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Abstract. This research paper presents an innovative solution to address the chal-
lenges of poor detail detection effectiveness and prolonged training time in image
segmentation. The proposed approach leverages the Adaptive Attention Multiscale
Convolution Network (AAMC-Net), incorporating a multi-scale dilated convolu-
tion VGG L network for feature extraction and a deconvolution method for image
segmentation. Extensive experiments demonstrate the superior performance of the
proposed algorithm concerning intersection over Union (IOU), accuracy, precision,
recall, F1, average training efficiency, and segmentation efficiency when compared
to several traditional algorithms. On average, the proposed algorithm achieves re-
markable improvements of 3.9%, 3.1%, 1.7%, 4.9%, 17.9%, 14.8% ,and 20.2% in
these metrics. Moreover, the enhanced algorithm exhibits notable advantages in de-
tail processing and real-time image segmentation detection.

Keywords: Image crack segmentation, Convolutional neural network,VGG L, At-
tention mechanism.

1. Introduction

As a major infrastructure construction center, China has built a road network spanning
6 million kilometers by 2022 [2]. Effective road damage detection is crucial for ensur-
ing road safety. Road cracks are early indicators of pavement deterioration [9]. Manually
extracting cracks based solely on workers’ experience and subjective judgments is ineffi-
cient and costly. Rapid and precise road crack detection is vital for reducing road main-
tenance expenses, enhancing driving safety, lowering fuel consumption, and prolonging
road lifespan [27]. As a key technique for crack detection, effective crack segmentation
can advance crack detection technology to some extent.

With the fast evolution of computer processors, image processing and computer vi-
sion have been extensively applied in crack segmentation, including threshold-based road
crack extraction, morphological detection, region segmentation, and edge detection meth-
ods [12] [16]. Thresholding techniques like Otsu’s method and histogram thresholding,
despite being simple and fast, are prone to environment and illumination effects, result-
ing in poor performance on images with blurry crack edges. Morphological methods such
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as erosion and dilation, multistructural and multiscale mathematical morphology, though
effectively suppressing noise interference and achieving good detection with fast com-
putation, struggle with detailed segmentation. Region-based crack segmentation methods
like watershed and region growing enable automatic segmentation but perform poorly on
faint and tiny cracks, requiring enhancement algorithms to suppress noise. Common edge
detectors like Sobel, Roberts, gradient operators, Laplacian operators, Marr and Canny,
though easy to implement and fast, are sensitive to noise due to template size and direction
limitations.

With the development of artificial intelligence, deep learning and convolutional neural
network (CNN) technologies have become a research trend for applying image crack seg-
mentation. Models including FCN [34] [10], UNet [35], and UNet++ [33]have improved
crack segmentation accuracy. However, these models have drawbacks like large compu-
tational loads and many network parameter settings, making them less ideal for real-time
detection.

The shortcomings in fine-grain crack segmentation and the absence of real-time de-
tection capabilities are pressing issues that directly impede advancements in intelligent
crack detection systems. The VGG neural network is notable for its minimal computa-
tional demands and swift processing speeds, making it a comparatively lightweight model
apt for rapid image analysis [23]. Attention mechanisms facilitate end-to-end learning,
thereby aiding in the interpretation and understanding of data. When amalgamated with
neural network models, these mechanisms markedly improve the precision of segmenta-
tion networks, demonstrating exceptional efficacy in image detection tasks [18]. More-
over, the Convolutional Block Attention Module (CBAM) enhances feature extraction in
convolutional layers, accentuating key image information and excelling in local texture
extraction. Dilated convolutions maintain spatial resolution whilst effectively capturing
a broader contextual scope, all without augmenting the number of parameters or com-
putational complexity. Consequently, this study aims to refine the VGG neural network
by leveraging the benefits of CBAM and dilated convolutions to develop the AACM-Net
model. The objective is to optimize the segmentation of crack details whilst concurrently
reducing the time required for crack detection, thereby elevating the overall accuracy of
segmentation.

2. Related Work

As the country places greater emphasis on intelligent transportation systems, the focus
has shifted towards intelligent detection of road cracks. Image processing, particularly
digital image processing, has witnessed significant advancements in crack detection [17].
Notably, researchers like Xiu et al. [31]proposed using the Sobel operator and CV model
for image edge detection to address uneven gray image segmentation. Similarly, Jiang
et al. [11] employed adaptive thresholding to extract crack edges and effectively miti-
gate noise interference. However, challenges persist due to complex lighting conditions,
background variations, and other external factors, leading to suboptimal results.

