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Abstract. The study of utilizing human language in computer systems referred to
as NLP, is becoming increasingly significant in various aspects of life, including re-
search, daily activities, commerce, and entrepreneurship endeavors. A multitude of
tech companies are dedicating resources towards the development and improvement
of NLP methods, models, and products. To add to that, open-source contributions
to the field are on the rise. However, with so much progress being made, it may be
challenging to understand the current state of NLP and what models are considered
to be the most efficient. To help those grappling with the fast-paced and constantly
evolving NLP landscape, we have put together a comprehensive overview of the
latest NLP research and advancements.
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1. Introduction

The area of Natural Language Processing (NLP) appears to have a great impact on today’s
research, day-to-day life, commercial, and entrepreneurial endeavors. Some of the biggest
tech companies have a footing in the development of newer NLP techniques, models,
architectures, and products. Some open-sourcing efforts have also started to materialize.
With all those new creations it may be hard to understand what the state-of-the-art is and
what are the optimal models for NLP. We conduct a survey of NLP research and novelties
to help those groups that may be entangled in the accelerating and messy area of current
NLP.

Many applications in the field of NLP have been studied, including question answer-
ing (QA), text classification, summarization, text generation, zero-shot or few-shot classi-
fication, translation, text similarity, sentiment analysis, named entity recognition (NER),
relation extraction, information retrieval, natural language inference, dialogue, factual in-
formation detection, text simplification, text clustering among others.
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The area of NLP has had a massive growth fig 5 over the past years. Different ap-
proaches, techniques, and models have been proposed by researchers, trying to improve
upon an, or various, aspects of previous proposals. These aspects can be summarized with
different metrics, some of the most relevant ones being task-specific performance, energy
efficiency, memory used, and training complexity.

Different models have been proposed to solve NLP tasks, and trade-offs have to be
made when choosing the best model to use. Previous approaches such as Bag of Words
or TF-IDF still prove to be useful in the NLP landscape, and should be a viable consider-
ation when solving NLP tasks, especially when computational resources and data may be
scarce. With this into consideration, it is important to note that Transformer models have
achieved state-of-the-art performance on different tasks. According to Ref [46] BERT,
pre-trained on a financial news corpus, allows to detect the dominant themes in the news,
as well as to evaluate the tone of the articles. For their part, Ref [12] argues that, in con-
trast to ordinary text classification, short text presents a unique problem, consisting of less
vocabulary and scarcity of features, which generates a higher need for semantic feature
representation. Therefore, in order to address this problem they propose a model based on
BERT.

A way to identify Spanish language hate discourse on social media using pre-trained
monolingual and multilingual models, including BERT, XLM [81] and BETO 4 was pro-
posed [8].

Ref [91] studies the possibility that removing news tagged as harmful may also elimi-
nate satiric news. Using DistilBERT [116] they show a way to distinguish between satiric
and fake news. Social media generates a large amount of data that could be used to iden-
tify the sentiment of its users using XLNet [160], DistilBERT [116] or RoBERTa [90].

Client relationships can also be improved using NLP, detecting possible weak points
in client-company interactions. RoBERTa is used to detect five weak points to improve
this interaction [115].

Taking those applications into consideration, it is still difficult to contemplate the
whole NLP landscape. With a growing research scene, more models with various ben-
efits, and different levels of access, it can become a difficulty to those groups wanting to
use what the NLP area has to offer. With this in mind, an overview of different models
and techniques will be shown, emphasizing the state-of-the-art transformer architecture
[143]. A small analysis of the impact of transformers, especially Bidirectional Encoder
Representations from Transformers (BERT) [43], on the research community will be pre-
sented. An analysis of the abstracts of many NLP related papers was made using various
approaches to better understand their trade-offs. Some of the most relevant models, ar-
chitectures, and approaches can be a point of discussion, showing that there is a trend for
bigger, decoder-only, generative models, and what that implies. Finally, some guidance
on what the future of NLP may look like will be provided.

2. Historic Overview

The question of whether or not computers can process natural language has been an in-
herent topic in computer science. In the 1950s, Alan Turing proposed a way to identify if

4 https://github.com/dccuchile/beto
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machines can think, with the imitation game [140]. This test is essentially an NLP prob-
lem, as the computer would need to process the question given by the person, understand
it, and answer. This paves the way for NLP research, as it would not only advance an
important field but would, if successful, also solve one of the open questions in computer
science.

The earliest wave of computational NLP research came in the 1950s, introducing the
concept and starting to involve the rudimentary computational power of the time. Because
of the limitations of computers at that time, both in memory and processing power, it
was not feasible to test or implement the proposed techniques, but a theoretical origin
of NLP was starting to develop. Some groundwork was created around natural language,
establishing common problems in a computational representation of language. Natural
language is complicated and has rules and exceptions that are the result of thousands
of years of change, so it was obvious at the beginning that, for example, hard coding a
chatbot with answers was not feasible, because of the sheer amount of possibilities. Some
interpretation and variability were needed in order to obtain good results. Rule-based
systems started to be implemented to solve those limitations. An example from this rule-
based approach to NLP was one of the first applications of NLP in a practical field, being
of help in a medical setting, used by physicians in training was proposed in Ref [124].
Some areas of research started to develop, including text-to-speech [4], syntactic analysis
[31], part of speech tagging [18], machine translation 5 and human interaction [152].

NLP was described as a range of computational methods driven by theories to analyze
and represent natural language text at various linguistic levels, aiming to imitate human
language processing for various tasks and applications [23]. NLP is a branch of machine
learning that deals with text and speech [2], that began in the 1940s as an intersection of
artificial intelligence and linguistics [96]. Since its inception, contributions in the theory
of universal grammar, have been definitive for the development of NLP to adequately ad-
dress the study of language [30,10]. Other investigations, such as the contributions of Ref
[58], in which they propose the use of an associative categorical dual model for the rep-
resentation of the meaning of words and its possible applications in artificial intelligence
and NLP.

Ref [86], shows that NLP had two distinct focuses: Natural Language Understand-
ing, NLU (reader/listener) for the purpose of producing a meaningful representation, and
Natural Language Generation (writer/speaker) that refers to the production of language
from a representation, that, according to Ref [76], the first has five sections: Phonology,
Morphology, Syntax, Semantics and Pragmatics, and the second refers to identifying the
objectives, planning how the objectives can be achieved by evaluating the situation and
the available communication sources and making the plans as a text. research that ana-
lyzes the concepts of NLP such as Information Retrieval (IR) and Information Extraction
(IE), which is the process of finding in a large data repository, the material of an unstruc-
tured or semi-structured nature, while Information Extraction (IE), consisting of obtaining
sections of interest in the text to transfer them to a structured format [56]

It is important to note that previous approaches to NLP are still used, especially in
the preprocessing stage, and they also give good performance on certain tasks and certain
situations.

5 https://www.ibm.com/ibm/history/exhibits/701/701_translator.html
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3. Previous Approaches

Traditional approaches have various advantages over the current state-of-the-art approaches,
as they are less computationally expensive, they may be a good option especially when
data is scarce, and they can still obtain competitive performances. Some of those ap-
proaches will be presented next.

3.1. Rule-based and symbolic

This approach may include regex, rule-based systems, morphological analysis, tokeniza-
tion, syntax analysis, parsing, and text transformation and normalization. NLP systems
that are interpretable can promote trust by allowing end-users, practitioners, and researchers
to grasp the model’s prediction mechanisms, thereby ensuring ethical NLP practices. In
the past, conventional NLP systems, like rule-based approaches, have typically operated
in this manner [69,155]. Some examples of rule-based collections, topics, systems, and
their possible uses are:

– One of the first books on the subject is presented, documenting many of the existing
expert systems, as well as some of the available software for building them. From this,
they abstract some principles and general approaches for the development of expert
systems. And, some time later, the principles and history of the method are explained,
exposing that rule-based systems automate knowledge for problem-solving, provide
a means to capture and refine human experience [118].

– The ISCREEN system is described, a prototype for text message detection. ISCREEN
includes a high-level interface for users to define rules, a text message filtering com-
ponent, and a conflict detection component that examines the rules for inconsis-
tencies. An explanation component uses text generation to respond to user queries
about the system’s past or potential actions, based on Grice’s conversational maxims
[108,55].

– Research on natural language processing involves at least four different but closely
related areas of study, which are: (1) research on the psychological processes involved
in understanding human language, (2) the construction of computational systems for
analyzing natural language input (and/or generating natural language output), (3) the
development of theories about the structure of natural language, and (4) the determi-
nation of the mathematical properties of grammatical formalisms [119].

– Some recent approaches to fully rule-based systems can still be useful. A cloud-based
rule-based computing system for evaluating requests for academic scholarships for
postgraduate students is presented. Among the findings, it is demonstrated that the
system allowed students to submit their documents online and view the score for each
item entered. The final cumulative points were automatically calculated according to
the standards. The system reduced the burden on students during their applications.
As a result, the system could motivate students to engage in academic scholarship
applications by providing transparent and user-friendly public rules [165].
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Fig. 1. Map of NLP techniques and models
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3.2. Bag of Words

The Bag of Words (BoW) methodology is a simple yet effective way to represent textual
data using word frequency vectors. It was initially proposed for text document analysis
[59], but similar approaches have found a place in other areas such as image analysis. In
this method, the number of occurrences of each "bag" generated for each type of instance
or word is recorded, without considering their order or grammar. Different approaches to
represent BoWs are used, which can include hashmaps or sparse matrices 6. BoWs have
been used extensively in NLP, and it has shown to be effective when paired with other
algorithms, especially machine learning and statistical ones.

3.3. TF-IDF

TF-IDF works by determining the relative frequency of words in a specific document com-
pared to the inverse proportion of that word in the entire document corpus. Intuitively, this
calculation determines how relevant a particular word is in a specific document. Words
that are common in a single document or a small group of documents tend to have higher
TF-IDF values than common words like articles and prepositions. The formal procedure
for implementing TF-IDF has some minor differences in its various applications, but the
general approach works as follows. Given a collection of documents D, a term t, an
individual document d ∈ D, a function f(t, d) that returns the frequency of term t in
document d, and Td different terms in d, we calculate:

TF (t, d) =
f(t, d)∑Td

i=0 f(ti, d)
(1)

IDF (t,D) = log(
|D|

|{d ∈ D|t ∈ d,∀d ∈ D}|
) (2)

TF -IDF (t, d,D) = TF (t, d) · IDF (t,D) (3)

TF-IDF also works best when paired with other algorithms, as the vector, mathemati-
cal representation of documents allows the use of different models and approaches.

