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Abstract. The classification accuracy of EEG signals based on traditional machine
learning methods is low. Therefore, this paper proposes a new model for the fea-
ture extraction and recognition of dance motor imagery EEG, which makes full
use of the advantage of anti-aliasing filter based on whale parameter optimization
method. The anti-aliasing filter is used for preprocessing, and the filtered signal is
extracted by two-dimensional empirical wavelet transform. The extracted feature is
input to the robust support matrix machine to complete pattern recognition. In pat-
tern recognition process, an improved whale algorithm is used to dynamically adjust
the optimal parameters of individual subjects. Experiments are carried out on two
public data sets to verify that anti-aliasing filter-based preprocessing can improve
signal feature discrimination. The improved whale algorithm can find the optimal
parameters of robust support matrix machine classification for individuals. This pre-
sented method can improve the recognition rate of dance motion image. Compared
with other advanced methods, the proposed method requires less samples and com-
puting resources, and it is suitable for the practical application of brain-computer
interface.

Keywords: EEG signals classification, Dance motor imagery, Anti-aliasing filter,
Whale parameter optimization, Two-dimensional empirical wavelet transform, Ro-
bust support matrix machine.

1. Introduction

Brain Computer Interface (BCI) technology aims to bypass the pathway between the brain
and muscles by creating a signal transmission interface between the human brain and the
machine [1]. It allows the user to control the external device directly through the brain,
instead of using the traditional method of muscle movement. Therefore, BCI technology
has a broad application prospect in patients with paralysis and confinement, as well as in
extreme environments such as space. BCI technology involves signal processing, machine
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learning, cognitive neuroscience and other disciplines [2].
In so many BCI technologies, Electroencephalogram (EEG) is collected in the cere-

bral cortex in a non-invasive way, thus becoming a brain-computer interface technology
suitable for ordinary people to participate in without ethical constraints and invasive brain
operation [3]. In EEG based brain-computer interface technology, event-related poten-
tial, steady-state visual potential and sensory motor rhythm are the three main application
methods. Here, the perceptual Motor rhythm is induced by Motor Imagery BCI (MI-BCI)
[4]. MI-BCI mainly changes the energy of specific rhythm of EEG on the opposite side
of the brain, and these energy changes are recorded by EEG, known as Event Related
desynchronization phenomenon (ERD) [5]. Sensorimotor rhythm in the brain is widely
distributed and controlled by different brain regions. However, due to the topological or-
ganization of motor neurons, EEG signals collected by the cerebral cortex are usually
aliases of multiple motor sensing neurons, resulting in poor spatial resolution of the origi-
nal EEG signal and affecting the pattern recognition results of the motor imagination EEG
signal.

In order to improve the spatial resolution of ERD phenomenon in EEG, ensure pat-
tern recognition accuracy of MI-BCI, commonly used feature extraction methods include
spectral analysis, auto-regression, source reconstruction and Common Spatial Pattern
(CSP) [6]. CSP brings spatial resolution advantage to ERD phenomenon, so it is widely
used in the recognition of perceptual motor rhythm. Although CSP can distinguish signal
maximization differences according to different tasks, the distinguishable characteristics
often depend on the selection of frequency bands. Therefore, the frequency bands are
divided into several sub-band Filter Bank CSPS (FB-CSP) to improve the recognition
performance [7].

Researchers have successively proposed a large number of improved algorithms for
CSP, including the CSP-based spatio-temporal filtering, the co-sparse spectral space mode,
the regularization CSP and the regularization CSP-based probability model. All these
methods achieve better results on the basis of traditional CSP characteristics. It is difficult
to select the optimal frequency band because of the great difference of perception-motor
rhythm of different objects. Zhang et al. [8] introduced sparse Bayesian learning method
on the basis of CSP, and the selected frequency band could improve the classification
performance. A large number of relevant studies have shown that CSP relies more on the
frequency band range of energy changes generated by motion imagination in the process
of feature extraction, so it is necessary to further study the frequency band range of CSP
filtering to ensure better distinguishable features extracted by CSP.

After feature extraction, pattern recognition is usually accomplished by classifier. In
early pattern recognition, mainstream shallow classifiers such as linear discriminant anal-
ysis or support vector machine were directly adopted [9]. In recent years, the wide appli-
cation of deep learning in small sample classification has led to more applications of deep
learning in pattern recognition of motor imagination EEG signals. Gao et al. [10] adopted
deep self-coding network to reduce the dimensionality of time series of high-dimensional
EEG signals, achieving better recognition effect. After introducing the Convolutional
Neural Network (CNN) structure, Ahmed et al. [11] still carried out convolutional op-
erations in the time domain and the space, respectively, to form the combined features
and complete the classification. Apicella et al. [12] regarded the time domain of signals
as different time segments, carried out convolution respectively, simulated FB-CSP by
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neural network model, and obtained the current optimal effect on the brain-computer in-
terface competition data set. On this basis, the further CNN classification structure and 3
Dimension CNN (3DCNN) classification structure have both achieved performance im-
provement on motion imagination data sets. Recurrent Neural Network (RNN) has also
made initial progress [13]. Researchers regard FB-CSP features as time series and use
RNN to identify feature sequences to achieve better results on different data sets.