With the rapid advancement of processors, artificial intelligence and computer vision
have increasingly come to the fore in the digital economy era. Deep learning and con-
volutional neural networks point the way forward for road crack detection. Notably, like
J.Long et al [15]utilized a semantic segmentation technique using a Fully Convolutional
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Network( FCN8s ). The FCN8s approach is quite adaptable, capable of handling images
of any dimension. It streamlines the training regimen by producing classification labels in
just one forward pass, enabling seamless training and prediction from start to finish. How-
ever, it’s worth noting that this method demands a lot of computational power and falls
short when it comes to detailing the textures of smaller objects. To address this, Dung et
al. [4] proposed an FCN-based automatic crack identification algorithm, employing con-
volutional layers instead of fully connected layers to classify images of any scale. How-
ever, FCN’s inefficiency and limited receptive field hinder it from capturing global and
detailed information effectively. Further, Sun et al. [24] used a hybrid approach combin-
ing multi-resolution features with Transformers for crack semantic segmentation(Multi-
Transformer). The method use a global receptive field for scene understanding and in-
corporates Transformer networks for semantic segmentation, overcoming the limitations
of CNNs’ small receptive fields. However, the use of Transformers and multi-resolution
features increases the model’s computational complexity.

At the same time, Wang et al [29] proposed an efficient road surface crack segmenta-
tion algorithm using a deep learning encoder-decoder structure. They used a pre-trained
DenseNet121 as the encoder to extract road features and a global attention upsampling
module as the decoder for crack segmentation. Although the method effectively improves
training efficiency, it is highly dependent on the quality and quantity of the training data.
The use of multiple attention modules and a pre-trained DenseNet121 adds to the model’s
complexity. Lin et al [13] used a deep semantic segmentation method combining Con-
ditional Random Fields (CRF) and CNN (CRF-CNN) to capture contextual area infor-
mation and background information for crack segmentation. The inclusion of contextual
information enhances the model’s image understanding capabilities but also increases its
complexity and computational costs. Building on this, they introduced multi-scale inputs
and sliding in pyramid pooling layers the following year to capture context for patch-
background [14], improving semantic segmentation accuracy. While the introduction of
efficient training methods somewhat optimizes the CRF and CNN architecture, the model
remains complex and resource-intensive.

Furthermore, Fan [6] and his team introduced a road crack detection algorithm based
on deep learning and adaptive image segmentation. The algorithm trains a deep convolu-
tional network to determine whether an image contains cracks and uses adaptive thresh-
olds to extract road surface cracks. Although the method performs well in extracting var-
ious types of road cracks, it requires substantial computational resources and has a long
training time.

To overcome the limitations of existing methods and enhance crack detection accu-
racy, we propose a novel algorithm based on AAMC-Net image. The algorithm lever-
ages the CBAM hybrid domain attention mechanism to strengthen global and local image
features. Furthermore, we employ multi-scale dilated convolutions VGG L for feature
extraction and utilize deconvolution for fracture detection. The entire model training is
based on MSELoss Adam for adaptive learning, optimizing performance and efficiency.
Through extensive experiments, we demonstrate the superior capabilities of our AAMC-
Net based algorithm in intelligent road crack detection, providing an innovative solution
for infrastructure maintenance and safety enhancement.
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3. Research Method

The CBAM attention mechanism is a lightweight, general-purpose module that can be
seamlessly integrated into convolutional neural network architectures for end-to-end train-
ing and the capture of useful information. VGG achieves learning by deepening the net-
work with multiple nonlinear layers, albeit with fewer network parameters. In this study,
we use the VGG network as the foundational structure and propose a multi-scale dilated
convolution variant, termed VGG L. This is combined with the CBAM attention mech-
anism to construct the AACM-Net network model specifically designed for road crack
segmentation. The architecture of this model is depicted in Figure 1.

Fig. 1. Algorithm flow chart

A deep learning-based road crack image segmentation model is designed, with its
training process illustrated in Figure 1. The initial step involves setting model parame-
ters, including the size of the dataset, the number of training iterations, batch size, and
the initialization of the learning rate. The model’s input, crack images, first pass through
the CBAM module, which enhances key features of the image using channel and spatial
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attention mechanisms. Subsequently, feature extraction is performed using the VGG L
model, which employs multi-scale dilated convolutions to capture image details across
different scales. Following feature extraction, the model reconstructs and segments fea-
tures through a series of deconvolution and feature fusion steps (Deconv&ADD). At the
end of each training cycle (Epoch), the model evaluates the segmentation effectiveness
by calculating the Mean Squared Error (MSELoss) and adjusts parameters based on the
loss using the Adam optimizer. This iterative process continues until the predetermined
number of training iterations is reached, at which point the model outputs the final crack
segmentation results, completing the training process. This training approach ensures that
the model effectively learns to segment cracks from complex backgrounds, enhancing the
accuracy and robustness of segmentation through the attention mechanism and multi-scale
feature fusion. In this way, the model is equipped to handle crack detection challenges
across various road surfaces and lighting conditions.

3.1. Image Processing

CBAM based on hybrid attention mechanism is used to preprocess the input crack feature
image to enhance the global and local texture feature information. The hybrid attention
mechanism based CBAM [30]model implements the image feature enhancement process
by processing global and local texture features in channel features and spatial features. It
consists of convolution of channel and spatial attention mechanisms, the overall process
is shown in Figure 2.

