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Abstract. Multicriteria clustering problem has been studied and applied scarcely.
When a multicriteria clustering problem is tackled with an outranking approach,
it is necessary to include preferences of decision makers on the raw dataset, e.g.,
weights and thresholds of the evaluation criteria. Then, it is necessary to conduct
a process to obtain a comprehensive model of preferences represented in a fuzzy
or crisp outranking relation. Subsequently, the model can be exploited to derive a
multicriteria clustering. This work presents an exhaustive search approach using
a credibility similarity measure to exploit a fuzzy outranking relation to derive a
multicriteria clustering. The work includes two experimental designs to evaluate
the performance of the algorithm. Results show that the proposed method has good
performance exploiting fuzzy outranking relations to create the clusterings.
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1. Introduction

It is known today that one of the operational tools used to solve decision problems is Mul-
ticriteria Decision Analysis (MCDA). It is a field of Operations Research that addresses
complex decision problems, some of them with multiple criteria in conflict. In MCDA,
decision-makers can perform a choice, within a set of decision alternatives based on their
preferences, by ranking or sorting them [35].In the choice problem, a restricted number
of potential alternatives is chosen, as small as possible, which justifies eliminating the
rest. Likewise, in the ranking problem, the decision maker can rank the alternatives from
the best to the worst, with the possibility of ties and incompatibilities between them. Fi-
nally, in the sorting problem, each alternative is assigned to a set of pre-defined ordered
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categories. However, there can be an additional problem called clustering, where group-
ing similar objects into homogeneous groups (clusters) is necessary. These clusters are
unknown a priori, and the objective is to obtain them using the information contained
in the elements to be clustered [1]. The clustering problem has been addressed in the
statistics and data analytics contexts. Data analytics focuses on data processing to ex-
tract and highlight useful information that would otherwise be impossible to know. Two
approaches to analyzing data for grouping objects have been developed: supervised clas-
sification and unsupervised classification. Olteanu [31] refers to the first approach as a
supervised grouping process that relies on a priori information regarding the groups or
classes to place the objects. For the second one, there is no benefit from any knowledge of
the structure of the data. The purpose of clustering is to group objects based on the natural
structure of the data using measures of similarity. In the context of MCDA, the clustering
problem pertains to the need to group alternatives based on the similarity measures ob-
tained from understanding the preferences of decision makers. In that sense, Boujelben [6]
defined the multicriteria clustering problem as a combination of classical clustering with
MCDA, where clusters of alternatives are obtained based on criteria whose clusters are
undefined a priori.

Corrente et al. [12] affirm that classification/sorting and clustering is a fundamental
topic in artificial intelligence (AI), with several machine learning (ML) algorithms that are
available for classification and clustering tasks, and recently these problems have adopted
a constructive decision aiding perspective in contrast to the statistical pattern recognition
approach typically adopted in AI/ML.

The multicriteria clustering techniques allow understanding, in a better way, the struc-
ture of a problem [18]. These authors presented an illustrative example: during the ex-
ploratory phase of a problem characterized by a lot of alternatives, one could submit to
the decision-maker the representative elements of the different clusters (instead of the
whole dataset) to simplify the decision process. Multicriteria clustering methods can also
be used to help decision-makers build categories in a sorting context.

Though the multicriteria clustering problem has been studied and applied in specific
areas, there is still room for improvement in existing clustering algorithms. One limitation
of some MCDA clustering methods is the use of a cutting level λ. This cutting level is
arbitrarily set to exploit a fuzzy outranking relation to create the clusters. The resulting
clusters can increase or decrease due to the cutting level value. The number of clusters in-
creases due to the increment of the incomparability between alternatives when the cutting
level is near one. The number of clusters decreases because the indifference between alter-
natives is increased when the cutting level is near zero. The proposed method in this work
avoids this situation by using a credibility similarity measure to obtain the clustering.

On the other hand, literature regarding MCDA indicates that the clustering problem
has not received considerable interest, as well as in the search for other forms of cluster-
ing since a wide range of decision-making problems in various areas of engineering and
management such as logistics and transport, urban planning, environmental assessment,
energy efficiency analysis, and financial decision-making, require the assignment of a set
of decision options (alternatives) to groups [12]. Thus, this work proposes an approach to
address instances of the multicriteria clustering problem without using an arbitrary cut-
ting level. The method is an exhaustive search approach that exploits a fuzzy outranking
relation to derive clusters of alternatives in the sense of a partition, i.e., each alternative
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belongs to a unique cluster. The work is organized as follows: Section 2 provides a theo-
retical and conceptual framework of multicriteria clustering, including the foundation of
outranking relations, the nature of a clustering problem and its complexity, a brief litera-
ture review, and the introduction of some important concepts about similarity measures.
Section 3 presents the formulation of the multicriteria clustering problem and the pro-
posed approach to address it. An empirical study to assess the proposed approach and a
comparison with a multicriteria clustering procedure is described in Section 4. The results
are presented in Section 5. Concluding general remarks and future perspectives are given
in Section 6.

2. Theoretical and Conceptual Framework

2.1. Outranking Relations

In Multicriteria Decision Analysis, outranking relation theory (ORT) is a well-known area
of knowledge. ORT has been widely used by MCDA researchers, mainly in Europe [17].
Bernard Roy set MCDA foundations during the late 1960s through the development of
the ELECTRE (ELimination Et Choix Traduisant la REalité family of methods) [36].

An outranking relation is a binary relation that enables the decision maker to assess
the strength of the outranking character of an alternative x over an alternative y. This
strength increases if there are enough arguments to confirm that ”x is at least as good as
y” while there is no strong evidence to refute this statement.

Given two alternatives, x, and y, alternative x outranks y if i) there is a qualified ma-
jority of weighted criteria on which x is performing at least as good as y, and ii) there is
no criterion on which y seriously outperforms x.

The outranking approaches operate in two major stages: construction and exploita-
tion. The first involves modeling the decision-maker’s preferences on criteria to con-
struct an outranking relation among the considered alternatives. In contrast, the second
stage involves the exploitation of the outranking relation to evaluating the alternatives
for choice, ranking, or sorting purposes and, recently, for clustering. There are different
procedures for constructing outranking relations, the most used being the ELECTRE and
PROMETHEE [8] methods. Olteanu [31] also mentions the RUBIS method defined in
a bipolar setting. ELECTRE I, for the choice problem, and ELECTRE III, for the rank-
ing problem, are among the most popular outranking methods. In the construction stage,
ELECTRE I builds a crisp outranking relation; meanwhile, ELECTRE III builds a fuzzy
outranking [7]. Sometimes, a cutting level λ is used to transform fuzzy outranking re-
lations into crisp ones. According to Linkov et al. [26], the cutting level is a technical
parameter representing the sum of weights for the criteria that must be in concordance
with the outranking relation to hold. A high cutting level means a high proportion of the
criteria need to be the same or better than an alternative for the outranking relation to hold;
a low cutting level means a lower proportion of the criteria are required for outranking
relations to hold.

Defining the characteristics of fuzzy outranking relations and how to model decision-
makers’ preferences is beyond this work’s scope. Still, readers can see Bouyssou [7],
Fodor and Roubens [20], and Roy [37] for an explanation of them.



