574 .394 .960 .592 .368 .963 .552 .410
E18 .881 .744 .137 .904 .665 .239 .882 .669 .212 .886 .644 .242
E19 .933 .692 .241 .939 .475 .463 .932 .489 .443 .932 .442 .490
E20 .957 .612 .345 .947 .496 .450 .954 .490 .463 .951 .457 .493
E21 .980 .429 .550 .982 .255 .727 .980 .264 .716 .980 .221 .759
E22 .829 .616 .212 .852 .465 .386 .813 .456 .356 .807 .423 .384
E23 .962 .428 .534 .934 .305 .629 .952 .257 .695 .942 .235 .707
E24 .851 .338 .512 .802 .147 .655 .814 .143 .670 .792 .117 .675
E25 .940 .696 .244 .939 .503 .435 .939 .567 .372 .938 .507 .430
E26 .881 .719 .162 .897 .650 .247 .881 .643 .238 .883 .623 .260
E27 .904 .641 .263 .899 .406 .493 .900 .486 .414 .897 .415 .482
E28 .940 .611 .328 .935 .510 .425 .937 .494 .443 .935 .468 .467
E29 .974 .481 .493 .974 .323 .651 .973 .266 .707 .973 .249 .724
E30 .852 .658 .193 .862 .375 .487 .836 .419 .417 .831 .358 .473
E31 .868 .422 .446 .846 .222 .624 .839 .214 .625 .823 .187 .635
E32 .952 .196 .756 .926 .124 .802 .941 .105 .836 .932 .087 .845
E33 .915 .570 .345 .922 .451 .471 .915 .446 .469 .917 .410 .507
E34 .813 .630 .182 .851 .553 .297 .812 .558 .254 .816 .531 .284
E35 .912 .540 .372 .909 .395 .514 .909 .363 .546 .907 .341 .566
E36 .931 .578 .353 .905 .398 .507 .922 .369 .553 .913 .339 .574
E37 .946 .671 .274 .927 .404 .523 .936 .440 .496 .927 .377 .550
E38 .951 .632 .318 .943 .343 .599 .944 .368 .576 .940 .307 .633
E39 .951 .430 .520 .922 .243 .679 .941 .241 .700 .930 .210 .720
E40 .944 .138 .805 .928 .098 .830 .936 .059 .877 .929 .051 .878
E41 .882 .542 .339 .891 .391 .500 .882 .374 .508 .884 .336 .548
E42 .787 .632 .155 .810 .535 .275 .780 .527 .253 .779 .504 .275
E43 .892 .538 .354 .880 .416 .464 .886 .397 .489 .881 .376 .505
E44 .914 .590 .324 .891 .451 .440 .906 .428 .478 .896 .403 .493
E45 .968 .417 .550 .978 .290 .688 .969 .289 .679 .972 .255 .717
E46 .916 .672 .244 .927 .490 .437 .913 .492 .421 .914 .449 .465
E47 .886 .445 .441 .853 .213 .640 .861 .228 .633 .841 .188 .653
E48 .965 .541 .423 .938 .244 .694 .958 .256 .702 .949 .221 .728

Table 3. Resulting test performance of the configurations trained with the parameters in Table 1
over the original data set and its pre-processed variants along with those obtained with the Synth-
PV dataset and its difference. The maximum values for Prec., Rec and Fβ values and minimum
values for ∇ are shown in bold
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# Prec. Prec.′ ∇Prec. Rec. Rec.′ ∇Rec. F0.5 F ′
0.5 ∇F0.5 F1 F ′