Fig. 2. Overall CBAM flow chart

The input A is initially processed through a channel attention module, resulting in
a feature map that is element-wise multiplied (denoted as ⊗) with the input A to pro-
duce a feature map F. This process enhances features associated with specific channels.
Subsequently, the feature map F undergoes further processing through a spatial attention
module, and the resulting feature map is again element-wise multiplied with F, leading
to the final output C. This illustration demonstrates how channel and spatial attention
modules are sequentially employed to enhance the network’s capacity to represent input
images effectively.

This study integrates a Combined Channel and Spatial Attention Mechanism (CBAM)
to enhance the precision of crack segmentation in images. As shown in Figure 2, the input
image A initially undergoes processing through a channel attention module. This module
focuses on the importance of different channels within the image, generating a feature
map. The primary goal of this step is to highlight feature channels that are most relevant
for crack detection.After processing by the channel attention mechanism, the feature map
is element-wise multiplied with the original input A, resulting in the feature map F. This
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approach applies channel weights to the original features, intensifying the focus on signif-
icant features. Subsequently, the feature map F is directed to a spatial attention module,
concentrating on the crack regions within the image. The feature map, post spatial at-
tention processing, is element-wise multiplied with the input F, further enhancing spatial
focus. Ultimately, the input A, after undergoing channel and spatial attention weighting,
transforms into the output C. This output contains a richer and more detailed representa-
tion of crack features, crucial for the following steps of crack segmentation. The model is
capable of more precise crack detection and segmentation, particularly in complex crack
images. Notably, throughout this process, the size of the output features aligns with that
of the input features, maintaining dimensions of 214 × 214. The computational method
for the CBAM cross-domain attention mechanism is presented in formula 1.

C = CBAM(A) = SAM(CAM(A)⊗A)⊗ (CAM(A)⊗A) (1)

Among them, both C and CBAM(A) are the results of CBAM mixed domain atten-
tion mechanism operation, A is the original crack image, CAM is the channel domain
attention operation mechanism for crack image processing, SAM is the spatial domain
attention mechanism operation for crack image processing, ⊗ is the matrix multiplication
operation, and the matrix multiplication operation formula is shown in formula 2.

Fik×jl = Ai×j •A′k×l (2)

Among them,the symbol • signifies element-wise matrix multiplication, Ai×j is the
matrix A whose pixel size is i × j, A′k×lis the matrixA′ whose pixel size is k × l, and
Fik×jl is the result matrix F whose pixel size is ik × jl.

Channel Domain Attention Mechanism The Channel Attention Mechanism (CAM)
enhances the capability for global feature extraction in crack images by evaluating the
importance of each channel feature map. It achieves this by compressing and reducing
dimensions in the spatial domain to obtain the channel attention map. The computational
process is illustrated in Figure 3.

Fig. 3. CAM calculation flow chart

As can be seen from Figure 3, the original fissure image A is fed into the channel
attention mechanism model, processed by the maximum pooled layer and the average
pooled layer respectively to obtain two different feature graphs, which are then fed into the
MLP neural network [25] for feature vector weight assignment. The whole process adopts
the consistency principle, and finally obtains the global texture enhancement feature map
through Sigmoid activation function [28]. The calculation is shown in formula 3.
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A′ = CAM (A) = Sigmoid (MLP (AvgPool (A)) +MLP (MaxPool (A))) (3)

Sigmoid represents Sigmoid activation function, AvgPool represents average pool-
ing operation, MaxPool represents maximum pooling calculation, and MLP represents
MLP neural network, which is used to extract attention map in CAM operation, essen-
tially convolves two convolution layers with 1 convolution core with a ReLU activation
layer [28], as shown in formula 4.

MLP (pool) = Conv(ReLU(Conv(pool)) (4)

Where is pool stands for pooled input, Conv for convolution, and ReLU for ReLU
activation. The global texture feature image processed by channel attention is convolved
with the original feature image to get the feature map F .

Spatial Attention Mechanism The spatial attention mechanism (SAM) enhances the
ability of the model to extract local texture features by obtaining the importance of dif-
ferent regions in the feature map. SAM compresses the channel dimension of the feature
graph to obtain the attention graph in the spatial domain. The calculation flow is shown
in Figure 4. As shown in Figure 4, the maximum and average pooled layers are still used

Fig. 4. SAM calculation process

in the input of Feature Diagram F into the spatial attention mechanism, resulting in two
features with the same size and number of channels. Then, the two feature images are
stitched together and processed by Sigmoid activation function after convolution opera-
tion of 7× 7 to obtain the local texture enhanced crack image. As shown in formula 5.

B = SAM (F ) = Sigmoid
(
Conv7×7 ([AvgPool (F ) +MaxPool (F )])

)
(5)

Of which, Conv7×7 represents the convolution operation with a convolution nucleus
size of 7× 7.

