
Computer Science and Information Systems 21(2):569–592 https://doi.org/10.2298/CSIS230803076C

Robust Compensation with Adaptive Fuzzy Hermite
Neural Networks in Synchronous Reluctance Motors

Chao-Ting Chu1 and Hao-Shang Ma2,⋆

1 Chunghwa Telecom Laboratories, Internet of Things Laboratory,
No.99, Dianyan Rd., Yangmei District, Taoyuan City 32661, Taiwan, R. O. C.

chaot@cht.com.tw
2 Department of Computer Science and Information Engineering,

National Taichung University of Science and Technology,
No. 129, Section 3, Sanmin Road, North District, Taichung City 404336, Taiwan, R. O. C.

hsma@nutc.edu.tw

Abstract. In this paper, a robust compensation scheme using adaptive fuzzy Her-
mite neural networks (RCAFHNN), for use in synchronous reluctance motors (SRMs),
is proposed. SRMs have a simple underlying mathematical model and mechanical
structure, but are affected by problems related to parameter variations, external in-
terference, and nonlinear dynamics. In many fields, precise control of motors is
required. Although the use of neural network and fuzzy are widespread, such con-
trollers are affected by unbound nonlinear system model. In this study, RCAFHNN,
based on an adaptive neural fuzzy interface system (ANFIS), was used to bound
motor system model controller algorithm. RCAFHNN can be characterized in three
parts. First, RCAFHNN offers fuzzy expert knowledge, a neural network for online
estimation, and recursive weight estimation. Second, the replacement of the Gaus-
sian function by the Hermite polynomial in RCAFHNN enables reduced member-
ship function training times. Third, the system convergence and robustness compen-
sation of RCAFHNN were confirmed using Lyapunov stability. RCAFHNN amelio-
rates the problems of external load and system lump uncertainty. The experimental
results, in which the output responses of RCAFHNN and ANFIS (adaptive neural
fuzzy interface systems) were compared, demonstrated that RCAFHNN exhibited
superior performance.

Keywords: Synchronous reluctance motors, Lyapunov stability, Robust, Adaptive
control, Neural network estimator, Adaptive laws.

1. Introduction

In recent years, motor control has gained significant popularity [6, 16, 19, 23]. A three-
phase motor is typically supplied by a three-phase AC power source. This means there
are three cables providing power, and each cable’s voltage has a phase difference of 120
degrees. These three phases are referred to as Phase A, Phase B, and Phase C. How-
ever, calculating the three-phase system involves complex mathematical equations and
issues related to mutual inductance coupling. Traditionally, we can employ coordinate
transformation to convert the system from three-phase to two-phase, simplifying the cal-
culations and also addressing the mutual inductance coupling issues associated with the
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motor. It need to address various uncertainties generated during the actual operation of
the motor. Therefore, controlling alternating current in synchronous reluctance motors
(SRMs) [1, 2, 8] has become a central concern. SRMs have a simple underlying mathe-
matical model and mechanical structure but are affected by nonlinear problems such as
parameter variations, external loads, and nonlinear friction. Numerous studies have ex-
plored using the controller to mitigate these problems such as robust control [27]. More-
over, a instead controller is used for controlling a SRMs using Hermite neural networks.
Hermite polynomials replace traditional Gaussian functions, eliminating the need to se-
lect the vertices and widths of Gaussian functions, thereby simplifying the computational
complexity. Additionally, recursive weights are employed to increase the parameters of
the neural network. The Lyapunov method is used to prove that the system overcomes the
cumulative uncertainties, ensuring the stability of the motor system control.

Inspiring the success of deep learning on many fields, various neural network struc-
tures have been proposed [5, 7, 10, 13, 15, 18, 28]. These research utilize the non-linear
capabilities of neural network to learn and adapt to auto control. For example, an adap-
tive NN dynamic surface controller design for nonlinear pure-feedback switched systems
with time-delays and quantized input, showing that the system’s output response had sat-
isfactory performance. A wavelet neural network sliding-mode controller [7] was used
in a permanent magnet synchronous motor, where the width of the wavelet function im-
proved neural network function. In addition, fuzzy controllers and neural networks each
have distinctive advantages. Some studies have combined these two controllers to create
adaptive neural fuzzy interface systems (ANFISs) [14,25,26]. ANFIS combines fuzzy ex-
pert knowledge with online neural network learning, resulting in better performance than
using a simple fuzzy controller or neural network controller. In neural networks-based
control systems, Gaussian functions are commonly employed. However, Gaussian func-
tions have a limitation in that they rely on peak and width parameters, which necessitates
more intricate calculations to ascertain the most suitable values for these parameters.

