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Abstract. Low-Code Development is a new software development paradigm which
is typically used to generate web applications from high-level visual notations.
These notations allow to express the User Interface and Application Logic (user-
system interactions) in a way which is understandable by the end-users. Using cer-
tain model-driven approaches, the low-code environments allow for generating the
front-end layer and basic CRUD operations in the back-end. Yet still, non-standard
domain logic (data processing) operations still necessitate the use of traditional pro-
gramming. In this article we present a visual language, called RSL-DL that can
be used to represent such non-standard domain logic in a visual form. It allows to
capture domain knowledge with complex domain rules aligned with requirements
models. The language synthesises and extends approaches found in knowledge rep-
resentation (ontologies) and software modelling language engineering. The devel-
opment environment of RSL-DL enables fully automatic generation of domain logic
code by reasoning over and reusing domain knowledge. The environment includes a
dedicated model editor and a transformation engine. The language’s abstract syntax
is defined using a meta-model expressed in MOF. Its semantics is expressed with
several translational rules that map RSL-DL models onto typical programming lan-
guage constructs. The article presents a list of these rules in an informal way, and
then introduces their formalisation using a graphical transformation notation. The
RSL-DL environment includes an inference engine that enables processing queries
to domain models and selecting appropriate invocations to generated code. It was
also initially validated through studies that involve understandability, operability
and complexity assessment. Based on these results, we conclude that declarative
knowledge representations can be successfully used to produce imperative back-
end code with non-trivial logic.

Keywords: low-code, model-driven web engineering, knowledge representation,
ontologies, code generation.

1. Introduction

The term “Low-Code Software Development” (LCSD) has emerged as a new approach
to application development where only a limited amount of coding is required. Since its
emergence around nine years ago [47], the term was used in the industry to label cloud-
based development platforms that use visual notations to reduce the need for traditional
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programming. Research on low-code approaches is currently yet sparse. However, just
recently, it has been observed that LCSD can be seen as a subdomain [12] or as over-
lapping [50] with the Model-Driven Software Development (MDSD, MDD), where it
concentrates on automatic generation of data-rich web/mobile applications from visual
specifications (models).

A typical LCSD platform offers a visual language that enables the definition of user
interface elements and application logic (navigation through the UI, handling user inter-
actions). The language typically includes a visual notation to define the data model of
the problem domain under consideration. These elements allow to generate and deploy
automatically, much of a web/mobile application code. However, some non-standard data
processing necessitates manual coding of appropriate APIs and services. In this article,
we present an attempt to go beyond this and further reduce (or even eliminate) the need
for traditional coding in software development.

The ultimate target of our research is a true general-purpose no-code development
platform [67]. By this, we mean an environment that extends the low-code approach with
ways to specify (business) domain logic and generate even complex data processing ser-
vices. These services would integrate with the code generated from the low-code parts
and thus enable creating a software system without programming in a traditional sense.
What is essential, such a no-code approach would not be limited to a specific problem
domain area.

When searching for candidate technology paths to fulfil the above vision, we can make
certain observations. Specifically, low-code approaches use high-level, domain-agnostic
abstractions familiar to domain experts (or software users). We can note that such abstrac-
tions can serve the same function as detailed software requirements in a typical software
development project. Thus, we can expect to use specific requirements artefacts as the
actual low-code source specifications. This way, the abstractions used in LCSD would be
compatible with the abstractions used in traditional software processes.

So far, no research explicitly addresses the use of requirements artefacts in low-code
approaches. However, we can refer to relevant research on Model-Driven Web Engineer-
ing (MDWE) that can be seen as a predecessor and a synonym for LCSD. A survey by
Valderas and Pelechano [62] shows that most MDWE methods use some form of “classi-
cal” use case models [23] to specify functional requirements for web/mobile applications.
They are usually supported by constrained language scenarios and/or activity diagrams
to define detailed navigation through the user interface. Moreover, several approaches
use some form of a data dictionary to define the problem domain. Based on this, cer-
tain automated transformations to other artefacts were proposed [28]. Nevertheless, most
model-driven approaches cannot generate code directly from requirements.

One of the sparse systems that offer such capabilities is the ReDSeeDS' platform
[57] which can be seen as a representative of requirements-based MDD. The system was
created before the emergence of the low-code movement, but it certainly fulfils the defi-
nition of LCSD. It uses precisely specified requirements models: use cases, scenarios in
constrained language, and visual domain vocabularies. Similarly to low-code platforms,
these artefacts are represented with a visual language called RSL (Requirements Speci-
fication Language) [25, 39]. Specifications expressed in RSL allow for the generation of
fully functional UI and application logic code for data-rich web applications. However,

! https://github.com/smialekm/redseeds
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based on RSL alone, one cannot generate data processing (domain logic) code beyond
simple CRUD, and data persistence operations [68]. Thus, similarly to other low-code
platforms, more complex data processing has to be coded manually.

Considering the above, we raise the question of representing more complex domain
logic at the level of abstraction used by low-code and requirements-based MDD ap-
proaches. Inspiration for responding to this question can be drawn from research on
ontologies and knowledge representations, as they seem to share common goals. These
approaches enable the representation of domain knowledge, independently of any tech-
nology and any particular problem domain. Ontologies offer means to create a shared,
reusable vocabulary composed of concepts, rules and relationships between these con-
cepts [16]. They constitute a common ground for communicating knowledge by domain
experts and processing this knowledge by machines. For this purpose, they represent
knowledge in a declarative way and are well adapted to conduct various reasoning tasks.

In this research, we investigate how the features of ontology-based domain logic rep-
resentations can be applied in the context of LCSD. We present an extension to the RSL
mentioned above, which we call RSL-DL (RSL Domain Logic). The new language draws
several of its constructs from ontology-based knowledge representation approaches [53].
It then extends and combines them with MDD technologies to provide full code genera-
tion capabilities. What is important, RSL-DL allows for the generation of fully operational
code directly from general domain rules (descriptions of reality) as required by specific
requirements models (use cases and their logic). Hence, such generated back-end code
is fully compatible with the front-end code generated from RSL specifications. Through
this, we demonstrate an entirely visual extension to a low-code language (RSL) that has
the potential of eliminating the need to code (in a traditional sense) complex data process-
ing services.

The results presented in this article extend the results presented at the FedCSIS con-
ference [51]. The extension includes a significant expansion of the presentation of the
research context in the introduction, related work and RSL sections. We have also sig-
nificantly extended the language examples and included the full list of translational rules
with additional examples. Finally, we have added an additional validation approach which
assesses complexity of RSL-DL code versus traditional code.

The structure of this article consists of nine sections. Section 2 describes the research
context of our work, including overview of research on the low-code paradigm, visual lan-
guages and ontologies. Section 3 gives an overview of RSL which was the starting point
for our research. Sections 4 and 5 define RSL-DL — its syntax and semantics. Section 6
includes the most important details of the language’s transformation engine implementa-
tion. Sections 7 and 8 provide evaluation of the language through two case studies and
three validation analyses. Section 9 concludes with a summary and discussion on future
work. In addition, we also provide a Supplement (to be found in our github page?) that
contains all the details that were omitted in the article for brevity.

2. Motivation and related work

The term “low-code” was probably first used in a Forrester report [47] only in 2014. De-
spite this relatively recent emergence, predictions for LCSD are promising — in 2019,

2 https://github.com/smialekm/redseeds/tree/main/RSL-DL
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Fig. 1. Application generation in LCSD/MDWE

Gartner predicted that 65% of software in 2024 will be built using some form of low-
code environment [63]. Still, there is not much data on the effectiveness of low-code ap-
proaches compared to more traditional ones. However, recent research by Bexiga et al. [7]
and Trigo et al. [61] present very promising conclusions based on industrial experience.
It is argued that this can be caused by a much higher involvement of design experts (e.g.
UI/UX designers without programming skills) in software development. Yet, this does
not eliminate the need for professional software developers’ involvement and is not lim-
ited to simple applications produced by “citizen developers” [48]. Current studies report
numerous industry-grade low-code platforms used extensively by professionals [52].

Sparse research results on LCSD can be supported by previous and current research
on MDWE [29, 30] which can be seen as a predecessor and now a synonym for LCSD.
A study by Wakil and Jawani [66] shows that research on MDWE is already quite broad
and mature. Several studies show very significant productivity gains [33,43, 14] and bet-
ter maintainability [34]. It includes various controlled experiments and comparisons of
complexity between high-level visual models and equivalent code. LCSD and MDWE
approaches are typically based on some form of visual notation (language). Such nota-
tions offer high-level representations of the flows of interaction between application users
and the system under development. A prominent example in the MDWE domain is the In-
teraction Flow Modeling Language (IFML) [8]. Other examples — in the LCSD domain —
are the Business Process Technology (BPT) language [21] and the Mendix notation [20].