1150 Lugo Medrano Cesar et al.

2.2. The Clustering Problem

There are different types of clustering, such as partition, hierarchy, pyramid, etc., the
first two being the most frequent. This work is related to the partition type. In a partitional
clustering, the universe of elements is divided into mutually exclusive subsets, where each
element belongs to only one subset, so the pairwise intersection is empty. It is known it
has an exponential complexity, where the number of partitions of a set is given by the Bell
number [29]. The Stirling number of the second kind can be used to know the number of
ways to divide a set of n elements within non-empty k clusters [32],

S(n, k) =
1

k!

k∑
i=0

−1i
(
n

k

)
(k − i)n (1)

For instance, given the set A = {1, 2, 3}, it can be partitioned into i) one cluster with
the three elements: C = {1, 2, 3}, ii) two clusters in three ways to assign the elements:
C = {{1, 2}, {3}}, C = {{1, 3}, {2}}, C = {{2, 3}, {1}}, and iii) three clusters in one
way to assign the elements: C = {{1}, {2}, {3}}. Table 1 shows the different ways of
grouping a set of three elements (n) with values of the number of clusters k = 1, k = 2,
and k = 3.

Table 1. Different ways of grouping a set of three elements
Stirling number (n, k) Different Ways Groupings

S(3, 1) 1 C = {1, 2, 3}
S(3, 2) 3 C = {{1, 2}, {3}}, C = {{1, 3}, {2}}, C = {{2, 3}, {1}}
S(3, 3) 1 C = {{1}, {2}, {3}}

Notes: n = The number of elements, k = The number of clusters, and C= the clustering.
The first column corresponds to Stirling number with different values of n and k. The second
column contains the number of ways to group a set of n elements in k clusters, obtained by the
Stirling number. The third column shows the number of ways to set the three elements within
non-empty k clusters.

The sum of all the possible clusters can be obtained with the Bell number formula:

Belln =

n∑
k=1

S(n, k) (2)

The number of ways in which clusters can be constructed grows exponentially. It
depends on the number of alternatives (n) and desired clusters (k). Thus, the clustering
problem is non-trivial. It is shown in Table 2.

More ways to assign a set of elements in partitions are shown in Table 3, showing the
complexity of the clustering problem itself.

2.3. A Literature Review of Multicriteria Clustering

Multicriteria clustering can be distinguished from classical clustering because it is a
preference similarity-oriented problem where clusters should be conceived in preference
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Table 2. Possible partitions for six elements within non-empty k clusters

Elements
Clusterings

Partitions
1 cluster 2 clusters 3 clusters 4 clusters 5 clusters 6 clusters

1 1 - - - - - 1
2 1 1 - - - - 2
3 1 3 1 - - - 5
4 1 7 6 1 - - 15
5 1 15 25 10 1 - 52
6 1 31 90 65 15 1 203

Notes: The Element column corresponds to the number of elements (n) in the group. The Clus-
terings column contains the Stirling number S(n, k) in function to the number of elements n
and the number of clusters k. The Partition column shows the total of possible clusters obtained
with the Bell number formula.

Table 3. Number of partitions for up to 18 elements
n partitions Bell (n) n Partitions Bell (n)
1 1 10 115975
2 2 11 678570
3 5 12 4213597
4 15 13 27644437
5 52 14 190899322
6 203 15 1382958545
7 877 16 10480142147
8 4140 17 82864869804
9 21147 18 682076806159

Source: Own elaboration based on [40].

proximity [19]. On this basis, general references about multicriteria clustering include
mainly the next four aspects: i) the highlight methods in MCDA clustering, ii) how clus-
ters are being evaluated in preference relations, iii) how the set preference relations are,
and iv) if metaheuristics are used.

The next works considered all the previous four aspects: First, De Smet and Guz-
man [16] proposed an extension of the well-known k-means algorithm to the multicriteria
framework. This extension relies on the definition of a multicriteria distance based on the
preference structure defined by the decision maker. Then, De Smet and Eppe [15] devel-
oped a method that builds clusters and relations between these clusters based on a binary
outranking matrix. An extension of the k-means algorithm is presented and tested on ar-
tificial data sets. Later, Baroudi and Safia [1] proposed a new clustering approach based
on the definition of a new distance that considers the problem’s multicriteria nature. This
distance uses the preference relations of the PROMETHEE outranking method and the
Sokal and Michener index so widely used in the classification field.

In this sense, Fernandez et al [19] proposed a clustering method based on a valued
indifference relation inspired by outranking methods. They suggested a method based on
comparing cluster centers and clusters’ average net flow scores. Baroudi and Safia [2]
tackle the problem of defining relations between clusters in multicriteria decision aid
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clustering. Meyer and Olteanu [29] formally defined the problem of clustering in MCDA
using notions that are native to this field alone and highlighted the different structures
which it is tried to uncover through this process.

Baroudi and Safia [3] also Sarrazin et al [38] developed a model based on the FlowSort
sorting procedure and the PROMETHEE I outranking method. Rosenfeld et al [34] pre-
sented a study to draw attention to clustering algorithms. They consider algorithms must
be compared with performance indicators or criteria, leading to asymmetric preference
relations.

Other contributions need to be considered too, do not include the four aspects com-
pletely, nevertheless add to the research in this field. For instance, Bisdorff [5] proposed
an ELECTRE-like approach for clustering judges from their L-valued pairwise proximi-
ties in preference judgments. Cailloux et al [10] presented multicriteria clustering proce-
dures to discover data structures from a multicriteria perspective. De Smet [14] addressed
the ordered multicriteria clustering problem, detecting ordered categories. The k-means
procedure and the underlying idea of the FLOWSORT method inspired the algorithm.
Boujelben [6] worked on the multicriteria-ordered clustering problem too. He defined a
preference profile to measure the preferential quality of the clusters and similarity and
inconsistency profiles to analyze the clusters on each criterion. Chen et al. [11] proposed
a total ordered clustering algorithm, which considers the preference degree between any
two alternatives. Afterward, Liu et al. [27] introduced a multicriteria ordered clustering
algorithm based on PROMETHEE and K-Medoids clustering algorithms. Daneshvar et
al. [13] presented a multicriteria clustering method by combining k-means algorithm and
PROMETHEE technique; the parameters of the problem are the cluster separator profiles
which genetic algorithm (GA) is used to optimize them. Ishizaka et al. [22] proposed a
new hierarchical multicriteria clustering based on PROMETHEE, where the number of
clusters is not specified. On the other hand, Kandakoglu et al. [23] studied the project
portfolio decision problem with uncertain multiple criteria evaluations, decision mak-
ers’ preference information, and resource constraints. They proposed a new methodology
based on multicriteria ordered clustering to deal with this problem. Valencia et al. [41]
used clustering analysis with the multicriteria method TOPSIS [21] to group urban agri-
cultural sites. TOPSIS was implemented directly into the clustering analysis process to
generate weights for sustainability indexes before applying the k-means clustering algo-
rithm. Later, Bashir et al. [4] motivated by the partial net outranking flow/profile of the
PROMETHEE and the Fuzzy c-means clustering, presented a multicriteria-ordered pro-
file clustering algorithm.