3.4. N-gram

N-grams are sequences of characters or words extracted from a text. They can be catego-
rized into two main types, character-based and, word-based. A character-based N-gram is
a set of n consecutive characters extracted from a word. The primary motivation behind
this approach is that similar words will have a high proportion of common N-grams. Typ-
ical values for n are 2 or 3, corresponding to the use of bigrams or trigrams, respectively.

Let S be a sequence of text data, and Si represent the i-th item in the sequence, where
i ∈ [0..|S|]. An n-gram can be defined as a contiguous sequence of n items from S,
denoted as Si, Si+1, ..., Si+n, where 0 ≤ i ≤ (|S| − n) [122]. N-grams are useful when
capturing local patterns in text.

6 https://docs.scipy.org/doc/scipy/reference/sparse.html
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3.5. LSA

LSA is a technique in natural language processing and information retrieval that uses
singular value decomposition (SVD) to analyze and represent the relationships between
terms and documents in a high-dimensional space. It’s widely used for tasks such as doc-
ument retrieval, information retrieval, and text analysis to discover the latent semantic
structure in a corpus of text [40]. LSA has found success in topic modeling, similarity,
clustering, and classification among others.

A Document-Term Matrix must be constructed, representing the frequency of a term
t in a document d for every t ∈ T where T are all the terms in a corpus D, and every
d ∈ D. A TF-IDF, or any other weighted, matrix can also be used. A decomposition into
three matrices U , Σ and V T is done, where

– U : The left singular vectors matrix represents the relationships between documents.
– Σ : A diagonal matrix with singular values, representing the strength of the latent

semantic concepts.
– V T : The right singular vectors matrix represents the relationships between terms.

Dimensionality reduction can then be applied by keeping the top k singular values
and their vectors. After this reduction, a semantic space is achieved, where all documents
and terms are described by a vector in the space, capturing a latent semantic relationship
between them.

3.6. LDA

Latent Dirichlet Allocation represents a three-tiered hierarchical Bayesian model, where
every item in a collection is depicted as a finite mixture of underlying topics. These topics
are further represented as an infinite mixture of topic probabilities, which, in the context
of text modeling, offer a clear way to represent a document [16].

In LDA, a document, denoted as d, is a collection of |d| words, where d = w0, w1, ..., w|d|.
For all documents d in the corpus D and all topics k in the set of topics K, LDA mod-
els each document as a distribution over topics, creating a matrix of size (|D|, |K|) to
represent the different latent topic proportions for each document.

Additionally, a distribution β is created for every topic k, which represents the prob-
ability distribution over words for that topic. The goal of LDA is to learn the optimal θ
distributions for every document d and the optimal β distributions for every topic k.

The matrix β is constructed, where βij = p(wj = 1|zi = 1) represents the probability
of word wj occurring in topic zi. The ultimate objective of LDA is to discover these
latent topic proportions and word distributions to represent the underlying structure of the
document collection.

LDA has proven to be a performant model for topic modeling in a variety of appli-
cations and domains. Its ability to uncover latent topics within a corpus of text data has
made it a valuable tool for tasks such as document clustering, content recommendation,
and sentiment analysis.
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3.7. word2vec

Although vectorial and spatial representation of texts were proposed previously in other
models and methodologies, word2vec [34] is a model that achieved major improvements
in NLP with the use of embeddings.

The generation of a word embedding through Word2Vec can be done in two different
ways: Skip-Gram and Continuous Bag of Words. Both approaches are based on a differ-
ent handling of input and output variables but essentially use the same neural network
structure. They have similar architectures but different learning objectives. The skip-gram
model uses the current word to predict the surrounding words, while the CBOW model
predicts the current word based on the surrounding words [44]. Skip-gram training tends
to give a better semantic representation of words. The idea of a skip-gram is to be able
to, given a probability distribution, predict the surrounding words in a window for every
word Wn. This was one of the objectives proposed with the word2vec model[34].

P (Wn+j |Wn) (4)

where the word Wt is the center word. Then an objective function to be minimized for N
words can be formulated for a window of size m surrounding a word Wn:

J ′(θ) =

N∏
n=0

∏
−m≤j≤m

j ̸=0

P (Wn+j |Wn; θ) (5)

Where the probability is also dependent on some parameters θ
A loss function to be optimized can then be proposed as follows. This loss function is

generally optimized using gradient descent:

J(θ) =
1

N

N∑
n=1

∑
−m≤j≤m

j ̸=0

logP (Wn+j |wn) (6)

3.8. GloVe

GloVe is an unsupervised learning algorithm used to obtain vector representations of
words. It trains on global statistics derived from word-word co-occurrence in a corpus,
and the resulting representations reveal interesting linear substructures within the word
vector space.

The training objective of GloVe is to learn word vectors in such a way that their dot
product equals the logarithm of the co-occurrence probability of words. This objective
associates (the logarithm of) probability ratios of co-occurrence with vector differences
in the word vector space, thanks to the mathematical equivalence of logarithmic ratios and
vector differences. This allows the encoding of some form of meaning, as these ratios can
capture semantic relationships [106] 7.

7 https://nlp.stanford.edu/projects/glove/



Natural Language Processing: An Overview... 1105

3.9. Neural Networks and Deep Learning

Given the advancement of computational power, the use of more demanding models be-
came possible. In this order, neural language modeling aims to improve the performance
of multiple related learning tasks [37] by taking advantage of useful information among
them [28]. Task relationship is based on understanding how different tasks are related
and includes learning tasks such as supervised tasks, which include classification and
regression tasks, unsupervised tasks, including clustering tasks, semi-supervised tasks,
active learning tasks, reinforcement learning tasks, online learning tasks, and multi-view
learning tasks [166]. In the same way, the concept of word embedding is expanded on fur-
ther, improving search tasks, and content recommendation [34]. Sequence-by-sequence
learning models with neural networks were included in the development of NLP in [131]
through a translation task using a multilayer LSTM to assign the input sequence to a vec-
tor of fixed dimensionality, and then another deep LSTM to decode the target sequence of
the vector.

On the other hand, Ref [76], summarizes the use of convolutional neural networks in
the fields of Sentence Classification, Sentiment Analysis, Text Classification, Text Sum-
mary, Machine Translation, and Response Relations, as well as the use of recurrent neural
networks (RNN) which, according to Ref [133] is defined as a type of artificial neural
network where the connections between units form a directed cycle creating an internal
state of the network that allows you to exhibit dynamic behavior, usually applied to se-
quential data such as text, time series, financial data, voice, audio, video among, others
[76]. CNNs have been used extensively for NLP, as Refs [75,51,77,128,147,117] have all
used CNNs successfully to solve NLP tasks.

With the growth in computational power, RNNs started to become viable. Long-Short
Term Memory (LSTM) [62] and Bidirectional LSTM [54], were used to solve NLP tasks
[68,168]. The sequential-like nature of natural language made it perfect for LSTMs, as
they specialize in that. LSTMS, however, also had some drawbacks [167], but they still
performed exceptionally.

Currently, RNNs have almost been super-seeded by transformers, as they do not offer
a better performance and are more computationally expensive to use and train, but they
may still offer unique benefits compared to other approaches.

ELMo: Embeddings from Language Models (ELMo) is a model that achieved great
performance on various tasks. It represents one of the early large, pre-trained language
models that demonstrated a significant improvement in the quality of contextualized word
representations. ELMo is a model that relies on LSTM and biLSTM units to create these
contextual embeddings. It achieved great performance on a broad range of NLP tasks and
benchmarks, including Q
A, Textual entailment, NER, Semantic role labeling, and Sentiment analysis among others
[107].

4. Transformers

In 2017 a breakthrough was made in the area of NLP, the transformer architecture was
proposed [143], creating a path for some of the current state-of-the-art models to be real-
ized. The original architecture made use of attention mechanisms exclusively, being able
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to move away from recurrent and convolutional neural networks. Having such a simple,
but scalable, architecture would make transformers the preferred architecture for solving
NLP tasks and create state-of-the-art models. Transformers provided improvements in
two important aspects without a trade-off: they were more computationally inexpensive,
requiring less time to train, and being more parallelizable, while also obtaining better
results on standard NLP tasks and NLP benchmarks.

Without the need to use an RNN, the inherent need for sequential computational steps
was not needed, so a full token sequence could be computed without the need to precom-
pute previous steps. This allows parallelization in sentence processing, making training
more efficient on devices such as GPUs and TPUs. This would result in two of the most
attractive aspects of transformers: they are highly scalable and can be easily trained on
specialized hardware; they can be pre-trained on large unlabeled text corpus, in a self-
supervised manner, to generate language understanding, and then fine-tuned to solve spe-
cific NLP tasks while achieving state-of-the-art performance [143]. Generally, the amount
of data necessary to perform the fine-tuning on a transformer-based model that has been
pre-trained is also considerably lower than if a model was trained from scratch.

The benefits of the transformer architecture made it so researchers started to use it
to create more complex, bigger, or specific, derived architectures, while also utilizing
different training or fine-tuning data. Currently, transformers represent the state-of-the-art
architecture for NLP.

4.1. The Transformer Architecture

The original transformer architecture has different mechanisms that make it so effective.
First, a preprocessing pipeline is used, in which a trainable tokenizer is used.

The tokenizer outputs are passed along a learned embedding layer to create a word em-
bedding of the input tokens. This embedding layer generally works similarly to a lookup
table, in which the input is an index, related to the tokens, and the output is the embedding
for that token, which may differ in dimensionality and may include contextual informa-
tion. The initialization matrix of this embedding layer can come from other trained word
vectors like GloVe or word2vec, or with a random distribution. This embedding layer will
then be trained during backpropagation.

A positional encoding is used to maintain information about the position of the tokens
in a sequence. In the original transformer architecture a positional encoding layer with
the same shape as the embedding layer was proposed so that they could be added. The
following functions were used, for a position n, a constant k, and an input dimensionality
dmodel. The value of k was 10000 in the original architecture [143].

PE(n, 2i) = sin(
n

k2i/dmodel
) (7)

PE(n, 2i+ 1) = cos(
n

k2i/dmodel
) (8)
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Fig. 2. Computation graph of the transformer architecture

Other models may use a trained positional encoding layer. The positional encoding is
achieved with varying degrees of success when using a trained layer, as some models may
not actually be learning an absolute or relative positional encoding of the sequence. This
may depend on the training objective used when training the model, with better positional
representation achieved on models with an autoregressive nature, in comparison to models
that use masked modeling [148].