1 ∇F1

E49 .893 .591 .302 .835 .408 .427 .872 .412 .460 .851 .369 .482
E50 .912 .803 .108 .887 .666 .220 .904 .699 .205 .895 .659 .236
E51 .931 .733 .198 .909 .619 .290 .924 .608 .316 .917 .578 .339
E52 .973 .667 .305 .969 .408 .560 .972 .424 .548 .971 .373 .598
E53 .971 .814 .157 .974 .709 .265 .971 .707 .264 .972 .685 .286
E54 .976 .700 .276 .968 .600 .368 .973 .607 .366 .970 .575 .395
E55 .956 .651 .304 .953 .472 .481 .955 .443 .512 .954 .416 .538
E56 .971 .777 .193 .968 .677 .290 .970 .695 .275 .969 .659 .309
E57 .970 .708 .262 .965 .574 .391 .968 .559 .408 .966 .532 .433
E58 .949 .639 .309 .933 .416 .517 .943 .388 .554 .937 .365 .572
E59 .965 .776 .188 .960 .541 .418 .963 .614 .349 .961 .542 .418
E60 .955 .678 .276 .944 .558 .385 .951 .535 .415 .947 .512 .434
E61 .926 .779 .147 .886 .573 .313 .911 .646 .265 .897 .583 .314
E62 .931 .558 .373 .909 .288 .621 .918 .341 .577 .910 .282 .628
E63 .940 .734 .205 .931 .566 .365 .935 .608 .327 .931 .549 .382
E64 .990 .700 .290 .990 .426 .564 .990 .462 .528 .990 .404 .586
E65 .991 .472 .519 .989 .266 .723 .991 .269 .722 .990 .222 .768
E66 .986 .586 .400 .984 .313 .671 .985 .318 .667 .984 .285 .699
E67 .982 .382 .600 .982 .146 .836 .981 .177 .804 .981 .141 .840
E68 .985 .556 .428 .979 .258 .721 .983 .273 .710 .981 .220 .761
E69 .969 .551 .417 .960 .328 .631 .966 .381 .585 .963 .320 .643
E70 .976 .384 .592 .967 .238 .729 .973 .260 .713 .969 .223 .746
E71 .967 .494 .473 .969 .142 .827 .966 .151 .815 .966 .105 .861
E72 .965 .707 .258 .969 .434 .534 .965 .481 .484 .966 .420 .546
E73 .889 .592 .297 .853 .443 .410 .877 .423 .454 .864 .392 .472
E74 .910 .788 .122 .849 .654 .194 .885 .679 .205 .863 .643 .219
E75 .879 .712 .167 .826 .566 .260 .859 .554 .304 .839 .524 .314
E76 .952 .642 .309 .945 .473 .472 .949 .461 .487 .946 .422 .524
E77 .960 .804 .155 .962 .717 .245 .959 .734 .224 .959 .704 .255
E78 .961 .758 .202 .951 .608 .342 .958 .626 .331 .954 .588 .366
E79 .949 .575 .374 .914 .432 .482 .937 .381 .556 .925 .359 .566
E80 .958 .756 .201 .960 .646 .313 .958 .652 .305 .957 .617 .339
E81 .954 .687 .266 .949 .539 .409 .952 .569 .383 .949 .526 .422
E82 .933 .527 .406 .896 .374 .522 .917 .360 .557 .905 .339 .566
E83 .939 .722 .216 .927 .495 .432 .931 .568 .363 .925 .501 .424
E84 .951 .638 .312 .941 .462 .478 .948 .482 .465 .944 .449 .494
E85 .909 .618 .291 .882 .391 .491 .896 .423 .473 .885 .374 .511
E86 .909 .598 .311 .845 .355 .490 .884 .379 .505 .860 .332 .528
E87 .940 .798 .141 .926 .433 .493 .935 .536 .399 .929 .449 .480
E88 .972 .758 .213 .964 .461 .502 .965 .485 .480 .962 .425 .536
E89 .976 .564 .412 .975 .408 .567 .975 .410 .565 .974 .362 .612
E90 .984 .661 .322 .990 .401 .589 .984 .455 .528 .986 .400 .586
E91 .979 .245 .734 .973 .144 .829 .977 .120 .857 .975 .096 .879
E92 .982 .349 .633 .979 .168 .810 .981 .156 .825 .980 .141 .839
E93 .972 .467 .504 .969 .241 .728 .970 .259 .711 .969 .218 .751
E94 .929 .650 .279 .941 .279 .661 .927 .330 .597 .928 .281 .647
E95 .930 .606 .324 .930 .310 .620 .921 .348 .573 .918 .290 .628
E96 .930 .574 .356 .921 .259 .662 .922 .298 .624 .917 .245 .672

Table 4. Resulting test performance of the configurations trained with the parameters in Table 2
over the original data set and its pre-processed variants along with those obtained with the Synth-
PV dataset and its difference. The maximum values for Prec., Rec and Fβ values and minimum
values for ∇ are shown in bold
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(a) Edge-Architecture (b) Higher Performance Computer

Fig. 3. Performance results obtained by each of the 96 experiment configurations with the PlantVil-
lage datasets and its pre-processed variants

(a) Edge-Architecture (b) Higher Performance Computer

Fig. 4. Performance results obtained by each of the 96 experiment configurations with the synthetic
PlantVillage dataset

those configurations trained over preprocessed dataset tend to be more stable and robust
during the validation process with the simulated data.

6. Conclusions

In this work, we have analyzed different network architectures and configurations for the
automatic detection of plant disease. We have shed light on several important aspects
while acknowledging its inherent limitations. We have recognized potential biases in the
dataset used, stemming from factors like geographical and temporal distribution of dis-
eases, which can influence model performance. Furthermore, the complex real-world con-
text of plant disease management introduces confounding factors such as weather condi-
tions, soil quality, and agricultural practices, which must be considered when interpreting
our results.
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Throughout our research, we have grappled with the trade-offs between precision and
recall, recognizing that achieving high precision may entail the risk of missing some cases
while emphasizing recall can lead to more false alarms. These trade-offs underscore the
need for a nuanced approach that can be tailored to specific agricultural scenarios and
disease management strategies.

While subject to these limitations, our findings hold significant promise for practical
applications in agriculture and plant disease management. The deep learning models and
strategies identified can be valuable tools in real-world scenarios. They can facilitate early
disease detection, providing farmers with timely information for proactive intervention.
Moreover, the analyzed models can contribute to precision farming by pinpointing af-
fected areas within fields, thus reducing the indiscriminate use of pesticides and minimiz-
ing environmental impact. This aligns with the global push toward sustainable agriculture,
where minimizing chemical inputs is a key goal.

Looking ahead, our research opens doors to further exploration. Addressing dataset
biases through more extensive and diverse data collection efforts can result in more ro-
bust models with broader applicability. Investigating the generalization of our models
to different geographical regions and agricultural settings is another promising avenue.
Additionally, interdisciplinary collaboration with plant pathology, agriculture, and envi-
ronmental science experts can enhance the practicality and real-world relevance of our
disease detection models. Developing interactive systems that involve farmers and agri-
cultural experts in the decision-making process is another avenue to explore, allowing for
more context-aware disease management.
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