In this work, an RCAFHNN is proposed for use in SRMs, exhibiting satisfactory out-
put responses in experimental results that include Laypunov functions to ensure system
stability. Control inputs do not require nonlinear system parameters, and Hermite poly-
nomials replace traditional Gaussian functions, eliminating the need to choose optimal
vertices and widths. From the experimental results, we can observe that RCAFHNN of-
fered satisfactory performance in handling lumped uncertainty and nonlinear dynamics.

The main contributions of this work are as follows.

– We propose a controller which utilizes Hermite neural networks to control synchronous
reluctance motors. Hermite polynomials replace traditional Gaussian functions to
simplify the computational complexity.

– A recursive weighting is used to increase neural network parameters in AFHNN,
and a Lyapunov-based approach is employed to demonstrate the system’s ability to
overcome total uncertainty, ensuring stable control of the motor system.

– Experimental tests are conducted under various challenging conditions, including un-
loaded, loaded, and rotational wave commands, to evaluate the performance of the
proposed controller.

The remainder of this paper is organized as follows. The mathematical model of the
SRM system is presented in Section 3. The RCAFHNN is described in Section 4. The
experimental results are shown in Section 5, and they demonstrate that the proposed



Robust Compensation with AFHNN in Synchronous Reluctance Motors 571

RCAFHNN offers fast performance and satisfactory dynamic responses when handling
parameter variations and external loads. Finally, the conclusion is presented in Section 6.

2. Related Works

Studies have sought to improve the stability of nonlinear systems in robust control with
neural networks [9–12]. Hsiao et al. [10] employed a neural-network-based approach with
delay-dependent robust stability criteria, and they analyzed dithered chaotic systems with
multiple time-delays. Huang et al. [11] presented an evolutionary radial basis function
neural network combined with robust genetic-based immune computing, achieving pre-
cise command tracking in autonomous robots. In the field of motors, precise position
control of sensorless PMSM [12] servo drives is required. Adaptive robust speed con-
trol with a recurrent Elman neural network can offer more precise control of a system
and decrease system position errors. Gong et al. [9] also proposed robust state estimation
for delayed complex-valued neural networks to consider available output measurements
containing nonlinear Lipschitz-like terms.

Work environments demand precise control of drilling machines [4,29]. Self-optimizing
algorithms [4] and switched-control algorithms [29] have been employed in pressure
drilling and have demonstrated satisfactory performance results. Viola et al. [22] also
propose a parallel enabled and stability-aware self optimizing control for using numeri-
cal twin instances during the most computationally intensive steps. Several studies have
investigated fuzzy neural network sliding-mode controllers [3, 10, 30]. Fuzzy neural net-
works can reduce the system chattering phenomenon and can train parameters online to
increase the precision of the system. Castaneda et al. [3] and Song et al. [21] used neural
sliding-mode controllers in motors, and online neural network training enabled the system
to overcome lumped uncertainties.

Various neural network structures have been proposed [5, 7, 10, 13, 15, 18, 28]. Hsiao
et al. [10] proposed a neural-network-based approach for delay-dependent robust stability
criteria for dithered chaotic systems with multiple time-delays. Niu et al. [18] proposed
an adaptive NN dynamic surface controller design for nonlinear pure-feedback switched
systems with time-delays and quantized input, showing that the system’s output response
had satisfactory performance. Additionally, Chen et al. [5] researched a rotor fault diag-
nosis system based on sGA-based individual neural networks, utilizing GA algorithms to
search for optimal parameters to address nonlinear system issues.

A wavelet neural network sliding-mode controller [7] was used in a permanent mag-
net synchronous motor, where the width of the wavelet function improved neural network
function. Yin et al. [24] used a Hermite neural network as an activation function. Similarly
to the wavelet function, the width of the Hermite function enabled satisfactory system per-
formance. Studies have also utilized diagonal neural networks with second-order learning
algorithms [13] in system identification [20, 28] due to the faster convergence speed of
second-order algorithms compared to that of first-order algorithms.

Fuzzy controllers and neural networks each have distinctive advantages. Some studies
have combined these two controllers to create adaptive neural fuzzy interface systems
(ANFISs) [14, 25, 26]. Yun et al. used RBFNN and ANFIS to predict the market price
of electricity [25] and demonstrated that ANFIS offered accurate predictions. The power
amplifier modeling conducted in [26] incorporated ANFIS to identify various effects and
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different rules. Liu et al. proposed a new ANFIS structure [14] using numerical analysis
and classification.