Afterwards, one of the most important points in the transformer architecture is used,
the attention heads. Attention was a mechanism proposed some years prior to the trans-
former architecture [11], and it was used in conjunction with RNNs. The use of an atten-
tion head in a transformer expenses it from needing to use a kind of recurrent or convo-
lutional architecture. An attention head takes 3 inputs, a query Q, a key K, and a value V,
where [143]

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (9)

A version of attention that can be run in parallel, called Multi-Head Attention, was
also proposed. The function takes three arguments: Q, K, and V , which are matrices that
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correspond to a sequence of query vectors, key vectors, and value vectors, respectively.
WQ

i , WK
i , and WV

i are weight matrices for the i-th attention head. They project the
input Q, K, and V matrices into a different subspace suitable for the i-th head’s attention
operation. By having separate weight matrices, each head can potentially learn to focus
on different parts of the input or capture different types of dependencies in the data.

MultiHead(Q,K, V ) = [A0; ...;Ah]W
O (10)

whereAi = Attention(QWQ
i ,KWK

i , V WV
i )

The intention of using attention heads is that the attention mechanism allows transformers
to capture the relations between the tokens in a sequence by providing a spatial similarity
of the value related to the query, while also assigning different levels of importance to
different parts of the input sequence dynamically. Multi-Head Attention is able to attend
to information that may be encoded in different spaces, and may attend to, for example,
relationships with different length dependencies[143].

While a transformer model that uses both the encoder block and the decoder block
uses attention mechanisms, they can be further categorized into self-attention and atten-
tion.

Encoder Block : The encoder block employs self-attention. Self-attention allows each
token in the input sequence to attend to all other tokens within the same input sequence.
This mechanism captures relationships and dependencies among tokens in the input. In
this case, Q = V = K, where Q, V, and K are the query, value, and key vectors. The
encoder block will then be composed of the following components:

– Self-Attention Layer: As mentioned, the self-attention mechanism allows each token
in the input sequence to attend to all other tokens. Since Q = K = V , this is specifi-
cally known as self-attention because each token is effectively attending to itself and
other tokens within the same sequence. This helps the model understand the context
and inter-token relationships.

– Feed-Forward Neural Network: After self-attention, the output goes through a Feed-
Forward Neural Network (FFNN) that is applied position-wise to each token’s repre-
sentation. The FFNN typically consists of two linear transformations with an activa-
tion function in between.

– Residual Connections: Each of the two layers (self-attention and FFNN) has a resid-
ual connection that adds the input of the layer to its output, followed by layer nor-
malization. This skip-connection helps with gradient flow and allows the network to
learn more effectively by providing an alternative pathway for gradient propagation.

– Layer Normalization: Layer normalization is applied after the residual connection,
which normalizes the outputs across the features for each data instance, helping in
stabilizing the learning process.

Decoder Block : The decoder block also uses self-attention, but it serves a slightly dif-
ferent purpose. Here, self-attention enables each token in the target sequence to attend to
other tokens within the same target sequence. This is crucial for modeling dependencies
within the output sequence.
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In addition to self-attention, the decoder block utilizes attention between the encoder
and decored blocks. This type of attention allows the decoder to focus on information from
the encoder’s output. This attention enables the decoder to consider relevant information
from the input sequence while generating the output sequence. The decoder block will
then have the following components:

– Masked Self-Attention Layer: The early self-attention layer in the decoder is modified
to prevent each token from attending to subsequent tokens in the sequence. This is
known as masked self-attention and is necessary because, during training, the decoder
should only be allowed to consider tokens it has already generated.

– Encoder-Decoder Attention Layer: This layer is responsible for attending to the en-
coder’s output. Here, the Q vectors come from the previous masked self-attention
layer’s outputs, whereas the K and V vectors are the outputs from the encoder stack.
This mechanism helps the decoder focus on different parts of the encoder’s output
which is important for tasks such as translation where the alignment between input
and output sequence elements is not known in advance.

– FFNN: Like the encoder block, the decoder also contains a position-wise FFNN.
– Residual Connections and Layer Normalization: Each sub-layer within the decoder

(the masked self-attention, encoder-decoder attention layer, and FFNN) includes a
residual connection followed by layer normalization.

Attention mechanisms are a fundamental component of transformers, and they en-
compass both self-attention, for capturing relationships within the same sequence, and
attention, for connecting information between different sequences, such as the encoder’s
output and the decoder’s input.

It is important to note that all of these layers are trained with backpropagation. With
current frameworks, such as Pytorch [104,103] or JAX[17], automatic differentiation can
be used to obtain the needed gradients for training. The autograd those frameworks use,
along with graph execution storage, has also been a key point for the efficient training of
different DL architectures.

The first steps of the transformer architecture computation may look like fig 2, using
PyTorch and torchview 8, while the transformer architecture may look as follows:
T r a n s f o r m e r (

( encoder_embedding ) : Embedding (10000 , 512)
( decoder_embedding ) : Embedding (10000 , 512)
( p o s i t i o n a l _ e n c o d i n g ) : P o s i t i o n a l E n c o d i n g ( )
( e n c o d e r _ l a y e r s ) : Modu leL i s t (

( 0 − 5 ) : 6 x EncoderLayer (
( s e l f _ a t t n ) : M u l t i H e a d A t t e n t i o n (

(W_q ) : L i n e a r ( i n _ f e a t u r e s =512 , o u t _ f e a t u r e s =512 , b i a s =True )
(W_k ) : L i n e a r ( i n _ f e a t u r e s =512 , o u t _ f e a t u r e s =512 , b i a s =True )
(W_v ) : L i n e a r ( i n _ f e a t u r e s =512 , o u t _ f e a t u r e s =512 , b i a s =True )
(W_o ) : L i n e a r ( i n _ f e a t u r e s =512 , o u t _ f e a t u r e s =512 , b i a s =True )

)
( f e e d _ f o r w a r d ) : P o s i t i o n W i s e F e e d F o r w a r d (

( f c 1 ) : L i n e a r ( i n _ f e a t u r e s =512 , o u t _ f e a t u r e s =2048 , b i a s =True )
( f c 2 ) : L i n e a r ( i n _ f e a t u r e s =2048 , o u t _ f e a t u r e s =512 , b i a s =True )
( r e l u ) : ReLU ( )

)
( norm1 ) : LayerNorm ( ( 5 1 2 , ) , eps =1e −05 , e l e m e n t w i s e _ a f f i n e =True )

8 https://github.com/mert-kurttutan/torchview
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( norm2 ) : LayerNorm ( ( 5 1 2 , ) , eps =1e −05 , e l e m e n t w i s e _ a f f i n e =True )
( d r o p o u t ) : Dropout ( p = 0 . 1 , i n p l a c e = F a l s e )

)
)
( d e c o d e r _ l a y e r s ) : Modu leL i s t (

( 0 − 5 ) : 6 x DecoderLayer (
( s e l f _ a t t n ) : M u l t i H e a d A t t e n t i o n (

(W_q ) : L i n e a r ( i n _ f e a t u r e s =512 , o u t _ f e a t u r e s =512 , b i a s =True )
(W_k ) : L i n e a r ( i n _ f e a t u r e s =512 , o u t _ f e a t u r e s =512 , b i a s =True )
(W_v ) : L i n e a r ( i n _ f e a t u r e s =512 , o u t _ f e a t u r e s =512 , b i a s =True )
(W_o ) : L i n e a r ( i n _ f e a t u r e s =512 , o u t _ f e a t u r e s =512 , b i a s =True )

)
( c r o s s _ a t t n ) : M u l t i H e a d A t t e n t i o n (

(W_q ) : L i n e a r ( i n _ f e a t u r e s =512 , o u t _ f e a t u r e s =512 , b i a s =True )
(W_k ) : L i n e a r ( i n _ f e a t u r e s =512 , o u t _ f e a t u r e s =512 , b i a s =True )
(W_v ) : L i n e a r ( i n _ f e a t u r e s =512 , o u t _ f e a t u r e s =512 , b i a s =True )
(W_o ) : L i n e a r ( i n _ f e a t u r e s =512 , o u t _ f e a t u r e s =512 , b i a s =True )

)
( f e e d _ f o r w a r d ) : P o s i t i o n W i s e F e e d F o r w a r d (

( f c 1 ) : L i n e a r ( i n _ f e a t u r e s =512 , o u t _ f e a t u r e s =2048 , b i a s =True )
( f c 2 ) : L i n e a r ( i n _ f e a t u r e s =2048 , o u t _ f e a t u r e s =512 , b i a s =True )
( r e l u ) : ReLU ( )

)
( norm1 ) : LayerNorm ( ( 5 1 2 , ) , eps =1e −05 , e l e m e n t w i s e _ a f f i n e =True )
( norm2 ) : LayerNorm ( ( 5 1 2 , ) , eps =1e −05 , e l e m e n t w i s e _ a f f i n e =True )
( norm3 ) : LayerNorm ( ( 5 1 2 , ) , eps =1e −05 , e l e m e n t w i s e _ a f f i n e =True )
( d r o p o u t ) : Dropout ( p = 0 . 1 , i n p l a c e = F a l s e )

)
)
( f c ) : L i n e a r ( i n _ f e a t u r e s =512 , o u t _ f e a t u r e s =5000 , b i a s =True )
( d r o p o u t ) : Dropout ( p = 0 . 1 , i n p l a c e = F a l s e )

)

4.2. Usage Growth and Abstract Analysis

The main problems of the Information Explosion registered in the bibliometric context
during the last decades is that Scholarly Visibility and efficient searches are largely de-
termined by the keyword selection criteria used by the authors. The success, precision,
and adequacy of the choice of these descriptors with respect to the content of published
scientific articles represent a matter of great importance for researchers [50].

In order to extend the analytical implications beyond keyword processing, previous
studies have addressed a detailed analysis of the title or abstract [41], however, traditional
methods applied this analysis manually, which makes it difficult to process large numbers
of articles and, consequently, to understand the internal structure of the global academic
debate on topics of broad or transversal scope.

Abstract analysis is similar to bibliometric keyword analysis. Unlike the keywords, the
abstract offers more information about the evaluated research [114]. By their nature, key-
words are limited, both for authors (author keywords) and for journals (keyword plus®).
As a consequence, bibliometric analyzes based solely on keywords can incorporate biases
that can cause Type II Errors.

