
Computer Science and Information Systems 21(4):1547–1565 https://doi.org/10.2298/CSIS230907047Y

A Hybrid GA-Powell Algorithm for Geometric
Constraint Solving

Sun Yunlei1 and Li Yucong1

Qingdao Institute of Software, College of Computer Science and Technology,
China University of Petroleum (East China)

Qingdao, 266580, China
sunyunlei@upc.edu.cn

s21070036@s.upc.edu.cn

Abstract. Geometric constraint solvers are crucial for computer-aided design (CAD),
and their algorithms are the focus of research. Current geometric constraint solvers
based on traditional numerical methods lack support for multi-solution problems, so
we propose a hybrid algorithm that combines the genetic algorithm, which is good
at global convergence, and Powell’s method, which is good at local refinement,
to address the limitations of traditional numerical methods in geometric constraint
solving algorithms (sensitivity to initial values, susceptibility to falling into local
optimums, and being only able to obtain a single solution) and the challenges of in-
telligent optimization algorithms (complex parameter tuning, slow convergence and
low accuracy). Our method has a large accuracy improvement over the comparison
method in basically all test cases, and its effciency can also meet the needs of real
geometric constraint solving scenarios. This research provides new insights into the
design of geometric constraint solving algorithms, offers a fresh perspective on im-
proving the performance and generality of solvers, and contributes to technological
advances in the CAD field.

Keywords: genetic algorithm, Powell’s algorithm, geometric constraint solving,
similarity calculation.

1. Introduction

Computer-aided design (CAD) is the most widely used modelling approach for engineer-
ing design. The typical starting point in these designs is 2D sketches which can later be
extruded and combined to obtain complex three-dimensional assemblies [17]. The geo-
metric constraint solver is a key component in this process, which is usually a key tech-
nology in parametric CAD design, and the geometric constraint solver algorithm is the
core of the geometric constraint solver. The accuracy and efficiency of the geometric con-
straint solver algorithm is related to the quality of the final product and the experience
of the designer, and the improvement of the geometric constraint solver algorithm has
always been an important research topic.

Samy Ait-Aoudia et al [1] classified geometric constraint solving techniques into three
categories: algebraic, rule-oriented and graph construction, where algebraic methods in-
clude numerical and symbolic methods. Numerical methods are widely used because they
are fast and applicable to almost all systems, but numerical methods have their inherent
defects, the most representative of which is the Newton-Raphson iterative method, which
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is widely used in solving geometric constraints based on numerical methods [10,12,16].
In these studies, the numerical methods converge faster but rely heavily on proper initial
value guessing, otherwise the algorithm will not converge or converge to a local optimal
solution, and only one root can be found by such methods. Therefore, numerical algo-
rithms can be used directly when dragging the geometry, when the solution is close to the
desired result.

In recent years, many scholars have tried to introduce intelligent optimisation algo-
rithms such as particle swarm algorithm, simulated annealing algorithm and genetic algo-
rithm to solve the shortcomings of traditional numerical methods [5,23,6]. In these stud-
ies, the intelligent optimization algorithm is relatively more relaxed on the initial value
requirements, with global convergence and can find multiple solutions to the problem,
but the algorithm’s parameter setting is complex, the convergence speed is slower, and
the accuracy of the results obtained by the algorithm is poor, which can not meet the
requirements of practical engineering use.

In this paper, a hybrid genetic-Powell algorithm (GA-Powell algorithm) combining
the advantages of numerical method and intelligent optimization algorithms proposed
based on the practical application scenario of chemical static equipment design. The al-
gorithm first uses the global search ability of the genetic algorithm to give rough initial
solutions, and then screens the initial solutions by similarity calculation to remove similar
initial solutions that are easy to converge to the same exact solution, and then inputs the
screened initial solutions into Powell algorithm for exact solution in order to obtain all the
solutions that conform to the design accuracy. Compared with the traditional numerical
algorithm, GA-Powell algorithm is slower, so it is not suitable to be used directly when
the user drags the geometry. Generally, it is used when the geometry is generated accord-
ing to commands or scripts. The proposed GA-Powell algorithm possesses the following
contributions:

- Taking advantage of the genetic algorithm, it makes up for the inherent defects of
Powell method that the initial value is sensitive, easy to fall into the local optimal
solution, and can only obtain one solution.