2.4. Similarity Measures

The concept of similarity is elemental to the clustering process. The level of similarity
between two objects can be measured in many ways, which is firmly related to the nature
of the elements themselves [31]. The term similarity can be related to a function used to
compare elements of any type. Usually, its input is two elements, and the output is a value
between 0 and 1. A value equal to zero means the elements are completely dissimilar. On
the other hand, a value equal to one means the two elements are identical. The similarity
is related to distance, where zero implies the two elements are identical, and one implies
they are completely dissimilar, i.e., it is opposite to the similarity measure [43].
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In that sense, a general way of measuring the similarity between two elements is by
using proximity measures. These measures can be defined by a dissimilarity function D,
also named a distance function, or using a similarity function S. A large value for D
between two elements means that the objects are dissimilar. In contrast, a small value
refers that they are similar. The opposite statements are made for the similarity function
S [31].

Distance measures. Different clustering methods, e.g., k-means, use distance measures
to determine the similarity or dissimilarity between any pair of elements. It is functional
to indicate the distance between two instances xi and xj as d(xi, xj). A valid distance
measure should be symmetric and obtain a zero value in the case of identical vectors
[33].

According to [1] and [42], usually, a similarity measure has the following properties:

∀ai, aj ∈ A : d(ai, aj) → R+with
d(ai, ai) = 0, identity,

d(ai, aj) ≥ 0, non-negativity,
d(ai, aj) = d(aj , ai), symmetry,

also, when next properties are true

d(ai, aj) = 0 ⇒ ai = aj , uniqueness,
∀ai, aj , az ∈ A : d(ai, aj) ≤ d(ai, az) + d(aj , az),

(3)

then, the similarity measure is called distance. Because not all similarity measures
meet the symmetry or inequality of the triangle or both, not all similarity measures are
distances.

[24] establish that the distance measure can be divided into two groups. In the first
group, there are the metric measures, which must have the properties above. In the second
group, there is the semi-metric, which does not follow the fifth property. These measures
do not make possible an appropriate ordering of points over a metric space. For three
points in this space, the sum of the distances from i to j and from j to z can be shorter than
the distance between i and z.

Similarity functions. An alternative concept that can be used instead of distance is the
similarity function s(xi, xj) which compares the two vectors xi and xj . When these vec-
tors are somehow ”similar”, the function has a large value and the largest value for iden-
tical vectors. This function should be symmetrical (namely s(xi, xj) = s(xj , xi)). Some-
times, methods for calculating the ”distances” in the case of binary and nominal attributes
can be considered as similarity functions rather than distances [33]
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3. Formulation of a Multicriteria Clustering Problem and the
Proposed Approach

3.1. Problem Formulation

Let A = {a1, a2, . . . , am} be a finite set of alternatives considered by a decision-maker,
which is valued by a set of criteria G = {g1, g2, . . . , gn}, some of them in conflict with
each other. Besides, let Sσ

A ⊆ A×A → [0, 1] be a fuzzy outranking relation that integrates
the preferences of that decision-maker on the multiple criteria that describe the elements
of A.

The problem is to exploit Sσ
A to obtain a set of partitions PA using a credibility sim-

ilarity measure; where alternatives belonging to a specific cluster Ci ∈ PA are similar
to each other; at the same time, they must not be similar to alternatives that belong to
another cluster Cj ∈ PA, so that PA is a partition of A and the clusters Ci ∈ PA reflect
the best compromise between the conflicting objectives, ”discriminate the dissimilar al-
ternatives,” and ”group the most similar alternatives”. These partitions must be the most
consistent possible to the information included in Sσ

A. Thus, this work aims to address the
multicriteria clustering problem where a decision-maker’s preferences are involved.

In the following subsections, an approach to partition the set of alternatives based on
the information contained in the fuzzy outranking relation is presented. This method is
called MCClusteringSM - Multicriteria Clustering based on a Credibility Similarity Mea-
sure. Specifically, the method belongs to the family of methods that exploit outranking
relations, such as the exploitation phases of ELECTRE I, ELECTRE III, and ELECTRE
TRI, to tackle the choice, ranking, and sorting problems, respectively, as described in [37].
The general scheme of the MCClusteringSM is presented in Figure 1.

3.2. The Clustering Method to Exploit a Fuzzy Outranking Relation

This part introduces the proposed method to exploit a fuzzy outranking relation to solving
the multicriteria clustering problem. First, the general procedure to obtain the clusters is
presented. Next, an illustrative example of this procedure is exposed. Finally, the general
procedure of MCClusteringSM is described.

General procedure to obtain the clusters. Here, we provide in detail the steps to obtain
the cluster. Additionally, an illustrative example is described.

The general steps to obtain the partitions by using MCClusteringSM are described
below:

Step 1: Obtaining the Degrees of Credibility Similarity (DCS).
First, according to each credibility level that corresponds to the alternatives, a difference
between each pairwise alternative is calculated over the intensity that outranks one al-
ternative to another; this is the intensity which i outranks j is cij and the intensity with
which j outranks i is cji , the subtraction needed is over these two values, considering the
result in absolute value, this difference d can be noted as dij or dji:

dij = |cij − cji| dji = |cji − cij | dij = dji (4)
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Fig. 1. The general approach for the multicriteria clustering problem Using ELECTRE
III and MCClusteringSM

Source: Own elaboration based on [25]

Then, depending on the degree of credibility to calculate will be the differences to use
in Equation 4; for a simple relation between two alternatives, the equation to calculate the
degree of credibility similarity S is:

Sij = 1− dij
cij + cji

(5)

Equation 5 is the degree of credibility similarity of a cluster composed of two alterna-
tives. Now, if a cluster of three alternatives or more can be formed, the equation would
change in this way:

For the M =
(
N
2

)
possible pairwise comparisons over the N alternatives of a subset

n. Setting dm as the mth level of credibility difference between each pairwise i, j of



1156 Lugo Medrano Cesar et al.

alternatives, where m = 1, 2, . . . ,M , then, the DCS is:

Sn = 1−
∑M

m=1 |cijm − cjim| ∈ dm∑M
m=1 |cijm + cjim| ∈ dm

(6)

For instance, the degree of credibility similarity of a cluster composed of the alternatives
a, b, and c is:

Sabc = 1− |cab − cba|+ |cac − cca|+ |cbc − ccb|
|cab + cba|+ |cac + cca|+ |cbc + ccb|

(7)

From Equation 6, a degree of one means the highest intensity of similarity between the
alternatives, which suggests a similarity between the alternatives. However, a degree of
zero means the lowest level of similarity, and this suggests that these alternatives should
not be in the same cluster.

Some limitations have been found in this proposed similarity measure, which is because
it does not fully follow the properties of a metric. In strict order, it should be called a
semi-metric; one of these limitations is that it cannot be fully relied upon to represent
dissimilarities in an Euclidean space without appropriate transformation [9]. Therefore, a
transformation is proposed with good results for the research objectives. The new values
of the transformed metric could still represent the data but will be more amenable to
analysis or comparison. As an initial proposal, for this study, the metric was squared for
it to represent dissimilarities in a Euclidean space better:

Sij = 1−
[

dij
cij + cji

]2
(8)

This same power transformation is applied for three or more alternatives:

Sn = 1−

[∑M
m=1 |cijm − cjim| ∈ dm∑M
m=1 |cijm + cjim| ∈ dm

]2

(9)

Step 2: Compute the Global Credibility Similarity Index (GCSI).
Once the credibility similarity degrees are calculated, many scenarios can be presented
depending on the number of clusters k required; the number of scenarios is equal to the
number of ways to divide a set of alternatives within non-empty clusters. To obtain this,
we can use Equation 1. Then we average the DCS of the partitions for each scenario to
obtain a global credibility similarity index so that the best solution, including the clusters,
will be the one with the highest index.