At times, abstract analysis has been an unassisted prior conceptualization mechanism
[102,121] used by researchers to facilitate their decision-making to help guide the subse-
quent bibliometric analysis carried out with specific text mining tools [36,142]. Abstract
analysis has been used as a content evaluation mechanism in areas such as business and
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management [121] or project management [93], among others, and has been applied as
an inductive technique [121], registering important limitations on the possibilities of au-
tomation and the implications of the findings obtained.

This study uses custom software that allows the automated analysis of the abstracts
of the evaluated articles (N=75527), offering an important evolution that improves the
process and the actual analysis of the content, overcoming the reported limitations and al-
lowing a robust and rigorous analysis of the academic literature. The dataset was obtained
from Web of Science, indexed sources.

A Bag of Words (BOW) was created on all the abstracts from the 75527 articles an-
alyzed. A dataset with the most common English words 9, from the Google Web Trillion
Word Corpus, was used to eliminate the first 500 words from the BOW, as they provided
little value to the analysis since they were not directly related to NLP. Tab 1 was generated
with some words directly related to particular models, architectures, or approaches.

This dataset will be made publicly available, with a caveat on the distribution of the
abstracts. A SHA256 hash of the abstract will be provided along with other data, such
as authors, DOI, title, and publication date. The raw abstracts will not be shared due to
concerns of licensing and copyright holding, as not all of the papers have open access
[25]. The BERT and SetFit models are also available [24].

Data from Tab 1 comes from all the NLP related articles that had an abstract available,
spanning 6 decades of research. If we select only the papers published in the last 5 years,
a different picture is obtained. As expected the usage of previous techniques falls down as
time progresses, but even then, some of the usages of more recent techniques, like LSTM,
have not changed as fast as transformers based models. BERT, transformers, pre-trained,
encoder, embedding, bidirectional, and deep are some of the terms that saw a significant
change in usage.

9 Dataset taken from https://www.kaggle.com/datasets/rtatman/english-word-frequency
10 Since BERT was introduced in 2018 it had 0 mentions
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Table 1. Models

Word Usage Word Usage Word Usage
All time usage

neural 16324 random 3052 transformer 2047
deep 12581 pretrained 3034 rulebased 1951

networks 9568 recurrent 3011 fuzzy 1904
attention 8274 latent 3004 linear 1901

vector 6563 cnn 2967 regression 1894
statistical 5569 lstm 2846 encoder 1808

rules 5546 ner 2746 wordnet 1744
embeddings 5404 means 2554 endtoend 1693

graph 5365 inference 2497 naive 1601
graphs 5365 bidirectional 2417 word2vec 1480

embedding 5031 multimodal 2280 clusters 1476
clustering 3971 svm 2224 bayes 1468

convolutional 3518 pos 2201 markov 1436
bert 3195 sequences 2107

Usage before 2018
neural 5522 pos 1397 embedding 903
graphs 4397 wordnet 1397 clusters 884

statistical 4147 svm 1384 bayes 874
rules 4049 fuzzy 1352 lstm 833

networks 3820 linear 1247 cnn 819
vector 3578 inference 1234 regression 727
deep 3103 markov 1173 bidirectional 464

clustering 2454 recurrent 1169 word2vec 431
attention 2114 rulebased 1156 endtoend 419

graph 1803 sequences 1126 pretrained 184
embeddings 1694 ner 1078 encoder 145

means 1669 multimodal 962 transformer 21
latent 1572 naive 960 bert 0

random 1523 convolutional 916
Usage after 2018

neural 10802 bidirectional 1953 sequences 981
deep 9478 recurrent 1842 graphs 968

attention 6160 ner 1668 means 885
networks 5748 encoder 1663 svm 840

embedding 4128 random 1529 pos 804
embeddings 3710 clustering 1517 rulebased 795

graph 3562 rules 1497 linear 654
bert 3195 latent 1432 naive 641

vector 2985 statistical 1422 bayes 594
pretrained 2850 multimodal 1318 clusters 592

convolutional 2602 endtoend 1274 fuzzy 552
cnn 2148 inference 1263 wordnet 347

transformer 2026 regression 1167 markov 263
lstm 2013 word2vec 1049

Change in usage after 2018
bert NA10 graph 1.976 clusters 0.67

transformer 96.476 neural 1.956 naive 0.668
pretrained 15.489 regression 1.605 clustering 0.618
encoder 11.469 recurrent 1.576 svm 0.607

embedding 4.571 ner 1.547 pos 0.576
bidirectional 4.209 networks 1.505 means 0.53

deep 3.054 multimodal 1.37 linear 0.524
endtoend 3.041 inference 1.024 fuzzy 0.408
attention 2.914 random 1.004 rules 0.37

convolutional 2.841 latent 0.911 statistical 0.343
cnn 2.623 sequences 0.871 wordnet 0.248

word2vec 2.434 vector 0.834 markov 0.224
lstm 2.417 rulebased 0.688 graphs 0.22

embeddings 2.19 bayes 0.68

Some of the terms selected are very similar, like "embedding" and "embeddings", or
refer to similar architectures like "recurrent" and "lstm". We can group and lemmatize
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those terms and obtain a clearer picture. 4 groups were created based on the similarity of
the words included in them, The groups will include the following terms:

– Group 1: bert, transformer, pretrained, encoder, decoder, attention, gpt
– Group 2: lstm, cnn, recurrent, convolutional, siamese
– Group 3: svm, means, bayes, random, graph, mean, regression, logistic, linear, vector,

markov
– Group 4: fuzzy, rules, rulebased, valence, vader, pattern, matching, statistical, feature

Fig. 3. Change in usage of different NLP approaches

It can be seen in fig 3 that the group related to transformers has had a massive growth
in the past years, while the usage of other approaches seems to be slowing down. Further
work can be done to take into account all the words and possible clusters from different
NLP approaches, and there are limitations to this section, but this serves as another point
to understand the impact that transformers, attention models, and BERT have had in the
NLP research space.

We then propose the year 2018 as a turning point in NLP research. Even though trans-
formers were proposed a year prior, in 2018 a paper was published, in which BERT was
introduced [43]. BERT is a model, based on the transformer architecture that uses atten-
tion mechanisms to learn contextual relations between tokens to generate language under-
standing. Following the benefits of transformers, BERT is trained on large datasets of un-
labeled text, using self-supervised training, and is then fine-tuned for specific NLP tasks. It
introduced some novelties to transformers, such as being able to extract deep bidirectional
representations, meaning that tokens before and after would affect the meaning of a to-
ken being paid attention to. BERT had 2 original variations, BERTBASE and BERTLARGE,
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Fig. 4. Change in usage of different NLP approaches normalized with papers per year

where the main difference is the size of the model. BERTBASE had 12 layers, 12 attention
heads, a total of 110M parameters, and a hidden layer size of 768. BERTLARGE had 24
layers, 16 attention heads, a total of 340M parameters, and a hidden layer size of 1024.
The output of BERTBASE contains an embedding for every token in the input, with an em-
bedding size of 768, and the output of BERTLARGE also contains an embedding for every
token, with an embedding size of 1024. A trade-off has to be made when choosing what
models to use for solving tasks, and in the case of the 2 BERT variations the trade-off is
performance for computational expense. Even with transformers being so relatively ef-
ficient, bigger models appear to achieve better results, while also being computationally
more expensive. In general, BERTLARGE is expected to achieve better performance than
BERTBASE on tasks that require more fine-grained modeling of the input data, but at the
cost of requiring more energy and memory to use.

he BERT model, in conjunction with the transformer architecture, has seemingly cre-
ated a new wave of research within the field of NLP. As illustrated in Table 1, BERT
has been cited 3195 times since its introduction in 2018, demonstrating greater relevance
than other models like LSTMs or CNNs, which were proposed several years earlier. It is
noteworthy that the data analyzed predominantly originates from recent publications, as
depicted in Figure 5. Yet, this does not detract from the conclusion that BERT has sig-
nificantly impacted NLP usage and research. BERT, alongside transformer and attention-
based models, have established themselves as pivotal architectures. The trend in the adop-
tion of these terms, as shown in Figures 6, 7, and 8, indicates that their usage has either
increased or remained steady since their inception. A positive value in the graph indicates
that the usage of the word increased, while a negative value indicates that the usage of the
word decreased. A value of 0 in the graph indicates that the change remained the same for
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that period. It is clear that research papers implementing the BERT model inherently use
transformer and attention mechanisms, as BERT itself is built upon these architectures.

Fig. 5. NLP related publications per year

Analyzing the times BERT was mentioned in the articles since its introduction in
2018 in Table 3 furthers the understanding of its impact on the research community. It
can be observed that the usage, or at least the research related to BERT, is at its highest
point. These mentions include variations on the original BERT model, such as DistilBERT
[116], BioBERT [83] or SciBERT [13]. BERT’s versatility and its utilization of the trans-
former architecture and pre-training, fine-tuning approach make it accessible to a wide
range of teams. This accessibility is facilitated by the availability of high-performance
computing hardware or cloud-based computing services. These factors contribute to the
ability of researchers to achieve state-of-the-art performance on a variety of natural lan-
guage processing tasks, without the need for an excessive amount of labeled data or access
to specialized computing resources.

Table 2. Number of articles mentioning BERT per year

Year Papers mentioning BERT
2019 150
2020 434
2021 778
2022 802
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Fig. 6. Change in word usage per paper per year. A positive change means the word had
more usage in the year prior by y per paper

Fig. 7. Change in word usage per paper per year

A combination of these factors appears to have made BERT a good option for re-
searchers. It provided state-of-the-art results in most NLP tasks, while only requiring
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Fig. 8. Change in word usage per paper per year

comparatively small datasets for fine-tuning while being computationally cheap enough
to be able to be run on smaller specialized hardware or on cloud computing services. The
open-sourcing of the whole pre-trained model was also a likely factor for its widespread
usage. Summarizing the reasons why researchers have been attracted to BERT:

– State-of-the-art performance: BERT has achieved state-of-the-art performance on a
wide range of NLP tasks, outperforming previous models on benchmarks such as the
GLUE and SQuAD datasets.