3. SynRM mathematical model

The voltage equations of the d− q axis equivalent architecture in a SynRM are expressed
as

Vds = Rsids − ω
R
Lqsiqs + Lds

dids
dt

(1)

Vqs = Rsiqs − ω
R
Ldsids + Lqs

diqs
dt

(2)

where Vds and Vqs are the direct and quadrature axis voltages, respectively. ids and iqs
are the direct and quadrature axis currents, respectively. Lds and Lqs are the direct and
quadrature inductances, respectively. Rs is the copper loss resistor. ω

R
is the rotor velocity

in SynRM.

Fig. 1. Torque architecture of SRM

The torque architecture of SynRM in the mechanical equation that shows in Figure 1,
and the equation is expressed as

Te = Jm
dω

R

dt
+Bmω

R
+ TL (3)

where Te is the torque of SynRM, TL is the external load of torque, Jm is the moment of
inertia, Bm is the coefficient of friction. We can rewrite the dynamic equation 3 as

ω̇r = −Bm

Jm
ω

R
+

1

Jm
(Te − TL) (4)
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We have electromagnetic torque equation in the rotating d− q reference axis as

Te =
3

4
P (Lds − Lqs)idsiqs (5)

where P is the poles in the SynRM. Therefore, the system model of SynRM is showed in
Figure 2.

Fig. 2. Gaussian basis function neural network

4. Design of robust compensation with adaptive fuzzy Hermite
neural network

4.1. SynRM nonlinear system equation
Consider a nonlinear system equation as

ẋ = f(x) + b(x)u, (6)

y = x, (7)

where f(x) and b(x) are unknown real continuous nonlinear functions, u ∈ R is the
control input, y ∈ R is the system output, and x = ωd ∈ R is the state vector of the
system, which we assume to be available for measurement. In order to be controllable for
the dynamic system, function b(x) must be nonzero for vector x in certain controllability
regions. Without loss of generality, we assume that 0 < b(x) < ∞. We can rewrite the
dynamic equation 6 as

ẋ = f1(x) + b1(x)u+ E(x) (8)

where f(x) = f1(x) + f2(x), b(x) = b1(x) + b2(x), E(x) = f2(x) + f2(x), f1(x) and
b1(x) are the known real continuous parameters. f2(x) and b2(x) are the unknown real
continuous parameters.
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Fig. 3. The structure of ANFIS

4.2. Adaptive neural fuzzy inference system

ANFIS (Adaptive Neuro-Fuzzy Inference System) combines fuzzy expert knowledge with
online neural network learning, resulting in better performance than using a simple fuzzy
controller or neural network controller. The ANFIS structure is depicted in Figure 3, con-
sisting of six layers. The first layer serves as the input layer, receiving the error signal into
the network. This can be expressed by the equation:

y11 = e(t), y12 = ė(t) (9)

where e(t) = xd − x, xd is the command speed. Superscript is the n-th network, and
subscript is n-th input.

The second layer is membership function layer, which is used fuzzificationcan to first
layer, and the equation can be expressed as

y2j = exp
[−(e(t)− vj)

2

2d2j

]
(10)

y2j+max j = exp
[−(ė(t)− vj+max j)

2

2d2j+max j

]
(11)

where exp is the function of exponent, max j is the maxima of j, vj is the Gauss function
vertex, dj is the Gauss function width, j is the j-th node.

The third layer is the rule layer, which is used logical product operator to second layer,
so the output can be expressed as

y3i = wi = y2j y
2
j+max j , i = 1, 2, ..., Q (12)
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where Q is the rule number.
The fourth layer is normalization layer which is normalize to weight, and we can be

expressed as
y4
R
= w

R
=

wi∑Q
i=1 wi

, R = 1, 2, ..., Q (13)

The fifth layer is the inference system, which is used Sugeno and average weighting
method to defuzzification. The output can be expressed as

y5
R
= w

R
f
ANFIS

(e(t), ė(t)) = w
R
(a

R
e(t) + b

R
ė(t) + c

R
) (14)

where a
R
, b

R
, c

R
> 0, R = 1, 2, ..., Q is the inference function.

The sixth layer is the output layer, which is used the linear combination of fifth layer,
and the output can be expressed as

u
ANFIS

= y6 =

Q∑
R=1

y5
R

(15)

This paper is used the Lyapunov stability and steepest gradient method to convergence
the network in ANFIS, in which we search optimal value of a

R
, b

R
, c

R
. First define the

Lyapunov function as

V1 =
1

2
S2 (16)

where S = h1ė+ e, h1 > 0.
Stability criteria by the Lyapunov function, we must be V < 0 , so that we has update

equation of weight as follows

∆a
R
= −η11

∂V̇1

∂a
R

= −η11
∂SṠ

∂a
R

= −η11
∂Ṡ

∂a
R

(17)

where η11 is the learning rate, η11 > 0 ,and we can rewrite equation 17 by calculus chain
law as