- Using the advantages of the Powell method, it makes up for the inherent defects of the
genetic algorithm that the parameter setting is complicated, the convergence speed is
slow and the accuracy is poor.

The high efficiency and accuracy of the GA-Powell algorithm meet the needs of prac-
tical geometric constraint solving scenarios, and the design ideas of the algorithm can
help guide the research of geometric constraint solving algorithms, which is conducive
to improving the performance and applicability of geometric constraint solvers. In the
following sections, we present our research results and analyses.

Section 2 provides an overview of existing geometric constraint solving methods,
especially the research based on numerical methods with intelligent optimisation algo-
rithms.

Section 3 presents the research methodology, including how geometric constraint
solving problems can be transformed into the optimisation problems, an overview of ge-
netic algorithms and Powell’s method, and the design and implementation of a hybrid
GA-Powell algorithm.
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Section 4 describes our experiments, including the experimental setup, systems of
equations for testing, and comparative analyses of number of solutions, solution accuracy
and solving time.

In Section 5, we will give some principles of parameter setting based on the analysis
of the experimental results in order to make the GA-Powell algorithm perform better in
different problem scenarios.

Finally, in Section 6, we summarise our main findings, discuss the contributions and
implications of the research, acknowledge the limitations and provide recommendations
for future research.

2. Related Work

According to the classification proposed by Samy Ait-Aoudia et al [1], geometric con-
straint solving methods can be broadly classified into three categories: algebraic methods,
rule-oriented methods and graph construction methods. In turn, algebraic methods include
numerical and symbolic methods as shown in Fig. 1.

Fig. 1. Classification of geometric constraint solving methods

Numerical methods convert a geometrically constrained system into a set of nonlinear
equations that are solved using numerical algorithms. This method, originally introduced
by Hillyard [7] at Cambridge University and further developed and improved by Gos-
sard [11] at MIT, is called variational geometry. Although these equations are usually
multi-solution, numerical methods usually find only one solution.Borning [2], Hillyard
and Braid [8] and Sutherland [21] use relaxation methods. This method interferes with
the values assigned to the variables and minimises the measure of global error. Typically,
convergence to a solution is slow.

The most widely used method is the Newton-Raphson iteration. It is used in the geo-
metric constraint solving described in Refs [10,12,16]. Newton-Raphson is a local method
that converges much faster than relaxation. However, this class of numerical methods re-
quires computing the gradient of the problem to iteratively update the values, and the
method is not applicable to systems of equations that are always overconstrained unless
special steps are taken, such as solving a least squares problem. It works well if a good
approximation of the expected solution is provided and the system is not pathological.
Thus, if the starting point is taken from the user’s sketch, then the sketch should approx-
imate the expected solution. Numerical methods are generalized and are used as a last
resort when other methods do not work well.
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Powell’s method is a direct search method, which makes full use of the objective
function’s sex state and constructs the conjugate direction by using the change of the
objective function value, and the optimization search method is based on the conjugate
direction, which makes it unnecessary to compute the gradient of the objective problem,
which greatly saves the amount of computation, and therefore the method has a high con-
vergence efficiency, and it is widely used in the field of optimization [4,9,13]. However,
Powell’s method still has the disadvantage that traditional numerical methods are sensitive
to the initial value and easy to fall into local optimization.

The symbolic method, like the numerical method, transforms a system of geomet-
ric constraints into a set of nonlinear equations. However, it uses symbolic algebra to
solve these constraints, using methods such as the Grobnacki method [3] or the Wu-Ritt
characteristic column method [22]. If symbolic parameters are used in a system of non-
linear equations, the symbolic method can find generalised solutions for geometrically
constrained systems, making it a very efficient method. However, the disadvantages of
this method are its slowness and its high time and space complexity, and therefore the
limitations on the types of geometric elements and constraints that can be used.