– Pre-training and fine-tuning: BERT’s architecture is designed to be pre-trained on
large amounts of unlabeled text data and then fine-tuned on smaller labeled datasets
for specific tasks. This approach allows researchers to leverage the information con-
tained in the pre-trained model, reducing the amount of labeled data needed for fine-
tuning, and the computational cost of training a model from scratch.

– Versatility: BERT can be fine-tuned for a wide range of NLP tasks, including text
classification, NER, and question answering, by simply changing the architecture of
the final layer of the model.

– Bidirectionality: BERT’s architecture uses a bidirectional transformer, which means
that the model takes into account the context from both the left and the right side of a
given word when generating embeddings. This allows improved performance in tasks
where understanding the context is crucial, such as question answering.

– Large model size: BERT models are large, with hundreds of millions of parameters,
which gives them the ability to model complex patterns and relationships within the
text. This makes them suitable for handling large and complex datasets.

– Accessibility: BERT models are widely available, and pre-trained models, along with
the fine-tuning code, can be easily accessed and used in many NLP tasks.
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Even though BERT has had a big impact on the research community, other models
with other architectures, pre-training datasets, training objectives, sizes, and overall de-
sign changes have been proposed. Those models achieve better performances in different
tasks and may be more suitable for different situations and objectives.

4.3. Further Analysis of Abstracts

An experiment to show the capabilities of different models and approaches was con-
ducted. A task was proposed to showcase how one might start to solve an NLP task,
and what benefits and trade-offs the different models might provide in terms of perfor-
mance, cost, and training data required. The training, and following labeling of abstracts,
can also be used as further proof of the impacts transformers have had in the NLP field. An
increase in papers using DNNs, especially the transformer architecture, is evident when
looking at the labeled abstracts through time.

A more in-depth analysis of the abstracts was conducted to further understand the
change in usage of different NLP techniques. All the abstracts were categorized into 5
different categories, based on which model or technique they used in the study. Four
approaches were proposed for the categorization. The categories are:

– 0) The abstract does not mention a particular model or technique. Some papers an-
alyzing frameworks, surveys, papers centered on the computer vision component of
NLP, and dataset proposals among others fall into this category.

– 1) A model based on rules or symbolic analysis is used.
– 2) An approach using statistical methods is used. This includes BoWs, N-Grams, and

TF-IDF, along with other machine learning techniques like SVMs, Logistic Regres-
sion, LDA, and others. Shallow neural network models like word2vec also belong in
this category.

– 3) Approaches that use Deep Learning and other Deep Neural Network architectures
such as RNNs, CNNs, and LSTM are included in this category.

– 4) The approach proposed uses transformer based models, like BERT, GPT, T5, and
others. Although transformers are a type of DNN, they will be differentiated from
other architectures included in category 3.

Since an abstract can contain conflicting categories, meaning that it could, for exam-
ple, include both categories 3 and 4, the highest category is to be selected. Most abstracts
would fall into category 1, as most of them include some form of rule based preprocess-
ing. All of the abstracts in Category 4 would also belong in Category 3, as transformers
are a subset of DNNs, and all DNNs would also fall into Category 2 as they use statistical
methods in training and in architecture design. The classification of the abstracts was not
done in a definitive manner, it was done to revise the capabilities of different models and
their ability to adapt to the classification criteria that we proposed.

A small dataset of 384 labeled abstracts was created to train and test all the models.
A split of 250 abstracts was dedicated to training, while the other 134 abstracts were used
for testing. The distributions of the training dataset can be seen in Fig 9:

TF-IDF approach. A vector representation of the abstracts was created using TF-IDF. A
K-nearest neighbors model was trained using 250 of the labeled abstracts. Afterwards, all
the 75527 abstracts were categorized into one of the 5 categories and organized by year.
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Fig. 9. Distribution of training dataset

Fig. 10. TF-IDF KNN Predictions per Year

BERT model approach. A BERT based model was fine-tuned using 250 labeled ab-
stracts. The fine-tuning used a loss to categorize each abstract into one of the 5 categories.
Afterwards, all the 75527 abstracts were categorized into one of the 5 categories using the
fine-tuned model.

The results immediately give BERT an edge, as any paper categorized in Category 4
before 2017 would have been miscategorized. BERT also obtained a significantly higher
accuracy on the testing dataset. Another model like RoBERTa, or even some encoder-
decoder models like FLAN-T5 could achieve better results with the same training param-
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Fig. 11. BERT Predictions per Year

eters and resources, other than computer power required, but BERT was used as a baseline
for a fine-tuning approach.

SetFit few-shot approach. Sentence Transformer Fine-tuning (SetFit) is a framework
for few-shot fine-tuning, using contrastive learning, Pattern Exploiting Training (PET),
and Parameter Efficient Fine-Tuning (PEFT) training [139]. Using Sentence [111] MP-
Net [127] 11 as the base model, the training was done on only 15 labeled examples per
category, for a total of 75 labeled examples, in comparison to the 250 labeled examples
of the previous approaches.

LLM few-shot approach. A Llama-2-70b model was used to categorize all the testing
dataset abstracts. Not all the 75527 abstracts were categorized, as using this model is
by far the most computationally expensive approach. A prompt was created using only
one abstract per category and then passed to the LLama2-70b model along with the new
abstract to categorize.

This approach was the least time consuming in human hours, as only 5 abstracts in
total were categorized for the few-shot prompting. This approach also obtained similar
accuracy on the test dataset compared to BERT.

Analysis Results. The results of this analysis of the abstracts reinforces the argument for
the transformers architecture being an inflection point in NLP. The tradeoffs of the three
different are more evident in this analysis. The TF-IDF approach was the less performant,

11 https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2
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Fig. 12. SetFit Predictions per Year

but also the less computationally expensive. The BERT approach was a good balance
between computer expense and performance. The few-shot Llama-2-70b approach was
the most computationally expensive, but also obtained a good performance, similar to the
one of BERT, and did not require extensive labeling of abstracts. On a classification task
that has categories that are so loosely defined, it makes sense that models that are good
at reasoning, like Llama-2, will have a good performance by default. Some examples of
the answers Llama-2 gave are included 9. The dataset included [25] has the classification
given by the models tested. Note that the classification should be used as a starting point
for further use, as it may not be highly accurate.

Table 3. Different approaches on text classification

Approach Accuracy Labeled Samples Computer power - Device Used
TF-IDF / KNN 0.4701 250 low - cpu
BERT 0.7164 250 medium - NVIDIA V100
SetFit 0.5970 75 medium - NVIDIA V100
Llama 2 0.7089 5 high - 2x NVIDIA A100

With the results into consideration, the following advantages and disadvantages for
the models can be outlined:

TF-IDF with KNN: This model, employing classical NLP techniques, served as a
baseline to gauge performance against more traditional methods. It was the least compu-
tationally demanding and least performant, highlighting the advancements in NLP tech-
niques over time.
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BERT-based model: Representing advanced methods, BERT utilized fine-tuning to
categorize abstracts achieving higher accuracy. BERT’s results underscore the superiority
of current state-of-the-art models and their balance of computational cost and perfor-
mance.

SetFit few-shot approach: This approach demonstrated that with few-shot learning, it
is possible to train models efficiently with a minimal amount of labeled data. While not as
performant as BERT, it offers a middle ground for projects with limited data availability.

LLM few-shot approach: Using Llama-2-70b, this method explored the capabilities of
large language models, which require significant computational resources but minimize
human labor in terms of data labeling, setup, and training logistics. Despite its expense,
this method competes in accuracy with BERT, showing promise for high-efficiency appli-
cations.

Each model provided unique insights, with BERT emerging as a strong all-around
option for balancing cost, data requirements, and performance. Llama-2-70b showcased
the potential for achieving similar accuracy with less labeled data but at a greater com-
putational cost. The findings illustrate that the choice between models depends on the
specific needs and constraints of the project at hand. Models with lower computational
costs may suffice for certain tasks, while advanced models may be necessary for applica-
tions demanding high accuracy and efficiency. This experiment serves as a foundation for
selecting appropriate models in NLP tasks and for understanding the ongoing advance-
ments within the field.

All the models could improve their performance using different techniques and higher
quality data, but this serves as a good baseline to contrast the advantages and disadvan-
tages of the different approaches.

It is important to note that the technique used with Llama-2-70b, based on prompting
rather than training, appears to be gaining traction, and with models that allow a greater
context size and better understanding, it might show even better results in the near future.

4.4. Extra considerations for transformers

While the architecture of Transformer models is a critical determinant of their perfor-
mance, other factors also play significant roles in achieving optimal results. Understand-
ing and fine-tuning these aspects can significantly enhance a Transformer’s ability to gen-
eralize and excel on a wide range of tasks

Regularization Techniques Overfitting is a common challenge with complex models,
including Transformers. Regularization techniques such as dropout, label smoothing, and
weight decay can be implemented to encourage the model to develop a more general
representation and prevent over reliance on specific training examples.

Attention Mechanism Adjustments The attention mechanism is the heart of Trans-
former models. Adjusting the attention heads, exploring different types of attention (such
as local, global, or sparse attention), and experimenting with the attention flow can lead
to improvements in model performance and efficiency.
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Tokenizers As mentioned earlier, DL models, including BERT, typically process input
data that has been tokenized and represented as numerical vectors, rather than raw text.
This is a common practice in NLP as it allows the model to more easily manipulate and
analyze the input data. The tokenizer used for BERT was originally Wordpiece [157], a
subword tokenizer, meaning that it breaks words up into smaller units called subwords or
word pieces, rather than using fixed-size word tokens like many other tokenizers. Word-
piece breaks down words into smaller units based on the most frequent character se-
quences in the training data. It then inserts two special tokens, [CLS] and [SEP], into
the input sequence. [CLS] is placed at the beginning of every input, while [SEP] is in-
serted between every pair of input sequences. These tokens are used by BERT to mark the
start and end of sentences and to distinguish between different sentences within an input.
Computational word representations and tokenizers are still a point of improvement and
difference between models. Some of the more commonly used tokenizers are [157], [78]
and byte pair encoding (BPE) [120]

A good tokenizer is crucial for the performance of a model, as it will dictate what
are the minimum elements that the language will hold. A balance of simple objects, such
as "a", "I", "am", or "is", and more complicated objects like "individual", "account" or
"program" is imperative for both efficient and performant generation of tokens.

The tokens generated by the tokenizer will then be transformed into embeddings.
Initially, each token gets mapped to an integer, to then be mapped as a vector representing
the token on an embedding layer of the transformer. These embeddings hold the spatial
information of the token, so they can be processed by the model.