Although the deep learning architecture represented by CNN can directly complete
the recognition of motor imagination on the EEG signal, without the traditional feature
extraction process. However, the training process of deep learning requires the support of
a large number of samples and computing resources, so it is not applicable to the field
of BCI where it is difficult to obtain a large number of EEG samples. In addition, the
application of BCI usually requires real-time and free environment, which cannot match
the fixed environment of a large number of computing resources [14]. Therefore, scholars
began to use machine learning to process the whole multi-dimensional EEG matrix, and
Support Matrix Machine (SMM) [15] and Robust SMM (RSMM) [16] are successful
in recognizing small samples of EEG. This kind of algorithm adopts the idea of Support
Vector Machine (SVM) to directly process the multidimensional EEG matrix, and regards
the EEG as the superposition of real EEG and noise signals. In the process of iterative
optimization, the original EEG signals are corrected through the separated noise signals,
so as to improve the classification accuracy of EEG signals.

However, the parameters of RSMM classifier have a great influence on the pattern
recognition results, and the parameters of different subjects are different. Thus, the anti-
aliasing filter based on whale parameter optimization (A2FWPO) method has been pro-
posed in this paper for feature extraction and recognition of dance motor imagery EEG.
In this method, anti-aliasing filter is used to obtain the deep-band features, and the filtered
signals are extracted by two-dimensional empirical wavelet transform. RSMM completes
the feature recognition. In the process of recognition, the improved whale algorithm is
used to find the optimal RSMM parameters for different subjects, so that the EEG classi-
fication accuracy of each subject can be achieved.

The organizational structure of this article is as follows. Section 2 gives related works
for this paper. In section 3, we detailed show the proposed method. Experiments and
analysis are given in section 4. There is a conclusion in section 5.

2. Related Works

Brain-computer interface is a new type of information transmission channel between the
brain and external electronic devices, which does not rely on muscle tissue and periph-
eral nerves. EEG has become one of the most effective data sources for decoding the
cognitive activity of the brain due to its high temporal resolution, good portability and
non-invasive nature. EEG motor imagination brain-computer interface belongs to the cat-
egory of spontaneous brain-computer interface, whose purpose is to accurately identify
the user’s intention of body movement, which commonly includes the imagination of left
hand, right hand, feet and tongue movement [17], it is of great significance for medical
rehabilitation, leisure and entertainment and other fields.

The traditional research methods of motor imaging EEG recognition task first need to
preprocess EEG signals, then select appropriate methods to extract EEG features under



1848 Tianliang Huang et al.

different cognitive states and select the most recognizable feature subset, and finally com-
plete the recognition of motor imaging EEG signals through machine learning method.
Through in-depth analysis of the manifestations and mechanisms of EEG features, we
can see that the control of limb movement is controlled by the cross movement con-
sciousness of contralateral brain region during the process of right-right movement imag-
ination, which makes EEG present typical neurophysiological features. The mu rhythm
and beta band amplitude of the corresponding EEG region on the opposite side decrease
(event-related desynchronization (ERD), while the mu rhythm and beta band amplitude of
the corresponding EEG region on the same side increase (event-related synchronization
(ERS)). Therefore, the presence of motor awareness on the left or right side of the body
can be judged based on the above ERD and ERS phenomena. However, there is no signifi-
cant difference in ERD/ERS phenomenon and no clear distribution of corresponding EEG
band in the motion imaging EEG of the body under different motion modes (especially
unilateral body motion only), and it has nonlinear and non-stationary transient character-
istics. Therefore, EEG feature extraction and unilateral motion intention recognition are
relatively difficult to achieve under different motion modes. At present, there are few re-
searches in this field at home and abroad.

Based on linear discriminant analysis of EEG, Xiao et al. [18] realized the intention
recognition of hand stretching in patients with stroke paralysis. Wang et al. [19] identified
the grasping movement imagination of stroke patients based on power spectrum analy-
sis and brain topographic map information. The above methods are based on traditional
analysis methods to achieve motion intention recognition under a single hand movement.
In order to further accurately depict and effectively classify EEG motion image features
under different motion modes, further research is needed to quantitatively describe EEG
transient nonlinear features. Lin et al. [20] obtained an average recognition accuracy of
92.8% on the BCI Competition III IVa dataset by using the high-order statistical features
extracted from the wavelet packet decomposition sub-band and multi-scale principal com-
ponent analysis (MSPCA) denoising method. Baig et al. firstly used the Common Spatial
Pattern (CSP) algorithm to extract the feature sets under the left- and right-handed mo-
tion imagination state, and then used the differential evolution optimization algorithm to
extract the optimal feature subsets of each subject. Finally, it was sent into the Support
Vector Machine (SVM) to build the classification model. The average classification ac-
curacy of BCICompetition III dataset IVa was more than 95%. Faced with complex and
unstructured data, traditional machine learning and statistical methods often require a cer-
tain feature engineering ability to extract more effective features or select more appropri-
ate model parameters, while deep learning can train more abstract and effective features
to complete end-to-end learning tasks.

Lopes et al. [21] used Short-Time Fourier Transform (STFT) to extract the time-
frequency information of and rhythm in each channel, and combined them into 2D in-
formation as the input of the network. The Network was a deep network formed by the
combination of Convolutional Neural Network (CNN) and Stacked Auto-Encoder (SAE),
and classified the features extracted by CNN through SAE. The Kappa value of the pro-
posed method on the dataset BCI Competition V dataset 2b was 0.547. Ma et al. [22]
proposed a novel convolutional neural network for pattern recognition of motion imagery
EEG. In this network, two convolution layers were set to extract the spatial and temporal
features of signal sequences respectively.
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3. Proposed Method

3.1. Feature Extraction Strategy

Task recognition of dance motor imagery EEG consists of two parts: signal feature ex-
traction and pattern recognition. In this paper, anti-aliasing filter is used to extract the
frequency-domain features of EEG signals, and two-dimensional empirical wavelet trans-
form is used to extract the spatial features, which are composed of frequency-spatial fea-
tures for pattern recognition of dance motion imagery tasks. In pattern recognition, the
matrix form of EEG frequency domain-spatial characteristics is retained, and RSMM is
used to complete the classification of motion imagination tasks. Due to the great differ-
ence of EEG in different individuals, the parameters used by RSMM in actual classifica-
tion are different. Therefore, whale algorithm is adopted to automatically find the optimal
classification parameters according to the characteristics of different individual signals,
so as to achieve the highest recognition rate of the motion imagination EEG patterns of
each individual.