To set this, let’s call W the number of ways to divide the set of alternatives A within
non-empty clusters k, which is the Stirling number of the second kind. Then, we set n as
the subset of alternatives that conforms to the k cluster in each scenario, where w is the wth

way to divide the set of alternatives A within non-empty clusters k and w = 1, 2, . . . ,W ,
the GCSI is:

Sw =
∑
n∈k

Snw

k
(10)
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Step 3: Ordering the Global Credibility Similarity Indexes.
To get the best clustering solution, according to the number of clusters required, ordering
the global credibility similarity index is necessary to start the solution assignment from
the best to the worst according to the index value.

An illustrative Example. Unlike classical methods, such as k-means, the alternatives
are grouped based on the preference relations between alternatives given by the decision
makers on the raw data set as thresholds and weights of the evaluation criteria. However,
the cluster allocations are made directly from the data manifested in the model of prefer-
ences represented in a fuzzy outranking relation based on a credibility similarity measure
calculated for all the possible combinations of grouped alternatives.

Let us now consider an illustrative example to see how the MCClusteringSM algo-
rithm performs the calculation steps for the clustering process. The goal is to partition the
set of alternatives A = {a, b, c, d} into a given number of clusters in the best way.

Given the fuzzy outranking relation Sσ
A an input:

 a      b     c      d

a

b

c

d

1.00   0.90    0.70   1.00

0.80   1.00   0.70    0.80

0.30   0.30   1.00    0.30

0.00   0.30   0.30    1.00

Fuzzy Outranking Relation

Fig. 2. Fuzzy outranking relation of four alternatives
Source: Own elaboration
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Step 1: Obtaining the Degrees of Credibility Similarity (DCS).

Sa = 1

Sb = 1

Sc = 1

Sd = 1

Sab = 1−
[
|cab − cba|
cab + cba

]2
= 1−

[
|0.9− 0.8|
0.9 + 0.8

]2
= 0.9965

Sac = 1−
[
|0.7− 0.3|
0.7 + 0.3

]2
= 0.84

Sad = 1−
[
|1− 0|
1 + 0

]2
= 0

Sbc = 0.84

Sbd = 0.7933

Scd = 1

Sabc = 1−
[
|0.9− 0.8|+ |0.7− 0.3|+ |0.7− 0.3|
0.9 + 0.8 + 0.7 + 0.3 + 0.7 + 0.3

]2
= 1− (0.243)2

= 0.9409

Sbcd = 0.8888

Sacd = 0.71

Sabd = 0.8227

Sabcd = 1−
[
|0.9− 0.8|+ |0.7− 0.3|+ |1− 0|+ |0.7− 0.3|+ |0.8− 0.3|+ |0.3− 0.3|

0.9 + 0.8 + 0.7 + 0.3 + 1 + 0 + 0.7 + 0.3 + 0.8 + 0.3 + 0.3 + 0.3

]2
= 1−

[
2.4

6.4

]2
= 0.8594

In an ordered way is:

Sa = 1, Sb = 1, Sc = 1, Sd = 1, Scd = 1,

Sab = 0.9965, Sabc = 0.9409, Sbcd = 0.8888, Sabcd = 0.8594, Sac = 0.84,

Sbc = 0.84, Sabd = 0.8227, Sbd = 0.7933, Sacd = 0.71, Sad = 0
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Step 2: Compute the Global Credibility Similarity Index (GCSI).
Using Equation 10 to compute the Global Credibility Similarity Index, in this example,
the possible numbers of clusters are from 2 to 3; using all the alternatives in one cluster
or each alternative separated, this is k = 2 and k = 3.

For k = 2

Scd ab =
1+0.9965

2 = 0.9985

Sac bd = 0.84+0.7933
2 = 0.81665

Sbc ad = 0.84+0
2 = 0.42

Sabc d = 0.9409+1
2 = 0.97045

Sabd c =
0.8227+1

2 = 0.91135

Sacd b =
0.71+1

2 = 0.855

Sbcd a = 0.8888+1
2 = 0.9444

For k = 3

Sa b cd = 1+1+1
3 = 1

Sa c bd = 1+1+0.7933
3 = 0.9311

Sa d bc =
1+1+0.84

3 = 0.9466

Sb c ad = 1+1+0
3 = 0.66

Sb d ac =
1+1+0.84

3 = 0.9466

Sc d ab =
1+1+0.9965

3 = 0.9988

Step 3: Ordering the Global Credibility Similarity Indexes.
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For k=2, rank the clustering from highest to lowest:

1.Scd ab = 0.99825

2.Sabc d = 0.97045

3.Sbcd a = 0.9444

4.Sabd c = 0.91135

5.Sacd b = 0.855

6.Sac bd = 0.81665

7.Sbc ad = 0.42

Thus, the best solution fork=2 is the cluster C = {{c, d}, {a, b}}.
For k=3, rank the clustering from highest to lowest:

1.Sa b cd = 1

2.Sc d ab = 0.9988

3.Sa d bc = 0.9466

4.Sb d ac = 0.9466

5.Sa c bd = 0.9311

6.Sb c ad = 0.66

The best solution for k=3 is the clustering C = {{a}, {b}, {c, d}}.
The General procedure of MCClusteringSM is presented in Algorithm 1. The input

of MCClusteringSM is a fuzzy outranking relation, which will be partitioned according
to a given number of clusters and alternatives. Each clustering obtained results from a
partitional clustering process that considers preference relations based on the global cred-
ibility similarity index presented in Equation (10). MCClusteringSM was implemented in
C language.

Algorithm 1: The MCClusteringSM procedure
Input : Fuzzy Outranking Relation Sσ

A

Output: Partitional Clustering based on the credibility similarity index
1 Begin.
2 Set the number of clusters NC and the number of alternatives NA.
3 Compute the degrees of credibility similarity DCS between all possible combinations of

the NA alternatives.
4 Compute the Global Credibility Similarity Index GCSI using DCS calculations from 1

to NC .
5 Rank the GCSI indexes in decreasing order to get all possible ordered clustering.
6 End.
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4. Performance of MCClusteringSM

This section includes an empirical evaluation of MCClusteringSM and a comparison with
a multicriteria clustering procedure.

This empirical evaluation aims to analyze how the direct method proposed performs
when solving clustering problems with different structures and sizes. We intended to cap-
ture essential characteristics and analyze observations from the experiment execution. For
this, with the help of an instance generator, we created a set of simulated reference sets,
each of which is composed of classes of alternatives with different sizes and structures,
and an associated fuzzy outranking relation that represents a model of preferences. This
relation is constructed such that it can be utilized to generate cluster allocations of al-
ternatives without inconsistencies according to its associated classes of alternatives. MC-
ClusteringSM was executed to exploit each of the generated fuzzy outranking relations
and evaluated if it successfully found the best solutions according to the fuzzy outranking
relations supplied.