The information scope of these LCSD/MDWE languages allows the associated de-
velopment environments to generate significant portions of the target system’s logic and
the user interface. Figure 1 shows a typical approach to code generation found in such
systems. It presents one of the popular architectural patterns, namely the Model-View-
Presenter (MVP) [45]. The View (presentation) and Presenter (application logic) layers
form the front-end of a system and can usually be fully generated from an LCSD/MDWE
visual specification. The role of a code generation engine is to “’inject” technology-specific
elements in addition to the interaction flow and Ul layouts already contained in the source
visual specifications.
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Still, LCSD/MDWE systems have limited capabilities regarding the generation of the
domain/business logic code, or more broadly — the system’s back-end (see again Figure 1).
Current LCSD/MDWE languages can support generation of code for elementary CRUD
(Create-Read-Update-Delete) operations [5,49]. Generation of code for more complex
data processing (general Domain Logic - DL) is limited by the information scope of the
visual language constructs. In this research, we propose new constructs that significantly
extend capabilities to generate complex domain logic code. What is important, these new
constructs are domain-agnostic, as contrasted with various domain-specific and often very
formalised notations (see, e.g. work by Hinchey et al. [22] and Brito et al. [9]).

Our research is in line with the work by Atkinson et al. [4] that shows significant sim-
ilarities between ontologies and models. The authors argue that the concept of ontology
constitutes a subset of the concept of model. Also, Henderson-Sellers [19] points out that
a combination of models and meta-models with domain ontologies is helpful in represent-
ing vocabularies for specific problem domains. He argues that modelling languages such
as UML can describe domain knowledge, but they need particular extensions to provide
adequate reasoning support. Our approach goes in this specific direction, as it extends
RSL, which is also an extension to UML. In summary, the above discussions give good
motivation for our work, where a modelling language that combines ontology constructs
is applied to generate code directly from requirements.

Marrying ontologies with models allows applying model-driven techniques and espe-
cially model transformations [58]. Appropriate works include more general discussions
on introducing ontology-aware transformations [3, 42] and comprehensive formalised pro-
positions on meta-models for ontology languages [44, 15]. An example of such a language
is CoCoViLa by Haav, and Ojamma [18]. Our current work can be compared or even con-
trasted with such approaches, as it introduces a common meta-model for a semantically
rich language that can express any problem domain. In this context, an essential feature
of our approach is its extensive reliance on inference mechanisms, especially for gener-
ating data processing code. It is somewhat similar to business rule engines [13] that use
notations like JBoss Rules [11] or SBVR [40]. However, instead of interpreting them dur-
ing runtime, it generates code fully integrated with the rest of the system. Similarly, our
solution can be compared with the approaches that enable code generation directly from
ontologies (cf. Ontology-Driven Software Development [2, 17]). Stevenson and Dibson
[59] propose a tooling framework for generating Java code from OWL specifications. An-
other example is work by Volkel and Sure [64] in which Java-based APIs are generated
directly from ontologies expressed in RDF Schema. Especially relevant in the context of
the low-code paradigm is the work of Krouwel et al. [32] who generate low-code Mendix
applications from enterprise ontologies. Finally, our approach can be compared to that
of Jbara et al. [24], and Vuorimaa et al. [65]. Both those solutions utilize declarative
languages and have reported to have a positive impact on usability, especially for inex-
perienced (“citizen”) developers and domain experts. However, our approach strives to
provide more advanced code generation capabilities.

3. RSL: low-code at the requirements level

The necessary background to our research on RSL-DL is the Requirements Specification
Language and its tooling environment (ReDSeeDS). As we strive to achieve compatibility
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Fig. 2. Example use case model

between these two languages, some aspects of RSL-DL were strongly influenced by RSL.
Here, we will present selected RSL constructs that will be most relevant in this context.

Figure 2 presents a simple use case model of a course management system that will
serve as a frame for illustrating RSL. An important element worth explaining are the rela-
tionships between use cases. RSL has abandoned the ambiguous “extend” and “include”
relationships of UML [6]. Instead, it has introduced the “invoke” relationship with proce-
dure call semantics (see, e.g. [56], sec. 2.4.1). A detailed discussion of these relationships
is out of the scope of this article. However, we will use an important feature of “invoca-
tion” which is parameter passing between use cases.

Figure 3 shows example scenarios of two of the use cases from Figure 2. Note that
the “Add final grade” use case can be invoked from other use cases (here: “Show student
grades”), which should pass two objects as parameters (“student” and “course”). These
two parameters are defined in the “precondition” section of the respective scenario. The
other part defines the application logic and contains a sequence of simple subject-verb-
object sentences of various types. The most important of them from the point of view of
this article are the “Query” type sentences. These sentences define actions of the system
that are performed on certain data elements.

According to RSL semantics rules [55], we can transform scenarios into code. Figure
4 presents fragments of an application logic class generated from the presented scenario.
The class contains methods for handling user interactions, as specified by the “Select”
sentences in the scenarios. For instance, the sentence “Teacher selects save final grade” is
translated into the “saveFinalGradeTriggered” method. Contents of these methods reflect
consecutive sentences in the scenarios. “Query” and CRUD type sentences are translated
into calls to back-end service operation. For instance, the sentence “System computes
weighted average grade data” is transformed into a call to the “computeWeighted Aver-
ageGradeData” service. Ul presentation sentences are translated into calls to the View
layer. For instance, the sentence “System shows semester summarized message” is trans-
formed into a call to the “showSemesterSummarizedMessage” method. A more detailed
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Name: | Add final grade | Action Type
precondition:  <param?student</param: < param3 course</params
1. Teacher sclzcts add final grade Select
2. System fetches partial grades list Query ~
3. System computes weighted average grade data Query ~
4. System shows add final grade form Show v
3. Teacher enters final grade data n/a v
B. Teacher selects save final grade Select
7. System saves final grade data Create
System shows final grade added message Show v
9. System closes add final grade form Close  ~

final: success

Marme: | Summarize semester Action Type

precondition:
1. Dean's office employee sclects summarize semester | Select

4

2. System fetches students list Read e
3. System prepares semester summarization data Query  ~
4. System shows semester summarization window Show
5. Dean's office employee sclects accept summarization | Select
&. System closes semester summarization window Close
7. System realizes semester summarization data Update ~
8. System shows semester summarized message Show

final: success

Fig. 3. Example scenarios

discussion of the rules and generated code, including code of the View layer, is presented
elsewhere [56].

The relevant parts of the back-end service code generated from the RSL scenario
is presented in Figure 5. It contains an interface implementation with empty methods.
The operation parameters are determined from scenario sentences before the appropriate
calls. In further sections, we will present the syntax and semantics of RSL-DL that will
fill the currently empty method bodies. Note that other methods (not relevant to further
presentation of RSL-DL) were omitted in Figure 5.

4. RSL-DL syntax

The syntax of RSL-DL aims to represent all information important from the point of
view of code generation. It includes detailed dependencies between individual domain
elements and proper definitions of the elements themselves. Figure 6 presents an elemen-
tary example of concrete syntactic elements of the language. It contains definitions of four
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public class SummarizeSemesterPresenter extends
AbstractUseCasePresenter {
/] ...
public void summarizeSemesterTriggered(){
studentListDTO =
service.readStudentList();
semesterSummarizationDataDTO =
service.preparesSemesterSummarizationData
(studentListDTO);
view.showShowSemesterSummarizationwindow(this);
pageOpened();
}

public void saveFinalGradeTriggered(){
view.closeSemesterSummarizationWindow();
pageClosed();
service.realizesSemesterSummarizationData
(semesterSummarizationDataDTO);
view.showSemesterSummarizedMessage();

Fig. 4. Presenter code generated for the use case scenarios

“Identity” type entity notions (student, course, partial grade, weighted grade), describing
concrete objects in the specific problem domain. Notions can also have conditions, and in
our example, we can see one kind of condition: “inheritance”. Thus, the condition for the
“partial grade” notion is that it must follow all the rules for the “weighted grade” notion.
In addition to entity notions, we can define property notions, like “grade weight” in Fig-
ure 6. This kind of notions define concrete atomic values and can be used as attributes of
other notions, which can be indicated by “attribute links” (lines with a diamond shape).

Relationships in RSL-DL (see “grading” in Figure 6) are represented by hexagons and
can link many notions. To some extent, this syntax resembles that of UML’s n-ary associa-
tions. In our example, the relationship is of type “Data Based Reference” which is a basic
type that reflects the situation where references between objects are contained in their
data (e.g. in their attributes). In our current example, “student” and “course” contribute to
the relationship “grading” that results with a “partial grade”. Arrow directions distinguish
between types of notion participations in the specific relationship. Since a given student
can have many partial grades in a course, then the particular participation is marked as
“multiple”.