The rule-oriented geometric constraint solving method utilizes rules to define and
carry out the construction process, hence the name ”rule-construction solving method”.
This approach allows for clear representation of geometric knowledge, separating it from
the processing stage, and makes it easy to expand the rule base. However, this method
also has its drawbacks: the rules are often incomplete, the system is bulky, the solving
speed is slow, and it is unable to solve cyclic constraints.

The graph construction method converts the geometric constraint system into graphs,
deduces the construction process by analysing the geometric constraint graphs, and gen-
erates geometric shapes based on the construction steps. Currently, several researchers
use machine learning training datasets (e.g., SketchGraphs [20]) and frameworks (e.g.,
SketchGen [17]) to train models to automatically generate sketches, thereby reducing
design time and enabling new design workflows. The method is based on graph theory
and is theoretically rigorous, fast and efficient. However, it can only solve closed-loop
constraints by numerical methods. In addition, it is sensitive to the type of geometric el-
ements and constraints used, thus requiring modification of the solution algorithm when
new geometric elements or constraints are added, making this method less versatile.

The summary of geometric constraint solving methods is shown in Table 1. Numerical
methods are widely used in practical geometric constraint solving due to their universal
applicability, and improving their solving efficiency and stability is the focus of research
in this field.

Intelligent optimisation algorithms have entered the scholarly scene in recent years.
In this approach the problem is reinterpreted as an optimisation problem and solved using
genetic, particle swarm or other evolutionary methods such as [5,23,6]. It is stable and less
sensitive to initial value guessing, but its solution efficiency is low compared to traditional
numerical methods, which cannot meet the real-time demands of design work, and its
solution accuracy is relatively poor, problems that are illustrated in Ref. [24,25].

By comparing the characteristics of traditional numerical methods and intelligent op-
timisation algorithms, it can be found that the two can complement each other by com-
bining their strengths - the global convergence of intelligent optimisation algorithms can
make up for the shortcomings of traditional numerical methods that are sensitive to the
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Table 1. Summary of geometric constraint solving methods

Methods Advantages Applicable scene

Algebraic
Numerical Fast, general Most systems

Symbolic Effective, generic solution
Small systems with restricted
elements and constraints

Rule-oriented
Separate knowledge
and processing,
avoid numerical instability

Small systems

Graph Construction
Rigorous theory,
fast solving

Systems without new types
of elements and constraints

initial value, prone to falling into local optimal solutions and only able to obtain a sin-
gle solution, whereas the accuracy and high efficiency of traditional numerical algorithms
can make up for the slow convergence speed and accuracy of intelligent optimisation
algorithms. optimisation algorithm’s slow convergence speed and poor accuracy.

Therefore, in this paper, the classical algorithm genetic algorithm in intelligent opti-
mization algorithm and the classical algorithm Powell algorithm in traditional numerical
algorithm are fused to take advantage of the powerful global searching ability of the ge-
netic algorithm and the fast local convergence ability of the Powell method which does
not need to derive the objective function, in order to obtain a high-performance algorithm
for geometric constraint solving.

3. Methodology

3.1. Nonlinear equation systems and optimization problems

Often, designers sketch graphics can be based on the principles of analytic geometry
expressed in the form of a system of equations, the parameters and expressions of the
three basic geometric elements of the point, the line and the circle, as shown in Table 2,
and the problem of solving the system of equations can be transformed into the problem
of finding the extreme points of the function.

Table 2. Parameters and expressions for the three basic geometric elements: point, line
and circle

Geometric Representation Parameters Equation

Point P0 P0(x0, y0) x = x0, y = y0

line L(P1, P2) P1(x1, y1), P2(x2, y2)
x−x1
x2−x1

= y−y1
y2−y1

Circle C0 C0(x0, y0, r) (x− x0)
2 + (y − y0)

2 = r2
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A system of nonlinear equations consists of n equations involving n unknown quanti-
ties of the form 

f1(x1, x2, · · · , xn) = 0 ,
f2(x1, x2, · · · , xn) = 0 ,
· · · ,
fm(x1, x2, · · · , xn) = 0 ,

(1)

where fi(x) = 0(i = 1, 2, · · · ,m) is a system of nonlinear equations, x = (x1, x2, · · · , xn)
is the unknown vector of the system of equations.