Besides, we attempted to evaluate the performance of MCClusteringSM compared to
mccClusters [31]. It is a multicriteria clustering procedure implemented in the software
Diviz [28]. This procedure computes clusters of alternatives based on the clustering typol-
ogy: non-relational, relational, ordered, exclusive relational, and exclusive ordered mul-
ticriteria clustering. These evaluations were done to have a comparison point to analyze
the performance of MCClusteringSM and to discuss its advantages and disadvantages.

4.1. Empirical evaluation of MCClusteringSM

Test criterion for evaluating the MCClusteringSM method. When a fuzzy outranking
relation without cycles among alternatives is provided to a good clustering procedure, it
should exploit this relation, preserving the cluster allocation of the alternatives according
to preference relations. Thus, to evaluate the performance of MCClusteringSM, a fuzzy
outranking relation without inconsistencies was provided to it. The best clustering solu-
tions should be those that reflect the information contained in the fuzzy outranking rela-
tion. In MCClusteringSM, the best clustering solutions have Global Credibility Similarity
Indexes of 1.0 or near 1.0, obtained with Equation 10.

Let us define A = {a1, a2, . . . , am} as a set of alternatives, Sσ
A ⊆ A×A → [0, 1] as a

fuzzy outranking relation, and CA as an optimal clustered set of alternatives A, obtained
with MCClusteringSM. Thus, according to this test criterion, the clustering of (ai, aj) ∈
A×A in Sσ

A should be reflected in CA.

Experimental design. The experimental design for evaluating MCClusteringSM in-
cluded a set of variables and a set of fuzzy outranking relations with different structures
and sizes. This experimental design is described below.

The variables considered in this study were related to the number of clusters (V1)
and the number of alternatives (V2). We selected small numbers for both variables due
to the combinatorial nature of the problem. V1 was defined with four values, and V2 was
defined with nine values. The first value of V2 started with a value of six because of the
maximum value of V1, and it finished with a value of fourteen because MCClusteringSM
is an exhaustive method. It last implies using high computing resources, in this case, a
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large capacity of RAM (Random Access Memory). The variables of the experimental
design are shown in Table 4.

Table 4. Variables of the experimental design
Variable Value

V1 2, 3, 4, 5
V2 6, 7, 8, 9, 10, 11, 12, 13, 14

By assessing the performance of MCClusteringSM with the four values of V1 and the
nine values of V2, we could achieve conclusions about the performance of our purpose in
a multicriteria clustering context.

On the other hand, the general procedure to generate the fuzzy outranking relations
of this test is presented in Algorithm 2. The output of it is a matrix that represents the

Algorithm 2: Instance generator
Input : Number of clusters NC , Number of Alternatives NA

Output: Fuzzy Outranking Relation Sσ
A

1 Begin.
2 Form a vector V of alternatives of size NA and randomly assign the NC clusters to NA

alternatives, to ensure each cluster has at least an alternative.
3 Randomly complete V with the NC clusters.
4 Create a matrix Sσ

A of size NA ×NA and fill it with values [0, 1] based on V , i.e., the
clusters have the alternatives assigned on that basis.

5 End.

fuzzy outranking relation. The sizes of the matrix come from six to fourteen alternatives.
Besides, a vector is randomly generated to indicate which alternative belongs to each
cluster. Thus, the structure of the fuzzy outranking relation is based on such vector that
represents a clustering. In this test, we wanted to know if the value of the clustering
represented in the vector and implicitly in the fuzzy outranking relation is one of the best
possible solutions, preferably, with a value of 1.0.

For each combination of the values of variables V1 and V2, Algorithm 2 was run 100
times. Thus, 3600 sets of references were created. This data generation was implemented
in C language. The program was executed on an Asus computer with an Intel Core i5-
10300H (2.5 GHz) processor, 16GB in RAM (DDR4 SDRAM), and a hard disk 250 GB
3G SAT 7.2K rpm LFF3. Figure 3 shows how a fuzzy outranking relation is generated
with Algorithm 2.

Meanwhile, Algorithm 1 was implemented in C language and executed 3600 times.
Instances of V2 = 6, 7, 8, 10, 11, and 12 alternatives were executed in the Asus computer.
Instances of V2 = 13, 14 alternatives were run on a Lenovo server with processor Intel
Xeon Gold 5218 (2.3 GHz) 8 cores, 128GB in RAM, and 764GB of hard disk.

In this experimental design, a response variable was defined to analyze the proposed
method for the multicriteria clustering problem. It corresponds to the number of solu-
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Begin

    Number of clusters N
C
=3

Number of alternatives N
A
=5

Form a vector V of alternatives of size N
A
 and randomly

assign the N
C
  clusters to N

C
  alternatives. It is to fulfill

each cluster has at least an alternative. 

a) Initializing the vector with -1 values.

                              V = (-1, -1, -1, -1, -1)

b) Randomly assigning the N
C
 clusters to N

C
  alternatives

                              V = (-1, 0, -1, 2, 1)
Randomly complete V with the N

C
 clusters.

V = (2, 0, 1, 2, 1)

Create a matrix       of size N
A
 × N

A
 and fill it with values [0,1] based on V, i.e., the clusters have the alternatives

assigned on that basis. 

S
A

σ

a) Initializing the matrix N
A
 × N

A
 with -1 values.

S
A  

=σ  

-1.0 -1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0 -1.0

b) Fill the main diagonal with 1.0 values to ensure the

    reflexive property.

S
A  

=σ  

1.0 -1.0 -1.0 -1.0 -1.0

-1.0 1.0 -1.0 -1.0 -1.0

-1.0 -1.0 1.0 -1.0 -1.0

-1.0 -1.0 -1.0 1.0 -1.0

-1.0 -1.0 -1.0 -1.0 1.0

c) Find the lowest cluster numbers in the vector V. 

    In this example is 0 in the alternative 2. Fill the 

    matrix with values such that, the alternatives are

    in the same cluster; in this case, alternative 2 

    belongs to cluster 0.

V = (2, 0, 1, 2, 1)

S
A  

=σ  

1.0  0.9 -1.0 -1.0 -1.0

0.3 1.0  0.9  0.9   0.9

-1.0  0.2 1.0 -1.0 -1.0

-1.0  0.2 -1.0 1.0 -1.0

-1.0  0.2 -1.0 -1.0 1.0

d) Find the new lowest cluster numbers in the vector V to fill the 

    matrix with values such that, the alternatives are in the same 

    cluster; in this case, alternatives 3 and 5 belong to cluster 1.

V = (2, 0, 1, 2, 1)

S
A  

=σ  

1.0  0.9  0.9 -1.0  0.9

 0.3 1.0  0.9  0.9  0.9

0.3  0.2 1.0  0.9  0.8

-1.0  0.2  0.1 1.0  0.7

 0.3  0.2  0.8  0.1 1.0

e) Find the new lowest cluster numbers in the vector V to fill

    the matrix with values such that, the alternatives are in the

    same cluster; in this case, alternatives 1 and 4 belong to

    cluster 2.