The abstract syntax for the above-presented core language elements is presented in
Figure 7 using the MOF notation [41]. The meta-class “DLNotion” represents notions
and the meta-class “DLRelationship” represents dependencies between them. Concrete
participations of notions in relationships are represented by the meta-class “DLRelation-
shipParticipation”. The meta-model contains two types of such participations — standard
and auxiliary. Standard ones correspond to the main subjects of relationships and are de-
noted with solid arrows in concrete syntax. Auxiliary ones point to elements that define
relationship contexts and are denoted with dashed lines. For example, one could use a re-
lationship context to indicate which object should be used when computing values based
on that object’s attributes. In this case, the attributes participate through standard partici-
pations, and their “parent” participates through auxiliary participation.
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public class ServiceImpl implements IService |

PartialGradelListDTO readPartialGradelist
(Long inputStudentID, Long inputCourselD)
{1

WeightedhverageGradeDataDTO
computeWelghtedhverageGradeData
(List<PartialGradelistItemDTO> partialGradelistDTO,
Long inputStudentID, Long inputCourseID)
{}

List<SemesterSummarizationDataltemDTO>
preparesSemesterSummarizationData
(List<StudentListItemDTO> studentListDTO)
{1

void realizesSemesterSummarizationData
(List<SemesterSummarizationDataltemDTO>
semesterSummarizationDataDTO)

o
Fig. 5. Back-end access code generated for the two example scenarios

Besides notions, there is a special kind of relationship participants — primitives (“DL-
Primitive” meta-class). These elements define general concepts that do not have concrete
instances. Examples of such primitives in RSL-DL are “current date”, “number Pi” and
“Planck constant”.

As indicated above, notions can have types. The first one (“identity”’) was explained
in the example above. The “template” type indicates templates that can be used to sim-
plify defining other notions. These two types correspond approximately to concrete and
abstract classes of e.g. UML. Two other types define notions whose representatives’ (ob-
jects’) roles can change during their lifetime. It is inspired by ontology-based inference
engines with their capabilities to “discover” object types or change them dynamically. The
“inferred role” type indicates roles that can be inferred, e.g. from various status attributes

dentity, value (integer)
grade weight

Data Based Reference

grading

multiple

gradeWeight partialGrade single

student

single
identity identity course identity
weighted grade partial grade ktudent
nheritance Condition nheritance Condition identity nheritance Condition

rade eighted grade course erson

Fig. 6. RSL-DL concrete syntax example
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(9 DLDomainElement | eements -|{3 pLDomain| | i= DLTypeRole

name : String - domains | name : String | | identity
assigned_role

inferred_role

(® DLRelationship (3 DLNotion ks
abbreviation : String © DLNamedLink derived : Boolean
1 & relationship | Name : String type : DLTypeRole (© DLPrimitive

name : String

participations
(5 DLRelationshipParticipation participation ' | © DLRelationshipParticipant
participant

(9 DLstandardRelationshipParticipation

supportedParticipation
1.7

direction : DLRelationshipParticipationDirection
multiplicity : DLRelationshipParticipationMultiplicity

= DLRelationshipParticipationDirection auxiliaryParticipation

source (3 DLAuxiliaryRelationshipParticipation
target type : DLAuxiliaryRelationshipParticipationType
undefined —

tifreeiersl :— DLRelationshipParticipationMultiplicity
— - . . S— single

:— DLAuxiliaryRelationshipParticipation Type multiple

required_parent ordered_multiple

role_attribution

Fig. 7. Meta-model fragments for core RSL-DL elements

of an object. The “assigned role” type indicates roles that can be explicitly changed during
the lifetime of an object.

More details related to the syntax for notions are shown in Figure 8. The “DLProp-
erty” meta-class is used to denote notions with concrete atomic values or value sets. The
“DLEntity” meta-class denotes more complex notions that cannot be reduced to single
values. The “DLAttributeLink™ meta-class allows indicating attribute dependencies be-
tween notions. Such links can be marked as “derived”, which means that their values
need to be inferred from other notions. An important type of notion features are condi-
tions (“DLCondition” meta-class). Their role is to further detail notion characteristics.
Apart from the previously described “inheritance condition”, two additional condition
types exist. The “identity condition” type defines conditions that have to be fulfilled for
a given notion’s object to make sense. The “validity conditions” type defines conditions
that denote the correctness of a given notion’s object. In general, there can exist objects
that meet appropriate identity conditions but do not meet validity conditions and thus are
treated as invalid but belonging to the given notion. We should note that conditions do not
include graphical links to other model elements. It is due to their potential complexity and
interweaving. Thus, for instance, inheritance was not represented using a simple arrow as
in UML.
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® DLNotion (3 DLDomainElement

1.7 ) name : String
derived : Boolean

(3 DLNamedLink

name : String

parents
type :DLTypeRole (3 DLEnumValue
1 notion
~ | enumValues
property 1
features |~
DLEnti (9 DLProperty
. ty (3 DLFeature
valueType : DLPropertyValueType

-

attribute

attributeLink |*
(3 DLAttributeLink

(9 DLCondition

type : DLFeatureType

inheritanceCondition |*

B P = DLPropertyValue Type
{3 DLInheritanceCondition @ DLPatternCondition :
type : DLFeatureType Siring
0.1 |condition boolean
integer
(3 pLIdentityCondition float
DLValidityCondition
pattern |1 e ty date
(3 DLConditionPattem local : Boolean time
set
ordered set
i= DLFeatureType enumeration
provided composite
required inherited

Fig. 8. Meta-model fragments for notions

Figure 9 presents the hierarchy of relationships found in RSL-DL. From the concep-
tual point of view, two main types of dependencies exist between notions in the problem
domain that are significant for code generation. It is reflected in RSL-DL through dividing
relationships into two categories: transitions (“DLTransition”) and references (“DLRefer-
ence”). Transitions describe how to obtain notion objects based on other notion objects.
References describe specific roles played by objects in relation to other objects. Both re-
lationship categories are further divided based on how they are defined. “Transitions” can
be described using simple rules (“DLPatternBasedTransition”) or algorithms consisting of
many steps (“DLAlgorithmicTransition”). “References” can be described using rules that
define certain conditions (“DLPatternBasedReference”) or take the form of the previously
described data-based references (“DLDataBasedReference’). This division of references
is inspired by the division into fact and rule spaces found in ontologies. In practice, of
all these relationships, the algorithmic transitions are not preferred as they are not fully
declarative and thus arguably less usable [24, 65].

Figures 8 and 9 contain two additional elements: “DLTransitionPattern” and “DLCon-
ditionPattern”. Each instance of these two meta-classes contains a string with a textual
condition formula, a specific condition type and optionally — the condition’s subject link
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(® DLRelationship

abbreviation : String

G DL Transition G DLReference

(5 DLPattemBasedTransition (9 DLDataBasedReference
transition
0.1 (® DLAIghoritmicTransition (9 DLPatternBasedReference
pattern |1
® DLTransitionPattem 0.1 4 transition reference ? 0.1
1 | pattern
sequence |1

(® pLconditionPattem

O DLAlghoritmic Transition SequenceElement

Fig. 9. Meta-model details for relationships

(see the detailed metamodel in the Supplement). The syntax of the condition is expressed
in a language based on the notation used in the Symyja library [31]. Some examples of
several types of these patterns are given in section 7 in descriptions of the generated code.

5. Translational semantics rules

Of the many approaches to define semantics for RSL-DL (treated as a programming lan-
guage [54]) we choose the translational method, which is more in line with the model-
driven paradigm. This approach defines rules that translate specific patterns of RSL-DL
constructs into fragments of Java code. Each rule has an informal textual description and
is formalised as a procedure in the MOLA graphical model transformation language [26].

Full specification of semantics for RSL-DL consists of 16 translational rules (all the
details can be accessed in the Supplement). The first ten rules define the generation of
the target Java class structure, including their fields and method signatures. These rules
depend only on the structure of notions and relationships between them, found in a partic-
ular RSL-DL model. The following two rules additionally use an inference engine and are
used to generate method bodies. Rules 13-16 further add to the generation of method bod-
ies. They use a symbolic computation library to transform Symja-based formulas found
in pattern condition expressions into the contents of method bodies. The results are used
directly or as part of a loop or a condition depending on the pattern type. We summarise
the responsibilities of specific rules in the following list.

— Rule 1 — generate classes from notions, except for those (“simple”) properties that do
not contain other properties as attributes.

— Rule 2 - add inheritance dependencies between classes based on inheritance condi-
tions.

— Rule 3 - generate a properly typed value field within a class generated from a “com-
plex” property (a property that contains other properties as attributes).

— Rule 4 — generate fields derived from attribute links within notion-based classes.
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— Rule 5 — generate appropriate constructors for notion-based classes, taking into ac-
count inheritance conditions and attribute links.

— Rule 6 — generate validation methods in notion-based classes, derived from validity
conditions contained within the respective notions.

— Rule 7 — generate eligibility-check methods in notion-based classes, derived from
identity conditions within the respective notions, taking into account inheritance con-
ditions.

— Rule 8 — generate RUD (Read-Update-Delete) methods in notion-based classes.

— Rule 9 — generate classes from relationships and static methods within these classes;
the generated methods retrieve objects of one type (cf. target relationship participant)
derived from objects of other types (cf. source relationship participants).

— Rule 10 — generate additional methods in the above-generated classes; the methods
check for the existence of particular relationships between objects potentially partic-
ipating in a given relationship.

— Rule 11 — generate methods that respond to queries formulated within the application
logic code; this rule allows to integrate RSL-DL-based code with code generated from
RSL.

— Rule 12 — generate methods that compute values for attribute links marked as derived.