∂Ṡ

∂a
R

=
∂Ṡ

∂u
ANFIS

∂u
ANFIS

∂a
R

(18)

And equation 8 into equation 18, we obtain

∂Ṡ

∂u
ANFIS

=
∂h1ë+ ė

∂u
ANFIS

=
∂(ω̇d − f1(x)− b1(x)uANFIS

− E(x) + h0ë)

∂u
ANFIS

= −b1, (19)

where −b
R
u

ANFIS
= −b

R
u, and ∂u

ANFIS

∂a
R

= wie(t)∑R
i=1 wi

. Hence,

a
R
(t+ 1) = a

R
(t) +∆a

R
(t) = a

R
(t) + η11Sb1

wie(t)∑R
i=1 wi

, (20)

Therefore, we has update equation by b
R

and c
R

as

∆b
R
= −η12

∂V̇

∂b
R

= −η12
∂SṠ

∂b
R

= −η12S
∂Ṡ

∂b
R

, (21)
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b
R
(t+ 1) = b

R
(t) +∆b

R
(t) = b

R
(t) + η12Sb1

wiė(t)∑R
i=1 wi

, (22)

where η12 is the learning rate, η12 > 0.

∆c
R
= −η13

∂V̇

∂c
R

= −η13
∂SṠ

∂c
R

= −η13S
∂Ṡ

∂c
R

, (23)

c
R
(t+ 1) = c

R
(t) +∆c

R
(t) = c

R
(t) + η13Sb1

wi∑R
i=1 wi

, (24)

where η13 is the learning rate, η13 > 0.

Fig. 4. Orthogonal Hermite polynomials

4.3. Robust Compensation with Adaptive Fuzzy Hermite Neural Networks

In neural networks applied to control systems, Gaussian functions are commonly em-
ployed. However, Gaussian functions have a drawback as they require parameters for their
peak and width, necessitating more complex calculations to determine the optimal values
for these parameters. In contrast, Hermite Polynomials have the advantage of expanding
their input range with increasing order, eliminating the need for complex calculations to
determine the optimal width. This not only simplifies the computational burden during
system implementation but also reduces overall computational complexity.

Figure 4 displays the Orthogonal Hermite polynomials, with H1 through H4 repre-
senting polynomials of first to fourth order. Orthogonal Hermite polynomials exhibit a
broader range compared to Gaussian functions. The paper proposes the Adaptive Fuzzy
Hermite Neural Network (AFHNN), which incorporates Orthogonal Hermite polynomi-
als, dynamic weight feedback, and robustness compensation. Finally, we employ Lya-
punov stability to demonstrate system convergence. The AFHNN structure, depicted in
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Fig. 5. The structure of AFHNN

Figure 5, consists of six layers. The first layer serves as the input layer, receiving external
signals into the network. This can be expressed by the equation:

y11 = e(t), y12 = ė(t), (25)

where Superscript is the n-th network, and subscript is n-th input.
The second layer is membership function layer, in which is used fuzzification from

first layer. The equation we can be expressed as

y2j = σj,k(x) (26)

y2j+max j = σj+max j,k(x) (27)

σj,k(x) =
1√

2jj!
√
π
exp−ϑ2

j,k/2 Hj(ϑj,k) (28)

σj+max j,k(x) =
1√

2jj!
√
π
· exp−ϑ2

j+max j,k/2 ·Hj+max j(ϑj+max j,k) (29)

where j is the note. k is the simple time. ϑj,k = e(t) + r1jσj,k−1. exp is the expo-
nential function. ϑj+max j,k = ė(t) + r2jσj,k−1. Hj(ϑj,k) is the Orthogonal Hermite
polynomials. r1j and r2j is the recursive weight. H1(ϑj,k) = 1, H2(ϑj,k) = 2ϑj,k,
Hn(ϑj,k) = 2ϑj,kHn−1(ϑj,k)− 2(n− 1)Hn−1(ϑj,k) when n ≥ 3.