V = (2, 0, 1, 2, 1)

S
A  

=σ  

1.0  0.9  0.9  0.7  0.9

 0.3 1.0  0.9  0.9  0.9

0.3  0.2 1.0  0.9  0.8

 0.7  0.2  0.1 1.0  0.7

 0.3  0.2  0.8  0.1 1.0

End

Fig. 3. A fuzzy outranking relation generated with Algorithm 2
Source: Own elaboration
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tions without inconsistencies found per combination of variable 1 and variable 2 (V1, V2).
Each combination (V1, V2) has 100 different fuzzy outranking relations of the 3600. For
each run i-th of Algorithm 1 on a single fuzzy outranking relation, an auxiliary binary
variable yi(V1, V2) is defined, which takes a value of one if Algorithm 1 finds the best
solution without any inconsistency or zero otherwise. This last according to the source
clustering generated in steps 3 and 4 of Algorithm 1, represented in the vector V . Thus,
the response variable can be defined as Y (V1, V2) = Σ100

i=1yi(V1, V2), which is the sum
of all the 100 auxiliary binary variables per combination. The evaluation of the results of
MCClusteringSM was done using an implementation of Algorithm 3 in C language.

Algorithm 3: Results evaluator
Input : Source clustering V , results of MCClusteringSM F
Output: Global Credibility Similarity Index of V in F

1 begin
2 set pos = 1
3 repeat
4 if V = F [pos] then
5 return Global Credibility Similarity Index of V ;
6 else
7 pos = pos+ 1;
8 end
9 until the end of F is met;

10 return -1
11 end

4.2. Comparison of MCClusteringSM and Diviz mccClusters method

The study included a comparison with a multicriteria clustering method presented by
Olteanu in [31]. This method is implemented in Diviz software [28] in the mccClusters
component. This method was selected because it had good performance when exploit-
ing fuzzy outranking relations to generate clusterings and by its availability. To use the
mccClusters component, a workflow was designed in Diviz by adding the necessary com-
ponents and parameters for the clustering generation.

Sample size and selection. Evaluating the mccClusters module with the 3,600 fuzzy out-
ranking relations was impractical. We decided to use a sample whose size was calculated
using the formula presented in [39] and defined as follows:

n =
Zα/2

2 ·N · p · q
E2 · (N − 1) + Zα/2

2 · p · q
(11)
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where :

n = sample size,
N = population size,

Zα/2 = critical value according to the confidence level selected,
p = expected probability of the parameter to be evaluated,
q = 1− p,

E = margin of error or imprecision allowed.

Thus, for a population of 3,600 fuzzy outranking relations, a 95% confidence level, a
margin of error of 5.65%, and a probability p=0.50, the sample size was 277.14 fuzzy
outranking relations:

n =
1.962 · 3600 · 0.5 · 0.5

0.05652 · (3600− 1) + 1.962 · 0.5 · 0.5
= 277.14

Because the set of 3,600 fuzzy outranking relations was made up of 100 relations per
each scenario of V1 = 2, 3, 4, 5 clusters with V2 = 6, 7, 8, 9, 10, 11, 12, 13, 14 alterna-
tives; we decided to use a stratified sampling, composed of 36 strata, selecting randomly
for practicality and convenience in each of them eight fuzzy outranking relations. Thus
we selected 288 fuzzy outranking relations as a sample, mildly exceeding the minimum
requirement established by the formula.

Clusters generation with Diviz mccClusters component. The mccClusters component
computes clusters of alternatives based on the clustering typology: non-relational, rela-
tional, ordered, exclusive relational, and exclusive ordered multicriteria clustering [30].
In our case, the non-relational type was used because it groups a set of alternatives that are
indifferent to each other, separating those that are not indifferent. In Data Analysis, each
of these groups includes only one complementary relation (similarity and dissimilarity)
[29]. Additionally, a fuzzy outranking relation is provided to the mccPreferenceRelation
component. It creates a preference relation which is an input of the mccClusters com-
ponent. It provides an option to define a cutting level from 0 to 1. If the cutting level is
not used in an execution, this last is abruptly finished, and no result is produced. In this
regard, Diviz issues an error message that this is probably due to a bug in the service. For
this reason, the cutting level’s default level (0.5) was used for this procedure.

Therefore, we exploited simulated fuzzy outranking relations to evaluate mccClusters,
in the same way as MCClusteringSM, i.e., the success in finding the best solutions. The
test included the same test criterion, variables, and response variable. For this test, a Diviz
workflow was designed. It was composed of two file components for the alternatives and
the fuzzy outranking relation, respectively. Also, it includes a mccPreferenceRelations
component for the preference relations and a mccClusters for the final clustering. The
Diviz workflow is shown in Figure 4.

The clusters generation with the mccClusters component was made considering a con-
version. It was because the fuzzy outranking relations generated to test being constructed
in plain text files. The conversion was made from plain text to the XMCDA format that
Diviz uses. XMCDA is based on XML language for interoperability between different
computer programs [28].
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Fig. 4. Diviz workflow used for clusters generation with mccClusters component
Source: Own elaboration

Test criterion for evaluating the mccClusters component. In the same way, as in the
test with MCClusteringSM, a solution without inconsistencies was considered just when
the obtained clustering with mccClusters was the same as the reference clustering. This
reference clustering is the vector V of alternatives of size NA defined in step 5 of Al-
gorithm 2. So, for our purpose, we can use the same logic for the response variable that
in the previous test, considering that here the mccClusters module finds the best solution
without inconsistency or zero otherwise. Then, the response variable can be defined as
Y (V1, V2) = Σ8

i=1yi(V1, V2), which is the sum of all the eight auxiliary binary variables
per combination cause of the sampling used.

4.3. Empirical evaluation of MCClusteringSM considering a cutting level

In this section, we present another empirical evaluation to analyze the performance of
MCClusteringSM. It included fuzzy outranking relations with different structures and
sizes based on random cutting levels. Here, we attempted to capture the performance of
MCClusteringSM with this new dataset and accomplish a comparison with the Diviz mc-
cClusters method [30]. For this empirical evaluation, the fuzzy outranking relations were
randomly generated so that there is a clustering of alternatives without inconsistencies
for a given cutting level. The cutting level value was randomly obtained in a range of
0.5-0.75. The fuzzy outranking relations were created with a new version of the instance
generator.

The test included the same test criterion, variables, values, and response variable as
the empirical evaluation of section 4.2. However, this last differs in the number of repli-
cations. For each combination of the values of variables V1 = 2, 3, 4, 5 clusters with
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V2 = 6, 7, 8, 9, 10, 11, 12, 13, 14 alternatives, the instance generator created 10 fuzzy
outranking relations. Thus, 360 relations were created. This number is supported by
the sample size calculated in subsection 4.2.1. The response variable was defined as
Y (V1, V2) = Σ10

i=1yi(V1, V2), which is the sum of all the ten binary variables per combi-
nation caused by the sampling used.

The MCClusteringSM was executed to exploit each of the generated fuzzy outranking
relations. Then, we evaluated whether it successfully found the best solutions concerning
the simulated fuzzy outranking relations. The valuations were done to get a reference
point for the cutting level’s inclusion in the input data generation. A solution without
inconsistencies was considered just when the resulting clustering was the same as the one
created by the instance generator.

Data generation using a cutting level λ − cut The general procedure to generate the
fuzzy outranking relations of this empirical evaluation is presented in Algorithm 4.