— Rule 13 — generate code that checks conditions based on condition patterns; this code
is used in various other parts of the generated code.

— Rule 14 — generate code that filters objects based on condition patterns; used as in
Rule 13.

— Rule 15 — generate code derived from transition patterns; used as in Rule 13.

— Rule 16 — generate auxiliary code that accesses full sets of objects of a given type or
values corresponding to primitives; used as in Rule 13.

In summary, each “non-trivial” notion in the source RSL-DL model produces two
Java classes. One class represents (in simplified terms) a data transfer object (DTO) cor-
responding to the given notion. The other class is a utility class that holds various data
handling methods. These classes are appropriately amended with CRUD and condition-
related operations. The “DTO” classes are also organised in an appropriate inheritance hi-
erarchy. Additionally, supportive classes are created for all the relationships in the model.
These classes contain methods that return objects participating in relevant relationships.

As introduced above, all the rules are formalised using MOLA procedures. MOLA
uses a declarative-imperative visual syntax presented in Figures 10, 12 and 13. Its imper-
ative flow definition is based on a notation resembling activity diagrams in UML. Arrows
denote control flow. Iteration “actions” are denoted with thick black frames. Rule “ac-
tions” constitute the declarative part of the language. Each rule contains a query on objects
expressed through a diagram resembling a UML object diagram combined with a MOF
meta-model diagram. Black solid lines denote queried objects, while red dashed lines de-
note created objects. More details, including the MOLA handbook [1] and a tutorial can
be found on the MOLA website®.

For brevity, we will limit our presentation of rule formalisation to two selected rules
— 10 and 11. Figure 10 presents formalisation for the first of them. As the above list indi-
cates, this particular rule defines the creation of methods (see: “check : Operation”) that

3 http://mola.mii.lu.lv/
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Fig. 10. Formalization of transformation rule 10

check the participation of objects in relationships. The generated method code returns a
logical value (see: “rt : Parameter”) and has parameters (see: “p : Parameter”) generated
through iterating over all the participants assigned to the relationship at hand. Since auxil-
iary participations need to be processed somewhat differently, the formalisation contains
two such iterations. Additionally, appropriate procedures generating method code based
on patterns (“generateCheckingCodeForData”, “generateCheckingCodeFromCondition-

Pattern”) are invoked at the end. These procedures constitute formalisations of other rules
(see Rules 13-16).
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Fig. 11. Inference rule meta-model

To implement Rule 11, we need to use a dedicated inference engine, implemented
as part of this work. The engine processes queries derived from “Query” type scenario
sentences (see again Figure 3). For each such query, it produces a sequence of inference
rules, where each of the rules is based on domain elements defined within an RSL-DL
model. The appropriate sequences can be represented with a meta-model shown in a sim-
plified form in Figure 11. The meta-model uses a structure of nested “Rule” meta-classes
to reflect appropriate sequences of inference invocations needed to solve specific prob-
lems. Each “Rule” points to a domain element (“element”) that is the basis for generating
a specific method according to one of the previous rules. The “type : RuleType” meta-
attribute defines the concrete type of such generation. This “Rule” meta-class also points
to a “conclusion” that constitutes a specific notion reflecting objects being the inference
results. Furthermore, the given rule’s “premises” constitute other rules, preceding this
rule in the rule sequence. Base premises that reflect query parameters are represented as
additional “artificial” rules.

The algorithm that generates the respective sequence of method invocations from the
inference rule structure is presented in Figure 12. It starts from invoking itself (“gener-
ateCodeFromSolution”) recursively for all the “premises” of the current rule and joining
code generated from these premises. If the current element is used as a “premise” in other
rules, a proper variable is declared based on the object corresponding to the rule’s “con-
clusion”. Otherwise, a “return” statement is generated. In both cases, the way to obtain
the assigned or the returned value depends on the type of the rule. In most cases, such
a value is obtained by invoking an appropriate “get” method. This method retrieves an
object that corresponds to the “conclusion” and is contained in the class derived from the
rule’s “element”. Besides, the “get” method’s call accepts parameters that correspond to
the rule’s premises.

The actual formalisation of Rule 11 that uses the above algorithm is presented in
Figure 13. It defines a procedure for creating a method, where the method’s contents are
generated with the algorithm. The procedure starts by creating a method with the name
based on the “conclusion” of the final rule and having the prefix “get”. This method is
placed in the class derived from the domain element pointed to by this final rule. The

return type of this method again corresponds to the rule’s “conclusion”, and the method’s
parameters are based on the “premises” within the whole rule sequence.
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Fig. 12. Algorithm for generating the method body in rule 11

6. Implementation

The presented syntax and semantics of RSL-DL were implemented as an extension to
the ReDSeeDS tool. We have constructed a dedicated RSL-DL editor using typical ap-
proaches to the construction of visual languages defined with metamodels. This includes
the usage of Eclipse Modeling Framework (EMF) with Graphical Modeling Framework
(GMF, currently superseded by the Sirius framework) for the implementation of the model
repository and the graphical editor. This was then appended with a code generation com-

ponent.
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Fig. 13. Formalization of transformation rule 11

Figure 14 presents an overview of the code generation process. The inputs to the
process are the RSL and RSL-DL models. The RSL model is used to generate front-end
code, as explained in Section 3 [56] (“RSL-to-code transformation”). Scenario sentences
from this model (typed as “Query”) are also used to determine queries that form input
to the inference engine. The inference engine takes these queries and applies them to the
RSL-DL model. This results in a set of rules that will be used to generate domain code
(“Rules necessary to implement domain operations”). These rules are organised into a tree
structure that reflects full inference paths with references to appropriate domain elements
from the RSL-DL model (see Figure 11).

The next step is to use a symbolic computation library to transform formulas con-
tained in the rule tree. The goal is to obtain the formulas in a form suitable for the target
logic (according to the queries). These transformed rules and the original RSL-DL model
form inputs to the final code generation engine (“RSL-DL-to-code transformation”). This
engine uses the rules presented in section 5 to produce the back-end code. This is joined
with the front-end code that results in the final code for the system.
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Fig. 15. Overview of the RSL-DL code generation module

The above described code generation component was implemented in Java as a plug-
in to the ReDSeeDS tool. Its overall structure is presented in Figure 15 (we omit all the
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technical details related to creating Eclipse plug-ins). The main element used to imple-
ment RSL-DL code generation is the “DLTransformationEngine” class. It defines the gen-
eral scheme that the transformation should follow and serves as a basis for implementing
transformation classes for specific target languages. As an example, we have implemented
the “JavaDLTransformationEngine” class that generates Java code. Such code generators
have access to model elements trough the “DLRepository” class, which provides instances
of model elements based on EMF repository classes.

Access to symbolic computations is provided through the “IDLSymbolicEngine” in-
terface. This interface contains operations for converting formulas contained in model
elements (and inference rules). It is implemented using the SymJa symbolic computation
library [31]. Transformation implementations should make use of three more provided
classes: “DLInferenceEngine”, “SimpleTypesHelper” and “DLParticipationsHelper”. The
“DLInferenceEngine” class implements the inference mechanisms described above. In
response to queries, it provides the inference rule trees. The “SimpleTypesHelper” class
helps in determining whether particular concepts should be represented in code as gener-
ated classes or built-in types. The “DLParticipationsHelper” class allows for more conve-
nient handling of relationship participations during code generation. Full source code of
the implementation can be accessed from the ReDSeeDS repository.

7. Case study

This section will present selected fragments of two more extensive case studies that illus-
trate several important uses of RSL-DL. The first case study refers to the functional re-
quirements specification presented in Section 3. The second case study introduces a new
problem domain (banking) and gives more insight into the inference engine and domain
knowledge reuse.

7.1. Course Management System case

The RSL part of this case study was presented in Section 3. Thus, here we will concen-
trate only on presenting examples of the various concrete RSL-DL language constructs,
generated domain logic code, and references to application logic code from Section 3.

Figure 16a involves constructs for checking specific conditions. The model contains
elements that describe information related to checking whether the given student is eligi-
ble to get a registration for the next semester. It consists of three basic notions — “student”,
“course” and “final grade”. All of them are connected by the “final grading” relationship,
which is a data-based reference. It indicates that information about concrete dependen-
cies between representatives of these notions is stored in some data objects. Finally, we
define the “student to accept” relationship that is used to define conditions about students’
eligibility to be registered for the next semester. The concrete condition embedded in this
relationship (not shown here) requires that all the final grades for the student’s courses
have a value of at least 3 (minimum passing level). The relationship has only one partici-
pant — the student, that participates as its target.