The third layer is the rule layer, which is used logical product operator to second layer,
so the output can be expressed as

y3i = wi = y2j y
2
j+max j , i = 1, 2, ..., Q (30)
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where Q is the rule number. The fourth layer is regularization layer, which is regulated to
weight, and we can be expressed as

y4
R
= w

R
= ζ

R,k
=

wi∑Q
i=1 wi

, R = 1, 2, ..., Q (31)

where k is the simple time of k-th. Fifth layer is the inference system, which is used
Sugeno and average weighting method to defuzzification. The output can be expressed as

y5
R
= w

R
f
AFHNN

(e(t), ė(t)) = ζ
R,k

(a
R
e(t) + b

R
ė(t) + c

R
) = ζ

R,k
ϖ

R
(32)

where a
R
, b

R
, c

R
> 0, R = 1, 2, ..., Q is the inference function. The sixth layer is the

output layer, which is used the linear combination of fifth layer, and the output can be
expressed as

u
AFHNN

=

n∑
R=1

y5
R
= WT(A,B,C) ·φ(R1,R2) (33)

where WT =
[
ϖ1, . . . , ϖQ

]
1×Q

, φT =
[
ζ1, . . . , ζQ

]
1×Q

, AT =
[
a1, . . . , aQ

]
1×Q

,

BT =
[
b1, . . . , bQ

]
1×Q

, CT =
[
c1, . . . , cQ

]
1×Q

. RT
1 =

[
r11, . . . , r1j

]
1×j

, RT
2 =[

r21, . . . , r2j

]
1×j

, a
Q
, b

Q
, c

Q
> 0.

RCAFHNN used the Lyapunov function and feedback learning algorithms [24] to
compensation output distribution. The control input define as

u =
−1

b1(x)

(
−ẋ1+f1(x)+E(x)−h1ë(t)+ė(t)+h2e(t)+h3

∫ t

0

e(t)dt
)
= û+ε1 (34)

where û is the output of RCAFHNN, ε1 is the error between u and û. In the formula of
equation 34, the SRM parameters and lumped uncertainty are unknown. Therefore, we
use AFHNN to track u. Substituting equation 34 to equation 8 can be obtained

ė(t) = −h1ë(t) + h2e(t) + h3

∫ t

0

e(t)dt+ (u− û− ε1) (35)

where u− û− ε1 = 0
Define the estimate error of AFHNN as

ũ = u− û = W∗T (A∗,B∗,C∗)ϕ∗ (R∗
1,R

∗
2)− ŴT(Â, B̂, Ĉ)φ̂

(
R̂1, R̂2

)
− uss

= W∗ Tφ̃+ W̃Tφ̂− uss

(36)
where û = uAFHNN + uss, uss is the control output of robustness compensation. W̃ =
W∗ − Ŵ, φ̃ = φ∗ − φ̂,A∗,B∗,C∗ are the approximation weight of default control
input. R∗

1,R
∗
2 are the approximation recursive weight of default control input. Â, B̂, Ĉ

are the weight of AFHNN. R̂1, R̂2 are the recursive weight of AFHNN.
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Define as

W̃ =

 ϖ̃1

...
ϖ̃Q

 =


∂ϖ1

∂AT

...
∂ϖ̄Q

∂AT


∣∣∣∣∣∣∣
A=Â

(
A∗ − Â

)
+


∂ϖ1

∂BT

...
∂ϖ̄Q

∂BT


∣∣∣∣∣∣∣
B=B̂

(
B∗ − B̂

)

+


∂ϖ1

∂CT

...
∂ϖ̄Q

∂CT


∣∣∣∣∣∣∣
C=Ĉ

(
C∗ − Ĉ

)
+φH2 = WT

AÃ+WT
BB̃+WT

CC̃+ φ
H2

(37)

φ̃ =

 ς̃1
...
ς̃Q

 =


1
2

(
∂ζ1
∂RT

1
+ ∂ζ1

∂ζj,k−1

∂ζj,k−1

∂RT
1

)
...

1
2

(
∂ζQ
∂RT

1
+

∂ζQ
∂ζQ,k−1

∂ζQ,k−1

∂RT
1

)

∣∣∣∣∣∣∣∣∣
R1−R̂1

(
R∗

1 − R̂1

)

+


1
2

(
∂ζ1
∂RT

2
+ ∂ζ1

∂ζj,k−1

∂ζj,k−1

∂RT
2

)
...

1
2

(
∂ζQ
∂RT

2
+

∂ζQ
∂ζQ,k−1

∂ζQ,k−1

∂RT
2

)
∣∣∣∣∣∣∣∣∣
R2−R̂2

(
R∗

2 − R̂2

)
+φH1

= φT
R1

R̃1 + φT
R2

R̃2 + φHl

(38)

where

WA =


∂ϖ1

∂a1

∂ϖ2

∂a1
· · · ∂ϖQ

∂a

∂ϖ1

∂a2

... · · ·
...