The use of numerical methods and intelligent optimisation algorithms in solving sys-
tems of non-linear equations requires the conversion of a system of non-linear equations
problem into an optimisation problem. Converting a system of nonlinear equations into a
single objective optimisation problem is expressed in the form of

minF (x) =
∑m

i=1
|fi(x1, x2, · · · , xn)| , (2)

or
minF (x) =

∑m

i=1
f2
i (x1, x2, · · · , xn) . (3)

Then the problem of solving the system of nonlinear equations is transformed into
the problem of finding the minimum value of the fitness function F (x). In order to test
the ability of the GA-Powell hybrid algorithm to solve high power complex problems, in
this paper, the method of Eq. 3 is chosen to transform the system of equations into an
optimisation problem for solving the system of nonlinear equations.

3.2. Overview of genetic algorithm and Powell’s method

Genetic Algorithm (GA) is a prominent algorithm among meta-heuristics that draws in-
spiration from biological evolutionary processes [15]. GA emulates the Darwinian theory
of survival of the fittest in the natural world. J.H. Holland first proposed GA in 1992.

The fundamental elements of GA comprise chromosome representations, fitness se-
lections, and biologically inspired operators. Additionally, Holland introduced a novel
element called inversion, which is widely used in GA implementations [19]. Normally,
chromosomes are formatted using binary strings. In a chromosome, each locus (a specific
position on the chromosome) has two possible allele forms: 0 and 1. Chromosomes are
regarded as points in the solution space. These chromosomes undergo processing using
genetic operators, by iteratively cumulating their populations. The fitness function applies
in assigning a value to every chromosome within the population [15].

Operators inspired by biology include selection, mutation, and crossover. During se-
lection, a chromosome is selected for further processing based on its fitness value. In the
crossover operator, a random locus is selected, and subsequences between chromosomes
are altered to create offspring. During mutation, certain random bits of chromosomes are
flipped according to the probability distribution [19,26,15]. Table 3 displays the relation-
ship between biological evolution and genetic algorithm. And the general steps of the
genetic algorithm are shown in Fig. 2.

Genetic algorithm searches for diversity in the solution space and is more capable
of finding the global optimal solution compared to other intelligent optimization algo-
rithms without easily falling into the local optimal solution, which makes it perform well



A Hybrid GA-Powell Algorithm... 1553

Table 3. Correspondence between biological evolution and genetic algorithm

Biological Evolution Genetic Algorithm

Individual Feasible solution to a problem

Population A group of feasible solutions

Chromosome Encoding corresponding to a feasible solution

Gene Element of the encoding

Environment Adaptive function

Survival of the Fittest
The more the adaptive value approximates the optimal
value, the more likely a feasible solution is to be retained.

Selection
The process of passing genetic information from
parent individuals to offspring individuals.

Crossover
The process of generating offspring individuals from
parent individuals through crossover.

Mutation Changing a portion of the chromosome encoding.

Fig. 2. Classification of geometric constraint solving methods
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in complex multi-peaked functions and high-dimensional spaces. Moreover, the genetic
algorithm is adaptive in the sense that it can automatically adjust to the complexity and
characteristics of the problem. This makes it applicable to a wide range of problem types
without the need to manually fine-tune the algorithm parameters. Meanwhile, the genetic
algorithm is easy to parallelize, and multiple individuals can be evaluated and evolved at
the same time, which improves the search efficiency, which facilitates the improvement
of the algorithm’s efficiency from the parallelization perspective in the future. Combining
the above advantages, we chose the genetic algorithm as part of the hybrid algorithm.

Powell’s method, also known as direction acceleration method, which was proposed
by Powell [18] in 1964, is a search method formed by using the property that conjugate di-
rections can accelerate the convergence speed. The steps of Powell’s algorithm are shown
in Algorithm 1. Powell’s method can be used to solve general unconstrained optimization
problems, and for the optimization problem of objective function with dimension n < 20,
this method can obtain more satisfactory results. Unlike other direct methods, Powell’s
method has a complete theoretical system, so its computational efficiency is higher than
other direct methods. The method does not require derivation of the objective function
and can be applied when the derivative of the objective function is discontinuous, there-
fore, Powell’s algorithm is a very effective direct search method, which we choose for fast
convergence.

