
UDC 004.658.6, DOI:10.2298/CSIS090203002D

A Domain-Specific Language for Defining Static

Structure of Database Applications

Igor Dejanović, Gordana Milosavljević, Branko Perišić, and
Maja Tumbas

Faculty of Technical Sciences, Trg D. Obradovića 6,
21000 Novi Sad, Serbia

{igord,grist,perisic,majat}@uns.ac.rs

Abstract. In this paper we present DOMMLite - an extensible domain-
specific language (DSL) for static structure definition of database-
oriented applications. The model-driven engineering (MDE) approach,
an emerging software development paradigm, has been used. The
language structure is defined by the means of a metamodel
supplemented by validation rules based on Check language and
extensions based on Extend language, which are parts of the
openArchitectureWare framework [1]. The metamodel has been defined
along with the textual syntax, which enables creation, update and
persistence of DOMMLite models using a common text editor. DSL
execution semantics has been defined by the specification and
implementation of the source code generator for a target platform with
an already defined execution semantics. In order to enable model
editing, a textual Eclipse editor has also been developed. DSL, defined
in this way, has the capability of generating complete source code for
GUI forms with CRUDS (Create-Read-Update-Delete-Search) and
navigation operations [2,3,4,5].

Keywords: DSL; Domain-specific; MDE; MDSD; MDA; CRUD;
Modeling; Meta-modeling; Generator.

1. Introduction

One of the issues that continues to pose difficulties for computer engineers
and developers is increasing complexity of software and supporting hardware
architecture. A variety of different methods has been employed in an attempt
to overcome these issues, but what they all have in common is raising the
level of abstraction. Although powerful, used abstraction are usually
computer-, i.e. solution space-oriented, as opposed to being application
domain-, i.e. problem space-oriented [6]. Developers still need to perform the
mental mapping of concepts found in the solution domain to concepts found
in the problem domain and to apply these mappings manually during the
course of implementation [7].

Igor Dejanović, Gordana Milosavljević, Branko Perišić, and Maja Tumbas

ComSIS Vol. 7, No. 3, June 2010 410

The use of computer related concepts in solving real-world problems leads
to all sorts of problems:

 Communication issues arise between technology and business
domain experts. They usually have different interpretations of
concept semantics, which leads to errors in early phases of software
development.

 Mapping between the application domain and the technology domain
is an error-prone manual process.

 A minor change in business domain requirements can lead to huge
changes in the technology domain layer.

 Rapid pace of technology changes renders applications out-of-date
and leads to constant need for migration to new platforms, or new
versions of the same platform, which increases maintenance costs.

The importance of using domain-specific concepts in software
development is explained in [8]:

“Perhaps the greatest difficulty associated with software development is
the enormous semantic gap that exists between domain-specific concepts
encountered in modern software applications, such as business process
management or telephone call processing, and standard programming
technologies used to implement them.
...

Clearly, the more directly we can represent concepts in the application
domain, the easier it becomes to specify our systems.
Conversely, the greater the distance between the application domain and the
model, the less value we get from modeling.”

In this paper we present DOMMLite, a domain-specific language (DSL) for

static structure definition of database-oriented applications. The purpose of
this paper is to give an overview of the DOMMLite language and its
supporting tools and to address some issues and choices that have been
made in the design of the language. It is by no means a full specification of
the language; therefore, we provide some insight into the differences
between DOMMLite and other OO modeling languages and consider
common concepts known from other languages. A full specification of the
DOMMLite language is given in [9].

The language has been designed and implemented using model-driven
engineering (MDE) techniques, which are a specialization of DSL engineering
techniques [10]. DOMMLite builds on the concepts of other object-oriented
modeling languages such as UML [11], MOF [12], ECore [13], and concepts
expressed in Domain-Driven Design [14]. It is a declarative language and,
although many of its constructs more or less resemble those found in other
OO modeling languages, there are differences that will be identified in the
rest of the paper; therefore, DOMMLite is not created by mere extension or
restriction of existing languages/meta-models. Having that in mind we state

A Domain-Specific Language for Defining Static Structure of Database Applications

ComSIS Vol. 7, No. 3, June 2010 411

that, according to the classification introduced by M. Fowler (see Sect. 2),
DOMMLite is an external language.

The purpose of the language is to enable developers to specify, in a simple
manner, static structure of database oriented applications with enough meta-
data to generate fully working applications with implementation of CRUDS
(Create-Read-Update-Delete-Search) operations without resorting to the
more heavy-weight modeling languages such as UML. Both the abstract
syntax, defined by a metamodel, and one of the possible concrete syntaxes
have been developed. The implementation of the abstract and the concrete
textual syntax of the language, the model editor and the source code
generator has been carried out using the openArchitectureWare (oAW)
generator framework [1], a metamodel agnostic framework which is well
integrated with the Eclipse Modeling Framework [13]. For the purpose of this
work a textual concrete syntax was created. Although creating a graphical
syntax and a graphical editor is made a lot easier with projects such as GMF

1

and GEMS
2
, the creation of a fully featured graphical editor in the context of

changing requirements still requires a considerable amount of time. This is
why work on further improvements of the textual syntax will continue until the
language is stable enough. DOMMLite defines the execution semantics by
the implementation of the source code generator for a target platform with an
already defined execution semantics.

The rest of the paper is structured as follows. Section 2 gives overview of
DSLs as the underpinning technique used in this paper. In section 3 the
abstract syntax of the DOMMLite language is described. Section 4 gives an
overview of the language’s concrete syntax based on the xText [15]
language. Section 5 explains the design and implementation process of the
application code generator. Section 6 points out several issues regarding the
completion of the eclipse editor generated by the oAW framework. Section 7
analyzes related work. Section 8 gives final conclusions.

2. Domain-Specific Languages

Domain-specific languages, in contrast to general-purpose languages (GPL),
offer, through specific notations and abstractions, the power of expression
focused on, and usually restricted to, a particular problem domain [16].
Some of the advantages of using DSLs over GPLs are:

 DSLs are usually more concise and expressive than GPLs, which
enables programmers to represent their intentions more clearly.

 DSL syntax, both textual and graphical, can be tailored to the specific
knowledge of the domain experts.

1 http://www.eclipse.org/gmf/
2 http://www.eclipse.org/gmt/gems/

Igor Dejanović, Gordana Milosavljević, Branko Perišić, and Maja Tumbas

ComSIS Vol. 7, No. 3, June 2010 412

 Concepts used in DSLs are found in the application domain, so their
use does not require domain experts to have programming skills.

 Expressing the domain construct through concepts independent of
the technology used results in a longer lifespan of the application. If
applied correctly, application description needs to change only if
business requirements change and is immune to changes in the
technology layer, which can be handled by the application generator
(DSL compiler).