...
... · · ·

...
∂ϖ1

∂aQ

∂ϖ2

∂aQ
· · · ∂ϖQ

∂aQ


Q×Q

∣∣∣∣∣∣∣∣∣∣∣∣
A=Â

;

WB =
[

∂ϖ1

∂B
∂ϖ2

∂B · · · ∂ϖQ

∂B

]
Q×Q

∣∣∣∣
B=B̂

;

WC =
[

∂ϖ1

∂C
∂ϖ2

∂C · · · ∂ϖQ

∂C

]
Q×Q

∣∣∣∣
C=Ĉ

;
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φT
R1

=


1
2 (

∂ζ1
∂R1

+ ∂ζ1
∂ζ1,k−1

∂ζ1,k−1

∂R1
)

1
2 (

∂ζ2
∂R1

+ ∂ζ2
∂ζ2,k−1

∂ζ2,k−1

∂R1
)

...
1
2 (

∂ζ
Q

∂R1
+

∂ζ
Q

∂ζ
Q,k−1

∂ζ
Q,k−1

∂R1
)


Q×j

∣∣∣∣∣∣∣∣∣∣∣∣
R1=R̂1

;

φT
R2

=


1
2 (

∂ζ1
∂R2

+ ∂ζ1
∂ζ1,k−1

∂ζ1,k−1

∂R1
)

1
2 (

∂ζ2
∂R2

+ ∂ζ2
∂ζ2,k−1

∂ζ2,k−1

∂R1
)

...
1
2 (

∂ζ
Q

∂R2
+

∂ζ
Q

∂ζ
Q,k−1

∂ζ
Q,k−1

∂R1
)


Q×j

∣∣∣∣∣∣∣∣∣∣∣∣
R2=R̂2

;

Ã = A∗ − Â; B̃ = B∗ − B̂; C̃ = C∗ − Ĉ; R̃1 = R∗
1 − R̂1; R̃2 = R∗

2 − R̂2

φ
H1
, φ

H2
are the higher-order error in Taylor expansion.

Substituting equation 37-38 to equation 36 can be obtained

ũ = W⋆Tφ̃+ W̃Tφ̂− uss = ŴTφ̃+ W̃Tφ̃+ W̃Tφ̂− uss

= ŴT
(
φT

R1
R̃1 +φT

R2
R̃2

)
+

(
WT

AÃ+WT
BB̃+WT

CC̃
)T

φ̂− uss + L1

(39)

where L1 = W̃Tφ̃ + φT
H2
φ̂ + ŴTφ

Hl
is the total estimation error in AFHNN. Define

Lyapunov function as

V2 =
1

2
S2 +

1

2n1
ÃTÃ+

1

2n2
B̃TB̃+

1

2n3
C̃TC̃

+
1

2n4
R̃T

1 R̃1 +
1

2n5
R̃T

2 R̃2 +
1

2n6
L̃2

(40)

where L̃ = L− L̂, L is the lump uncertainty of RCAFHNN and system, S(t) = h1ė(t)+
e(t), n1, n2, n3, n4, n5, n6 > 0.

Differential the equation (38), and subsisting equation (37), we get
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V̇2 = SṠ − 1

n1
ÃT ˙̂

A− 1

n2
B̃T ˙̂

B− 1

n3
C̃T ˙̂

C− 1

n4
R̃T

1
˙̂
R1 −

1

n5
R̃T

2
˙̂
R2 −

1

n6

˜̂
L
˙̂
L

= S

(
−h1ë(t) + h2e(t) + h3

∫ t

0

e(t)dt+ (u− û− ε1) + h1ë

)
− 1

n1
ÃT ˙̂

A− 1

n2
B̃T ˙̂

B

− 1

n3
C̃T ˙̂

C− 1

n4
R̃T

1
˙̂
R1 − 1

n5
R̃T

2
˙̂
R2 −

1

n6

˜̃L
˙̂
L

= S

(
h2e(t) + h3

∫ t

0

e(t)dt+ ũ− ε1

)
− 1

n1
ÃT ˙̂

A− 1

n2
B̃T ˙̂

B− 1

n3
C̃T ˙̂

C− 1

n4
R̃T

1
˙̂
R1

− 1

n5
R̃T

2
˙̂
R2− 1

n6

˜̂
L
˙̂
L

= S
(
ε1 + ŴT

(
φT

R1
R̃1 +φT

R2
R̃2

)
+

(
WT

AÃ+WT
BB̃+WT

CC̃
)
φ̂− uss + h2e(t)

+ h3

∫ t

0

e(t)dt+ L1 − ε1

)
− 1

n1
ÃT ˙̂

A− 1

n2
B̃T ˙̂

B− 1

n3
C̃T ˙̂

C− 1

n4
R̃T

1
˙̂
R1 −

1

n5
R̃T

2
˙̂
R2

− 1

n6

˜̂
L
˙̂
L

(41)
Define as

L = (−ε1 + L1) (42)

Therefore, we can get the adaptive law and robust compensation as

uss = h2e+ h3

∫ t

0

e(t)dt+ kvS + L̂ (43)