Figure 16b involves constructs for finding elements consistent with specific condi-
tions. It defines the “academic year” as having the beginning and the end date. It also
shows the “current academic year” relationship that enables the filtering of academic years
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Fig. 16. RSL-DL model defining eligibility of students to be registered for the next semester (a),
knowledge about academic years (b), and knowledge about course editions (c)

based on some condition. This condition (not shown in the figure) states that the current
date should be between the beginning and the end date of the requested academic year.
Additionally, the model distinguishes the “current academic year” notion. This notion is
linked with the above relationship through an auxiliary relationship participation denoted
with a dashed line. This means that whenever an inference is made based on the above
relationship, to obtain an “academic year”, then this year can be treated as the “current
academic year”. It allows for more convenient usage of conditions relating to academic
years in other parts of the model. It is also worth noting that the multiplicity of the partic-
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Pattern Based Transition

fail student

ipation pointing to the academic year is denoted as single. Thus, there should be only one
current academic year for the given “CURRENT_DATE”. Considering that the “CUR-
RENT_DATE?” is specified as a primitive, there should be only one current academic year
at any given moment.
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public class MSStudentToAccept {

public static boolean checkStudentToAccept(
IMStudent student){
for (IMFinalGrade $_iter:
student.getFinalGrades())
if (!$_iter.getGradeValue()>=3)
return false;
return true;

}

public static List<IMStudent> getStudents(){
List<IMStudent> students
= MSStudent.getStudents();
List<IMStudent> result
= new ArraylList<IMStudent>();
for (IMCourse $_iter:students)
if (checkStudentToAccept($_iter))
result.add($_iter);
return result;

Fig. 19. Code for checking students’ registration eligibility

Figure 16c involves constructs resulting in creating complex objects. It focuses on the
“repeat course” relationship that allows creating another edition of a course for the current
semester, based on one of the previous editions. The “previous” edition can be simply any
course represented in the model as the participation leading from the “course” notion.
The “new” course is represented as the “course repetition” notion, which also inherits
from the “course” notion. The figure also shows additional information about courses.
For example, each course is based on a “course template” through the “course based
on template” relationship. Note that the direction of relationship participations indicate
possible direction of inference and can be used to optimise the inference process.

Figure 17 involves constructs for computing values. It contains the “weighted average
grade computation” relationship that contains a transition pattern with an equation that
computes the weighted average grade. This equation requires two other values represented
by the notions “weighted grades sum” and “weights sum”. Therefore, the model contains
also transitions that allow for the computation of these two values.

The final part of the presented model fragment involves constructs for modifying com-
plex objects and is shown in Figure 18. The situation here is somewhat similar to the pre-
vious one. The whole modification is handled by the “summarize student after semester”
transition, which requires two other transitions: “accept student”, and “fail student”. In
contrast to the previous case, these transitions will be used interchangeably, depending on
the fulfilment of a condition. This condition refers to the “student to accept” relationship
presented in Figure 16a. If the student meets the “student to accept” relationship, the “ac-
cept student” transition is invoked, while in the opposite case, the “fail student” transition
is invoked.

The next step in our case study is to generate code. The above specification in RSL-DL
was formulated within a dedicated RSL-DL tool. The tool also includes a code generation
engine that implements all the rules introduced in the previous section. Here we will
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public class MSCurrentAcademicYear {

public static boolean checkCurrentAcademicYear
(IMAcademicYear academicYear){
LocalDate date = LocalDate.now();
return academicYear.getBeginingDate().isBefore(date)
&8 academicYear.getEndDate().isAfter(date);
}

public static IMCurrentAcademicYear getCurrentYear()
List<IMAcademicYear> academicYears
= MSAcademicYear.getAcademicYears();
for (IMAcademicYear $_iter:academicYears)
if (checkCurrentAcademicYear($_iter))
return new MCurrentAcademicYear($_iter);

Fig. 20. Code for determining the current academic year

present some key fragments of code generated from the above-presented excerpts of the
dean office model.

Figure 19 shows code generated on the basis of the model from Figure 16. The ac-
tual class (“MSStudentToAccept”) is generated per rule no. 9 (generate classes and static
methods from relationships). It is a supportive class that corresponds to the “student to ac-
cept” relationship and contains only static methods. The “checkStudentToAccept” method
was generated based on rule no. 10 (generate existence checking methods). It checks for
the eligibility of a given student to be accepted for the next semester. The student is passed
as the parameter of this method. It can be noted that the type of this parameter (“IMStu-
dent”) is the class corresponding to the “student” notion, generated according to rule no.
1 (generate classes from notions).

The method returns a logical value reflecting the result of the eligibility check. The
actual check is based on the contents of the condition pattern in the “student to accept”
relationship (not shown in Figure 16). This pattern is defined through three values: 1)
formula “gradeValue($)>=3", 2) type “universal quantification”, and 3) subject link “fi-
nalGrading(student)” that relates to the “final grading” relationship. Note that the “$”
sign denotes the target of the “final grading” relationship, which is the “final grade” no-
tion. The above formula was transformed into the appropriate “if”” statement in Figure 19.
The “for” loop is generated based on rule no. 13 (generate condition checking code from
condition patterns), considering the above pattern type. This way, the eligibility check is
done for all the grades of a particular student.

The second method of this class (“getStudents”) applies the above eligibility check to
all the students. This method was generated based on rule no. 14 (generate object filtering
code from condition patterns), and it filters out all the subjects (here: students) that fulfil
an appropriate condition pattern (here: student eligibility check). We should also note that
the code for obtaining the list of all students was generated using rule no. 16 (generate
auxiliary code).

Figure 20 shows code generated on the basis of the model from Figure 16b. As in
the previous code fragment, the generated supportive class contains two methods. The
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public class MSRepeatCourse {

public static List<IMCourseRepetition>
getCourseRepetitions(List<IMCourse> courses){
List<IMCourseRepetition> result
= new ArraylList<IMCourseRepetition>();
for (IMCourse $_iter:courses)
result.add(getCourseRepetition($_iter));
return result;

}

public static IMCourseRepetition
getCourseRepetition(IMCourse course){

IMCourse courseRepetition = new MCourse();

courseRepetition.setCourseEdition(
MSNextSemester.getNext(

course.getCourseEdition()));

courseRepetition.setCoursePlacesLimit(
course.getCoursePlacesLimit());

courseRepetition.setCourseTemplate(
course.getCourseTemplate());

return new MCourseRepetition(courseRepetition);

Fig. 21. Code for creating new course editions

first one (“checkCurrentAcademicYear”) checks if the given academic year is the current
one. It starts with code for obtaining the current date (transformation of the primitive
“CURRENT_DATE”) according to rule no. 16 (generate auxiliary code). Following this,
the method code returns a logical value computed based on the condition pattern in the
“current academic year” relationship. The pattern formula (not shown in Figure 16b) has
the value of “beginingDate(currentYear) < date && endDate(currentYear) > date” and is
typed as “simple”. The second method in Figure 20 (“getCurrent Year”) uses the first to fil-
ter out academic years and return the current one. This method returns just a single object
because the appropriate target participation is of the “single” type. It also casts the found
year to the class corresponding to the “current academic year” notion (“MCurrentAca-
demicYear”). It is done based on rule no. 9 (generate classes and static methods from
relationships), which determines the correct types within method signatures. In this case,
the appropriate casting is done based on the “currentYear” auxiliary participation (“cur-
rent academic year” notion participating in the “current academic year” relationship).

Figure 21 shows code generated on the basis of the model from Figure 16c. This time,
the generated code creates objects representing new course editions based on previous
ones. Nevertheless, again, the presented class (“MSRepeatCourse”) contains two methods
generated according to rule no. 9 (generate classes and static methods from relationships).
The first invokes the second one over a set of appropriate objects (list of courses). Contents
of the second method (“getCourseRepetition”) are generated from rule no. 15 (generate
code from transition patterns). It is translated from the transition pattern contained in the
“repeat course” relationship. This pattern’s formula is “courseEdition(courseRepetition)
== nextSemester (courseEdition(course)); coursePlacesLimit(courseRepetition) == course-
PlacesLimit(course); template(courseRepetition) == template(course)”. It simply states
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public class MSWeightedAverageGradeComputation {

public static double
getWeightedAverageGrade(double weightedGradesSum,
int weightsSum){
return weightedGradesSum/weightsSum;

¥

public static double
getWeightedAverageGrade(List<IMPartialGrade> partialGrades){
List<IMWeightedGrade> weightedGrades
= new List<IMWeightedGrade>(partialGrades);
double weightedGradesSum
= MSWeightedGradesSummation
.getWeightedGradesSum(weightedGrades);
int weightsSum = MSWeightsSummation
.getWeightsSum(weightedGrades);
return getWeightedAverageGrade(weightedGradesSum,
weightsSum);

Fig. 22. Code for computing weighted average grades

that appropriate attributes of the repeated course should be the same as those in the base
course or appropriately modified (here: the edition is incremented). This kind of transi-
tion pattern (“indirect”) contains a set of “simple” transition pattern formulas that together
allow for obtaining an object of the given type.

Figure 22 shows code generated on the basis of the model from Figure 17, using data
structured according to Figure 6. This time, the situation in somewhat different to that in
the previous code fragments. This part of the code results from answering a query that
asks to compute the “weighted average grade” for the given set of grades. It contains
two overloaded methods (“getWeightedAverageGrade™). The second one (with the “List”
parameter) is generated according to rule no. 11 (generate methods for queries). It ac-
cepts a list of partial grades and produces a specific average value. The method contains
a sequence of method calls that reflect the sequence of inference rules returned by the
inference engine (see Figure 12). The first one of the overloaded methods is called from
the second one. Its signature was generated according to rule no. 9 (generate classes and
static methods from relationships). Its body was based on translating a transition pattern
with the “simple” formula “weightedGradesSum/weightsSum” according to rule no. 15
(generate code from transition patterns).