The paragraphs at 9 were generated using GPT-3, and it will be used to showcase how
the tokenizers of different models would split text. Each of the words separated by a space
represents a token.

Datasets Datasets are a fundamental part of the pre-training and fine-tuning of models.
A good, refined and rich set of training data is essential for the performance of complex
models such as transformers. There is an extensive list of datasets aimed at different tasks
and a variety of datasets that compile massive amounts of text from different sources.
GLUE [146], a collection that includes data from other datasets, such as [149,153,126],
QQP12, STS-B13 among others, has been popular for its variety. The Pile, an 825GiB
dataset constructed on 22 subsets [47] has been used to train models like [15]. BookCor-
pus [169], a dataset containing a large number of data from books, used to train BERT,
ALBERT, and XLNet among others. SQuAD 2.0 [110] has also been used to fine-tune
models like BERT. Other relevant datasets include RedPajama [38] or RefinedWeb[105].

Benchmarks Benchmarks are among the most reliable methods for assessing the im-
provements a model brings. Many datasets are commonly used as benchmarks to evaluate
a model’s performance. Some examples are RACE [80], SQuAD 2.0, GLUE, XTREME
[65], or BIG-bench [129].

It is important to note that no perfect benchmark has been developed yet, and there are
questions over their reliability and usability as a tool to measure the actual performance
of a model [94,49].
12 data.quora.com/First-Quora-Dataset-Release-Question-Pairs
13 http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark
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5. Transformers in Practice: Model Variants

5.1. Some Variations on BERT

All of the next models improve on some aspects of BERT, All of them being encoder-only
models.

ALBERT: A Lite BERT achieved state-of-the-art performance on the GLUE, RACE,
and SQuAD benchmarks, being better than BERT while also having fewer parameters
than BERTLARGE, making training faster and requiring less memory usage. It uses three
main techniques that differ from BERT, being factorized embedding parameterization,
cross-layer parameter sharing, and sentence-order prediction as an objective [82]

DistilBERT: It is a variation on the BERT model, focusing on reducing the computational
power and memory required to run it while being faster and still maintaining many of
BERT’s capabilities. It uses a model compression technique called knowledge distillation
[21], in which a model, the "student" is trained on a model, the "teacher", that will be
giving a distillation loss to the "student". [116]

ELECTRA: A new method for pre-training, replacing token detection, is proposed as a
more efficient alternative to previous ones, including MLM. The model proposed with this
approach, ELECTRA, outperforms other models, like BERT or XLNet, using a similar
model size. By predicting if a token was or not replaced, these efficiency gains can be
obtained. [35]

DeBERTa: It improves on the BERT and RoBERTa architectures, by introducing an
enhanced masked decoder to improve on positional data, and a disentangled attention
mechanism, making it so each word is represented by two separated vectors encoding
their content and positions. [60]

RoBERTa: Under the finding that BERT was undertrained, a newer model that improves
on it is developed. RoBERTa was trained using more data, more training time, longer
batches, removing the Next Sentence Prediction (NSP) objective, using longer sequences,
and changing the masking objective dynamically. [90]

5.2. Decoder models

Decoder models, known for their auto-regressive nature, play a pivotal role in various
generative tasks, thanks to their unique architecture that enables sequential generation.
This auto-regressive property means that these models generate output tokens one by one,
conditioned on the previously generated tokens, allowing them to capture intricate de-
pendencies and context in the data they produce. While decoder models boast impressive
capabilities, they are not without their limitations. The auto-regressive generation process
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can be slow, as each token’s generation is dependent on previous tokens, leading to in-
creased inference times, especially for long sequences. Additionally, this sequential gen-
eration approach can make it challenging to parallelize the inference process efficiently.
Despite their limitations [87], they have demonstrated their capability to create the current
state-of-the-art models. Some of these challenges are being currently researched.

Some relevant models are Chinchilla [63], which works on the scaling of Large Lan-
guage Models (LLMs), and how to optimize pre-training on them, making it more effi-
cient; GPT-3 [19], which achieves a few-shot performance comparable to those models
that are fine-tuned; OPT [163], an open-source model based on GPT-3, having similar per-
formance while being more energy efficient on the development stage; Galactica [134],
a model focused on scientific tasks, achieving state-of-the-art performance on scientific
benchmarks; BLOOM [156], an open access multilingual model; PaLM [32], a dense
model, having a massive size of 540B parameters, to study the impact of scaling on lan-
guage models; GLaM [45], that uses sparsity to scale LLMs, reaching an impressive 1.2T
parameters, while still being less computationally expensive to train than GPT-3.

Most of the current state-of-the-art models fall into the decoder only architecture. It
includes models like GPT4, LLama 2, Mistral 7b [72], Zephyr 7b, PaLM 2 or Claude 2 14

6. Results: General guidance

6.1. Performance

With models like Chinchilla [63] and Galactica [134] it can be observed that the quality
and quantity of data used in pre-training plays an important role in the performance of the
model. This makes it so that the size of the model, including parameters, number of at-
tention heads, layers, and other hyper-parameters, are not the only important components
when deciding on what model to use in regard to performance. A model like Galactica
could be more suited to working with scientific data. Some domain-specific versions of
some models have been published, including :

– SciBERT, a model based on BERT, pre-trained on a large multi-domain corpus of
scientific publications to label scientific data [13].

– BioBERT, a model with largely the same architecture as BERT, pre-trained on large-
scale biomedical corpora to perform text mining on biomedical text [83].

– FinBERT, a model based on BERT, trained to solve NLP tasks related to finances [7].
– LEGAL-BERT, states that the guidelines for pre-training BERT-like models may not

be as suitable for the legal domain, proposing an investigation on available strategies
for specialized domains. It was pre-trained on legislation, court cases, and contracts
[27].

– ClinicalBERT, pre-trained on clinical data and fine-tuned to predict hospital re-admissions
[66].

– DSGPT, proposing a domain-specific generative pre-training method, and then cre-
ating a model based on it, applied to E-commerce title and review summarization
[164].

14 https://www.anthropic.com/index/claude-2
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The languages on which LLMs are pre-trained also have an impact on their perfor-
mance. English seems to be the most common language for model releases, but some
language-specific variations of some models have been created:

– Japanese: Refs [95,70,123,141] create variations on the BERT model to be able to
handle different NLP tasks on the Japanese language. A variation on GPT-2 for story
co-creation in Japanese was made in Ref [100]

– Spanish: Refs [3,26,145,48] create variations on BERT for the Spanish language. A
model to solve the Reading Comprehension and Reasoning Explanation for Spanish
was created [22] in Ref [113], using a variation on GPT-J.

– Chinese: Variations on the BERT architecture have been implemented in Ref [71,39,88].
– Multilingual: Some multilingual models have been proposed in Refs [159,161,156]

6.2. Running the Models

The idea of pre-training and then fine-tuning a model in NLP is to leverage the possible
language understanding created by training the model on large datasets, and then fine-tune
it to solve specific tasks. This is an approach that enables different groups that may not
possess the computational power to train LLMs to still be able to use them in production
or research. Although some computational power and memory will still be needed, cloud
computing services provide a way to, without purchasing dedicated computing equip-
ment and servers, be able to run the LLMs. There are some important characteristics that
may indicate how much computational resources will be needed to run the models. The
quantity of parameters a dense model has is generally a good way to estimate the com-
putational resources needed to run the model: bigger models, like OPT, or BLOOM, will
require more resources than GPT-Neo or GPT2.

In some cases using a smaller model may be needed, but techniques such as distillation
[61,73,116], or module substitution [158] among others [53,57,130], can provide similar
performance while keeping the model small, like in the case on DistilBERT and BERT.
Although the size of the state-of-the-art models seems to growing [109], most likely faster
than the growth in computational power, even considering High Performance Computing
(HPC) and distributed computing [144,67,97], smaller models still can achieve good re-
sults on most NLP tasks.

6.3. Finding newer models

As mentioned prior, newer models have some limitations as to who can train and use
them. As it seems, big groups, be it open-source communities, corporations, or institu-
tions, are the ones creating the new state-of-the-art models. Most of these organizations
have communication channels and blogs 15, along with other regular publications from AI
research centers or experts.

15 https://huggingface.co/blog, https://ai.googleblog.com/, https://www.eleuther.ai/,
https://ai.facebook.com/blog/, https://bigscience.huggingface.co/blog, https://www.deepmind.com/,
https://news.microsoft.com/source/topics/ai/
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Model (Including variations) Parameters Hidden State Size Layers Attention Heads Main association Availability16 Paper publication date 17

Encoder Architecture
BERT 110M - 340M 768 - 1024 12 - 24 12 - 16 Google Open - Model versions available 2018-10-11

ALBERT 11M - 223M 768 - 4096 12 - 24 12 - 64 Google Open - Model versions available 2019-09-26
DistilBERT 66M 768 6 12 HuggingFace Open - Model versions available 2019-10-02
ELECTRA 110M - 335M 256 - 1024 12 - 24 4 - 16 Google Open - Model versions available 2020-03-23
RoBERTa 125M - 355M 768 - 1024 12 - 16 12 - 16 Meta Open - Model versions available 2019-07-26

LUKE 483M 1024 24 16 Studio Ousia Open - Model versions available 2020-10-02
Longformer 149M-435M 768-1024 12-24 12-16 Allen Institute Open - Model versions available 2020-04-10

Decoder Architecture
LLaMa 6.7B - 65.2B 4096 - 8192 32 - 80 32 - 64 Meta Available under non commercial, research license 2023-02-27

LLaMa 2 18 7B - 70B 4096 - 8192 32 - 80 32 - 64 Meta Open - Model Versions Available 2023-07-18
GPT 110M 768 12 12 OpenAI Open - Model versions available 2018-06-10
GPT2 117M - 1542M 768 - 1600 12 - 48 12 - 25 OpenAI Open - Model versions available 2019-07-28
GPT3 125M - 175B 768 - 12288 12 - 96 12 - 96 OpenAI Closed - Access via API 2020-05-28
GPT-J 6B 4096 28 16 EleutherAI Open - Model versions available 2021-07-07

GPT-Neo 125M - 2.7B 2048 24 16 EleutherAI Open - Model versions available 2021-05-21
GPT-NeoX-20B 20B 6144 44 64 EleutherAI Open - Model versions available 2022-04-14