 Using higher- level abstraction leads to the reduced number of lines
of code (LOC) (in terms of textual syntaxes), which has a positive
impact on the development and maintenance. Some researchers
achieved a 50:1 ratio of LOC in favor of DSLs [17]. Software fault
density (number of software faults per one thousand lines of code)
does not significantly depend on the language being used [18].
Therefore, using DSL languages reduces the number of software
bugs, which leads to increased software quality and lower
maintenance costs.

 In situations where code analysis, verification, optimization,
parallelization, and transformation techniques are considered to be
very difficult or almost impossible to achieve with GPLs, it is possible
to achieve them in the context of DSLs [19].

Better expressiveness of DSL languages does not come for free. For the
sake of it they give away their generality [19], so DSLs are usually not very
useful outside of the domain they were constructed for.

Some programming languages started out as DSLs, but have evolved
towards GPLs by getting more features. A reverse process has not been
observed in the history of programming languages [10].

There are also widespread languages that are essentially DSLs, although
they may not be known as such. Examples of such languages include HTML -
the language for describing hypertext documents, which forms a foundation
of today’s global network, SQL - a structured language for querying, updating
and deleting data in relational databases, LaTeX - a language for document
typesetting. Even Spring's

3
 XML-based configuration file language can be

considered a DSL for expressing application configuration.
Different classifications of DSLs exist. DSLs can be classified in the same

way as GPLs. For example, they can be classified as: object-oriented or
functional, imperative or declarative, visual or textual.

Another classification, by the way DSLs are constructed, is given by Martin
Fowler in [20].

He divides them into two groups:

3 http://www.springframework.org/

A Domain-Specific Language for Defining Static Structure of Database Applications

ComSIS Vol. 7, No. 3, June 2010 413

 External DSLs - These languages are also called little languages and
are very popular in the Unix community. Representatives include
awk, sed, flex, yacc etc. Their main property is that they are built
from scratch, with their syntax carefully tailored for the domain in
question.

 Internal DSLs - In contrast to external DSLs, internal DSLs are built
on top of an existing GPL, extending their syntax to add support for
domain-specific constructs. They are gaining popularity with the
emergence of GPLs which have mechanisms for easy extensibility.
Some of the representatives are Ruby

4
 [21], Scala

5
, or Python

6
 [22].

There are also internal DSLs based on main-stream programming
languages like Java [23]. Using this approach one can get an entire
tool-chain of the host language for free (editors, compilers,
debuggers etc.). Internal DSLs are also called domain-specific
embedded languages [24], or simply embedded languages [16].

Fowler’s classification can also be applied in the context of modeling
languages. An external DSL in the context of modeling technologies and
visual syntaxes is usually referred to as domain-specific modeling language
(DSML) [7]. Similarly, a UML profile-based modeling language is, according
to Fowler’s classification, an internal DSL.

A completely clear distinction between DSLs and GPLs does not exist,
although attempts have been made to construct a method for quantifying
domain specificity [25]. As stated in [19], domain specificity is a matter of
degree: it largely depends upon the notion of a domain.

For the purpose of this paper we will use the definition of the DSL based
on MDE ideas, given in [10], as follows.

A DSL is a set of coordinated models:

 Domain definition metamodel(DDMM) - is a conceptualization of the
domain that introduces the basic abstractions of the domain and their
mutual relations. Once such an abstract entity is explicitly
represented as a model, it becomes the reference model for the
models expressed in the DSL, that is, it is a metamodel. That
metamodel is referred to as the domain definition metamodel
(DDMM).

 Concrete syntax - represents a transformation of DDMM to the
“display surface” metamodel. More than one such transformation can
be defined, or to put it simply, for each DDMM multiple concrete
syntaxes can be defined, both textual and visual.

 Semantics - A DSL can have execution semantics defined.
Semantics is also defined by a transformation from DDMM into a

4 http://www.ruby-lang.org/
5 http://www.scala-lang.org/
6 http://www.python.org

Igor Dejanović, Gordana Milosavljević, Branko Perišić, and Maja Tumbas

ComSIS Vol. 7, No. 3, June 2010 414

DSL or GPL which has an already defined precise execution
semantics.

Using this definition as the basis, the following section defines DDMM, the

concrete syntax and semantics of DOMMLite.

3. Abstract Syntax

The abstract syntax of the DOMMLite language is defined by a metamodel. A
great deal of DOMMLite is inspired by other OO based metamodels, such as
MOF, UML and ECore, and in many ways it builds on top of the concepts
from these reputable languages. The concrete implementation of DOMMLite
is based on the Eclipse Modeling Framework (EMF

7
), an OO (meta)modeling

infrastructure. The abstract syntax of the language will be presented using
UML class diagram notation. The most important conceptual primitives of the
DOMMLite language are based on well-known concepts described in [14].

The semantics of concepts in DOMMLite is given in the form of
recommendations. The model compiler defines the semantics in detail, so the
language’s full semantics interpretation is left to the compiler developer.
Recommendations for semantics interpretation described in the following
sections have been followed in the implementation of the DOMMLite model
compiler prototype (see Sect. 5). This section gives an overview of some of
the most important conceptual primitives of the DOMMLite language.

3.1. Data Types

The DataType metaclass (see Fig. 1) defines, in DOMMLite terminology,
simple types of the DOMMLite language. Simple types have no internal
structure, which distinguishes them from complex types (e.g. entities,
services etc) that do. UserDataType and BuiltInDataType are also referred to
as primitive types. Primitive types can be built-in (defined by the language
itself) or user-defined. Built-in types are: void, bool, int, real, money, string,
char, date, datetime. User-defined types can be defined by the modeler and
used troughout the model in the same way as the built-in ones. The
semantics of the types is implemented on the target platform. The semantics
of built-in types is implemented once for the given platform and can be
reused in many projects without change. Following definitions in [26], it is a
part of “the platform”. The user-defined type semantics is specified on the
target platform for the project where it is introduced in the model. If the
source code generator is carefully tailored, it is usually not necessary to make

7 http://www.eclipse.org/modeling/emf/

A Domain-Specific Language for Defining Static Structure of Database Applications

ComSIS Vol. 7, No. 3, June 2010 415

changes to the generator itself in order to support the newly defined type (see
Sect. 5 for an example of the generator prototype).

Fig. 1. The DataType metaclass

3.2. Model Organization

The DOMMLite language is organized in a structural manner using the notion
of packages (see Fig. 2). The Package metaclass in DOMMLite has the
semantics similar to that of the Package metaclass in UML, but it is
implemented differently. The language elements that are organized in this
way must inherit from the PackageElement metaclass. In order to support
package nesting, the Package metaclass also inherits from the
PackageElement. The model itself is described by the DOMMLiteModel
metaclass. Instances of this metaclass contain zero or more Package
metaclass instances but not Classifier instances (see Sect. 3.3); therefore
DOMMLite forbids creation of classifiers outside of a package. In order to
define a classifer one must enclose it inside a package.