Figure 23 shows code generated on the basis of the model from Figure 18. This
time we can see only one method (“getSummarizedStudent”) generated according to
rule no. 9 (generate classes and static methods from relationships). The method’s body
is generated on the basis of a “mapping” transition pattern with the formula “student-
ToAccept(student); acceptStudent(student); failStudent(student)”. Formulas for this type
of transition patterns are composed of three sections: a “simple” condition pattern for-
mula and two “simple” transition pattern formulas (the first one used when the condition
is true, and the second one otherwise). Here, the condition pattern refers to the “student
to accept” relationship shown in Figure 16. Thus, the current method calls the “checkStu-
dentToAccept” method shown in Figure 19. Depending on its result, it calls one of two
methods resulting from transforming the “accept student” and “fail student” relationships.



710 Kamil Rybinski and Michat Smiatek

public class MSSummarizeStudentAfterSemester {

public static List<IMSummarizedStudent> getSummarizedStudents
(List<IMStudent> students) {
List<IMSummarizedStudent> result =
new ArraylList<IMSummarizedStudent>();
for (IMStudent $ iter:students)
result.add(getSummarizedStudent($_iter));
return result;

}

public static IMSummarizedStudent getSummarizedStudent
(IMstudent student) {
if (MSStudentToAccept.checkStudentToAccept(student))
return new MSummarizedsStudent(MSAcceptStudent.
getAcceptedStudent (student));
return new MSummarizedsStudent(MSFailStudent.
getFailedStudent(student));

Fig. 23. Code for determining student’s eligibility for promotion to the next semester

public class ServiceImpl implements IService {
//
List<SemesterSummarizationDataItemDTO>
preparesSemestersummarizationData
(List<StudentlListItemDTO> studentListDTO)

{
return MSSummarizeStudentAfterSemester.
getSummarizedStudents(studentListDTO);
by
1/

Fig. 24. Additional back-end access code

The other method in this class invokes the above described one over a set of appropriate
objects (list of students).

Finally, relevant code fragments as presented above, can be now applied to fill-in ap-
propriate empty methods of the back-end service class (see Figure 5). In our example
this pertains to the method that corresponds to a non-CRUD operation. Appropriate addi-
tional code is presented in Figure 24. It contains a simple call to the operation presented
in Figure 23. It is worth noting that such operations are optimised to use only required
parameters.

7.2. Banking case study

In this study we consider a fragment of a banking application covering some operations
regarding loans and deposits. Figure 25 contains four use cases that constitute the context
for the example models and code. We will concentrate on the functionality of two use
cases where their scenarios are presented in Figure 26. The first use case consists of two
main parts. The first part allows the user to enter all the necessary data. In the second part,
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Check loan status

client

Show your finances Get a loan Make a deposit

Fig. 25. Banking use case model fragment

the system shows information summarising the deposit for the user to confirm. Note that
this gives two occasions to define domain logic. The first of them is to validate the deposit
creation data entered by the user (sentence 5). The second one computes data to be shown
in the deposit summary window (sentence 6).

Note that the result of the validation action (sentence 5) can lead to two alternate
paths that depend on specific conditions (“=>cond” sentences). The first path is expressed
with sentences 6-10. The second path is expressed by sentence 5.1.1 and the “rejoin”
sentence. This forms application logic that is appropriately generated by the RSL-to-code
transformation. The second use case contains simple logic to show loan status. Despite
such simple scenario, the domain logic that computes such status can be quite complex.

Figure 27 shows the domain logic for validation, to be used in the first use case.
The model contains elements that determine the possibility to create deposits based on
given deposit parameters. Deposit parameters are concepts related to “deposit creation
data”, which is an RSL notion occurring in scenario sentences from Figure 26. Note that
we have omitted this RSL model as quite trivial. The formula specifying data correct-
ness is included in the validity condition assigned to the “deposit parameters” concept.
It states that the funds on the selected source account should be equal or greater to the
declared deposit amount. The model also presents the “source account” pattern-based ref-
erence which is used in the above formula. This is accompanied by all the attributes of
the involved concepts (“‘deposit duration”, “source account number”, “account balance”,
“account number”). It is worth noting that many of these properties are specialised ver-
sions of more general terms used in representing more general dependencies further in
the model.

Figure 28 shows three relationships related to various aspects of deposits — mainly
general rules for calculating interests. Part a) defines that the “deposit compounding fre-
quency” and the “annual nominal interest rate” depends on the deposit duration. This
dependency is represented in the form of a data-based relationship. Part b) defines a for-
mula for computing the final amount of a given deposit or loan which is obtained by
using compound interest rules. Part ¢) defines the relation between the original sum of a
given deposit or loan, its final amount and the total interest. The two latter formulas are
represented as a pattern-based transitions.
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Name: | Make a dennasit | Action Type
precondition:
1. Client selects make a deposit button Select v
2. System shows create deposit window Show
3. Client enters deposit creation data nfa v
4. Client selects create deposit button Select
3. System volidates deposit creation data Valida ~

==cond: deposit creation data valid

6. System computes deposit summary data Query ~
7. System shows deposit summary window  Show
8. Client selects confirm deposit button Select ~
9. System creates deposit Create

10. System shows deposit created message Show ~

final: success

=»cond: deposit creation invalhid
5.1.1 System shows invalid deposit message  Show ~

=>Tejoin: | Make a deposit ~ | System shows create deposit window

Name: | Fherk Inan status | Action Type
precondition: <param=loan</param:=
1. Client selects status button Select ~
2. System computes loan status data Query ~
3. System shows loan status window Show

final; success

Fig. 26. Example scenarios for the banking case

/dentity, value (float) dentity d N Identity, value (float) dentity, value (float)
q " i - epositAmount N
deposit duration duration  leposit parameters i Ideposit amount laccount balance

nheritance Condition [———<<>{{alidity Condition [<<>———{ fheritance Condition
duration depositAmount <= priginal sum

palance(sourceAccou...

single
sourceAccountNumber
depositParameters Ace

dentity, value (integer) single dentity dentity, value (integer)
source account number bankAccount bank account laccount number

Inheritance Condition > | [nheritance Condition
number | @Gentity Condition

Pattern Based Reference

source account

Fig. 27. RSL-DL model defining deposit creation data validation

Figure 29 shows two relationships related to various aspects of loans. Part a) defines
the formula for calculating instalments of a loan. Part b) defines the formula for calcu-
lating the amount of debt left for a given loan if a certain number of its instalments were
paid. Both of these cases are represented in the form of pattern-based transitions.
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a)
single /dentity, .value (float) )
dingF deposit compounding frequency
single compoundingFrequency Inheritance Condition
Identity, value (float; duration L i ]
¥ " i . b Data Based Reference / Ompoundlng frequency
deposit duration ) »
[;.heyimnce Condition deposit conditions
i dentity, value (float)
uration \d ty_ 0 .
X eposit nominal anual interest rate
single herttance Condition
nominalAnuallnterestRate ominal anual interest rate
single single
finalAmount Pattern Based Transition oryginalsum
dentity, value (float) . . dentity, value (float)
) & compound interest calculation — i .iy
final amount original sum
single ncle smg{e
nominalAnualinterestRate 9 compoundingFrequency
duration
/dentity, value (float) dentity, value (float) dentity, value (float)
hominal anual interest rate duration compounding frequency

)

'dentity, value (float) single
original sum oryginalSum
—

Pattern Based Transition "
identity, value (float)

total interest

interest calculation

— single

dentity, value (float)
lentity, value (float) single totallnterest

final amount

finalAmount

Fig.28. RSL-DL model defining deposit conditions (a), compound interest calculation rules (b),
and simple interest calculation rules (c)

Figure 30 shows code generated on the basis of the model from Figure 27. This code
is a rather standard class with its attributes that were generated according to rules no. 1
(generate classes for notions) and no. 4 (generate attributes for attribute links) respec-
tively. Note that the getters, setters, and constructors were omitted for brevity. In addition,
we have the validation method, generated according to rule no. 6 (generate validation
methods). The method checks validity of deposit parameters according to the validation
condition formula from Figure 27. It uses the “MSSourceAccount” class generated from
the “source account” reference according to rules no. 9 (generate classes and static meth-
ods from relationships) and 14 (generate object filtering code from condition patterns).
This way, it is possible to obtain the bank account and its balance required by the for-
mula.