Algorithm 1: Powell’s Method
1 Choose an initial point x0 and set pi = ei, for i = 1, 2, ..., n;
2 Compute x1 as the minimizer of f along the line x0 + αpn;
3 Set k ← 1;
4 while convergence test is not satisfied do
5 Set z1 ← xk;
6 for j = 1, 2, . . . , n do
7 Calculate αj so that f(zj + αjpj) is minimized;
8 Set zj+1 ← zj + αjpj ;
9 end

10 for j = 1, 2, . . . , n− 1 do
11 Set pj ← pj+1;
12 end
13 Set pn ← zn+1 − z1;
14 Calculate αn so that f(zn+1 + αnpn) is minimized;
15 Set xk+1 ← zn+1 + αnpn;
16 Set k ← k + 1;
17 end

3.3. Genetic-Powell hybrid algorithm

While the crossover and variational operators in genetic algorithms can look for solutions
to equations in the complete space of variables, Powell’s method does so rapidly and me-
thodically in the area around the convergence point with a high level of local convergence.
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To leverage the benefits of both approaches, this paper proposes the hybrid genetic-Powell
algorithm. The algorithm’s progression is explained as Algorithm 2.

Algorithm 2: GA-Powell Algorithm
Input: Optimized function F (X) representing the equation system, number of genetic

algorithm calls N , Euclidean distance threshold Ot

Output: Solution set of the equation system X∗

1 Initialize the initial solution set X0;
2 for i from 1 to N do
3 Obtain an initial solution xi using the genetic algorithm;
4 Add xi to the set X0;
5 end
6 for each initial solution xi in set X0 do
7 for each other element xj in set X0 except xi do
8 if Euclidean distance between xi and xj is less than Ot then
9 Remove xj from set X0;

10 end
11 end
12 end
13 Initialize the precise solution set X∗;
14 for each initial solution xi in set X0 do
15 Apply Powell’s algorithm to xi as the initial value and obtain the precise solution x∗;
16 Add x∗ to set X∗;
17 end
18 Output Set X∗ containing precise solutions;

Genetic algorithm has strong global search ability, Powell locally and carefully searches
for solutions near the convergence point and has high local convergence. The termination
condition of the genetic algorithm is the set number of genetic generations. In order to
play the global search ability of genetic algorithm, in this paper, when using genetic algo-
rithm to obtain a set of initial solutions, it is not necessary to set the genetic generations
to be very large in order to avoid missing some feasible solutions; at the same time, ap-
propriately increase the number of individuals in the population and the mutation rate, in
order to give full play to the global search ability of genetic algorithm.

After cyclically calling the genetic algorithm to obtain the initial solution, the algo-
rithm calculates the similarity between the initial solutions to exclude the invalid solu-
tions, i.e., to exclude multiple initial solutions that will converge to the same optimal
solution, in order to greatly reduce the useless calculations and improve the efficiency
of the algorithm. Euclidean distance is the simplest and easiest to understand method in
all similarity calculations, and Euclidean distance is more suitable for data with obvious
geometric structure in geometrically constrained solution scenarios, so we use Euclidean
distance to determine the similarity of the solutions, and if the distance is greater than the
set threshold then it is judged to be dissimilar, and the dissimilar solutions are retained.
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Fig. 3. The arc is tangent to the right of the line segment.

Fig. 4. The arc is tangent to the left of the line segment.
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4. Experiment

In this paper, the application scenario of GA-Powell algorithm is static equipment design
in chemical industry, which mainly involves geometric elements such as arcs and lines.
The Fig. 3 and Fig. 4 show a simplified design example: if the head of the tower is tangent
to the upper side of one barrel, there are two solutions as shown in the figure (regardless of
the concave head into the barrel). Let the lower endpoint of the line segment be (x1, y1),
the upper endpoint be (x2, y2), the center of the arc be (xc, yc), and the radius be R, then
the constraint equation of this example is:

√
(x1 − 0)

2
+ (y1 − 0)

2
= 5,

y1 = 0,
x2 = x1,√
(x2 − x1)

2
+ (y2 − y1)

2
= 40,

R = 15,
yc = y2,√
(xc − x2)

2
+ (yc − y2)

2
= R.