Fig. 2. Model organization

Igor Dejanović, Gordana Milosavljević, Branko Perišić, and Maja Tumbas

ComSIS Vol. 7, No. 3, June 2010 416

3.3. Classifier

The Classifier (see Fig. 3) abstract metaclass represents the superclass of
metaclasses that describe key concepts of the language. Excluding
DataType, these key concepts are, in DOMMLite terminology, also called
complex types. There is a difference in the concept of a Classifier between
the UML language and the DOMMLite language. For the sake of simplicity,
the DOMMLite language unifies notions of type and classifier in the
metaclass Classifier while those notions are separate in UML. There is no
Type metaclass in DOMMLite – Classifier plays the role of the Type
metaclass from the UML language. The classifier inherits the
PackageElement and, consequently, can be nested inside packages. It is also
a NamedElement, so all its descendants have a name, a short and a long
description. The name should consist of letters, digits and underscores, and
should begin with a letter, though these rules are not enforced by constraints
in the current version of DOMMLite. The classifier name is usually mapped to
the programming language identifier during model compilation; to make this
mapping easier, these simple rules should be followed. The short description
(shortDesc) is a description of an entity in a few words and is usually used as
a classifier label in the GUI, or to aid model navigation and search. The long
description (longDesc) can be arbitrarily long and is used to clarify the
classifier’s purpose. It can be used for tool tip generation, or for context-
sensitive help support. The NamedElement metaclass, although it has
different properties, represents the same concept from UML language.

Fig. 3. The Classifier metaclass

A Domain-Specific Language for Defining Static Structure of Database Applications

ComSIS Vol. 7, No. 3, June 2010 417

3.4. Feature

Feature (see Fig. 4) is an abstract metaclass which represents properties
(structural features) and operations (behavioral features) of main DOMMLite
concepts with internal structure. Feature inherits the TypedElement
metaclass, so all features have the following properties:

 required – If this flag is set, this feature’s value must be defined.
This serves as a support for NULL constraints in relational databases.
For operations, this can be used as an indication that its return value
is always non-null.

 many – If this flag is set, this feature is a collection (e.g. an array).

 ordered – This flag is taken into account only if the many flag is set
to true. If it is set, this feature’s values are ordered, meaning that
elements of the collection have a notion of an index inside the
collection.

 unique – If this flag is set, all elements of this feature must have a
unique value. This flag is taken into account only if the many flag is
set to true.

 multiplicity – The value of this property determines the multiplicity
of the elements of multi-valued features. If it is set to zero, the
multiplicity is not restricted. This flag is taken into account only if the
many flag is set to true.

 type – The value of this property determines the type of this feature.
The type of a feature can be any classifier, therefore the type can be
simple or complex.

Features, being typed elements, can have a set of constraints (see Sect.
3.9), through which validation rules and tags can be attached to them for their
further specification. Features are specialized into properties (the Property
metaclass) and operations (the Operation metaclass).

3.4.1. Property

The Property (see Fig. 4) metaclass describes the structural features of the
modeling elements. Property, being a typed element, can refer to other
model elements which conform to the Classifier metaclass. Properties in
DOMMLite can, on the semantic level, be compared to EStructuralFeature in
ECore or Property in EMOF, but it is more similar to EMOF, because ECore
divides this semantic concept into two metaclasses: EAttribute and
EReference.

Property is a TypedElement; therefore it has type. If the type of a property
is simple (primitive type or enumeration), we call it an attribute. If the type of
a property is complex (e.g. Entity, ValueObject etc.), we call it a reference.

References in DOMMLite can be bidirectional. This ability is represented
by the oppositeEnd reference of a Property metaclass, which “points to” the
model element conforming to the Property metaclass. The oppositeEnd

Igor Dejanović, Gordana Milosavljević, Branko Perišić, and Maja Tumbas

ComSIS Vol. 7, No. 3, June 2010 418

reference must point to the model object conforming to the Property
metaclass which is contained inside the model object referenced by the type
of a reference. This is enforced by a constraint.

References can be used to represent a containment relationship
(containment property) between model elements. The semantics of the
containment relationship is similar to that of a composite association in UML
or a containment relationship in ECore. Containment references affect the
object’s life-cycle. An object can not exist without its containing object.

Fig. 4. TypedElement and Feature metaclass

3.4.2. Operation

The Operation (see Fig. 4) metaclass describes behavioral features of
modeling elements. An operation can have parameters and a return type and
can throw exceptions. The current version of DOMMLite deals primarily with
structural properties of the observed systems, as a result of which modeling
the behaviour of operations is currently out of scope of this language. As a
means of supporting the specification of services (see Sect. 3.7) as well as
the introduction of of behavioural model elements in latter versions of
DOMMLite (see Sect. 8) we chose to introduce operations through operation
signatures (name, return type, parameters, exceptions). The behavioural
logic of operations is currently specified on the target platform programming
language. The interpretation of operations and their semantics is left to the
model compiler developer.

A Domain-Specific Language for Defining Static Structure of Database Applications

ComSIS Vol. 7, No. 3, June 2010 419

3.5. Entity

Entities (see Fig. 5) represent objects whose identity does not change
throughout their lifetime. They have the ability to persist their state between
application sessions. The identity of an entity is unique within the boundaries
of a software system and is represented by one or more of its properties. Two
entities are considered equal if their identities are equal.

Fig. 5. Entity metaclass

3.5.1. Semantic Identifier

Identifier is a metaclass that represents the semantic identifier of an entity.
Exactly one semantic identifier is defined for each entity. A semantic
identifier consists of one or more properties which, together, uniquely identify
an entity instance in the given software system.

In most cases, entities are persisted in relational databases, since they are
still the most widespread storage mechanism. As a result, semantic identifier
is closely related to the concept of a primary key. This concept deserves
closer consideration.

Igor Dejanović, Gordana Milosavljević, Branko Perišić, and Maja Tumbas

ComSIS Vol. 7, No. 3, June 2010 420

Semantic vs. Synthetic identifier – There are two approaches in
choosing properties which will represent the primary key of an entity in a
relational database:

 Semantic identifier (natural key) – One or more existing properties
of a business entity are chosen to represent the entity's primary key.
We say that the identifier is semantic because it has meaning in the
application domain. Choosing the right properties for an identifier is
not an easy task, since the invariability of primary key value must be
ensured throughout the lifetime of the entity instance.

 Synthetic identifier (surrogate key) – A synthetic identifier
comprises properties without any business domain meaning. Its
values are usually generated by the application or the database and
its type is chosen based on the capabilities and performance of the
database in dealing with such types. A synthetic identifier is a
technical concept and does not need to be a part of the model.

Based on the experience in working with relational databases described in

[27], the authors have come to the conclusion that using synthetic identifiers
in relational databases is a better approach on the long run. On the other
hand, using synthetic identifiers makes the implementation of the zoom
technique [2] for manual data entry of references between entities (in some
systems it is also known as the lookup technique) less efficient. The
application user would have to specify the identifier of a referenced entity,
which does not have any domain meaning. It would be irrational to expect
that users would be able to remember these identifiers; this is why searching
for referenced entities by the value of its other properties is the only viable
option. The downside of this approach is that, in order to make a reference to
another entity, the user would have to activate the search form for every
reference that he or she makes. It is very common for the user to already
know the semantic identifier of the referenced entity (e.g. social security
number or bank account number); hence the need to call the search form
each time a reference is entered, instead of directly specifying the semantic
identifier, would severely slow data entry down.