OPT 125M - 175B 768 - 12288 12 - 96 12 - 96 Meta Open - Model versions available 2022-05-02
Chinchilla 70M 8192 80 64 DeepMind Closed 2022-05-29
LaMDA 2B - 137B 2560 - 8192 10 - 64 40 - 128 Google Closed-Architecture implementation available 2022-06-20
Galactica 125M - 120B 768 – 10240 12 - 96 12 - 80 Meta Open - Model versions available 2022-11-16
BLOOM 550M - 176B 1024 - 14336 24 - 70 16 - 112 BigScience Open - Model versions available 2022-11-09

PaLM 8B - 540B 4096 - 18432 32 - 118 16 - 48 Google Closed-Architecture implementation available 2022-04-05
GlaM 1.9B - 1.2T19 3072 - 65536 12 - 64 12 - 128 Google Closed 2021-12-13

MEGATRON-TURING 530B 20480 105 128 NVIDIA-Microsoft Closed - Codebase available 2022-01-28
GLM-130B 130B 12288 70 96 Tsinghua U Open – Model versions available 2022-10-05

FLAN 137B 8192 64 128 Google Closed 2021-09-03
FLAN-PaLM 8B-540B 4096-18432 32-118 16-48 Google Closed 2022-04-05

Falcon 180B 14848 80 64 TII 20 Open – Model versions available 2023-10-12
Encoder-Decoder Architecture

XLNet 110M - 340M 768 - 1024 12 - 24 12 - 16 CMU, Google Open - Model versions available 2019-06-19
T5 60M - 11B 512 - 1024 6 - 24 8 - 128 Google Open - Model versions available 2019-10-23

Tk-Instruct 60M - 11B 512 - 1024 6 - 24 8 - 128 Various Institutions 21 Open - Model versions available 2022-04-16
FLAN 60M - 11B 512 - 1024 6 - 24 8 - 128 Google Open - Model versions available 2021-09-03

7. Future

In the past five years, significant advancements have been made in the field of NLP. There
are different directions that newer models seem to be taking to improve performance
and computational expense. Making bigger models appears to be a good way to improve
performance, but the computational cost makes it so those models use more energy and
take longer to train. For these massive models, specialized methods and hardware may be
needed to train them [125,97,67].

Using bigger, cleaner datasets can be another way to improve models, without the
need to make them bigger. Processing larger datasets can still signify an increase in the
energy needed to pre-train the models, but the impact is smaller than increasing the size
of the model [134,63].

Decoder-only, auto-regressive, generative models seem to be the new approach to
achieving state-of-the-art results on many tasks, even those that were previously dom-
inated by BERT-like, fine-tuned models. GPT-3, Galactica, and others prove that auto-
regressive models appear to be few-shot learners [19,134], while also showing some emer-
gent capabilities [150]. The drawback of these generative models is that they have been
considerably larger than the encoder-only models, taking more energy and memory to
utilize. Parameter growth can be seen in fig 13.

16 Most open models are available at Huggingface [1] and the transformers library [154]
17 Publications on developer blogs or other communications could have been made earlier. The date of the

largest model is considered
18 LLaMa 2 has been made open [138]
19 GLaM has ~145M-96.6B activated parameters
20 Technology Innovation Institute
21 Allen Institute for AI, Univ. of Washington, Arizona State Univ., Sharif Univ. of Tech., Tehran Polytech-

nic, PSG College of Tech., IIT Kharagpur, Univ. of Amsterdam, UC Berkeley, Columbia Univ. , Factored
AI, Govt. Polytechnic Rajkot, Microsoft Research, Stanford Univ., Zycus Infotech, Univ. of Massachusetts
Amherst, National Inst. of Tech. Karnataka, TCS Research, IIT Madras, National Univ. of Singapore, Johns
Hopkins Univ.
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Fig. 13. Model size growth

A wave of research on model to human, consumer, interaction has been developing.
Concerns over the safety and abuse of models have been studied [20,14]. LaMDA is a
model that improves on this human interaction, achieving more safety and factual ground-
ing [136]. Models like InstructGPT [101], which most likely paved the way to OpenAI’s
ChatGPT, have used techniques involving Reinforcement Learning (RL), specifically re-
inforcement learning from human feedback (RLFH) [33] to try to solve alignment issues.

Further advancements in solving the limitations of LLM usage have been made. Foun-
dational models like LLaMa [137], which achieve good performance even with fewer pa-
rameters, that can be run on consumer hardware, have been created. Open, permissive
versions of LLaMa have been replicated [52]. Improved models that use RLHF, building
on LLaMa and other models have also been created [138,132,29,79,92].

Even with the efforts from open-source communities, with models like BLOOM, hav-
ing direct access to massive models with billions or even trillions of parameters is difficult
due to their size. Artificial Intelligence as a Service (AIaaS) may be a way to put high-
performance models on production without the need to worry about multi-accelerator se-
tups or expensive equipment. Nevertheless, researchers are conducting investigations into
smaller models and compression techniques, yielding promising results and the potential
to deploy LLMs on low power devices.

In recent months, there has been remarkable progress in the development of newer
models that have achieved state-of-the-art performance. One such model is GPT-4 [99],
which has demonstrated human-level performance on numerous benchmarks, while out-
performing most other models. GPT-4 has the advantage of being multimodal, giving it
extended capabilities. This model, currently available under an API, will most likely be
the new standard to beat for new coming models. Not many details about its architecture
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have been given under official channels, so it is hard to make statements about it, which
seems to be the new trend for new non open-source models, as product competitivity starts
to grow.

Another notable achievement is attributed to PaLM 2 [6], representing a significant ad-
vancement in language modeling, incorporating techniques that enhance its understanding
and generation of text

The open-source space of LLMs has also gained traction. Newer models like LLama
2 [138], Falcon [5], Mistral 7B [72], INCITE 22, MPT [135] have achieved promising
results.

Improvements in the efficiency of training and usage of LLMs have been made.
PEFT techniques such as LoRA [64], QLoRA [42], Prefix-Tuning [85], P-Tuning [89]
and AdaLoRA [162] are some methods to efficiently fine-tune LLMs.

New frameworks, projects and tools have been created in order to help those that are
building with NLP. LangChain 23 provides different tools to reach a production-ready
app faster. LlamaIndex 24 provides ways to connect, structure and retrieve data. Haystack
25 also provides different tools to integrate LLMs in NLP apps. Vector databases and
vector stores have also gained popularity to structure NLP projects and applications. Some
examples include FAISS [74], pgvector for Postgres 26, Chroma 27 and Vespa 28

Some challenging areas that require improvement in LLMs are enhancing their rea-
soning and factual capabilities, despite RLHF and Chain-of-Tought [151] providing a
partial pathway to address these issues. Long term memory and context length are also
areas in which improvements can be made. Retrieval-Augmented Generation (RAG) [84]
has also been used to provide a form of memory to LLMS, and to generate text that is
more informative, factually correct, and contextually relevant.

There has also been extensive, yet not conclusive, research on the different impli-
cations of these new NLP models and approaches. Scholars can develop new lines of
research around ethics in AI [98], the design and supervision of algorithms [112] , ac-
cording to a particular emphasis on business practices [9]. A gap that researchers must
close in the future is the exploration of ethical challenges of LLMs such as GPT-4 through
experiments and robust diagnostic models [170].

NLP has emerged as a significant field of research, and it continues to expand. Many
organizations have already adopted, and will continue to integrate, the techniques and
models discussed in this study. Consequently, it is essential to anticipate the future land-
scape of NLP, recognizing current trends and the insights they offer. Bearing this in mind,
it is expected that NLP will be increasingly applied across various industries, with its
effects becoming more evident.

22 https://huggingface.co/togethercomputer/RedPajama-INCITE-7B-Base
23 https://github.com/langchain-ai/langchain
24 https://github.com/run-llama/llama_index
25 https://github.com/deepset-ai/haystack
26 https://github.com/pgvector/pgvector
27 https://github.com/chroma-core/chroma
28 https://github.com/vespa-engine/vespa
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8. Conclusion

With this work, we have given some insight into the area of NLP. With this information,
researchers, organizations, and individuals will be able to delve into NLP with current
models, especially LLMs, and their different approaches. Further research can also be
conducted in a guided way, having more context of where current NLP trends came from,
and where they may be going.

It is important to note that some of the information in this paper will most likely
become outdated in a short time, because, as previously discussed, the field of NLP is
moving at an ever increasing speed. The general recommendations will, however, remain
useful for researchers, individuals, and institutions that want to approach the field of NLP.
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Fig. 15. Word cloud of abstracts

– BERT:

[CLS] a t o k e n ## i z e r i s a program t h a t t a k e s a g i v e n s e n t e n c e o r p h r a s e and s p l i t s i t i n t o i t s component
p a r t s , o r t o k e n ## s . t h e s e t o k e n ## s a r e t y p i c a l l y words o r sub ## words , such as i n d i v i d u a l
c h a r a c t e r s o r s t r i n g s o f c h a r a c t e r s . f o r example , " ducks " might be t o k e n ## i z e d i n t o " duck " and
" s . " t o k e n ## i z e r ## s a l s o t a k e i n t o a c c o u n t p l u r a l forms of words , so t h a t a s e n t e n c e l i k e " t h e
boys a r e ducks " might be t o k e n ## i z e d i n t o " t h e " , " boy " , " s " , " a r e " , and " duck " ( wi th
t h e " s " r e p r e s e n t i n g t h e p l u r a l form of " boy " ) . t o k e n ## i z e r ## s a r e used i n a v a r i e t y o f
a p p l i c a t i o n s , such as t e x t p r o c e s s i n g and n a t u r a l l a n g u a g e p r o c e s s i n g . [ SEP ] [PAD] [PAD] [PAD] [PAD]

[PAD] [PAD] [PAD] }

– BLOOM:

<pad > <pad > <pad > . . . A t o k e n i z e r i s a program t h a t t a k e s a g i v e n s e n t e n c e o r p h r a s e and
s p l i t s i t i n t o i t s component p a r t s , o r t o k e n s . These t o k e n s a r e t y p i c a l l y words o r sub
words , such as i n d i v i d u a l c h a r a c t e r s o r s t r i n g s o f c h a r a c t e r s . For example , " duc ks "
might be t o k e n i z e d i n t o " duc k " and " s . " Token i z e r s a l s o t a k e i n t o a c c o u n t p l u r a l

forms of words , so t h a t a s e n t e n c e l i k e " The boys a r e duc ks " might be t o k e n i z e d
i n t o " The " , " b oy " , " s " , " a r e " , and " duc k " ( wi th t h e " s " r e p r e s e n t i n g t h e
p l u r a l form of " b oy " ) . Token i z e r s a r e used i n a v a r i e t y o f a p p l i c a t i o n s , such as
t e x t p r o c e s s i n g and n a t u r a l l a n g u a g e p r o c e s s i n g .