Algorithm 4: Instance generator considering a cutting level
Input : Number of clusters NC , Number of Alternatives NA

Output: Fuzzy Outranking Relation Sσ
A, vector V , and a cutting level λ− cut

1 Begin.
2 Form a vector V of alternatives of size NA and randomly assign the NC clusters to NA

alternatives, to ensure each cluster has at least an alternative.
3 Randomly complete V with the NC clusters.
4 Randomly generate a cutting level λ− cut (0.5 ⩽ λ− cut ⩽ 0.75) with the NC clusters.
5 Create a matrix Sσ

A of size NA ×NA and fill it with values [0, 1] based on V and λ− cut,
i.e., the clusters have the alternatives assigned on that basis.

6 End.

The outputs of Algorithm 4 are a matrix, a vector, and a cutting level λ − cut. The
first represents the fuzzy outranking relation according to the given cutting level λ− cut.
The second one is an array indicating which alternative belongs to each cluster. The third
one is a random cutting level between 0.5 and 0.75. The matrix and vector sizes depend
on the number of alternatives (6-14), as in the previous test. The instance generator was
implemented in C language and executed under the same conditions described for the
previous test.

4.4. Comparison of MCClusteringSM and Diviz mccClusters method using a
cutting level

As with MCClusteringSM, a cutting level was considered for the execution in the Diviz
mccClusters component. It was done to compare the performance of both methods with
this addition.

Like in the test with MCClusteringSM, a solution without inconsistencies was con-
sidered just when the resulting clustering with mccClusters was the same as the one cre-
ated by the instance generator. For our purpose, the same test criterion, variables, and
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values, and for the response variable, the same logic was applied as in the previous
test for the Diviz mccClusters method. Still, the replication number was 10 instead of
8, considering what was done in section 4.3.1. Thus, the response variable was defined
as Y (V1, V2) = Σ10

i=1yi(V1, V2). This response variable is the sum of all the ten binary
variables per combination caused by the sampling used.

Equally, as described in subsection 4.2.2., a fuzzy outranking relation is provided to
the mccPreferenceRelation component, creating a preference relation. This relation is an
input of the mccClusters component. Whereas in the last test with the Diviz mccClus-
ters method, a cutting level was not used, we provided a cutting level generated by the
instance generator for this new test. This cutting level needs to be supplied in the mc-
cPreferenceRelation component shown in Figure 4.

5. Results

The carried-out experiments allowed us to portray the behavior of the proposed method.
This section presents the analysis results of MCClusteringSM with the fuzzy outrank-
ing relations simulated to evaluate the inconsistencies regarding reference clusterings.
Furthermore, a second analysis is presented between the multicriteria clustering method
mccClusters with a sample of induced instances for comparison purposes with ours.

5.1. Results of MCClusteringSM vs. Induced Clusters

This experiment allowed us to observe the performance of the proposed method in a
controlled environment. Specifically, according to the reference clustering, its accuracy in
obtaining the best solutions for each simulated fuzzy outranking relation. Table 5 shows
the results of our response variable against each possible combination of the independent
variables, i.e., variables V1: number of clusters and V2: number of alternatives.

In all sets, MCClusteringSM found all the best solutions without inconsistencies in
each one of the 100 fuzzy outranking relations evaluated per scenario. So, we can infer
that the method was effective in 100% of the experiment scenarios.

For all the instances from six to fourteen alternatives, the credibility similarity met-
ric obtained in the best solution was equal to one. A value of one means the highest
intensity of similarity between the alternatives, which suggests a similarity between the
alternatives. It also indicates the best solution with the highest intensity, indicating that
the clusters were consistent with the fuzzy outranking relation provided.

Additionally, the results suggest that there is evidence to conclude that the size of the
clusters and alternatives does not affect the performance of the similarity metric. However,
the computational complexity of the method is a weakness in time and computational
resources due to its combinatorial nature. Instances of V2 = 6 to 12 alternatives, i.e., fuzzy
outranking relations of size 6×6 to 12×12, required from 1GB up to 12GB of RAM. The
required time in seconds to exploit each instance from 8 to 12 alternatives on the Asus
computer was less than 0.5, 1, 2, 5, and 25, respectively. On the other hand, instances of
V2 = 13, 14 alternatives required around 26GB and 127GB of RAM, respectively. The
required time for these cases on the Lenovo server was 47 seconds for the first one and 5
minutes for the second one.
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Table 5. Results of MCClusteringSM vs. induced clusterings
Clusters Alternatives Solutions Clusters Alternatives Solutions

6 100 6 100
7 100 7 100
8 100 8 100
9 100 9 100

10 100 10 100
11 100 11 100
12 100 12 100
13 100 13 100

2

14 100

4

14 100
6 100 6 100
7 100 7 100
8 100 8 100
9 100 9 100

10 100 10 100
11 100 11 100
12 100 12 100
13 100 13 100

3

14 100

5

14 100

Note: Solutions columns show the number of results with-
out inconsistencies found per combination using MCClus-
teringSM.

5.2. Results of mccClusters module vs. Induced Clusters

The results of the mccClusters component executions, with the 288 fuzzy outranking re-
lations, are presented in Table 6. As can be observed, this mccClusters only generated
nineteen outcomes without inconsistencies in this experiment.

The cited nineteen outcomes without inconsistencies correspond to multicriteria clus-
terings with 6, 7, 8, and 9 alternatives in the four numbers of clusters tested. 63.15% of
these solutions correspond to clusterings with 4 and 5 clusters. Therefore, the best per-
formance of mccClusters was for clusterings with 4 and 5 clusters. For clustering with
4 clusters, it obtained 62.5%, 12.5%, 0%, 0%, 0%, 0%, 0%, 0%, and 0% of solutions
without inconsistencies for 6, 7, 8, 9, 10, 11, 12, 13, and 14 alternatives respectively. For
clustering with 5 clusters, the results were 25%, 37.5%, 12.5%, 0%, 0%, 0%, 0%, 0%, and
0% of solutions without inconsistencies for 6, 7, 8, 9, 10, 11, 12, 13 and 14 alternatives
respectively. On the other hand, the worst performance of mccClusters was for clustering
with 2 clusters. In this case, the results were 25%, 12.5%, 0%, 0%, 0%, 0%, 0%, 0%, and
0% of solutions without inconsistencies for 6, 7, 8, 9, 10, 11, 12, 13, and 14 alternatives
respectively. Figure 5 illustrates these results.

In a global sense, the effectiveness of mccClusters was 6.59% over the 288 fuzzy out-
ranking relations of the experiment. Unlike MCClusteringSM, the computational com-
plexity in mccClusters method is not properly a weakness in time and computational
resources due to the time duration to exploit each instance being less than 3 seconds, and
Diviz software was easily executed on the Asus computer.
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Table 6. Results of mccClusters module vs. Induced Clusters
FOR 1 FOR

Clusters Alternatives
1 2 3 4 5 6 7 8 2Clusters Alternatives

1 2 3 4 5 6 7 8
6 0 0 0 0 1 0 1 0 6 0 0 1 1 1 1 0 1
7 0 0 0 0 0 0 0 1 7 0 0 0 0 1 0 0 0
8 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0

2

14 0 0 0 0 0 0 0 0

4

14 0 0 0 0 0 0 0 0
6 0 0 0 1 0 0 0 0 6 0 0 1 0 0 0 1 0
7 0 0 0 0 1 0 0 0 7 0 0 0 0 1 1 0 1
8 0 0 0 0 0 0 0 0 8 1 0 0 0 0 0 0 0
9 0 0 0 0 1 1 0 0 9 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0

3

14 0 0 0 0 0 0 0 0

5

14 0 0 0 0 0 0 0 0
1 Fuzzy Outranking Relation.
2 In columns 1-8, a value of 1 means that the mccClusters component gen-

erated a solution without inconsistencies against the reference clustering.
A value of 0 indicates the opposite.