The main principle of motion image pattern recognition is the event-related desyn-
chronization phenomenon (ERD) in the process of imagination, which is reflected as the
energy suppression of µ rhythm (8-12Hz) and β rhythm (18-24Hz) of EEG signal. In or-
der to recognize the pattern of energy suppression, EEG pretreatment is needed. Common
EEG acquisition devices generally collect signals between 0.1 and 100 Hz, but the signals
generated by the discharge of neurons in the cerebral cortex are concentrated between 4
and 40 Hz. Therefore, the primary task of pre-processing is to keep the EEG frequency
band between 4 and 40 Hz through band-pass filter. However, the detailed energy sup-
pression caused by ERD cannot be obtained in a wide band, so the pattern recognition
results are not ideal [23].

If no aliasing occurs in the sampled signal, down-conversion is performed to convert
the sampled signal into base-band signal, and each signal in the multi-band communi-
cation signal is separated one by one. If two signals in the same frequency domain are
aliased after sampling, the following analysis is carried out.

The two signals with aliasing after sampling are defined as R0(f) and R1(f). The
delay difference between the first and second sample streams is T . The spectrum of the
two signals after the first sampling flow is RA(f), and the spectrum after the second
sampling flow is RB(f). RA(f) and RB(f) satisfy the relationship:

RA(f) = R0A(f) +R1A(f)

RB(f) = R0B(f) +R1B(f)

RB(f) = R0A(f)e
a +R1A(f)e

b

(1)

Assuming that the communication number of the RF band to be sampled is R(f) and
its bandwidth is B. The sampling frequency fs is adopted, which is fs = 2B. Where
a = e−j2π∆Tfsn0 , b = e−j2π∆T . ((n+ 1)/2)fs < |f | < ((n+ 1)/2)fs.

The two digital signals obtained by the second order sampling module are aliased by
an anti-aliasing filter. Anti-aliasing filters SA(f) and SB(f) are designed and applied to
channel A and channel B respectively. The recovered signal spectrum then becomes:

R(f) = B × [SA(f) ·RA(f) + SB(f) ·RB(f)] (2)
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By splitting the normal spectrum and secondary spectrum of the signal, Equation (2)
takes the transformation as:

R(f) = B × [SA(f) · (RA+(f) +RA−(f)) + SB(f) · (RB+(f) +RB−(f))] (3)

For each channel, there are signals from frequency positions a and b, so Formula (2)
is further decomposed as:

R(f) =B × [SA(f) · (R0A+(f) +R1A+(f) + (R0A−(R1A+(f))

+ SB(f) · (R0B+(f) +R1B+(f) +R0B−(f) +R1B−(f)]
(4)

Filters SA(f) and S0
B(f) are designed to restore R0(f) and eliminate R1(f). There-

fore, the filters SA(f) and S0
B(f) should satisfy the follows:

B × [SA(f) ·R0A+(f) + S0
B(f) ·R0B+(f)] = C ·R0A+(f − 2aB) (5)

B × [SA(f) ·R0A−(f) + S0
B(f) ·R0B−(f)] = C ·R0A−(f − 2aB) (6)

B × [SA(f) ·R1A+(f) + S0
B(f) ·R1B+(f)] = 0 (7)

B × [SA(f) ·R1A−(f) + S0
B(f) ·R1B−(f)] = 0 (8)

Where C is the amplitude gain of the signal. Here, SA(f) is chosen as the simplest
form, i.e.,

SA(f) =

{
1/B |f | < B

0 otherwise
(9)

Therefore, by solving equations (7) and (8), S0
B(f) can be obtained as follows.

S0
B(f) =


−β−b

B
−B < f < 0

−βb

B
0 < f < B

0 otherwise

(10)

Equations (8)-(10) are expressions of filters in the frequency domain. Their impulse
response can be obtained through equations (8)-(10), and the filter impulse response can
be written as:
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SA(t) =

∫ fh

ft

SA(f)e
j2πftdt (11)

S0
B(t) =

∫ fh

ft

S0
B(f)e

j2πftdt (12)

S1
B(t) =

∫ fh

ft

S1
B(f)e

j2πftdt (13)

ft and fh are the lowest and highest frequencies of the anti-aliasing filter, respectively.
By sampling the sampled signal with fs = 2B, the sampled value can be used as the
parameter of anti-aliasing filter. When the signal position index changes, the same SA

can still be used. However, for SB , when the position index changes, the filter parameters
need to be adjusted according to the position index.

Due to the anti-aliasing filter, the restored signal has a certain amplitude difference
from the original signal. By substituting equations (8) and (9) into equation (6), the ex-
pression of amplitude gain can be obtained, as shown in Equation (14).

|C| = |1− β±(b−a)| =
√
2 · 1− cos[2πT∆fs|b− a|] (14)

As can be seen from Equation (14), better gain effect can be obtained by adjusting T∆

value in real time according to the position of a and b.