3.2. Crack Image Feature Extraction

The study uses the VGG 16 [23] deep neural network as a base model, improves it, and
proposes a multiscale null convolution VGG L neural network for crack image feature
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extraction. The network retains the first 10 convolutional layers and 4 pooling layers of
VGG 16, and connects 1 layer of CBAM mixed-domain attention mechanism and 1 layer
of dual-scale null convolution. The architecture lightens the VGG 16 model while en-
hancing the feature focusing ability of the network, the contextual information capturing
ability, which can better extract the crack detail information and improve the recognition
accuracy. The architecture is shown in Figure 5.

Fig. 5. VGG L network architecture for multiscale void convolution

As shown in Figure 5, the network sequentially processes the input image through
convolutional layers, max pooling layers, and dilated convolutional layers. The mid-
section of the network includes convolutional layers with Batch Normalization (BN) and
the ReLU activation function, along with an attention module (CBAM), for further refine-
ment of features. After a series of convolutional and dilated convolutional layer process-
ing, features are ultimately fused through an ADD operation, resulting in the generation
of the output feature map. In the figure, the content within brackets [] indicates the size
of the feature map, numbers denote the quantity of feature layers, and arrows of different
colors represent various operations within the network.

The study inputs images of 214 × 214 dimensions into the VGG L model, where
they first undergo four feature extractions and one feature enhancement. The feature map,
post-enhancement, is then subjected to a fifth feature extraction and one feature fusion.
The first and second feature extraction processes are identical, involving two rounds of
conv3*3+ReLU operations followed by one Maxpool operation. The third and fourth fea-
ture extractions are similar, consisting of three conv3*3+ReLU operations and one Max-
pool operation each. The fifth feature extraction involves dual-scale dilated convolution,
where the feature map enhanced by CBAM undergoes convolution operations at dilation
rates of 1 and 2 simultaneously. After the dilation rate 1 convolution, the feature map un-
dergoes two conv3*3+BN+ReLU operations, followed by one conv1*1+BN+ReLU oper-
ation to generate the feature map. Conversely, the feature map post dilation rate 2 convo-
lution first undergoes one conv3*3+BN+ReLU operation, then two conv1*1+BN+ReLU
operations to generate its feature map.

For feature fusion, the two feature maps obtained from the fifth feature extraction,
being of equal size, are fused by adding corresponding width and height dimensions. This
results in the final feature map from the feature extraction process.
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The first feature extraction is the same as the second feature extraction. After two con-
volution operations with a 3× 3 kernel and padding of 1, followed by a ReLU activation
operation [28], the convolution kernel is pooled with a 3 × 3 size, a stride of 2, and a
kernel of 2. The computation is as shown in formula 6.

Ci = MaxPool(ReLU (Conv (ReLU (Conv (Ci−1)))) i ∈ (1, 2) (6)

Among them, Ci−1represents the input fracture data set image, i represents the num-
ber of feature extraction processing times, Ci represents the feature extraction result, and
when i = 1, C0 is C, represents the fracture image after CBAM feature enhancement.

The third and the fourth feature extraction processes are the same, consisting of three
layers of convolution core size is 3 × 3, padding 1 and ReLU activation, and the feature
extraction results are obtained by the maximum pool size is 3× 3, step is 2 and kernel is
2, as shown in formula 7.

Ci = MaxPool(ReLU (Conv(ReLU(Conv (ReLU (Conv (Ci−1))) (i ∈ (3, 4))
(7)

After processing, the feature extraction results of crack map were obtained C1, C2, C3

and C4. The fourth feature extraction result C4 is further enhanced by the CBAM mixed
domain attention mechanism module to solve the problem of fine-grained information
loss.

Dilated convolutions [20] keeps the image size constant while enhancing the recep-
tive field of the convolution neural network. Double-scale dilated convolutions is used to
achieve the fifth feature extraction to reduce the loss of context information and improve
the accuracy of crack recognition. The processing involves a convolution operation with
a void ratio of 1 and a void ratio of 2 and three ordinary convolution operations, as shown
in Formula 8.

DCγ(x, y, n, γ) = Conv(Conv(Conv(DConv (x, y, n, γ)))) (8)

Among them, DCγ(x, y, n, γ)represents the improved multi-scale convolution func-
tion, γ represents the void ratio, determines the sampling interval of the convolution ker-
nel, x and y represent the length and width of the input crack image respectively, and
n represents the edge length of the convolution core. DConv represents the convolution
operation of holes, the calculation is shown in formula 9.

DConv (x, y, n, γ) =

x∑
n

y∑
n

I [x+ γn, y + γn]w [n, n]) (9)

Among them, DConv represents the dilated convolutions operation, w is the void
filter, I is the input image, and γ-1 represents the number of holes.

Dilated convolutions enhances the effect of image extraction by enlarging the recep-
tive field of the convolution process without any additional parameters. The receptive field
computation is shown in formula 10.