Having that in mind, we propose a hybrid approach as a solution. On the
modeling level a semantic identifier is always used. This will allow the use of
approaches for automatic generation of the efficient zoom mechanism, which
is used for reference entry and GUI forms navigation. In order to overcome
shortcomings which the use of semantic keys in relational databases
introduces, synthetic keys are generated for this purpose instead, while the
application layer is in charge of mapping semantic identifiers to the synthetic
database primary keys based on the information available in the DOMMLite
model. Of course, DOMMLite does not impose use of synthetic identifier on
the database level; it is only a recommendation. It is up to the developer of
the source code generator to make a decision if the synthetic or the semantic
identifier will be used in the database.

A Domain-Specific Language for Defining Static Structure of Database Applications

ComSIS Vol. 7, No. 3, June 2010 421

Global and local entity identifier – We classify unique entity identifiers
into two categories: global and local. A local entity identifier is unique in the
context of its containing entity; it does not need to be unique in the context of
the entire modeled system. In DOMMLite local entity identifiers are modeled
using Identifier metaclass. A global semantic identifier is unique in the context
of the entire software system. It consists of the local semantic identifier of an
entity combined with the global semantic identifier of the containing entity. If
an entity does not have the containing entity, its local semantic identifier is
equal to its global semantic identifier.

3.5.2. Feature Compartments

The basic idea of feature compartments is to logically group different
features, both behavioral and structural, for easier model navigation inside
coarse-grained entities, as well as to support automatic generation of GUI
forms. In desktop applications compartments are usually used to create
pages on the Tab visual component, which contains of visual components
representing compartment properties. This enables us to generate more
intuitive user interfaces without additional manual customization. For an
example of feature compartment's usage see compartment Contact
Information whose definition is shown in figure 10 and the generated web
form is shown in figure 19.

3.5.3. Inheritance

Entities support single inheritance model. In the current version of DOMMLite
inheritance is defined only at the level of the abstract and concrete syntax. Its
semantics is left undefined and the model compiler developer is free to
define its meaning. As a recommendation DOMMLite inheritance should
follow the semantics of inheritance in other OO languages.

3.5.4. Service Dependency

Service dependency can explicitly be stated in the model. This information is
used to support the Dependency Injection design pattern [28], thus making
service reference available for entity operations by the time they get called
without the need for the entity to obtain that reference by itself (e.g. for
Spring framework this can be done by generating XML configuration files
where reference injection is stated declaratively).

Igor Dejanović, Gordana Milosavljević, Branko Perišić, and Maja Tumbas

ComSIS Vol. 7, No. 3, June 2010 422

3.5.5. Entity Operations

An entity operation is described by the Operation metaclass (see Sect. 3.4.2).
A business method that performs operations solely on one instance of an
entity should be specified as an operation of that entity. It is recommended to
model operations that operate on multiple instances of an entity as service
operations.

3.5.6. Textual Representation

It is useful, if not necessary for entities to have a mechanism that will allow
them to be represented in a textual form. For this purpose the collection repr
of instances of ReprParameter metaclass is defined. The textual
representation of an entity is obtained by concatenating strings (instances of
ReprParameterStr) and textual representation of properties (instances of
ReprParameterRef). This information is usually used for human-readable
entity representation in the GUI. See figure 10 for an example (firstName and
lastName are used for the textual represenation of the Student entity).

3.6. ValueObject

Fig. 6. ValueObject metaclass

Value (transfer) Objects (VO for short) are transient objects without
identity. They are not meant to be persisted and are usually used to
encapsulate data for interchange between different tiers of multi-tier
applications. VOs can depend on entities (Fig. 6) if properties of a VO are
based on properties of an entity. As with most metaclasses, the semantics of

A Domain-Specific Language for Defining Static Structure of Database Applications

ComSIS Vol. 7, No. 3, June 2010 423

VO can further be refined using a collection of constraints (see Sect. 3.9).
Although VOs can have operations [14], in this version of DOMMLite
language they are simple objects with structural features only. Inheritance of
VOs is defined at the syntax level. Its precise semantics is left to the model
compiler developer to define, but it is recommended to follow the semantics
of inheritance defined in other OO languages.

3.7. Service

The role of the Service metaclass (see Fig. 7) is to describe objects whose
purpose is to provide services to other domain objects. Services consist of
logically interrelated operations that achieve a particular objective. These
operations can query entities and can act on them by changing their state. In
the current DOMMLite version services do not have properties, so their
internal state is not modelled (they are stateless).

Fig. 7. Service metaclass

If necessary, service state can be modelled as an entity but the DOMMLite
language currently has no support for explicitly stating which entity is used for
state preservation of some particular service.

Service operations usually operate on multiple instances of entities or
value objects. Operations that do not operate on a single entity instance, or
do not operate on an entity instance at all should be modeled as service
operations. Operations that query a single entity instance or change its state
are usually better represented by entity operations (see Sect. 3.5). Service,
being a NamedElement, has a name, a short and a long description. To
facilitate model navigation and GUI generation, service operations can
logically be grouped into operation compartments represented by the
OperationCompartment metaclass.

Services can depend on each other. This information is used to implement
the Dependency Injection design pattern. The single inheritance model is
supported at the abstract and concrete syntax level. The semantics of

Igor Dejanović, Gordana Milosavljević, Branko Perišić, and Maja Tumbas

ComSIS Vol. 7, No. 3, June 2010 424

inheritance is left to the model compiler developer to define, but it is
recommended to follow the semantics of inheritance from other OO
languages. In the current implementation of the generator, service
inheritance is not used (see Sect. 5). The semantics of services and service
operations can further be refined using a collection of constraint
specifications (see Sect. 3.9).

3.8. Validators and Tags

DOMMLite models can be augmented by validators and tags that can be
attached to model elements (see Fig. 8). Validators define rules that should
be enforced upon a running system in order to maintain a consistent state.
For an example of validator usage see figure 10. Figure 19 shows a
generated web form with applied validators.

Tags are simple constraints, similar to UML tags and stereotypes, which
are used to alter or further refine the semantics of modeling elements. For
example, the built-in tag plural is used to define the plural name of a
modeling element, while the built-in tag searchBy is used to define properties
of an entity that will be searched during keyword-based searches. The next
section describes validators and tags in the context of extensibility.

3.9. Extensibility

The technique used to achieve extensibility (see Fig. 8) in DOMMLite is
similar to that used in UML profiles. A modeler can introduce new data types,
validator types and tag types into a DOMMLite model. These elements can
be used in the rest of the model in the same way as the built-in ones.