(4)

Regardless of the optimization of the actual solver, the equations are input into GA-
Powell algorithm and two optimal solutions are obtained. Optimal solution 1 is
(5.000000000000956, 0.00000000000074145893, 5.000000000001288, 39.9999999999
9704, 14.999999999998659, -9.999999999995033, 39.99999999999881). Optimal solu-
tion 2 is (4.999999999997651, -0.00000000000083986589, 4.999999999998072, 39.9
99999999999254, 15.000000000000888, 19.999999999997126, 39.99999999999913). The
errors of the solutions are all within 10−20, and the solution time is 0.245536 seconds.

In order to better test the performance of the GA-Powell algorithm for solving multi-
root nonlinear systems of equations, for the convenience of comparison and without loss
of generality, we use 9 selected systems of equations from reference [14] as the test sys-
tems of equations and compare them with the PGWO method proposed in that literature.
And in order to prove that the GA-Powell algorithm is insensitive to the initial value, the
initial value intervals of all the test equation sets except Eq. 8 are set to [-10, 10]. The
simulation experiments were implemented in python on a PC with a CPU of AMD Ryzen
7 6800H at 3.20 GHz and 16.0 GB of RAM. Some of the key quantitative results are
selected below to show the effect of the algorithm.

The experiment 1 is to solve{
f1(x) = x2

1 + x2
2 − 2 = 0 ,

f2(x) = x2
1 + x2

2/4− 1 = 0 ,
(5)

the equation has four solutions, which are
(−0.8165,−1.1547)T , (0.8165,−1.1547)T ,
(−0.8165, 1.1547)T , (0.8165, 1.1547)T .

and {
f1(x) = x4

1 + 4x4
2 − 6 = 0 ,

f2(x) = x2
1x2 − 0.6787 = 0 ,

(6)



1558 Sun Yunlei and Li Yucong

the equation has four solutions, which are
(−1.56353, 0.27763)T , (1.56353, 0.27763)T ,
(−0.78971, 1.08830)T , (0.78971, 1.08830)T .

The parameters are set as follows: the number of cycles of the genetic algorithm N =
10, the population is 100, the maximum number of iterations of the genetic algorithm is
50, the mutation rate is 0.03, and Powell’s method has a maximum number of iterations
of 500 and a convergence accuracy of 10−20. The results of the experiment are shown in
Table 4.

Table 4. Experiment 1 results

Equation GA-Powell Error

Eq. 5

-0.816496580927726
0.0

1.1547005383792515

-0.8164965809277257
1.9721522630525295e-31

-1.154700538379252

0.8164965809277259
1.8858706015439813e-28

1.1547005383792575

0.8164965809277255
2.197470659106281e-28

-1.1547005383792457

Eq. 6

-1.5635325915863936
4.078467204661264e-23

0.27762845243830503

-0.7897063597753254
4.2762300902543955e-24

1.0882948602064995

0.7897063597753038
2.9496002284279395e-29

1.0882948602066016

1.5635325915863927
8.496843844873951e-23

0.2776284524446274

As can be seen in Table 4, the GA-Powell algorithm is able to find all solutions and
has higher accuracy compared to the PGWO method solutions. However, the accuracy of
the solution of eq. 6 with higher powers decreases compared to eq. 5. The solution took
0.321683 seconds and 0.317919 seconds, respectively.

Experiment 2 solves the Eq. 7, Eq. 8 and Eq. 9. The parameters are set as follows: the
number of cycles of the genetic algorithm N = 50, the population is 100, the maximum
number of iterations of the genetic algorithm is 50, the mutation rate is 0.03, and Powell’s
method has a maximum number of iterations of 500 and a convergence accuracy of 10−20.
The results are shown in Table 5, Table 6 and Table 7.{

cos(2x1)− cos(2x2)− 0.4 = 0 ,
2(x2 − x1) + sin(2x2)− sin(2x1)− 1.2 = 0 ,

(7)
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the equation has 13 solutions, which are
(−9.268258,−8.931402)T , (−8.744542,−7.164787)T , (−6.126665,−5.789809)T ,
(−5.602950,−4.023195)T , (−2.985073,−2.648216)T , (−2.461357,−0.881602)T ,
(0.156520, 0.493376)T , (0.680236, 2.259991)T , (3.298113, 3.634969)T ,
(3.821828, 5.401583)T , (6.439705, 6.776562)T , (6.963421, 8.543176)T ,
(9.581298, 9.918154)T .