G = (m+ 1)(m− 1) +m (10)

Among them, m represents convolution nucleus size, G represents receptive field size.
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In this paper, the dilated convolutions conv+BN+ReLU is composed of convolution
core = 3×3, padding = 1, stride = 2. The image is processed by convolution with voidage
1 and voidage 2, respectively, and two features are extracted after three ordinary convo-
lution operations. The convolution layer is composed of conv+BN+ReLU. Among them,
the void ratio is 1, and the convolution parameter of the first two convolution treatments
is 3 × 3, padding = 0, stride = 1. The convolution parameter of the third convolution is
convolution kernel =1× 1, padding = 0, stride = 1. When the void ratio is 1, the first con-
volution parameter is convolution kernel =3× 3, padding = 0, stride = 1. The convolution
parameters of the second and third convolution are convolution kernel =1× 1, padding =
0, stride = 1. Because the sizes of the two feature maps are the same, the weighted opera-
tion is used to fuse the two feature maps. The result is the fifth feature extraction graph. ,
as described in formula 11.

MDC =
2∑

r=1

DCγ (11)

Among them, MDC is the fused crack feature extraction result.

3.3. Image Segmentation and Dimension Reduction

In order to reduce the channel dimension and improve the resolution of the feature map,
the fused deconvolution and skip connection methods are used for five deconvolution
operations [7] [8]. In deconvolution, which consists of ConvTanspose+BN+ReLU, the
deconvolution layer parameter is set to convolution kernel =3 × 3, padding = 1, stride =
2, out padding = 1. The output size of the deconvolution is calculated as Formula 12.

o = s (i− 1) + 2p− k + 2 (12)

Here, i represents the input size, k the convolution size, p the boundary extension, s
the convolution size, and o is the output size.

The feature fusion feature map MDC is subjected to the deconvolution process. The
processed feature map is skip connect with the first pooled processed feature map ,to
achieve feature fusion. Then skip connect the output feature map with the second pooled
feature map to realize feature fusion. According to this idea, sequential deconvolution
processing and skip connect with the first four pooling results C1,C2,C3,C41 to complete
the image feature fusion. Because the dimension and channel dimension of the deconvo-
lution feature map are the same as those of feature extraction. The method of wide-high
correspondence addition is used to fuse the image features, and the MDC of fracture
extraction is obtained. Although MDC has the same resolution as the input image, the
channel dimension is much higher than the input image. Convolution reduction is used
to reduce the high dimensional feature map to 3 dimensions. The number of convolution
kernels is equal to the number of low-dimensional images, that is, the width and height of
convolution kernels are 1. Thus obtains the final image segmentation result Y.

3.4. Merging MSELoss and Adam Parameter Optimization

SGD gradient descent learning rate optimization algorithm [19] has a slow convergence
rate and local optimal solution. The model learning process was optimized using a fusion
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of MSELoss and Adam methods. First, the loss value is calculated using MSELoss, and
the loss function is used to calculate the mean square deviation, as shown in Formula 13.

MSELoss (x, y) = (x− y)
2 (13)

Where x is the forecast and y is the label. During the model training process, MSELoss
loss values are calculated every iteration and the results are iterated using the Adam adap-
tive learning rate algorithm [1] [26]. The handling steps are as follows:

1. Initialization. The initial chemical accessibility is θ ,the step length is α ,and the
initialization matrix estimates the exponential rate of decay as β1,β2. β1,β2 as a value
of [0,1]. Initialize the numeric constant δ, initialize the number of updates t = 0, and
compute the MSELoss.

2. Gradient calculation. MSELoss is gradient computed to get the current loss gradi-
ent, as shown in Formula 14.

g = ∇MSELoss (14)

Where g represents the MSELoss gradient, ∇ is the gradient calculation symbol.
3. Calculation of biased moment estimation. The second moment estimate is obtained

by using the partial first moment estimate to calculate the partial first moment estimate of
the gradient as shown in formula 15.

s = β1s+ (1− β1) g (15)

Where s represents the partial first moment estimate of the gradient, and β1 repre-
sents the exponential decay rate of the gradient partial first moment estimate.The partial
first moment estimation of the gradient is introduced into the formula of partial second
moment estimation to correct the influence factor. The calculation is shown in formula 16.

r = β2r + (1− β2) g ⊙ g (16)

Among them, r represents gradient second moment estimation, β2 represents gradient
second moment estimation exponential decay rate.

4. Deviation correction. The first moment estimation is modified to obtain the devia-
tion coefficient. The calculation is shown in formula 17.

r̂ =
r

1− βt
2

(17)

The ŝ represents the correction of the partial first moment deviation of the gradient,
and t represents the number of iterations of the learning rate.The second-order deflection
coefficients are obtained by revising the second-order moment estimation. The calculation
is shown in formula 18.

r̂ =
r

1− βt
2

(18)

Among them, r̂ represents the correction of deviation of gradient partial second mo-
ment.

5. Update learning rates. The first-order moment estimation correction coefficient and
second-order moment estimation correction coefficient are incorporated into the learning
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rate updating formula to calculate and update the learning rate.The calculation is shown
in formula 19.

θi = θi−1 − α
ŝ√
r̂ + δ

(19)

Where θi is the updated learning rate, θi−1 is the previous learning rate. After pro-
cessing, the corresponding learning rate is obtained, which is used for the next training,
and the whole process is repeated until the end of the training.