Figure 31 shows code generated from the models in Figure 28. The goal is to ob-
tain the “deposit summary” based on the provided “deposit parameters”. Note that the
representation of “deposit summary” is not shown in the model for brevity. It is a con-
cept related to the “deposit summary data” RSL notion found in the scenarios. It has five
attributes: “deposit amount”, “deposit duration”, ’deposit nominal annual interest rate”,
”deposit compounding frequency” and “total interest”, where the last one is most com-
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a)
dentity, value (float) single dentity, value (float)
oan term single compoundingFrequency _lloan compounding frequency
nheritance Condition term Inheritance Condition
Liuration ] ~— Pattern Based Transition Lompounding frequency

dentity, value (float)

instalment calculation

]

/dentity, value (float)

loan final amount — ) :
single single loan instalment
inheritance Condition . g ) g!
inal amount finalAmount instalment
b)
dentity, value (float) single single dentity, value (float)
loan final amount finalAmount instalment loan instalment

Inheritance Condition
inal amount

D

Identity, value (float)
loan final amount left

single
finalAmountLeft

amount left calculation

Pattern Based Transition

[

\

single

instalmentsPaid

dentity, value (integer)
loan instalments paid

Fig.29. RSL-DL model defining loan instalment calculation (a), and loan amount left calculation

(b)

plex to obtain. This code was generated according to rule no. 11 (generate methods for
queries). Its structure corresponds to the structure of the rule tree generated by the infer-
ence engine to allow for computing of these values.

The “getDepositSummary” method starts by obtaining the deposit sum and its du-
ration, which are easily available as attributes of the “MDepositParameters” class (cf.
Figures 27 and 30). Then, the “nominal annual interest rate” and the “compounding
frequency” are obtained using appropriate methods of the “MSDepositCondition” class.
These methods were generated according to rule no. 9 (generate classes and static methods
from relationships) from the “deposit conditions™ data-based reference (see Figure 28a).
Finally, appropriate methods of the “MSCompoundInterestCalculation” and the “MSIn-
terestCalculation” class are used to obtain the final amount and the total interest for a

public MDepositParameters implements IMDepositParameters {
private double depositRmount;

private double depositDuration;
private int sourceAccountNumber;

(...)
public boolean validate () {

return depositBmount <= MSSourcekccount
.getBankhccount (this) .getBalance () ;

Fig. 30. Code for deposit creation data validation
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class MSDepositSummary {

public static IMDepositSummary getDepositSummary
(IMDepositParameters depositParameters) {
double depositEmount = depositParameters.getDepositAmount();
double depositDuration = depositParameters.getDuration();
double depositNominalZnualInterestRate =
MSDepositConditions.getNominalAnualInterestRate (depositDuration)
double depositCompoundingFrequency =
MSDepositConditions.getCompoundingFrequency (depositDuration);
double finalAmount = MSCompoundInterestCalculation.getFinallkmount
(depositBmount, depositNominalRnualInterestRate,
depositCompoundingFrequency, depositDuration);
double totallInterest = MSInterestCalculation.getTotalInterest
(finalkmount, depositimount);
return new MDepositSummary (depositBmount, depositDuration,
depositNominalAnualInterestRate, depositCompoundingFrequency,
totalInterest);

Fig. 31. Code for deposit summary computation

class MSCompoundInterestCalculation {

public static double getFinalZmount (double originalSum,
double nominalZnualInterestRate,
double compoundingFrequency, double duration) {
return originalSum*Math.pow (l+nominalZnuallInterestRate/
compoundingFrequency,
compoundingFrequency*duration) ;

Fig. 32. Code for compound interest calculation

deposit. Both classes are generated according to rules no. 9 and 15 (generate code from
transition patterns) from the “compound interest calculation” and the “interest calcula-
tion” pattern-based transitions (Figure 28b and c). The last step is to return the “deposit
summary” object, created from the previously obtained values by using the constructor
generated according to rule no. 5 (generate constructors for notion-based classes).

The details of the “MSCompoundInterestCalculation” class used in the above code
are shown in Figure 32. The actual code of its only method is derived from the for-
mula “original Sum x (1 + nominal AnualInterest Rate/compounding Frequency)”
(compoundingFrequency * duration)” included in the respective pattern-based transi-
tion (see Figure 28b).

Figure 33 shows code generated from the model in Figure 29. Its goal is to obtain
the “loan status” based on a provided object representing a loan. Note that the the repre-
sentation of “loan status” is not shown in the model for brevity. It is a concept related to
the “loan status data” RSL notion found in the scenarios. It specialises from the “loan”
concept and has five additional attributes: “loan nominal annual interest rate”, “loan com-
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class MSLoanStatus {

public static IMLoanStatus getLoanStatus (IMLoan loan) {

double originalSum = loan.getLoanZmount();

double locanDuration = locan.getDuration();

double loanNominalZnualInterestRate =
MSLoanConditions.getNominalAnualInterestRate (loanDuration);

double loanCompoundingFreguency =
MSLoanConditions.getCompoundingFrequency (loanDuration);

double finalBmount = MSCompoundInterestCalculation.getFinalfmount
(originalSum, loanNominalZnualInterestRate,

loanCompoundingFrequency, loanDuration);
double totallnterest = MSInterestCalculation.getTotallnterest
(finaldmount, originalSum);

double loanInstalment = MSInstalmentCalculation.getInstalment
(finalmmount, loanCompoundingFrequency, loanDuration);

int loanTnstalmentsPaid = loan.getTnstalmentsPaid():

double loanFinalBmountlLeft = MSBmountleftCalculation.getFinalBmountleft
(finalAmount, loanInstalments, loanInstalmentsPaid):;

return new MLoanStatus(loan, loanNominalRnualInterestRate,

loanCompoundingFrequency, loanFinalZmountLeft, loanInstalment,
totalInterest);

Fig. 33. Code for loan status computation

pounding frequency”, “loan final amount left”, “loan instalment” and “total interest”.
Most of these values overlap with these from the previous code fragment, thus major-
ity of this code is very similar (applied to a loan instead of a deposit). There is however
the need to compute two new values — the “loan instalment” and the “loan final amount”.
Both of these values are obtained by using the class and its methods generated according
to rules no. 9 and 15 from the “instalment calculation” and the “amount left calculation”
pattern-based transitions (see Figure 29). To obtain the second of these values, the number
of loan instalments already paid is also needed, so its value is obtained beforehand from
the appropriate attribute of the “MLoan” class.

8. Language validation and discussion

In the previous section, we presented the most interesting parts of code automatically
generated from the RSL-DL domain specifications of two cases. This code constituted
the back-end of the respective systems and was compatible with the front-end code gen-
erated from the RSL specifications. It has to be stressed that the generated code covered
complete back-end logic, and almost no manual updates were necessary. The only signifi-
cant update necessary in the current generator version was adding a database access code.
We did not cover this element due to that it was already developed previously, including
an appropriate automated transformation for the ReDSeeDS system [68]. All other is-
sues are minor (e.g. handling of import statements) and should be easily solvable through
further improvements to the transformation code.

It should be noted that currently, the two languages - RSL and RSL-DL are only par-
tially integrated. In particular, RSL contains its own domain modelling language that is
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focused on the front-end perspective. The presented transformations (RSL-to-code and
RSL-DL-to-code) are compatible with respect to the structural composition of the gener-
ated code. However, these transformations have to be invoked separately and then manu-
ally integrated by adding small fragments of interfacing code. To obtain a truly no-code
environment, we would first need to fully integrate the domain modelling part of RSL
with the syntax and semantics of RSL-DL. Furthermore, we would need to construct a
unified transformation that generates fully integrated front-end and back-end code. This
should also include the generation of the database structure and data persistency code.

Proper validation of a full no-code system based on RSL and RSL-DL is thus future
work. This would involve using prospective ReDSeeDS 2.0 in real-world projects where
specifications in RSL+RSL-DL would remove the need to write traditional code com-
pletely. However, even partial validation of RSL-DL alone can give interesting insights
on the usefulness and improvements that would need to be made to create such a system.

To initially validate RSL-DL, we have used primarily two different approaches. Their
aim was to assess certain aspects of the language’s usability: understandability and op-
erability. The first approach was to determine language comprehension by its first-time
users. It consisted in testing language proficiency, following a brief introduction to the
language. The second approach was to determine efficiency of language usage by the
users with various experience levels. In both cases, we have used a specially developed
RSL-DL editor, used in conjunction with the ReDSeeDS environment. Additionally, we
have also conducted a brief complexity analysis of RSL-DL language constructs in com-
parison to more traditional ones.

8.1. Validation of understandability

The first validation study was conducted with a group of post-graduate computer science
students attending the “Model-Driven Software Development” course at the Warsaw Uni-
versity of Technology. The course curriculum included classes on the design and usage
of various Domain-Specific Languages. The study was thus well aligned with the aim to
acquaint the students with this topic.

The setup of the study was as follows. First, the students attended two lab sessions
(four class hours) where they were presented with the RSL and the ReDSeeDS tool. Note
that prior to this, the students had no experience with Software Language Engineering
but have attended a parallel lecture where they were introduced with the fundamentals of
metamodelling. Next, the students were presented with a brief, one-hour introduction to
the language. Then, they have spent two hours solving simple exercises using the afore-
mentioned RSL-DL editor. After this, the students were presented with correct solutions
to the exercises. Finally, the students were asked to answer 12 questions in an online
questionnaire. All of the questions were single-choice, and referred to specific RSL-DL
diagrams. Each question had four possible answers. The first eight questions were related
to the understanding of the language syntax, the next three related to language usage, and
the final one checked more nuanced usage of the language related to its declarative nature.
The students were given one class hour (45 minutes) to finish the questionnaire, but most
of them have finished in less than 20 minutes.