3.2. Constraint Condition

The sampling frequency of the second-order band-pass sampling module should follow
the following formula.

nk · fs − fs/2 < flk < fuk < nk · fs + fs/2

|fNcb − fNca| ≥
Ba +Bb

2

(15)

In nk · fs − fs/2 < flk < fuk < nk · fs + fs/2, nk is the position index of the
k − th signal in the multi-band RF band communication signal. fs is the sampling fre-
quency. flk and fuk are the lowest and highest frequencies with communication number
k, respectively. This formula limits aliasing of sampled signal images. At the same time,
the multi-band communication number should also satisfy |fNcb − fNca| ≥ Ba+Bb

2 . This
formula can be used to avoid overlapping of more than two signals after sampling. Ba and
Bb are the processing bandwidths of the two sampled RF bands. fNcb and fNca are the
signal center frequencies of the sampled two-way tape signal in the first Nyquist region.

In fact, due to the nonlinear and non-stationary characteristics of EEG signals, the
feedback of different subjects and the same subjects to motor imagination in different
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stages of motor imagination has a floating range in different sub-bands [24]. Some sub-
jects may have rhythms in the 6-11Hz range, while others may have rhythms in the 20-
28Hz range. The floating range of rhythm and rhythm in the sub-band cannot be dealt
with by simply dividing multiple sub-bands with the range of 4Hz. This paper proposes
that anti-aliasing filter can be divided into different sub-bands according to different over-
lapping range combinations.

3.3. Two-Dimensional Empirical Wavelet Transform

Two-dimensional empirical wavelet transform is an improvement on the classical two-
dimensional Littlewood Paley wavelet transform. Its filter bank has a ring support in
Fourier domain, and the inner and outer radii of the support are fixed on the binary decom-
position plane of Fourier domain, namely the scale factor [25]. Here, empirical analysis
method is applied to detect each ring supported by the ring. The detection is carried out in
Fourier’s pseudo-polar plane, so the boundary can be represented by the frequency mod-
ulus |ω|. In order to solve the construction problem of Fourier transform of pseudo-poles,
references [26,27] put forward some methods, and provided an operator Fp(f)(θ, |ω|)
to construct it. In the Fourier support, the one-dimensional Fourier spectrum exists in
each Angle θ. However, under tensor transformation, if Fourier boundary detection is
performed separately for each Angle θ, there will be some discontinuities in the output
spectrum. In order to avoid this influence, two-dimensional empirical wavelet transform
adopts the idea of tensor transformation to calculate the average spectrum, namely,

F̃ (|ω|) = 1

Nθ

Nθ−1∑
i=0

Fp(f)(θi, |ω|) (16)

Where, Nθ is the number of discrete angles. Then, the spectrum F̃ (|ω|) is boundary
detected, and the set ωn. This set is used to construct a set of two-dimensional experiential
Littlewood Paley wavelets.

BELP = φ1(X), ϕn(X)
N−1
n=1 (17)

Where, ϕn(X) is the empirical wavelet function. φ1(X) is the empirical scale func-
tion. BELP is established for a set of two-dimensional empirical wavelets. This definition
is a direct extension of one-dimensional empirical wavelet. Since the extension of the ring
over ωN−1 ≤ |ω| ≤ ωN is to preserve the ”Angle” of the Fourier domain, it is defined as
shown in equations (18)-(20), except for the last ring.

F2(φ1)(ω) =


1 |ω| ≤ (1− γ)ω1 ·A

if(1− γ)ω1 ≤ ω ≤ (1 + γ)ω1

0 otherwise

(18)

If n ̸= N − 1, then
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F2(φn)(ω) =


1 if(1− γ)ωn ≤ ω ≤ (1 + γ)ωn+1 ·A
if(1− γ)ωn+1 ≤ ω ≤ (1 + γ)ωn+1 ·B

if(1− γ)ωn ≤ ω ≤ (1 + γ)ωn

0 otherwise

(19)

F2(φn−1)(ω) =


1 if(1 + γ)ωN−1 ≤ |ω| ·B

if(1− γ)ωN−1 ≤ ω ≤ (1 + γ)ωN−1

0 otherwise

(20)

Here, A = cos[π2β(
1

2γω1 (|ω| − (1 − γ)ω1))] and B = sin[π2β(
1

2γωn (|ω| − (1 −
γ)ωn))]. The detail coefficient of the two-dimensional empirical wavelet transform of
signal f is defined as:

WELP
f (n,X) = F ∗

2 (F2(f)ω)F2(ϕn)(ω) (21)

The approximate coefficient (conventionally expressed by WELP
f (0, X)) is:

WELP
f (0, X) = F ∗

2 (F2(f)ω)F2(ϕ1)(ω) (22)

Its inverse transformation is:

f(x) = F ∗
2 (F2(W

ELP
f )(0, ω)F2(φ1(ω)) +

N−1∑
n=1

F2(W
ELP
f )(n, ω)F2(ϕn)(ω)) (23)

From the above analysis, the algorithm flow of 2D-EWT image processing can be
obtained as Algorithm 1.

3.4. Robust Support Matrix Machine Pattern Recognition Method

After anti-aliasing filtering in frequency domain and two-dimensional empirical wavelet
transform filtering in spatial domain, a stable frequency-spatial characteristic matrix can
be generated. In the traditional machine learning model, the pattern recognition of fre-
quency domain-spatial eigenmatrix usually needs to be transformed into vector form,
such as linear discriminant analysis and support vector machine. The vector form does
not retain the spatial geometric relationship of the original EEG signal, and the accuracy
of pattern recognition is not high. The deep learning model is directly carried out on the
frequency-spatial eigenmatrix. Due to the ”black box” property of convolutional neural
network, accurate optimization strategy cannot be given. Experiments show that EEG
recognition performance can be better if the model is not deeper, which is usually due to
the nonlinear and non-stationary characteristics of EEG. Therefore, the classification of
EEG frequency domain-spatial characteristic matrix should be completed by accurate and
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Algorithm 1 2D-EWT process
Input: signal f(x), filter number N .