4. Experimental Results and Discussion

Research using AMD EPYC 7302 16-Core Processor CPU,
NVIDIA GeForce RTX 3090GPU computing power resources. The development uses
the Pytorch deep learning framework and the Numpy framework.

4.1. Data Source

The study used self-collected data, CFD datasets [21] [3],CRACK500 [32] and GAPs384 [5]
datasets, a total of 5800, including different lighting, different scenes. In order to reduce
the difference caused by the external environment, the scale normalization is carried out.
Labelme is used to annotate the data, and the annotation information includes background
and crack. Because of the deficiency of the public dataset and the self-mining dataset, the
existing dataset is expanded by image augmentation. By means of rotation, mirroring, salt
and pepper noise, Gaussian noise, random noise, etc. [22], the original data set is enlarged
to 12800 images, and all image sizes are set to 224× 224pixel.

Salt and pepper noise and random noise were added to the data augmentation, respec-
tively 1.5% and 1%. Random Gaussian noise is used for noise amplification, as shown in
Formula 20.

f (x) =
1√
2πσ

exp

(
− (x− µ)

2

2σ2

)
(20)

Among them, µ represents mean, σ represents standard deviation, µ = 0, σ = 0.05.
After processing, the experimental dataset is obtained. The dataset sample is shown in
Figure 6.

Figure 6shows that A is the original figure, B is the random noise image, C is the salt
and pepper noise image, and D is the Gaussian noise image.

4.2. Analysis of Results

Loss rate analysis of different algorithms The training parameters of UNet networks [35],
UNet++ networks [33], FCN8s networks [15], CRF-CNN [13], Multi-Transformer [24]
are shown in Table 1.

Based on the parameters set in Table 1, the model training of UNet networks [35],
UNet++ networks [33], FCN8s networks [15], CRF-CNN [13],Multi-Transformer [24],
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Fig. 6. Partial data set

Table 1. Training Parameters Configuration Table

Parameter Name Value

InputSize [3,224,224]
OutputSize [3,224,224]
DataSize 12800
BatchSize 2
Epoch 16
LearningRate 10−6

Max iteration 102400

and the training loss process of several algorithms is analyzed. The loss curve is shown in
Figure 7.

As Figure 7 shows,the image illustrates the diminishing trend of iteration losses dur-
ing the training process for six models: AAMCNet, UNet, Multi-Transformer, U-Net++,
FCN8s, and CRF-CNN. It uses the horizontal axis to denote the number of iterations and
the vertical axis to represent the loss rate. This effectively showcases each model’s effi-
ciency in reducing losses over successive training iterations. In the training process of the
six models, with the increase of the number of iterations, the loss value decreases rapidly
at first, and then decreases gradually, and finally approaches convergence. The initial loss
of AAMC-Net model is the lowest, only 0.29. This is due to the use of CBAM mixed
domain attention mechanism twice, which can more effectively focus the important fea-
tures of crack image and enhance the network feature extraction ability. In addition, the
AAMC-Net model converges nearly 10000 iterations, and AAMC-Net converges fastest.
This is due to the use of lightweight VGG L networks and the use of Adma’s MSELoss
adaptive function in model training, which adaptively adjusts the learning rate and helps
the model find the minimum value of the loss function faster.

Subjective Evaluation Analysis In the same experimental environment, the image was
segmented using improved Sobel [31], adaptive threshold algorithm [11], UNet [35],
UNet++ [33], FCN8s [15], CRF-CNN [13],Multi-Transformer [24] and AAMC-Net net-
work respectively. The segmentation effect was shown in Figure 8 and Figure 9.



1448 Wang Xiaofang et al.

Fig. 7. Loss ratio chart

An analysis of algorithm performance was conducted using subjective human evalu-
ation. As shown in Figures 8 and Figures 9, two digital image processing methods out-
perform the CFD dataset in image segmentation. The CFD dataset contains numerous
road surface textures. However, the improved Sobel operator and adaptive thresholding
are highly sensitive, effortlessly capturing subtle variations within the images. In road
crack detection, identifying road surface textures as granular cracks in the CFD dataset
adversely affects the effectiveness of image segmentation.

Within the neural network models, particularly in the segmentation results of UNet,
stemming from the CFD dataset, significant noise is present, which to some extent ham-
pers the segmentation performance. Even though the upgraded version, UNet++, demon-
strates clear crack segmentation results, it struggles in handling image details. This is
attributed to UNet++ filtering redundant information during model training, inadvertently
filtering out crack details. Consequently, UNet++ performs poorly in applications involv-
ing small crack details. While FCN8s progressively integrates Pool3 and Pool4 layers,
thereby effectively retaining some crack details, it still retains a considerable amount of
noise. Although CRF-CNN and Multi-Transformer excel in segmenting image details,
residual noise still impacts the segmentation performance.