Table 5. Experiment 2 results of Eq. 7

Equation No. GA-Powell Error

Eq. 7

1
9.581298030452515

5.068086189398967e-25
9.918154334992423

2
-6.12666523749644

2.3517915736901414e-28
-5.7898089329563325

3
6.439705376862722

2.7240353133413064e-30
6.776561681402831

4
-2.985072583906657

5.053640174072107e-31
-2.648216279366548

5
-5.602949507250662

2.6262773526874095e-24
-4.023194565762204

6
3.8218284535187137

8.69749223328177e-25
5.401583395006905

7
-2.4613568536608685

1.025081519222289e-24
-0.88160191217265

8
-9.268257891086272

7.002171694601335e-23
-8.931401586543789

9
0.6802357999289202

6.570829235990062e-27
2.259990741416713

10
-8.74454216084046

1.474125009516472e-24
-7.164787219352157

11
6.963421107108508

5.089100457837923e-25
8.543176048596612

12
3.2981127232729306

2.430470957633393e-22
3.634969027817465

13
0.15652006968312956

2.9416965098544255e-22
0.4933763742281069
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As can be seen from Table 5, the GA-Powell algorithm is still able to find all exact
solutions for problems with a large number of roots. The solution took 1.758389 seconds.{

sin(x1
3)− 3x1x

2
2 − 1 = 0 ,

cos(3x1
2x2)−

∣∣x3
2

∣∣+ 1 = 0 ,
(8)

the equation has 10 solutions, which are
(−1.810885,−0.3490924)T , (−1.810885, 0.3490924)T , (−1.502221,−0.409077)T ,
(−1.502221, 0.409077)T , (−1.791302, 0.301926)T , (−1.791302,−0.301926)T ,
(−0.947268, 0.785020)T , (−0.947268,−0.785020)T , (−0.213057, 1.256845)T ,
(−0.213057,−1.256845)T .

Since Eq. 8 had too many solutions in the interval [−10, 10], the interval was nar-
rowed down to [−2, 2]. The GA-Powell algorithm did a better job of solving the problem,
obtaining all the exact solutions. The solution took 1.923495 seconds.

Table 6. Experiment 3 results of Eq. 8

Equation No. GA-Powell Error

Eq. 8

1
-0.9472681469862627

4.930380657631324e-32
0.7850200155682888

2
-1.5022159860694961

4.601031229701551e-28
0.40907656829415534

3
-0.2130566192382045

3.059160711793778e-22
1.256845317434239

4
-1.5022159860694986

3.5745259767827097e-31
-0.4090765682941479

5
-0.947268146986263

7.643742929444023e-26
-0.7850200155682433

6
-1.810885199439986

3.5745259767827097e-31
-0.3490909919763665

7
-1.791302084615447

4.930380657631324e-32
-0.3019263417131378

8
-1.7913020846154477

4.6459929979441084e-23
0.3019263417147986

9
-0.2130566192381985

2.7295323426479193e-24
-1.2568453174310898

10
-1.810885199439986

3.5745259767827097e-31
0.34909099197636656
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−3.84x1
2 + 3.84x1 − x2 = 0 ,

−3.84x2
2 + 3.84x2 − x3 = 0 ,

−3.84x3
2 + 3.84x3 − x1 = 0 ,

(9)

the equation has 8 solutions, which are
(0.0000, 0.0000, 0.0000)T , (0.4881, 0.9594, 0.1495)T , (0.5403, 0.9538, 0.1694)T ,
(0.9594, 0.1494, 0.4879)T , (0.1494, 0.4881, 0.9594)T , (0.9538, 0.1693, 0.5402)T ,
(0.1693, 0.5399, 0.9538)T , (0.7396, 0.7396, 0.7396)T .