1: Step 1. Calculate Fp(f)(θ, |ω|) and find the average spectrum.

f̃(|ω|) = 1

N

Nθ−1∑
i=0

|Fp(f)(θi, |ω|)|

2: Step 2. The Fourier boundary is detected by Equations (18)-(20), and the spectral radius set and
the corresponding filter banks are obtained.

B = φ1(X), ϕn(X)N−1
n=1

3: Step 3. The original signal is filtered by equations (21) and (22), and the target signal f is
obtained. Output: BELP and WELP

f (n,X)

stable optimization strategy on the basis of preserving the geometric characteristics of the
matrix.

In this paper, robust support matrix machine (RSMM) is introduced to complete the
identification of dance EEG frequence-spatial characteristic matrix. Suppose two cat-
egories of dance motor imagination training set are represented as xt, yt

T
t=1. Where,

Xt ∈ Rd1×d2 represents the extracted feature of the t − th signal sample. d1 represents
the frequency-spatial dimension. d2 represents the time domain dimension. yt ∈ −1, 1
represents the true label of the t− th signal sample.

Pattern recognition for multiple categories of dance motion imagination can still be
used in One versus All (OVA) way. RSMM regards the anti-aliasing filter two-dimensional
empirical wavelet transform (AF-TDEWF) feature matrix as the sum of low-rank noise-
less feature matrix Lt ∈ Rd1×d2 and noise feature matrix St ∈ Rd1×d2 :

Xt = Lt + St (24)

In the training process, the noiseless low-rank brain feature matrix is used to replace
the original feature matrix to complete the pattern recognition problem of dance motion
imagination. According to the maximum interval theory of SVM, RSMM regards the
pattern recognition problem as the minimum maximum interval with regular term:

Min
W,b

T∑
t=1

1− yt[tr(W
TLt) + b]+ + λ1||W ||∗ +

T∑
t=1

(λ2||Lt||∗ + λ3||Lt||1) (25)

Where, W and b represent the classification hyperplane and bias of the two categories
of dance motion imagination. λ1||W ||∗ represents the regular term of hyperplane pair
optimization. λ2||Lt||∗ represents that the address noiseless eigenmatrix adopts kernel
norm for the regular term of the optimization function. λ3||Lt||1 represents the regular
term of the noise characteristic matrix against the optimization function, using the l1-
norm.
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Since this optimization problem cannot be directly transformed into a vector, the opti-
mization process of SVM cannot be adopted, and there are 4 variables and the joint min-
imization problem of kernel norm and norm, so the iterative optimization process with
alternating optimization directions can only be adopted. In the RSMM solution process,
the interval is rewritten as:

h(W, b, Lt) = 1− yt[tr(W
TLt) + b]+ (26)

The hyperplane regular term is rewritten as W = Z, then we introduce augmented
Lagrange multiplier V , Xt ∈ Rd1×d2 , the augmented Lagrange function of Equation (25)
can be given to solve the optimization problem with restrictive conditions:

h(W,Z, b, Lt, St, V,Mt) =

T∑
t=1

h(W, b, Lt) + λ1||Z||∗

+ tr[V T (Z −W )] +
µ1

2
||Z −W ||2F

+

T∑
t=1

λ2||Lt||∗ + λ3||St||1

+

T∑
t=1

tr[MT
t (Xt − Lt − St)]

+

T∑
t=1

µ2

2
||Xt − Lt − St||2F

(27)

Where, µ1 and µ2 are the two penalty parameters of the augmented Lagrange multi-
plier respectively, and both are positive numbers. Given appropriate Lagrangian multipli-
ers V, Xt ∈ Rd1×d2 and the corresponding penalty parameters µ1 and µ2 (large positive
numbers), the Lagrangian multipliers are augmented to optimize Equation (27) by iter-
ative optimization in alternating optimization directions, and the minimization result of
Equation (27) is the same as that of Equation (25) with constraints.

3.5. Parameter Optimization

In the minimization function constructed by RSMM, there are three regular term parame-
ters λ1, λ2, λ3, which are usually set as λ1 = 1, λ2 = 0.1, λ3 = 0.01 by default in dance
motion imaginary pattern recognition. In fact, due to the sensitivity of EEG electrodes, the
EEG stability of different subjects is different, and the noise introduced in the acquisition
process is also different. Therefore, it is not reasonable to adopt the same regularization
parameters to correct and optimize the process for all test subjects, and different sub-
jects have regularization parameters more suitable for EEG morphology. Therefore, the
modified whale algorithm is introduced into the parameter optimization of RSMM to pro-
vide more scientific and reasonable regularization parameters for EEG of different test
subjects.
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Whale Optimization algorithm (WOA) is an algorithm proposed by Mirjalili et al to
simulate humpback whale bubble net feeding [28]. This algorithm is essentially a meta-
heuristic algorithm based on swarm intelligence simulation.

A. Surrounding the prey WOA considers prey location as the optimal target or ap-
proximate optimal solution, and individuals in other populations update their positions
based on this process. The mathematical model of this process can be expressed by the
following formula: 

D = |C ×X∗(t)−X(t)|
X(t+ 1) = X∗(t)−A ·D

A = 2ar − a

C = 2r

(28)

Where t represents the number of iterations. A and C represent the coefficient vector.
X∗ is the current best whale position. X is the current whale position. a decreases linearly
from 2 to 0 during iteration. r represents the random number in the interval [0-1].

B. Bubble net attack mode Bubble net attack can be divided into two strategies:
shrink surround and spiral update position.