Main metaclasses, which support extensibility, are UserDataType (see
Sect. 3.1), ConstraintType and ConstraintSpec metaclasses. ConstraintType
represents the definition of the type of a constraint, while ConstraintSpec is a
concrete usage or instance of that type. ConstraintType defines language
metaclasses to which a constraint can be applied (the appliesTo* property).
This information is used to constrain instances of ConstraintType (the
modeling object that conforms to ConstraintSpec) so they can only be applied
to the modeling element specified by the appliesTo* property. The
parameters collection of the ConstraintTypeParameter type defines the list of
formal parameters of a constraint. Their types can be string, int (integer), ref
(property reference) and ellipsis (variable number of parameters). appliesTo
constraint as well as parameter types are checked during model editing and
source code generation by a Check language rules. ConstraintType is
specialized by ValidatorType and TagType metaclasses. ValidatorType
metaclass represents the type of validators and the TagType metaclass
represents the type of a tag, which can be instantiated in the model using
ConstraintSpec metaclass.

A Domain-Specific Language for Defining Static Structure of Database Applications

ComSIS Vol. 7, No. 3, June 2010 425

There are two types of validators: BuiltInValidatorType, supplied with the
DOMMLite language, and UserValidatorType, defined by the modeler at the
model level. Figure 10 shows examples of built-in validators (isOnlyDigits and
isOnlyLetters) as well as an example of a user-defined validator (mod). The
mod validator accepts one parameter of the integer type. Validators are
implemented on the target platform and the run-time form validation based
on modelled validators is shown in figure 19. As we can see in figure 19, the
source code generator (see Sect. 5) generates validators that, by default, do
not pass validation (isOnlyLetters validator is undefined and therefore will not
validate). After the implementation of validators on the target platform (see
Fig. 18), it will be ensured that only valid data is stored in the database.

Fig. 8. Extensibility, validation and constraints

Tags can also be user-defined (UserTagType) or built-in (BuiltInTagType).
Tags can be used to help identify a particular model element. For example,
applying the finder tag to an entity operation could mark it as a so-called
finder operation. Finder operation searches for and returns the entity or
collection of entities that match given search criteria. Using this simple
approach source code for this type of operation can automatically be
generated.

The instance of ConstraintType is defined by the ConstraintSpec
metaclass. Objects that conform to ConstraintSpec metaclass can be
assigned to all typed elements, entities, services and value objects, as long
as they respect constraints enforced by appliesTo* property of their

Igor Dejanović, Gordana Milosavljević, Branko Perišić, and Maja Tumbas

ComSIS Vol. 7, No. 3, June 2010 426

ConstraintType metaclass. Constraint parameters must conform to the type
and ordinal position of the constraint type specification. If the formal
parameter of a constraint type specification is ellipsis, all its instances can
use any number of parameters of any valid parameter type.

4. Concrete Syntax

Based on the abstract syntax different concrete syntaxes are possible. In this
section we describe a textual concrete syntax implemented using xText
language and tool, which is part of the openArchitectureWare generator
framework [15]. xText is an EBNF-like language that can be used to specify
textual concrete syntaxes as well as abstract language syntax (the
metamodel) using the same definition. This feature of xText is used in the
implementation of DOMMLite so that abstract syntax described in section 3 is
defined along with the definition of DOMMLite concrete textual syntax. The
rest of this section presents specifications of concrete syntaxes of two main
language concepts: entity and service, as well as the syntax of extensibility
support.

4.1. Entity Syntax

Fig. 9. Entity syntax rule in xText language

A Domain-Specific Language for Defining Static Structure of Database Applications

ComSIS Vol. 7, No. 3, June 2010 427

Figure 9 shows the xText rule, which defines an entity. Definition of an entity
begins with the keyword entity followed by the name of the entity. Entity
inheritance relationship can be defined by the keyword extends followed by
the name of the ancestor entity. Service dependency can be specified by the
keyword depends followed by the list of comma-separated names of services
this entity depends upon. An Entity, being a NamedElement, can have a short
and a long description, which are defined as strings. Curly braces demarcate
the entity body. An entity must define its semantic identifier. Semantic
identifier definition starts with the keyword ident followed by a block
demarcated by curly braces, and consists of a list of one or more properties.
The definition of the string representation of an entity begins with the keyword
repr followed by a list of strings or property names delimited by a plus sign.
Constraints are specified inside square braces. Features are defined on the
entity level or they can be grouped in feature compartments. Feature
compartments begin with the keyword compartment followed by the
compartment name and an optional short and long name.

Fig. 10. Entity in the Eclipse-based DOMMLite model editor

Figure 10 represents an example of an entity Student in an Eclipse-based
editor. The semantic identifier of the Student entity consists of the property
SUI (Student Unique Identifier), which is numeric (validator isOnlyDigits), and
its maximum length is set to 11. SUI is checked by a mod 10 formula using
custom-defined validator mod. On the user interface this property will have
the label Student ID. String rendering of the Student entity (repr keyword) will
be done using first name and last name separated by a space. First and last
names are constrained to contain letters only by a built-in validator

Igor Dejanović, Gordana Milosavljević, Branko Perišić, and Maja Tumbas

ComSIS Vol. 7, No. 3, June 2010 428

isOnlyLetters. There are two compartments: priorEducation and contactInfo.
The priorEducation compartment has a long description defined in it, which
will be used to further explain the content of the compartment. The
phoneNumber data type, used in the contactInfo compartment and shown in
the outline view, is user-defined. It is defined at the model level using the
dataType keyword (see Sect. 3.9).

4.2. Service syntax

Service's xText sintax rule is shown in Figure 11. Service definition begins
with the keyword service followed by the service name. Service inheritance is
defined by the keyword inherits followed by the name of the ascendant
service. Dependency is defined by the keyword depends followed by a
comma-separated list of service names. Service body contains the
specification of constraints, service operations and operation compartments.

Fig. 11. Service syntax rule in xText language

4.3. Extensibility Features Syntax

Figure 12 shows the syntax rules for extensibility support. User defined data
types are defined by the keyword dataType followed by the name of the new
type.

TagType and ValidatorType have similar syntaxes. Their definition begins
with the keyword tagType (or validatorType) and the name of the tag
(validator). The name is followed by the definition of parameters as a
comma-separated list of type parameters. After the keyword appliesTo
metaclasses should be defined to which this tag (validator) can be applied.
This information is used by the model editor as well as the model compiler to
perform model validation.

The same type of constraint can be applied, if defined in that way, to
different types of modeling constructs. Formal parameters of the constraint

A Domain-Specific Language for Defining Static Structure of Database Applications

ComSIS Vol. 7, No. 3, June 2010 429

type definition represent the types of real parameters in constraint usage
specification. The type of a formal parameter can be: _string - string
surrounded by quotation marks, _int - integer, _ref - reference to a property
represented by its name, ... - ellipsis means that parameter types and their
number is undefined.