In contrast, AAMC-Net effectively mitigates noise interference and simultaneously
captures intricate crack segmentation details. This achievement is owed to the integra-
tion of CBAM during preprocessing and feature extraction stages, enabling the capture
and enhancement of both global and local information. Moreover, the fusion of CBAM
and multi-scale atrous convolution modules for feature extraction facilitates multi-layer
perception of crack features at varying scales, effectively mitigating information loss re-
sulting from pooling. Additionally, this approach mitigates interference from non-crack
information during crack image segmentation processing.
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1.Original drawing 2.Label 3. Improved algorithm 4.UNet++ 5.Muti-Transfomer 6.CRF-CNN
7.FCN8s 8.UNet 9.Improved Sobel operator 10.Adaptive threshold

Fig. 8. shows the segmentation results of the collected data

1.Original drawing 2.Label 3. Improved algorithm 4.UNet++ 5.Muti-Transfomer 6.CRF-CNN
7.FCN8s 8.UNet 9.Improved Sobel operator 10.Adaptive threshold

Fig. 9. shows the segmentation results of the CFD data

4.3. Objective Performance Analysis

The study used improved Sobel [31], adaptive threshold algorithm [11], UNet [35], UNet++ [33],
FCN8s [15], CRF-CNN [13],Multi-Transformer [24] and AAMC-Net network to segment
10 road crack images randomly selected in the validation concentration. After processing,
the processing images shall be evaluated by using cross and merge ratio, accuracy ratio
(Acc), precision ratio, recall ratio and F1 value [36], the processed average results will be
retained to 3 decimal places, as shown in Table 2.

From the table 3, we can see that among the eight comparison algorithm models,
the combination ratio, accuracy ratio, precision ratio, recall ratio and F1 value of the
improved algorithm are the best, 96.310%, 96.379%, 99.550% and 97.008% respectively.
Multitransformer takes second place, and the two digital image processing algorithms
are the worst. The worst of the six models is the Unet network. Compared with the five
network models, the improved algorithm has an average increase of 2.650%, 1.860%,
0.626%, 3.092% and 1.731% respectively.

The AAMC-Net model exhibits superior performance in image crack segmentation,
attributed to the utilization of dual CBAM processes that enhance the crack feature maps
through image strengthening, thereby augmenting the network’s feature capturing capa-
bilities. Additionally, the model benefits from dual-scale atrous convolutions for feature
extraction, where atrous convolutions expand the image’s receptive field. The dual-scale
atrous convolutions effectively capture crack feature information at different scales, en-
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Table 2. Training Parameters Configuration Table

Algorithms IOU Acc Precision Recall F1

AAMC-Net 96.310 96.321 96.379 99.550 97.008
UNet 90.118 91.205 96.134 92.668 94.112
FCN8s 94.014 94.623 95.501 95.486 94.418
UNet++ 94.808 95.812 95.806 97.912 95.542
CRF-CNN 95.163 95.513 95.328 98.116 96.231
Multi-Transformer 95.217 95.826 96.134 98.915 96.532
Adaptive Threshold 93.450 94.685 95.215 98.695 83.115
Improved Sobel 86.650 86.693 86.690 97.195 70.126

compassing local details and global structures, while maintaining robustness against var-
ious interferences. This enhancement amplifies the model’s expressive capacity. Through
analysis of five objective evaluation metrics, the algorithm’s proficiency in crack detail
handling and segmentation performance is once again affirmed.

4.4. Reasoning Speed

In order to verify the real-time detection performance of the algorithm, the real-time per-
formance of road crack processing is evaluated by using a single image crack segmenta-
tion time, the calculation is shown in formula 21.

T =
1

h

h∑
i=1

Qh (21)

Among them, T represents the average time of single image segmentation, h repre-
sents the number of images processed in batches, and Qh represents the time used to
segment the nth image.

The study used UNet [35], UNet++ [33], FCN8s [15], CRF-CNN [13],
Multi-Transformer [24] and AAMC-Net network to train in the same experimental en-
vironment. The training time of six network models is analyzed and the average segmen-
tation time of single crack image after training is compared. The result is 3 decimal places,
as shown in Table 3.

Table 3. Training Parameters Configuration Table

Model AAMC-Net UNet FCN8s UNet++ CRF-CNN Multiscale CRF

Average split time(s) 0.240 0.242 0.256 0.276 0.332 0.344
Training time(min) 241 245 278 306 332 345

As can be seen from Table 4, among the six algorithms, AAMC-Net has the short-
est model training time and average detection time per image, followed by UNet, while
Multi-Transformer takes the most time. When analyzed in conjunction with Table 3, al-
though the training and average detection time of the UNet model are not significantly
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different from those of AAMC-Net, the average accuracy rate of crack segmentation in-
creased by 5.609%. Compared to the most effective Multi-Transformer, the average ac-
curacy of crack segmentation increased by 0.517%, but the time for crack detection and
model training decreased by 30.233% and 30.145% respectively. In real-time scenarios
like road monitoring or instant image analysis, the response speed and accuracy of algo-
rithms are paramount. The efficiency advantage of the improved algorithm is confirmed
through actual model training and random crack image segmentation detection. The time
advantage of the AAMC-Net architecture stems from reducing convolution and pooling
layers in the VGG 16 model and integrating CBAM to optimize the output of traditional
convolutions.