5.3. Test Results of the Proposed Method vs. Induced Clusters considering a
cutting level

This test allowed us to observe the behavior of the proposed method with the addition of a
cutting level for constructing the fuzzy outranking relation. Particularly if clustering gen-
erated by the proposed method as the best solution corresponds to the induced clustering.
Table 7 shows the results of our response variable defined in 4.3. against each possible
combination of the independent variables, i.e., variables V1: number of clusters and V2:
number of alternatives.

MCClusteringSM found 218 outcomes without inconsistencies and with the highest
GCSI in each possible combination of the 360 fuzzy outranking relations evaluated. Thus,
the method was strictly effective in 60.55% of the experiment scenarios.

About the mentioned 218 outcomes without inconsistencies, the distribution by cluster
was 75, 65, 42, and 36 solutions for 2, 3, 4, and 5 clusters, respectively. For clustering
with 2 clusters, MCClusteringSM found 83.33% of solutions without inconsistencies.
The result of clustering with 3 clusters was 72.22% solutions without inconsistencies.
For clustering with 4 clusters, it obtained 46.67% solutions without inconsistencies, and
finally, for clustering with 5 clusters, the result was 40%. These results can be seen in
detail corresponding to the solutions for each alternative value in Figure 6.

From the previous results, 342 solutions without inconsistencies given by MCClus-
teringSM were in the top 5 highest GCSI. Moreover, each one of these solutions was the
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Fig. 5. Results of mccClusters for 288 fuzzy outranking relations
Source: Own elaboration

Fig. 6. Results of MCClusteringSM vs induced clusters for 360 fuzzy outranking
relations

Source: Own elaboration

same as the reference clustering. Under this consideration, the method was effective in
95% of the scenarios, besides with values of credibility similarity metric from 0.988 to 1.
Figure 7 illustrates these results.

Regarding the mentioned 342 outcomes, the distribution by cluster was 90, 84, 81,
and 87 solutions for 2, 3, 4, and 5 clusters, respectively. In terms of percentage, it is
100%, 93.33%, 90%, and 96.66% of solutions without inconsistencies and within the top
5 highest GCSI for each cluster, respectively.
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Table 7. MCClusteringSM vs. mccClusters using cut levels
MCClusteringSM 1 mccClusters 2

Clusters Alternatives
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

6 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1
7 1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
8 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2

14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
9 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1
11 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1
12 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

3

14 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1
6 0 1 1 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1
7 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
8 0 0 1 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1
9 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1
10 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
11 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1
13 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

4

14 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
6 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1
7 1 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1
8 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1
9 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1
10 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1
11 1 0 1 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1
12 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1
13 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1

5

14 0 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 In columns labeled from 1-10, a value of 1 means that MC-

ClusteringSM generated a solution without inconsistencies
against the reference clustering. A value of 0 indicates the
opposite.

2 In columns labeled from 1-10, a value of 1 means that mcc-
Clusters generated a solution without inconsistencies against
the reference clustering. A value of 0 indicates the opposite.
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Fig. 7. Effectiveness of 95% of MCClusteringSM with 360 fuzzy outranking relations
Source: Own elaboration

5.4. Test mccClusters component results considering a cutting level

The results of the mccClusters component executions, with the 360 fuzzy outranking re-
lations, are presented in Table 7. As can be observed, in all sets, this method found all the
best solutions without inconsistencies in each of the 10 fuzzy outranking relations eval-
uated per scenario; namely, the clustering given by the Diviz mccClusters component as
the best solution matches the induced clustering.

Furthermore, the results suggest that there is evidence to conclude that the size of the
clusters and alternatives does not affect the performance of the mccClusters component.
In a global sense, the effectiveness of mccClusters was 100% over the 360 fuzzy outrank-
ing relations of the experiment.

6. Concluding remarks and future perspectives

This paper addressed the problem of multicriteria clustering. We tackled this problem by
using a method that includes a similarity measure to evaluate preferential information of
the decision maker in a Multicriteria Decision Analysis context. The proposed method
was designed to tackle the multicriteria clustering of other ones presented in the literature
review of multicriteria clustering in section 2.3. There are several potential applications
of multicriteria clustering, as many as there are in the choice, ranking, and sorting mul-
ticriteria problems. This problem has not received enough attention, but as methods are
developed, this problem will be addressed more frequently.

Exploiting a preferences model to obtain clustering is a complex task. Nevertheless,
based on the results, the proposed clustering procedure achieves good performances on
the set of fuzzy outranking relations. Importantly, it outperforms the compared algorithm
in finding the reference solutions. This approach can effectively exploit fuzzy outranking
relations with up to 14 alternatives due to the computational complexity of deriving a
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clustering. Due to MCClusteringSM being an exhaustive search method, it evaluates all
possible forms of clustering and can obtain the best partitioning by generating clusters
with the measure of similarity.

When the cutting level was used for the generation of the fuzzy outranking relations to
be evaluated, outperformance with the compared algorithm was not achieved as in the first
comparison made. However, 95% of the time, the reference solution was found in the top 5
best outcomes of our method, which indicates good effectiveness taking into consideration
that MCClusteringSM does not use a cutting level for clustering construction whereas
mccClusters component does. This λ−cut value needs to be supplied and must be defined
by the researcher from 0 to 1.

By using the similarity metric in the multicriteria clustering problem, an effort is be-
ing made to contribute to avoiding the cutting level λ, which sometimes is questionable
and hard to assign it. In our approach, a metric is used directly to the input data, i.e.,
the credibility levels of the fuzzy outranking relation. It means that the clusterings are
obtained using only the intrinsic information in the relation that already contains the deci-
sion maker’s preferences. It avoids including a subjective decision when the cutting level
is elicited to construct the clusters. The results indicate MCClusteringSM has good effec-
tiveness even if it does not use a cutting level. On the other hand, mccClusters component
also has good success but uses the subjective cutting level.

For future work, the proposed method should be improved regarding time and compu-
tational resources. Also, we consider that more validation tests are required using real and
simulated datasets to highlight the efficiency of the MCClusteringSM algorithm. It will
allow us to explore the method’s limits by finding the maximum size within alternatives
that can be solved with acceptable performance. Moreover, we will incorporate a cutting
level in the simulated set generation to analyze any interesting characteristics from results
against multicriteria clustering methods that use that cut level. We know the exhaustive
characteristic of MCClusteringSM is its weakness because of the combinatorial nature
of the problem. Thus, the proposed method will be extended using a metaheuristic based
on evolutionary algorithms. Finally, applying the proposed method to a real problem is
planned. The last would be interesting to value its behavior against other multicriteria
clustering methods empirically.
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