The results of the study consist in 42 replies to the questionnaire. The average of
correct answers in the whole questionnaire was 69%. For syntax understanding (the first
eight questions), it was 75%, for usage understanding (the next three questions), it was
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60%, and for the last question it was 40%. The above results show that even after a brief
introduction, most of issues could be understood correctly, even by non-professionals (stu-
dents). An important result of this study is the notion of which parts of the questionnaire
caused most problems for the participants. Detailed results, together with the question
contents are provided in the Supplement.

The relatively low result in the case of the last question can be explained by its ad-
vanced nature, going beyond the explanations given to the students. Thus, the 40% can
be seen as an unexpectedly good result. It is also worth noting that relatively low per-
centages of correct answers were associated with questions about differentiation between
inferred roles and assigned roles (questions no. 3, 5 and 9). These results were similar to
the case of the last question. Further research is needed to determine if that was caused by
insufficient explanations (this aspect was under-represented in the exercises) or inherent
difficulties caused by the language design. In summary, the overall results of this study in-
dicate that the language is comprehensible even after a very short introduction. However,
a more thorough validation with statistical analysis is needed to confirm this, and can be
seen as future work.

8.2. Validation of operability

The second validation study was conducted with a group of three software developers
with different programming skills. The first person is one of the language authors and
thus has very good knowledge of RSL-DL. At the same time, he is an experienced Java
programmer. The second person is a Ph.D. student with wide general computer science
knowledge and average Java programming experience. The third person is an undergrad-
uate student with more narrow CS knowledge but with relatively high experience in Java
programming. The students were not involved in the development of RSL-DL and had no
previous knowledge of it.

The study consisted in comparison of coding efficiency and was based on solving spe-
cific problems. The setup of the study was as follows. First, the study participants were
presented with a 1.5 hour long introduction of RSL-DL and its editor. This included the
presentation of three problems: calculation of square mean error (no. 1), calculation of
definite integrals (no. 2), and calculation of VAT for product lists (no. 3). The problem
formulations involved appropriate formulas and are presented in detail in the Supple-
ment. Next, the participants were supplied with artefacts generated from appropriate RSL
specifications (use cases with scenarios) by the ReDSeeDS system. These consisted of
pre-initialised RSL-DL models (just the notions) and code skeletons (Data Transfer Ob-
jects and method signatures) in Java.

The goal of the participants was to fill-in the provided artefacts to complete domain
logic functionality. To prevent from negative bias, the participants were asked to solve the
problems using RSL-DL first, and only then to solve them in Java. The participants were
also asked to measure time spent on all the tasks. The results of these measurements are
given in Table 1.

Comparison of times for the three study participants can be treated as rather anecdo-
tal evidence but they give some insight on the productivity of developing domain logic
(back-end) code with RSL-DL. As it can be noticed, productivity of RSL-DL develop-
ment vs. Java development is significantly higher for an experienced RSL-DL user. Also,
a less experienced Java programmer (the Ph.D. student) had certain productivity gains.
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Table 1. Results of the operability study

Participant [Task [RSL-DL time (min.)[Java time (min.)‘
Author No. 1 3:00 5:00
Ph.D. Student No. 1 9:00 12:00
Undergrad. Student|No. 1 13:35 4:50
Author No. 2 1:45 3:40
Ph.D. Student No. 2 4:00 10:00
Undergrad. Student|No. 2 16:45 5:30
Author No. 3 4:30 6:00
Ph.D. Student No. 3 15:00 15:00
Undergrad. Student|No. 3 12:25 6:20

On the other hand, a very experienced Java programmer (the undergraduate student) had
performed much better using a traditional programming language. Thus, it can be argued
that as general knowledge of developers and their RSL-DL skills raise - productivity gains
tend to be significant. It can also be argued that RSL-DL has the potential for extending
productivity gains for less experienced programmers. Still, this argumentation has to be
acknowledged through a more thorough experimentation with a larger participant scope.
This can be seen as future work.

8.3. Analysis of complexity

An important and obvious aspect of RSL-DL design as a low-code language was to re-
duce complexity of code. To determine characteristics of RSL-DL in this aspect, we need
to compare the complexity of RSL-DL models (including model queries) and equivalent
3GL back-end code. We can find several metrics of software (textual code) complexity
in literature [27]. Moreover, relatively sparse complexity metrics exist for visual models
(mainly formulated in UML) [36]. However, we could not find a generally accepted ob-
jective metric for comparing the complexity of textual code and visual models (cf. work
by Masmali and Badreddin [37]). Considering this, to assess the potential reduction of
complexity, we have applied a simple metric that compares quantities of syntactic con-
structs.

Our comparative procedure followed the following steps. First, we have manually de-
veloped appropriate domain logic code for the specified use cases and scenarios. This
involved manual implementation of services, like IService in Figures 5 and 24. Second,
after implementing the transformation from RSL-DL to code, we have specified the do-
main using RSL-DL notation. Finally, after generating the code, we compared it to that
developed manually to ensure that they are functionally equivalent.

Quantitative comparison of syntactic constructs shows at least a 30% reduction in
complexity for RSL-DL models. As an example, we can consider relevant model and code
fragments for computing “weighted average grade” (compare Figures 6, 17 and 22). The
model consists of 22 syntactic elements (3 relations, 7 notions, 7 participations, 2 attribute
links and 3 formulas) to which we need to add 1 query. The equivalent code consists of
35 syntactic elements (5 classes, 2 fields, 4 methods, 2 constructors, 4 getter methods, 2
loops, and 16 other instructions). It has to be stressed that the above numbers pertain to



720 Kamil Rybinski and Michat Smiatek

manually developed code and not that which was automatically generated. However, dif-
ferences were minimal and mainly concerned with optimisation (manual code was more
optimised and more compact).

The above comparison can be treated as indicative and necessitates more detailed
experimentation and analysis, which we see as future work. Regardless of this, significant
benefits can also be achieved due to the reusability capabilities of RSL-DL. Knowledge
representations expressed in RSL-DL are declarative and independent of any particular
context of usage. Thus they can be queried similarly to how ontologies can be queried for
inferring various facts. However, RSL-DL queries result not in facts but ready imperative
code adapted to the given usage (application logic). Therefore, the only cost of obtaining
code adapted to new functional specification (e.g. new use cases and their scenarios) is
the cost of formulating new queries.

9. Summary and future work

This work attempted at going beyond typical low-code approaches. We have applied
declarative knowledge representations to define non-trivial logic that can be used to pro-
duce imperative back-end code in a standard programming language. This generated code
can be interfaced with front-end code produced from low-code specifications that use for-
malised requirements models (use cases, scenarios). It thus can be noted that our approach
leads to shifting most of the programming activities to the level typically used in require-
ments engineering. Programming becomes equivalent to specifying precise requirements
models that define various aspects of the system and its problem domain. An RSL-DL
conceptual model can be treated — in fact — as a high-level program that can be executed
immediately after compiling it into eg. Java and then — executable code. Moreover, RSL-
DL models can be seen as “ontologies as code” [35] and a step towards a “fifth generation
language” as postulated by Thalheim and Jaakkola [60].

We see two main areas where our approach can benefit software development: reduc-
tion of complexity and increased reuse. The first area is in line with the general goals of
the low-code movement — to offer means for reducing accidental (technological) complex-
ity in favour of concentrating on the essential (e.g. domain) complexity (see early insights
on this by Brooks [10]). A thorough comparison of complexity between RSL-DL and
traditional programming languages, and analysis of reusability can be seen as interesting
areas of future work.

Another area for future work is the analysis of RSL-DL usability as a low-code lan-
guage. Generally, it can be expected that better usability is assured through declarative
characteristics of the language (see appropriate comparative analyses [24, 65]). This is in
line with our initial studies presented in the previous section. However, to fully support
this claim, more extensive experimentation should be conducted.

Other areas which we plan to investigate in the future include better integration with
requirements processing mechanisms. One aspect of this is the application of natural lan-
guage processing. Here, valuable insights can be drawn from the concept of naturalistic
programming [46]. This concept postulates the use of natural language elements to design
programming languages that are more expressive from the programmers’ point of view.
Another interesting approach in this area is that of Mefteh et al. [38]. In this approach,
natural language scenarios are transformed into constrained language models expressed in
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RSL. On the other hand, we also plan to integrate our approach with existing approaches
to generate CRUD operations and database schemas directly from requirements models
expressed in RSL [68].

Finally, we would like to address the fact that both RSL and RSL-DL were created
as distinct new languages. Still, they follow typical notations found in requirements en-
gineering, domain modelling and knowledge representation. It thus can be argued that
an existing general-purpose language (e.g. a UML profile) could be used to express the
same semantics. Both approaches — creating a new language vs. using a general-purpose
language — can be seen as equivalent. However, creating a language from scratch allowed
us to go beyond the “beaten path” and create visual syntax that would be hard to express
using standard notations.
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