1)shrink surround.
This is achieved by the a value in the formula. a is reduced from 2 to 0 during the

iteration, and A is a random number in the interval (−a,a), that is, a is a random value in
(-2, 2). When A is set from -1 to 1, the whale’s new position can be defined as anywhere
between the original position and the prey position.

2)spiral update position.
Firstly, the distance between the whale and the prey position is calculated, and then

the spiral equation is established between the two positions to simulate the spiral motion
of the whale: {

X(t+ 1) = D · ebl · cos(2πl) +X∗(t)

D = |X∗(t)−X(t)|
(29)

Where D is the distance between the whale and its prey. b represents spiral shape
constant. l is the random number in the interval [-1,1].

While shrinking to encircle prey, the whale hunts prey in a spiral orbit. In order to
simulate this simultaneous behavior, suppose that there is a probability of 0.5 to make a
choice between shrinking to encircle the prey and the spiral model to update the whale
position, then the mathematical model is as follows:

X(t+ 1) =

{
X∗(t)−A ·D p < 0.5

D · ebl · cos(2πl) +X∗(t) p ≥ 0.5
(30)

C. Hunt for prey Whales look for prey based on each other’s positions. When |A| >
1, the whale position is updated by random selection. The mathematical model is as fol-
lows:
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{
X(t+ 1) = Xrand(t)−A ·D

D = |C ·Xrand(t)−X(t)|
(31)

Where Xrand(t) represents the location of random whales.

3.6. Process of Proposed Method

Finally, the feature matrix is first extracted from the dance motion imaging EEG sig-
nal, the improved whale algorithm is used to obtain the optimal parameters for each test
object, and the RSMM of the optimal parameters is used for pattern recognition of the ex-
tracted feature matrix. In the proposed method, the three parameters λ1, λ2, λ3 of RSMM
initialization vary greatly according to the EEG of different individuals. Since there are
only 4 overlapping ranges, the suitable overlapping ranges of EEG signals from different
individuals can be determined by pre-experiment. However, the value range of the three
parameters of RSMM is:

1 ≤ λ1 ≤ 10, 0.11 ≤ λ2 ≤ 1, 0.01 ≤ λ3 ≤ 0.1 (32)

Therefore, whale algorithm is used to select appropriate parameters for EEG signals
of different subjects. The negative recognition rate of dance motion image is taken as the
fitness function of whale algorithm:

fitness(i) = RSMM(AF − TDEW,L, λ1, λ2, λ3) (33)

Where, i is the number of iterations. fitness(i) is the fitness function. L is the dance
motor imagination task tag.

By minimizing the fitness function of the whale algorithm, the parameters with the
highest recognition rate of each individual EEG signal can be found, and the optimal
recognition parameters of individual dynamic adjustment can be formed. The specific
process of the method in this paper is shown in Figure 1.

The time complexity of the proposed method consists of three parts: feature extraction,
RSMM classifier iterating, WOA to find the optimal parameters, and form a robust pattern
recognition method for supporting matrix machine. Suppose that the training samples are
n EEG matrices of size d1×d2. d1 is the number of electrodes. d2 is the number of signal
sampling points. AF-TDEW generates f frequency bands, and the signal matrix of each
band needs to calculate feature decomposition. The time complexity is as follows:

O(min(fd21d2, fd1d
2
2)) (34)

In the RSMM classifier training iteration process, eigenvalue decomposition of Z and
L should also be calculated, and the time complexity is respectively:

O(min(d21d2, d1d
2
2)) (35)
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Fig. 1. The flow chart of proposed method in this paper
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O(min(nd21d2, nd1d
2
2)) (36)

In addition, RSMM also needs to solve the weight W through quadratic programming,
and the time complexity is O(n2d1d2). AF-TDEW only modifies c1 and c2 parameters on
the basis of WOA. Theoretically, the time complexity is the same as WOA, but the itera-
tive convergence process of parameters reduces the number of iterations for obtaining the
optimal solution of AF-TDEW. Because the number of EEG electrodes and the number of
signal sampling points are usually small, d1 ≪ d2 < 1000. The value ranges of the three
parameters optimized by AF-TDEW are all small. Therefore, assuming that the number
of iterations of RSMM is K1, the iteration number of AF-TDEW is K2, and the number
of whale population is m, the time complexity of the proposed method is:

O(K1(n
2d1d2) +mK2 (37)

4. Experiments and Analysis

4.1. Data Set and Preprocessing

In this paper, BCI Competition II dataset III exercise imagination dataset is selected,
which records 300 random left and right hand exercise imagination experiments of a nor-
mal female subject. Some samples are shown in figure 2. 150 experiments are selected in a
random way as the training set and the remaining 150 experiments as the test set [29]. The
training set consists of 75 left hand visuals and 75 right hand visuals. During the whole
collection process, the EEG signal is recorded at the sampling frequency of 128 Hz, and
the band pass filtering is performed at 0.5-30Hz. The time flow of each experiment in the
process of data acquisition is shown in Figure 3.

The duration of each experiment is 9s, and there will be 2s preparation time after the
beginning of the experiment. At the beginning of the third second, there will be a short
sound indicating that the subjects are about to perform the dance motion imagination task,
and at the same time, the screen shows a cross ”+” lasting 1s. From the fourth second, an
arrow will appear on the screen, and the subjects drags the feedback bar to move in the
direction indicated by the arrow through motion imagination. And it holds until the end
of the ninth second.