˙̂
A = n1SWAφ̂ (44)
˙̂
B = n2SWBφ̂ (45)
˙̂
C = n3SWCφ̂ (46)
˙̂
R1 = n4SφR1

Ŵ (47)

˙̂
R2 = n5SφR2

Ŵ (48)

˙̂
L = n6S (49)

As we can observe in equations (43) to (49), the input control variables used do not depend
on system parameters. In other words, the proposed controller in this paper can be applied
to parameterless systems as well as nonlinear systems. The use of Lyapunov convergence
criteria ensures the updating of neural network parameters, overcoming uncertainties dur-
ing the operation of the motor system. Replacing traditional Gaussian functions with Her-
mite Polynomials eliminates the need to calculate optimal peak and width parameters.
Substituting equation 43-49 to 41, we have

V̇ = −kvS
2 ≤ 0 (50)
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We can know the SRM is convergence of Lyapunov function by 50. Then define as

ξ(t) = kvS
2 (51)

Integrating equation 51, we have∫ t

0

ξ(τ)dτ = V
(
S(0)

)
− V

(
S(t)

)
(52)

Because V
(
S(0)

)
and V

(
S(t)

)
are bounded, hence

lim
t→∞

∫ t

0

ξ(τ)dτ < ∞ (53)

According Barbalat lemma [17], we have

lim
t→∞

ξ(τ) = 0 (54)

When t → ∞, then S → 0 and height error e(t) → 0.

Fig. 6. Block of ANFIS

5. Experimental results

In the experiments, we aim to compare the differences between using ANFIS and the
proposed neural control method in SRMs (Synchronous Reluctance Motors).
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Fig. 7. Block of RCAFHNN

Fig. 8. Synchronous reluctance motors equipment
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We have designed experiments to track motor speed errors in various demanding con-
trol scenarios during experimental testing. These scenarios include motor operation under
no-load conditions, loaded conditions, and with different speed commands. We will assess
the performance of the velocity controller in response to these scenarios.

The ANFIS work environment is illustrated in Figure 6. Initially, the command speed
is set using a computer, and the system calculates the error between the command speed
and the system output. The error signal is then fed into ANFIS, and the control input is
calculated. Finally, the Lyapunov function is utilized to adjust the ANFIS weight values
until the error approaches zero.

The RCAFHNN work environment is depicted in Figure 7. Similarly, the command
speed is set using a computer, and the system calculates the error between the command
speed and the system output. This process yields both the error and differential error
signals. These signals are then input into AFHNN, and the control output is calculated to
yield uAFHNN and uss. Finally, the Lyapunov function is employed to adjust the AFHNN
weight values until the error approaches zero, and the robust composition controller com-
pensates for the lump uncertainty of SRM.

The RCAFHNN demonstrates an improvement in handling lump uncertainty, param-
eter variations, and external load in SRMs. Figure 8 illustrates the experimental SRM
equipment. The controller was implemented using the ds1104 Card from dSPACE Com-
pany. The parameters utilized in this study are presented in Table 1.

Table 1. controller and SynRM parameters
Control Methods Motor Parameters Controller Parameters Public Parameters

ANFIS
Jm = 0.00076 η1 = 0.01, η2 = 0.01 a1∼9 = 2, b1∼9 = 50
Bm = 0.00012 η3 = 0.01 c1 = −0.1, c2 = −0.1

RCAFHNN

h2 = 60, h3 = 1 c3 = 0, c4 = −0.1
kv = 100 n1 = 0.01 c5 = 0, c6 = 0.1
n2 = 0.01 n3 = 0.001 c7 = 0, c8 = 0.1
n4 = 0.001 n5 = 0.001 c9 = 0.1, j = 3
n6 = 0.001 n7 = 0.001 h1 = 90, R = 9
n8 = 20

Figure 9 shows the simulation output responses, error responses, A phase current com-
parison for initial command speed 800rpm at 0 ≤ t < 5 sec, and the changed command
speed 1200rpm at t ≥ 5 sec of ANFIS and RCAFHNN. In Figure 9, RCAFHNN can
track command speed faster than ANFIS at transient response, and accurate steady-state
tracking speed when the command speed is changed.

Figure 10 are the simulation output responses, error responses, A phase current com-
parison for time varying command speed 800+100 sin(2πt) rpm of ANFIS and RCAFHNN.
In Figure 10, RCAFHNN has better tracking ability and error faster convergent.