By decreasing the number of convolution and pooling layers in the VGG 16 model,
AAMC-Net significantly reduces computational complexity, leading to a marked decrease
in model training time. This is especially valuable in real-time scenarios, enabling quicker
retraining of the model to adapt to environmental changes like weather or lighting condi-
tions.

The integration of CBAM in the algorithm optimizes feature extraction, focusing more
on key image areas and enhancing crack detection capabilities. The inclusion of this atten-
tion mechanism heightens sensitivity to crack features, maintaining high accuracy even in
complex backgrounds or various crack types.

AAMC-Net, using multi-scale dilated convolutions, captures a broader context with-
out adding extra parameters. This means comprehensive image content understanding
without increasing computational burden, crucial for analyzing images at different reso-
lutions and aiding real-time systems to adapt to diverse input conditions.

The algorithm also simplifies the training process and speeds up model convergence
by automatically adjusting the learning rate with an adaptive MSELoss learning function.
In real-time applications, this translates to rapid transfer training across different task
scenarios, quicker convergence, and reduced model training time.

In experiments, AAMC-Net, compared with other advanced algorithms, displayed
shorter average detection times and higher accuracy in crack segmentation. These re-
sults demonstrate its potential in real-time applications, as it quickly identifies and locates
cracks while maintaining high accuracy. This is critical for applications requiring imme-
diate response, such as monitoring road conditions in intelligent traffic systems or rapidly
identifying and assessing road damage in disaster management systems for swift deploy-
ment of repair work and emergency measures.

4.5. Ablation Experiment

In order to study the effectiveness of the algorithm, the image segmentation of VGG 16,
VGG 10, VGG L, VGG 10 + CBAM and the improved algorithm model were studied un-
der the same experimental environment. The segmentation results are shown in Figure 10,
and the ablation analysis results are shown in Table 4.

The results of ablation experiments in Table 4 show that the average segmentation
time of IOU, ACC, Precision, Recall and fracture images of AAMC-Net is the best.
Compared with the ablation experiment, the VGG 10 fused with CBAM is better than
VGG 10. The results show that CBAM can enhance the ability of image feature extrac-
tion and improve the performance of image segmentation. VGG 10 image fused with
CBAM attention mechanism module has better performance of crack segmentation and
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1.Original image 2.Label Image 3.AAMC-Net Algorithm 4.VGG L 5.VGG 16
6.CBAM+VGG 10 7.VGG 10

Fig. 10. Ablation experimental segmentation

Table 4. Training Parameters Configuration Table

Algorithms IOU Acc Precision Recall F1 Average split time(s) Training time(min)
VGG 16 94.221 94.332 94.618 96.126 95.012 0.271 298
VGG 10 89.112 88.604 88.482 88.909 87.826 0.226 221
VGG L 94.815 95.321 95.212 98.132 96.810 0.235 236
VGG 10+CBAM 94.151 94.214 94.371 95.825 93.712 0.229 230
AAMC-Net 96.25 96.351 96.382 99.532 97.008 0.240 241

less interference in image segmentation. The training time of the model and the aver-
age segmentation time of single image increase little. The results showed that multi-scale
cavity convolution could enhance the receptive field in convolution process. The aim is
to enhance the ability of different size feature extraction and improve the performance of
image segmentation. Compared AAMC-Net with VGG 16, the performance of AAMC-
Net is better than VGG 16. The model training time and detection time are better than
VGG 16. Ablation experiments show that AAMC-Net is robust and optimized based on
VGG 16.

5. Conclusion

In this paper, we have introduced the AAMC-Net convolutional neural network algo-
rithm, which leverages the mixed domain attention mechanism to enhance feature ex-
traction from the feature map. Through the integration of MSE loss and Adam during
global learning and iterative training, the network model achieves improved performance
for road crack segmentation and demonstrates its applicability in various image segmen-
tation domains.

Our algorithm exhibits notable strengths in detail processing, model training, and real-
time detection on single images. It successfully addresses the challenge of road crack
segmentation with promising results. Furthermore, the flexibility of its application to other
image segmentation tasks highlights its potential in broader contexts.
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However, it is essential to acknowledge that the algorithm demands substantial com-
puting resources, necessitating further optimization efforts. Additionally, the algorithm
can only directly process images that conform to the input dimensions, which may not
meet the general requirements of real-time applications. It’s worth noting that there is
still room for improvement in terms of multi-object real-time segmentation, in order to
enhance segmentation efficiency. In the future, we plan to concentrate on optimizing the
algorithm to enhance its computational performance, explore a universal detection archi-
tecture for multi-scale images, all while maintaining its effectiveness.

In conclusion, the AAMC-Net algorithm showcases significant advancements in im-
age crack segmentation detection. As we continue to refine and optimize this approach, we
anticipate its continued relevance and applicability to various image segmentation tasks,
contributing to the advancement of the field.
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