Fig. 12. Data types and constraint types syntax rules

Figure 13 show the syntax rule for constraint usage. A constraint is defined
by its name followed by real parameters surrounded by a pair of braces. In
order to be used, a constraint must have its type defined in the model as a
built-in or user-defined constraint type or there will be errors during model
validation. The type and the number of real parameters must conform to the
constraint type formal parameter specification.

Igor Dejanović, Gordana Milosavljević, Branko Perišić, and Maja Tumbas

ComSIS Vol. 7, No. 3, June 2010 430

Fig. 13. Constraint usage specification syntax rules

5. Source Code Generator

Details of DOMMLite execution semantics are given in the form of a source
code generator (model compiler) for the chosen target platform. For the
purpose of building the prototype proof-of-concept implementation, Django
web framework [29], which is based on Python programming language as our
target platform, was chosen.

Fig. 14. Xpand template fragment for Django admin class generation

A Domain-Specific Language for Defining Static Structure of Database Applications

ComSIS Vol. 7, No. 3, June 2010 431

The model compiler is defined as a set of templates based on Xpand
language, a powerful DSL for defining templates for code generation, which
is a part of the openArchitectureWare framework. Figure 14 shows a
fragment of the Xpand template used to generate a Django admin form class
for every entity in the DOMMLite model.

Figure 15 shows a fragment of a generated, in Django terminology, model.
A Django model is generated for every entity in the DOMMLite model and it
contains meta-data used for creating tables in the database and for
configuring the Django Object-Relational Mapper (DORM). We can see that
built-in types are mapped to Django model fields (e.g. for the firstName,
which is of type char, a model field of type models.CharField will be
generated). Custom types are mapped to custom fields that are specified
manually in the custom_fields python module (e.g. for the phone field, which
is of the user-defined type phoneNumber, a model field of type custom_fields.
PhoneNumberField will be generated).

Fig. 15. Fragment of a generated Django model class

In figure 19 we can see that the phone field will be properly validated.
PhoneField can be used in multiple places throughout the model and the
generator will take care to create the right django model fields, which will
instantiate the manually created custom_fields.PhoneNumberField class.
Therefore, the generator doesn't need to be altered for user-defined types.
Django will create a synthetic primary key (a column called id usually of the
auto-incrementing type if the database supports it) that will be used in the
framework for model/entity identification. This synthetic identifier can be
accessed by the DORM API and used in service and entity operations.

In figure 16 a fragment of a generated django admin form class is
presented. Django uses admin classes to drive the admin application, which
is capable of generating CRUD forms on-the-fly from the information supplied
in the Django model and admin classes (which are generated in this case).
Admin form classes will call validators specified in the DOMMLite model to

Igor Dejanović, Gordana Milosavljević, Branko Perišić, and Maja Tumbas

ComSIS Vol. 7, No. 3, June 2010 432

ensure that field values are validated prior to their storing in the database.
Generated validators (Fig. 17) by default fail for every field value.

Fig. 16. Fragment of a generated Django admin class

Fig. 17. Generated default implementation of mod validator

After validator implementation (Fig. 18), the Django admin form will do
proper validation of an entered field value (Fig. 19). In this case, validators
are implemented as protected regions (a feature of oAW generator) to
preserve manual modifications during subsequent generator invocations.

Fig. 18. Validator mod manually implemented in Python language

The execution of the Django admin application generates during run-time
execution Web based forms (Fig. 19) for basic CRUDS operations, without
any manual modifications of the Django application generated from the
DOMMLite model. However, more complex business operations and
workflows must be implemented on the target platform, as they still cannot be
specified in the DOMMLite language.

A Domain-Specific Language for Defining Static Structure of Database Applications

ComSIS Vol. 7, No. 3, June 2010 433

The skeletons for entity and service operations can also be generated as
protected regions also or other capabilities of target platform can be used for
mixing generated and manually written source code (e.g. inheritance, or
function override in case of Python) [26].

In the presented generator services are mapped to Python modules and
service operations are mapped to module functions. Dependency information
between services and entities is used to generate the proper import section,
which will only import those Django models (DOMMLite entities) that service
depends upon. Operations are implemented manually in the Python
programming language using the Django framework.

Fig. 19. Django entry form for Student entity with custom validator and field type

6. Eclipse Editor for DOMMLite Models

Using the specification of a language in the form of xText rules as a starting
point, openArchitectureWare is capable of generating an almost fully
functional Eclipse-based model editor (Fig. 10). In order to achieve full
functionality, additional configuration and completion of the generated editor
should be performed.

First, we have to define modeling constraints, which will be enforced during
model editing as well as during model compilation. For this purpose oAW

Igor Dejanović, Gordana Milosavljević, Branko Perišić, and Maja Tumbas

ComSIS Vol. 7, No. 3, June 2010 434

offers a DSL called Check. Figure 20 shows the Check rule, which ensures
that constraint specification is applicable to the given modeling element.

Fig. 20. Check rule for constraint specification

In order to provide support for the outline view, there are operations that
need to be supplemented using the oAW functional language Extend. These
operations are label - for supplying the node label in run-time, and image for
supplying node icon. The outline rule for entity is given in figure 21. The
outline of a model in Eclipse is presented on the right side of figure 10.

Fig. 21. Outline rules for the Entity metaclass

Fig. 22. Extend function for supporting bidirectional reference code completion

Code completion is supplemented by the implementation of the complete*
function. Code completion rule for bidirectional references is shown in figure
22. The rule from figure 22 will ensure that only properties from Classifier on
the other side of relation that reference Classifier on this side of the
relationship will be offered during code completion.

A Domain-Specific Language for Defining Static Structure of Database Applications

ComSIS Vol. 7, No. 3, June 2010 435

7. Related Work

Work related to the topics discussed in this paper includes research on
design and application of domain-specific modeling languages and domain-
specific languages in general to different domains.

DSLs have been most successful and are particularly popular in the
domain of embedded systems. In [30] an approach to building embedded
component infrastructures is proposed, which is based on the combination of
component/container infrastructures (including the underlying communication
middleware) with model-driven software development techniques. An
example of a DSL for specifying an embedded application (a simple weather
station) using MDSD is analyzed. The example metamodel is implemented
as an extension of the UML metamodel. DSL concrete syntaxes are UML and
XML based. In [31] a PICML DSML is proposed which simplifies and
automates many activities associated with developing, and deploying
component-based Distributed Real-time Embedded systems. In particular,
PICML provides a graphical DSML-based approach which is used to define
component interface definitions, specify component interactions, generate
deployment descriptors, define elements of the target environment, associate
components with these elements, and compose complex DRE systems from
these basic systems in a hierarchical fashion. [32] presents a Kiosk
Application Generator (KAG), a generator for Kiosk Applications featuring its
own templating language for the description of the generated code, as well as
a declarative DSL for form-flow based application description. Graphics
Adaptor Language (GAL) [33] is a DSL for the generation of video display
device drivers.