Figure 11 is shown command speed 600rpm and initial external load is added 0.35NT-
m, then we change external load is added 0.9NT-m at t ≥ 10 of ANFIS and RCAFHNN.
In figure 11, we show output response, output amplifier response, error response, A phase
current comparison, neural network output and Phase plane for the error and differen-
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(a) (b)

(c) (d)

Fig. 9. Simulation responses of RCAFHNN and ANFIS for command speed 800rpm at
0 ≤ t < 5 and 1200rpm speed command at t ≥ 5 sec (a) comparison of output
responses, (b) zoomed-in comparison of output responses, (c) comparison of error
responses, (d) output of AFHNN, (e) robust compensation
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(a) (b)

(c) (d)

Fig. 10. Simulation responses of RCAFHNN and ANFIS at command speed
800 + 100 sin(2πt) and added external load 0.8 NT-m at t ≥ 10 seconds (a) comparison
of output responses, (b) zoomed-in comparison of output responses, (c) comparison of
error responses, (d) output of AFHNN
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tial error. Figure 11 (a)-(d), ANFIS tracking slowly of command speed at transient state.
RCAFHNN has the faster tracking error and stability control output.

(a) (b)

(c) (d)

Fig. 11. Experimental responses of RCAFHNN and ANFIS at command speed 600rpm
an 0.35NT-m external load is added at initial. At t ≥ 10 seconds, an 0.9NT-m external
load is added. (a) comparison of output responses, (b) zoomed-in comparison of output
responses, (c) comparison of error responses, (d) Output of AFHNN

Figure 12 is shown command speed 600rpm and initial external load is added 0.35NT-
m, then we change command speed 800rpm at t ≥ 5 and external load is added 0.9NT-m
at t ≥ 10 of ANFIS and RCAFHNN. In figure 12, we show output response, output
amplifier response and error response, A phase current comparison and neural network
output. In figure 12, we can know that RCAFHNN has better tracking error when change
the command speed and external load.

Figure 13 is shown time varies command speed 700+100 sin(2πt) rpm and initial ex-
ternal load is added 0.35NT-m, then we change external load is added 0.9NT-m at t ≥ 10
of ANFIS and RCAFHNN. In figure 13, we show output response, output amplifier re-
sponse, error response, A phase current comparison, and neural network output. In figure
13, RCAFHNN track the sine wave has the better ability than ANFIS, and RCAFHNN
has faster track error when change external load.

Table 2 and Table 3 compares the experimental RMSEs. The performance index,
RMSE, is defined as follows:
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(a) (b)

(c) (d)

Fig. 12. Experimental responses of RCAFHNN and ANFIS at command speed 600rpm
is 0 ≤ t < 5 seconds and 800rpm speed command in with an 0.35NT-m external load is
added at initial. At t ≥ 10 seconds, an 0.9NT-m external load is added. (a) comparison of
output responses, (b) zoomed-in comparison of output responses, (c) comparison of error
responses, (d) Output of AFHNN
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(a) (b)

(c) (d)

Fig. 13. Experimental responses of RCAFHNN and ANFIS at command speed
700 + 100 sin(2πt) rpm and an 0.35NT-m external load is added at initial. At t ≥ 10
seconds, an 0.9NT-m external load is added. (a) comparison of output responses, (b)
zoomed-in comparison of output responses, (c) comparison of error responses, (d)
Output of AFHNN
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RMSE =

√∑α
i=1 e

2 [i]

α
(55)

where α is the number of the sampled points. Table 2 and Table 3 clearly demonstrates that
RCAFHNN outperforms the ANFIS schemes under all operational conditions because of
its energy control input is consider in controller. The experimental results conclusively
establish the regulation ability of the proposed RCAFHNN over a wide range of speeds,
its dynamic tracking capability, and its robustness.

Table 2. Simulation Comparsion of RMSE
Control Methods 800rpm to 1200rpm 800+100sin(2πt) rpm with load

ANFIS 0.3268 1.5906
RCAFHNN 0.1831 1.2920

Table 3. Implement Comparsion of RMSE with load
Control Methods 600rpm 600rpm to 800 rpm 700+100 sin(2πt)rpm

ANFIS 40.0064 44.9906 120.2712
RCAFHNN 25.4595 28.2062 117.5688

6. Conclusion

This study successfully implemented the RCAFHNN (robust compensation scheme us-
ing adaptive fuzzy Hermite neural networks) in an SRM (synchronous reluctance motor).
The RCAFHNN used adaptive laws to train weights online. Lyapunov stability was used
to confirm the stability of the SRM. Moreover, the RCAFHNN offered satisfactory per-
formance in handling lumped uncertainty and nonlinear dynamics. Finally, it can adapt to
and track changes in speed and external load at transient and steady states, in spite of sine
waves. Simulation and experimental results demonstrated the advantages of the proposed
method.
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