– GPT-NeoX:

A t o k e n i z e r i s a program t h a t t a k e s a g i v e n s e n t e n c e o r p h r a s e and s p l i t s i t i n t o i t s
component p a r t s , o r t o k e n s . These t o k e n s a r e t y p i c a l l y words o r sub words , such as
i n d i v i d u a l c h a r a c t e r s o r s t r i n g s o f c h a r a c t e r s . For example , " du cks " might be t o k e n
i z e d i n t o " du ck " and " s . " Token i z e r s a l s o t a k e i n t o a c c o u n t p l u r a l forms of words ,

so t h a t a s e n t e n c e l i k e " The boys a r e ducks " might be t o k e n i z e d i n t o " The " , " boy
" , " s " , " a r e " , and " du ck " ( wi th t h e " s " r e p r e s e n t i n g t h e p l u r a l form of " boy

" ) . Token i z e r s a r e used i n a v a r i e t y o f a p p l i c a t i o n s , such as t e x t p r o c e s s i n g and
n a t u r a l l a n g u a g e p r o c e s s i n g . [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD
] [PAD] [PAD] [PAD] [PAD] [PAD]

– LUKE:

<s > A t o k e n i z e r i s a program t h a t t a k e s a g i v e n s e n t e n c e o r p h r a s e and s p l i t s i t i n t o i t s
component p a r t s , o r t o k e n s . These t o k e n s a r e t y p i c a l l y words o r sub words , such as
i n d i v i d u a l c h a r a c t e r s o r s t r i n g s o f c h a r a c t e r s . For example , " du cks " might be t o k e n
i z e d i n t o " du ck " and " s . " Token i z e r s a l s o t a k e i n t o a c c o u n t p l u r a l forms of words ,

so t h a t a s e n t e n c e l i k e " The boys a r e ducks " might be t o k e n i z e d i n t o " The " , " boy
" , " s " , " a r e " , and " du ck " ( wi th t h e " s " r e p r e s e n t i n g t h e p l u r a l form of " boy

" ) . Token i z e r s a r e used i n a v a r i e t y o f a p p l i c a t i o n s , such as t e x t p r o c e s s i n g and
n a t u r a l l a n g u a g e p r o c e s s i n g . </ s > [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

[PAD] [PAD] [PAD] [PAD]

– XLNet:

A t o k e n i z e r i s a program t h a t t a k e s a g i v e n s e n t e n c e o r p h r a s e and s p l i t s i t i n t o i t s component p a r t s , o r
t o k e n s . These t o k e n s a r e t y p i c a l l y words o r sub word s , such as i n d i v i d u a l c h a r a c t e r s o r s t r i n g s

o f c h a r a c t e r s . For example , " d uck s " might be t o k e n i z e d i n t o " d uck " and " s . " To ken
i z e r s a l s o t a k e i n t o a c c o u n t p l u r a l forms of words , so t h a t a s e n t e n c e l i k e " The boys a r e duck s "

might be t o k e n i z e d i n t o " The " , " boy " , " s " , " a r e " , and " d uck " ( wi th t h e " s "
r e p r e s e n t i n g t h e p l u r a l form of " boy " ) . To ken i z e r s a r e used i n <sep > < c l s >

9.1. Llama-2 experimenmts

The prompt used on LLama-2-70b to categorize the abstracts
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You a r e a r e s e a r c h s c i e n t i s t t h a t s p e c i a l i z e s i n N a t u r a l Language P r o c e s s i n g . You a r e t a s k e d wi th c l a s s i f y i n g
d i f f e r e n t a b s t r a c t s i n t o one of 5 c a t e g o r i e s , depend ing on t h e newes t t e c h n o l o g y or model t h e r e s e a r c h e r s used .
The c a t e g o r i e s a r e :

0 ) The r e s e a r c h e r s d i d n o t e x p l i c i t l y ment ion a model o r t e c h n i q u e used , o r i t i s n o t i n m e d i a t e l y c l e a r what t h e y used
.

1 ) Rule Based
2) S t a t i s t i c a l
3 ) N eu r a l Networks
4 ) T r a n s f o r m e r s
You a r e t o use t h e h i g h e s t c a t e g o r y t h a t f i t s t h e a b s t r a c t ( i f t h e a b s t r a c t f i t s i n 2 and 3 you would choose 3 ) . You

can on ly choose one c a t e g o r y .
The l a n g u a g e used i n t h e s e a b s t r a c t s may be h i g h l y t e c h n i c a l , so r e a d e v e r y word ve ry c a r e f u l l y .

Here i s an example f o r c a t e g o r y 3
{ example a b s t r a c t }

Here i s an example f o r c a t e g o r y 4
{ example a b s t r a c t }

Here i s an example o f c a t e g o r y 2
{ example a b s t r a c t }

Here i s an example f o r c a t e g o r y 0
{ example a b s t r a c t }

Here i s an example o f c a t e g o r y 1
{ example a b s t r a c t }

Here i s an example o f c a t e g o r y 3
{ example a b s t r a c t }

The a u t h o r s must be e x p l i c i t a b o u t t h e model t h e y a r e us ing , o t h e r w i s e you s h o u l d c a t e g o r i z e wi th c a t e g o r y 0

Here i s how you s h o u l d answer :
Th i s a b s t r a c t b e l o n g s t o c a t e g o r y [ ] . Rep lace t h e [ ] w i th t h e c a t e g o r y . A f t e r w a r d s you s h o u l d r a t i o n a l i z e and r e c h e c k

your answer . Also r e c h e c k i f t h e r e s e a r c h e r s were r e a l l y o b v i o u s a b o u t what t h e y were us ing , o r i f you were
making a s s u m p t i o n s . f i n a l l y , t h e l a s t l i n e s h o u l d be what c a t e g o r y you would p u t t h e a b s t r a c t aga in , w i th t h e
same f o r m a t a s b e f o r e

P l e a s e c a t e g o r i z e t h e n e x t a b s t r a c t

True category: 1. Llama-2 started with the correct category (1), and then miscategorized it as category 0. However, an argument could be made that Llama-2 was correct
with this reasoning and the abstract was actually mislabeled.

Th i s a b s t r a c t b e l o n g s t o c a t e g o r y 1 ( Rule −Based ) . The a u t h o r s ment ion u s i n g HMM T o o l k i t (HTK) t o c o n s t r u c t t h e system ,
which s u g g e s t s a r u l e − based a p p r o a c h t o s pe e ch r e c o g n i t i o n . A d d i t i o n a l l y , t h e y ment ion b u i l d i n g a Mongol ian

a c o u s t i c model and c o l l e c t i n g a l a r g e s i z e c o r p u s t o c o n s t r u c t t h e l a n g u a g e model , which f u r t h e r s u p p o r t s a
r u l e − based a p p r o a c h .

However , upon c l o s e r e x a m i n a t i o n , i t seems t h a t t h e a u t h o r s may have used a c o m b i n a t i o n o f t e c h n i q u e s , i n c l u d i n g
s t a t i s t i c a l mode l ing and machine l e a r n i n g , t o d e v e l o p t h e i r s pe ec h r e c o g n i t i o n sys tem . T h e r e f o r e , I would
r e e v a l u a t e my i n i t i a l c a t e g o r i z a t i o n and p l a c e t h i s a b s t r a c t i n c a t e g o r y 0 ( The r e s e a r c h e r s d i d n o t e x p l i c i t l y
ment ion a model o r t e c h n i q u e used ) , a s i t i s u n c l e a r whe the r t h e a p p r o a c h used was p u r e l y r u l e − based or
combined wi th o t h e r t e c h n i q u e s .

T h e r e f o r e , t h e f i n a l answer would be :
Th i s a b s t r a c t b e l o n g s t o c a t e g o r y 0 .

True category: 3. Here Llama-2 appears to reach an incorrect conclusion based on the use of other techniques not related to the transformer architecture, classifying the
abstract incorrectly.

C a t e g o r y : 3 ( Ne u r a l Networks )

R a t i o n a l i z a t i o n : The a b s t r a c t m en t i o n s t h e use o f a n e u r a l network , s p e c i f i c a l l y a r e l i a b i l i t y − based a u t o m a t i c r e p e a t
r e q u e s t (RB−ARQ) , t o improve t h e p e r f o r m a n c e o f a b r a i n − compute r i n t e r f a c e ( BCI ) f o r communica t ion .
A d d i t i o n a l l y , t h e a u t h o r s aim t o combine RB−ARQ wi th e r r o r c o r r e c t i o n based on e r r o r − r e l a t e d p o t e n t i a l s ( E r r P s )

t o f u r t h e r enhance p e r f o r m a n c e . The use o f n e u r a l n e t w o r k s and e r r o r c o r r e c t i o n t e c h n i q u e s s u g g e s t s t h a t t h e
r e s e a r c h f a l l s unde r c a t e g o r y 3 .

Recheck : Upon r e r e a d i n g t h e a b s t r a c t , I n o t i c e d t h a t t h e a u t h o r s a c t u a l l y used a c o m b i n a t i o n o f t e c h n i q u e s , i n c l u d i n g
s i g n a l a v e r a g i n g , RB−ARQ, and ErrP − based e r r o r c o r r e c t i o n . While t h e use o f n e u r a l n e t w o r k s i s s t i l l e v i d e n t ,
t h e i n c l u s i o n of o t h e r t e c h n i q u e s means t h a t t h e r e s e a r c h may n o t e x c l u s i v e l y f a l l unde r c a t e g o r y 3 . T h e r e f o r e ,

I would r e v i s i t my i n i t i a l answer and c o n s i d e r c a t e g o r i z i n g i t a s 4 ( T r a n s f o r m e r s (BERT, GPT . . . ) ) , a s t h e
a u t h o r s seem t o be combin ing d i f f e r e n t t e c h n i q u e s t o a c h i e v e t h e i r g o a l s .

F i n a l answer : A f t e r r e e v a l u a t i n g t h e a b s t r a c t , I b e l i e v e i t b e l o n g s t o c a t e g o r y 4
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