Integration of tools, data and services is another domain where DSLs have
been extensively used. In [34] authors investigate the application of DSLs in
the area of tool integration. They have defined a Tool Integration Framework
based on the concept of Domain Schema, which is specified as a Model
Specification File (MSF) written in a declarative DSL that captures the data
model for the various entities and their relationships within a tool. Since it is a
data-structure description language, it is in many respects similar to
DOMMLite. However, its domain of application is quite different. DSL for
MSF, with an aim to be the least-common denominator for different kinds of
tools, has a much simpler abstract and concrete syntax. Another application
of DSLs for integration purposes is presented in [35]. In this paper the
Enterprise-Application Integration approach is described based on predefined
components configured with DSL programs (Domain-Abstract
Representation). The concrete syntax used for DAR is XML based.

The ideas, which have been used in DOMMLite to support the generation
of standardized GUI forms, can be found in [2,3,4,5]. The tool for rapid
prototyping of large-scale business information systems presented in [2] uses
UML as a design language. The UML model is then transformed to metadata
kept in the Application repository. Meta-data in the Application repository is
customized by a Form Generator tool, which utilizes this information to
generate application source code. Meta-data in the Application repository,

Igor Dejanović, Gordana Milosavljević, Branko Perišić, and Maja Tumbas

ComSIS Vol. 7, No. 3, June 2010 436

although kept in a database and edited by a special-purpose tool, can be
considered to be a DSL for the description of GUI forms. Using DOMMLite
instead of UML makes this additional step of transforming UML to Application
repository and doing further customization unnecessary, since all
metainformations needed by a GUI form generator can be specified in the
DOMMLite model itself.

Intermediate Form Representation (IFR) [5] is an XML-based DSL for the
description of user interface forms, which supports multiple environments for
user interface implementation. IFR files can be customized in terms of
functionality and layout, while multiple iterations of code generation preserve
all manual customizations done in between iterations. IFR files are generated
from the Enterprise Java Beans (EJB) data model using Java introspection,
making it an interesting alternative in the case of reengineering already
existing EJB-based solutions.

In [36] the author investigates using UML as a basis for DSL construction
through implementation of a DSL for modeling applications, targeting an
already existing business application framework. The language described,
although similar in concepts to DOMMLite, lacks support for in-model
extensibility and coarse-grained entities (see Sect. 3.5.2), design time
validation, run-time validation. As concluded by the author, UML, being a
general-purpose modeling language, is not very well suited for the
construction of DSLs.

AndroMDA [37] is an open-source MDA framework capable of generating
source code for different platforms out of models specified in the UML. A
model is defined using UML with stereotypes and exported to XMI format.
From there a maven-driven build process parses it and the source code is
generated by executing so-called cartridges (modules that perform code
generation).

The language most alike DOMMLite, in terms of concepts and tools used,
is Sculptor [38]. Sculptor is developed as a part of the open-source Fornax
platform

8
. It is actively developed and documented, and is capable of

generating source code for desktop RCP and Web applications with support
for different technologies such as Hibernate, Spring, EJB, JSP, JFC etc.
which is a very good option for teams that need to target different platforms
and do not have time for development of source code generators. Being an
open-source project, it also brings high quality of generated source code, as
the templates are peer reviewed by all contributors and users. Sculptor
follows Domain-Drive Design concepts very closely. As of this writing there
seem not to be any published scientific papers describing Sculptor in more
detail. In comparison to DOMMLite it features out-of-the-box source code
generators for different popular technologies but at this time it does not have
support for coarse grained entities (see Sect. 3.5.2) nor in-model extensibility
(see Sect. 3.9).

8 http://www.fornax-platform.org/

A Domain-Specific Language for Defining Static Structure of Database Applications

ComSIS Vol. 7, No. 3, June 2010 437

8. Conclusions and Future Work

In this paper we have presented an extensible DSL implemented using MDE
ideas and techniques, which is well suited for database-oriented business
applications. From a DOMMLite model an entire application with navigation,
and CRUDS operations can be generated. By using highly abstract languages
that are based on concepts from the domain at hand, significant productivity
increase can be achieved. The code generator propagates any change made
in the model to all generated files, making the implementation consistent with
the model and eliminating errors due to human factors, which inevitably occur
if these changes are done manually. We have anticipated code quality
improvement, since coding guidelines for generated code are enforced by
templates and improvements in templates are immediately reflected on all
generated code.

Hand-written code still needs to be maintained manually, which may lead
to errors caused by misalignment to the generated code. However, using
statical code analysis offered by contemporary integrated development
environments, as well as test-driven development techniques, many bugs
can be identified and eliminated quickly.

DOMMLite is designed from the ground up to be simple to use and simple
to extend. By implementing its extension mechanism, it is possible to extend
the language semantics on the model level without changing the metamodel
and source code generator. This mechanism is fully supported by the eclipse
editor with code completion and constraint validation for newly defined
constraint types.

The development of DSLs and DSMLs is nowadays significantly simplified
with the appearance of generator frameworks such as openArchitectureWare,
which permit languages to be designed and supporting editors and compilers
to be prototyped more quickly.

Further research and development is focused on extending the language
and the functionality of the supporting tools. We plan to: (1) – extend the
language to support behavioral elements (operation semantics), (2) – define
the visual syntax of the language, as well as a supporting graphical editor, (3)
– support additional target platforms, (4) – implement support for model
version control, (5) – implement support for model and language evolution.

References

1. openArchitectureWare Generator Framework. [Online] Available:
http://www.openarchitectureware.org/ (current December 2008)

2. Milosavljević, G., Perišić, B.: A method and a tool for rapid prototyping of large-
scale business information systems, Computer Science and Information Systems
,vol. 1, pp. 57-82 (2004)

Igor Dejanović, Gordana Milosavljević, Branko Perišić, and Maja Tumbas

ComSIS Vol. 7, No. 3, June 2010 438

3. Milosavljević, B., Vidaković, M., Komazec, S., Milosavljević, G.: User interface
code generation for data-intensive applications with ejb-based data models, in
Software Engineering Research and Practice (SERP'03), Las Vegas, NV, (2003)

4. Milosavljević, B., Vidaković, M., Konjović, Z.: Automatic Code Generation for
Database-Oriented Web Applications, pp. 89-97. Recent Advances in Java
Technology: Theory, Application, Implementation, Trinity College Dublin (2003)

5. Milosavljević, B., Vidaković, M., Komazec, S., Milosavljević, G.: User interface
code generation for ejb-based data models using intermediate
formrepresentations, in ACM Principles and Practice of Programming in
Java,(Kilkenny, Ireland) (2003)

6. Schmidt, D. C.: Guest editor's introduction: Model-driven engineering, Computer,
vol. 39, no. 2, pp. 25-31 (2006)

7. Tolvanen, J.-P., Sprinkle, J., Gray J.: The 6th oopsla workshop on domain-specic
modeling, in OOPSLA '06: Companion to the 21st ACM SIGPLAN symposium on
Object-oriented programming systems, languages, and applications , (New York,
NY, USA), pp. 622-623, ACM (2006)

8. Booch, G., Brown, A., Iyengar, S., Rumbaugh, J., Selic, B.: An MDA manifesto,
MDA Journal (2004)

9. Dejanović, I.: Meta-model, model editor and business application generator,
(Master's thesis). Author's reprint, Library of Faculty of Technical Sciences, Novi
Sad, Serbia (2008)

10. Bézivin, J., Jouault, F., Kurtev, I., Valduriez , P.: Model-based DSL frameworks,
Companion to the 21st Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA, pp. 22-26
(2006)

11. OMG Unified Modeling Language (OMG UML), Infrastructure. Version 2.1.2,
Final Adopted Specication, OMG Document formal/2007-11-04 (2007)

12. Meta Object Facility (MOF) Core Specication. Version 2.0 (2006)
13. Eclipse Modeling Framework - EMF. Online, Available: http://www.eclipse.org/

modeling/emf/ , (current December 2008)
14. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software .