There are regular electrical changes in the motor sensory cortex of the brain when
people imagine body movements. When the subjects imagined unilateral limb movement,
the intensity of µ rhythm (8-12Hz) in the contralateral cortex decreased, while the in-
tensity of β rhythm (12-25Hz) in the ipsilateral cortex increased. These are called Event
Related Desynchronization (ERD) and Event Related Synchronization (ERS) phenom-
ena. These two phenomena are important basis for distinguishing different types of EEG
signals, among which time-frequency domain analysis is one of the most efficient analysis
methods.
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Fig. 2. Samples in dataset

Fig. 3. Time sequence diagram of single dance motion imagination task
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4.2. Experimental Environment and Implementation

In the process of dance motor imagination paradigm, EEG extraction of dance motor
imagination is concentrated in the time range of 3-6s, and 3.5-6s time period is selected
for pattern recognition of dance motor imagination when verifying the method. We split
the data set in two sets: Dataset 2a and Dataset 2b. Dataset 2a data sets have 4 labels. OVA
is used for pattern recognition to compare one category with the other three categories.
Dataset 2b data sets have 2 labels and are completed using a common binary classification.

Parameters are set as follows: d1 = 25, d2 = 630. In Dataset 2a n = 288, in Dataset
2b n = 400. Parameters of WOA are initialized as c1 = 2, c2 = 0, w = 1, and the
maximum population number m = 50. The iteration number of RSMM is set to K2 =
500. The iteration number of RSMM is set to K1 = 10 and K2 = 50 in Dataset 2a and
Dataset 2b respectively.

The simulation platform of the experiment is Matlab R2017a with Intel i7-9700 CPU,
64 GB memory and 64-bit Windows 11 operating system. EEG data sets from the BCI
Competition IV are in GDF format and accessed through the Biosig toolbox
(http://biosig.sourceforge.net).

4.3. Experimental Results of Feature Extraction

In order to verify the extraction results of AF-TDEW features, session 1 and session 4
of S6 on Dataset2b data set are taken as examples. Three different overlapping ranges
of anti-aliasing filter A2F=0,1,2,3,4 are set, and AF-TDEW features are extracted after
filter preprocessing. Table 1 shows the best and second-best features of AF-TDEW in five
overlapping ranges.

Table 1. The proportion of the best and second-best features of AF-TDEW in five over-
lapping ranges/%

A2F Best Second-best

0 88.7 89.1
1 89.3 90.2
2 85.6 87.8
3 82.9 83.3
4 78.5 79.4

As can be seen from Table 1, anti-aliasing filtering can affect the features of two-
dimensional empirical wavelet transform, especially the best features and second-best fea-
tures. According to the calculation process of two-dimensional empirical wavelet trans-
form feature, the feature needs to find the feature with the maximum distinction between
the two categories, so as to ensure that the feature can be used to identify different motion
imagination modes to the maximum extent. According to the best features and second-
best features displayed by the two class training sets and test sets, the best features and
second-best features extracted by two-dimensional empirical wavelet transform can be
separated according to the class after anti-aliasing filtering. The separation occurs in both
the training set and the test set. The smaller the overlap range is, the more detailed band
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energy the filter banks can obtain. Therefore, compared with A2F=0,2,3,4, A2F=1 can
distinguish different categories of two-dimensional empirical wavelet transform features
more greatly.

In dance motion image pattern recognition, SVM, RSMM and AF-TDEW+RSMM
are used respectively to compare the extracted features. SVM uses polynomial kernel
function parameters C = 2.5, g = 0.02. RSMM parameter: λ1 = 1, λ2 = 0.1, λ3 = 0.01.

Table 2 and Table 3 show the results of dance motion image pattern recognition of
AF-TDEW features in different classifiers.

Table 2. When A2F=1, recognition accuracy with different classifiers on Dataset 2a/%

Subject SVM RSMM AF-TDEW+RSMM

S1 83.75 84.44 85.11
S2 54.58 49.72 55.99
S3 80.28 86.18 86.49
S4 59.44 53.54 61.27
S5 41.04 41.96 42.92
S6 50.76 51.86 53.24
S7 84.79 85.49 87.92
S8 72.97 71.25 73.38
S9 71.60 69.39 72.84

Table 3. When A2F=1, recognition accuracy with different classifiers on Dataset 2b/%

Subject SVM RSMM AF-TDEW+RSMM

S1 64.55 69.56 73.92
S2 57.90 58.21 60.32
S3 54.55 57.36 59.63
S4 91.42 94.23 96.43
S5 76.42 77.51 76.65
S6 77.36 81.67 83.92
S7 75.80 76.95 77.92
S8 81.12 84.86 87.67
S9 75.81 76.74 78.92

It can be seen from Table 2 and Table 3 that, on the two dance motion imagination
data sets, AF-TDEW+RSMM has higher pattern recognition accuracy.

4.4. Pattern Recognition Result

In order to verify the role of WOA in RSMM parameter optimization, Genetic Algorithm
(GA) [30], Quantum Immune GA (QIGA) [31] and PSO are adopted to conduct com-
parison experiments. The comparison of the four algorithms is carried out on the basis
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A2F=1, and tables 4,5 show the pattern recognition results of RSMM based on the four
algorithms.

Table 4. Recognition accuracy by different parameter optimization methods on Dataset
2a/%

Subject GA QIGA PSO WOA

S1 80.2 81.7 84.1 85.6
S2 54.8 56.4 57.3 58.9
S3 84.7 86.5 87.3 89.6
S4 55.6 57.9 59.1 60.2
S5 48.3 52.7 54.2 55.7
S6 54.5 56.3 58.4 59.1
S7 87.4 89.6 91.1 92.3
S8 74.7 76.9 78.4 80.5
S9 68.7 70.6 72.5 73.5

Table 5. Recognition accuracy by different parameter optimization methods on Dataset
2b/%

Subject GA QIGA PSO WOA

S1 65.4 67.2 68.7 69.2
S2 52.8 54.6 56.4 58.7
S3 56.7 57.1 58.2 59.4
S4 92.1 94.5 96.5 98.8
S5 79.6 81.1 82.1 83.6
S6 77.5 78.9 80.7 82.4
S7 78.3 80.2 81.6 82.9
S8 82.9 84.3 86.2 88.3
S9 76.7 77.1 78.5 79.6

As can be seen from Table 4 and 5, the overall improved WOA better optimizes the
pattern recognition results of RSMM. According to the classification accuracy of 9 sub-
jects in Dataset 2a and Dataset 2b, WOA is superior to GA, QIGA, PSO in parameter
optimization of RSMM classifier.

In addition, in terms of the provided experimental simulation platform parameters,
Table 6 shows the comparison of the running time of the four algorithms on the two
data sets. As can be seen from the table 6, WOA and QIGA need more computing steps
than PSO and GA, thus generating greater time complexity. Compared with QIGA, WOA
not only achieves higher classification accuracy, but also requires more iterations and
corresponding optimization time.

Combined with the above experimental results, using AF-TDEW+RSMM pattern
recognition method, the optimal recognition results on the two data sets are presented
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Table 6. Running time comparison with four algorithms on two data sets/s

Method Dataset 2a Dataset 2b

GA 498.97 2497.87
QIGA 503.78 2519.39
PSO 280.58 1497.49
WOA 519.34 2769.60

in Table 7 and Table 8 respectively. The iteration number of RSMM in Dataset 2a and
Dataset 2b is set to 10 and 50 respectively.

Table 7. The optimal recognition results of the proposed method on Dataset 2a

Subject Training time/s Test time/s Best accuracy/%

S1 98.67 17.68 86.53
S2 242.70 40.63 54.33
S3 80.24 14.04 87.32
S4 203.40 37.21 60.37
S5 201.03 35.18 48.26
S6 95.57 16.07 56.19
S7 198.84 35.30 89.96
S8 195.31 32.86 74.42
S9 105.87 17.01 70.67

Table 8. The optimal recognition results of the proposed method on Dataset 2b

Subject Training time/s Test time/s Best accuracy/%

S1 78.20 44.11 70.74
S2 87.31 51.71 57.61
S3 83.71 51.34 57.62
S4 11.77 5.21 96.86
S5 164.25 72.38 83.24
S6 63.92 39.74 79.49
S7 142.84 64.73 76.99
S8 11.61 4.99 88.24
S9 75.38 41.14 78.86

It can be seen from the statistical data in Table 7 and Table 8 that the classification
accuracy of Dataset 2a and Dataset 2b is greatly improved. When the sample size is 288
(Dataset 2a) and 320(Dataset 2b), the ratio of training time to testing time is about 6
times. The training time and test time of the proposed method are relatively stable, which
is suitable for the application scenario of brain-computer interface. The influence time is
only affected by different overlap parameters.
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In order to compare the proposed method, the optimal recognition results of the pro-
posed method are compared with other state-of-the-art methods including MSCNN [32],
CNN-LSTM [33], DANN [34], and LFFN [35]. Table 9 shows the optimal recognition
accuracy of each method. Table 10 shows the p-value values of the new method in this
paper and other methods.

Table 9. The optimal recognition results of each method/%

Method Dataset 2a Dataset 2b

MSCNN 66.58 74.79
CNN-LSTM 68.38 77.23
DANN 68.69 77.63
LFFN 69.84 78.21
Proposed 75.49 79.87

Table 10. The p-value results of each method

Method Dataset 2a Dataset 2b

MSCNN 0.862 0.986
CNN-LSTM 0.778 0.845
DANN 0.729 0.763
LFFN 0.684 0.541
Proposed p¡0.01 p¡0.01

As can be seen from Table 9 and Table 10, the pattern recognition accuracy of this
method is higher than that of other methods on Dataset 2a and Dataset 2b. In fact, deep
learning methods require a large number of samples and training calculations, and are not
applicable in the field of brain-computer interfaces. The proposed method requires only a
small amount of samples and computation, and can obtain the pattern recognition results
of motion imagination similar to deep learning, which has wider applicability in the appli-
cation field of brain computer interface. Compared with TSVM, which needs to solve the
optimization problem of two SVMS, RSMM only needs to solve the optimization prob-
lem of one SMM, and the calculation amount in the optimization calculation process is
significantly reduced. Therefore, the proposed method has better practicability in motion
image pattern recognition.

5. Conclusions

In this paper, the non-stationary and nonlinear high-dimensional characteristics of the
dance motion image EEG signals are analyzed, and the anti-aliasing filtering strategy
and parameter optimization method are proposed to achieve pattern recognition of the
dance motion image EEG signals. In view of the low spatial resolution of the origi-
nal EEG signal, the anti-aliasing filtering process can ensure the better resolution of the
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two-dimensional empirical wavelet transform features. In addition, according to the vari-
able EEG distribution of different subjects, AF-TDEW can automatically provide suitable
RSMM parameters for different EEG distribution for pattern recognition. Compared with
traditional methods, the proposed method can improve the recognition accuracy of dance
motion imagination. Compared with the deep learning methods, the proposed method
achieves almost the same recognition accuracy and requires fewer computational samples
and resources, which is more suitable for the application of BCI in the actual environment.
The future work will focus on applying the proposed method to actual MI-BCI, further
discussing the feature extraction and pattern recognition results of the proposed method
according to actual experience, and updating the method and parameters according to the
results to make it more suitable for actual application environment.
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