Addison-Wesley Professional (2004)
15. Efftinge S., Völter, M.: oAW xText: A framework for textual DSLs, in Eclipse

Summit 2006 Workshop: Modeling Symposium (2006)
16. Van Deursen, A., Visser, J.: Domain-specic languages: an annotated

bibliography, ACM SIGPLAN Notices , vol. 35, pp. 26-36 (2000)
17. Wile, D. S.: Supporting the dsl spectrum, JOURNAL OF COMPUTING AND

INFORMATION TECHNOLOGY , vol. 9, pp. 263-288 (2001)
18. Hatton, L.: The t experiments: Errors in scientic software, IEEE

COMPUTATIONAL SCIENCE & ENGINEERING , vol. 4, no. 2, pp. 27-38 (1997)
19. Mernik, M., Sloane, A. M.: When and how to develop domain-specic languages,

ACM Computing Surveys (CSUR) , vol. 37, pp. 316-344 (2005)
20. Fowler, M.: Domain specic languages. Online, Available: http://martinfowler.com/

dslwip/ (current December 2008)
21. Cunningham H. C.: A little language for surveys: Constructing an internal dsl in

ruby, ACM-SE 46, Auburn, Alabama, USA (2008)
22. Paul, R.: Designing and implementing a domain-specic language, LinuxJ. , vol.

2005, no. 135, p. 7 (2005)
23. Kabanov, J., Raudjärv, R.: Embedded typesafe domain specic languages for

java, pp. 189-§197, ACM New York, NY, USA (2008)

http://martinfowler.com/
http://martinfowler.com/
http://martinfowler.com/

A Domain-Specific Language for Defining Static Structure of Database Applications

ComSIS Vol. 7, No. 3, June 2010 439

24. Hudak , P.: Building domain-specic embedded languages, ACM Computing
Surveys (CSUR) , vol. 28, p. 196 (1996)

25. Haugen, Ø., Mohagheghi, P.: A Multi-dimensional Framework for Characterizing
Domain Specific Languages, Proceedings of the 7th OOPSLA Workshop on
Domain-Specific Modeling (DSM’07), Computer Science and Information System
Reports (2007)

26. Völter, M., Stahl, T.: Model-Driven Software Development: Technology,
Engineering, Management. John Wiley & Sons (2006)

27. Bauer, C., King, G.: Hibernate in Action, Manning Publications (2004)
28. Fowler, M.: Inversion of control containers and the dependency injection pattern.

Online, Available: http://www.martinfowler.com/articles/injection.html (current
February, 2008) (2004)

29. Django web framework. Online, Available: http://www.djangoproject.com/,
(current December, 2008).

30. Vöelter, M., Salzmann, C., Kircher, M.: Model driven software development in the
context of embedded component infrastructures, LECTURE NOTES IN
COMPUTER SCIENCE , vol. 3778, p. 143 (2005)

31. Balasubramanian, K., Balasubramanian, J., Parsons, J., Gokhale, A., Schmidt,
D. C.: A platform-independent component modeling language for distributed real-
time and embedded systems, Journal of Computer and System Sciences , vol.
73, pp. 171§-185 (2007)

32. Živanov, Ž., Rakić, P., Hajduković, M.: Using code generation approach in
developing kiosk applications, Computer Science and Information Systems , vol.
5, pp. 41-§59 (2008)

33. Thibault, S. A., Marlet, R., Consel, C.: Domain-Specic Languages: From design
to implementation application to video device drivers generation, IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, pp. 363§-377 (1999)

34. J. Gray and G. Karsai, An examination of dsls for concisely representing model
traversals and transformations, p. 10 (2003)

35. Nussbaumer, M., Freudenstein, P., Gaedke, M.: The impact of domain-specific
languages for assembling web applications, Engineering Letters, vol. 13 (2006)

36. Anonsen, S.: Experiences in modeling for a domain specic language, UML
Modeling Languages and Applications , vol. 3297/2005, pp. 187§-197 (2005)

37. AndroMDA - MDA framework. Online, Available: http://www.andromda.org,
(current December 2008)

38. Enterprise java community: Improving developer productivity with sculptor.
Online,
Available:http://www.theserverside.com/tt/articles/article.tss?l=ProductivityWithS
culptor, (current June 2007) (2007)

Igor Dejanović received his M.Sc. (5 years, former Diploma) degree from
the Faculty of Technical Sciences in Novi Sad. He completed his Mr (2 year)
degree at the University of Novi Sad, Faculty of Technical Sciences.
Currently, he works as a teaching assistant at the Faculty of Technical
Sciences at the University of Novi Sad, where he assists in teaching several
Computer Science and Software Engineering courses. His research interests
are related to Domain-Specific Languages, Model-Driven Engineering and
Software Configuration Management.

Igor Dejanović, Gordana Milosavljević, Branko Perišić, and Maja Tumbas

ComSIS Vol. 7, No. 3, June 2010 440

Gordana Milosavljević is a teaching assistant and Ph.D. student at
University of Novi Sad, Faculty of Engineering, Computer Sciences
Department. She has received her B.Sc. and M.Sc. from University of Novi
Sad, Faculty of Engineering, Computer Sciences Department. Her research
interests focus on software engineering methodologies, rapid development
tools and enterprise information systems design.

Branko Perišić is an associated professor at University of Novi Sad, Faculty
of Technical Sciences. He has received his engineer diploma from University
of Sarajevo, Faculty for electrical engineering, M.Sc. and PhD diplomas from
University of Novi Sad, Faculty of Technical Sciences. He is currently a
Computer center manager and leads Software development team at Faculty
of Technical Sciences. As a teaching professor he has developed and
teached a variety of Computer Engineering, Software Engineering and
Information System Design courses at different Universities. His major
research interests are related to Model Driven Software Development,
Business Information Systems Design, Software Configuration Management
and Secure Software Design.

Maja Tumbas is a teaching assistant at the Faculty of Technical Sciences at
the University of Novi Sad, where she received her M.Sc. degree. Her fields
of interest include different areas of software engineering, including software
modeling and computer security.

Received: February 03, 2009; Accepted: December 18, 2009.