Table 7. Experiment 3 results of Eq. 9

Equation No. GA-Powell Error

Eq. 9

1

0.5403878416288977

2.465190328815662e-320.9537362774344668

0.16943381967326443

2

0.7395833333333289

5.465303046638133e-250.7395833333333411

0.739583333333685

3

0.16943381967327076

5.724788241092171e-270.5403878416289855

0.9537362774344623

4

0.9537362774344795

9.46563760490936e-260.16943381967316742

0.5403878416283857

5

0.14940689655344594

6.407722999371885e-290.48800438713233574

0.9594474442442135

6

0.48800438713234184

9.013968437314468e-290.959447444244211

0.14940689655344785

7

0.9594474442438022

3.51920906640077e-240.14940689655528064

0.4880043871388201

8

-0.00000000000130681231

3.8675468719474286e-220.00000000000393663907

-0.00000000000165209884
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As can be seen from Table 7, the GA-Powell algorithm still solves well when the
number of variables increases. The solution took 1.951163 seconds.

From the above experiments, it can be seen that the GA-Powell algorithm proposed in
this paper is able to find all the solutions of the above nine systems of equations with high
solution accuracy, fast solution speed and insensitivity to the setting of the initial value.

5. Discussion

From the experiments in Section 4, it can be seen that the GA-Powell algorithm proposed
in this paper indeed balances the advantages of the genetic algorithm and the Powell algo-
rithm, and is able to accurately solve all the solutions of the problem with a large range of
initial values, which is more effective compared to the PGWO method in reference [14].
The proposed algorithm theoretically gives an effective idea for solving multi-solution
problems in the geometric constraint solving domain. This section mainly discusses the
principle of parameterization of GA-Powell algorithm when targeting different types of
systems of equations based on experimental results.

5.1. Systems of equations with a greater number of roots

The problems in Experiment 2 have a large number of solutions, and this kind of equations
mainly test the global search ability of the genetic algorithm. When setting the parameters
of the genetic algorithm, we should focus on enhancing its global search ability, so we
need to increase the population size to increase the breadth of the search space, increase
the variation rate to jump out of the local optimum, and also increase the number of times
to call the genetic algorithm to obtain the initial value. The above operations can be used
to make the genetic algorithm give initial values for all solutions for Powell’s algorithm
to converge to the exact solution.

5.2. Systems of equations with densely distributed roots

The roots of Eq. 9 are distributed in a small range of intervals, and the Euclidean distance
between the solutions of such systems of equations is small, i.e., the similarity between
the solutions is high, so when the genetic algorithm outputs the initial solutions and then
screens them, it is necessary to reduce the Euclidean distance threshold for determining
the similarity of the two values so as not to exclude the valid initial solutions.

5.3. Systems of equations with higher powers

Eq. 6 has higher powers of the variables, and these systems of equations are more com-
plex and computationally intensive, requiring an increase in the number of iterations and
termination accuracy of Powell’s algorithm in order to obtain a highly accurate solution.

It can also be seen from the above discussion that the GA-Powell algorithm has lim-
itations in terms of the parameter tuning problem, and the parameter adaptivity needs to
be enhanced in the future; at the same time, the number of test cases used in this paper
is not large enough, and there is a need to test the effectiveness of the algorithm by using
more test cases and applying the algorithm to a real geometric constraint solver.
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6. Conclusion

The conclusion of this paper highlights the research used to address the lack of support
for solving multi-solution problems by geometric constraint solvers based on traditional
numerical algorithms, which focuses on genetic algorithms and Powell algorithms, and
the proposed hybrid GA-Powell algorithm combines the advantages and compensates for
the shortcomings of the two. The results are compared and analysed in terms of the num-
ber of solutions, solution accuracy and solution time. The research successfully enhances
the support of geometric constraint solving algorithm for solving multi-solution problems
and obtains the following main research results:

- To address the shortcomings of the most prevalent geometric constraint solving algo-
rithms based on traditional numerical algorithms investigate the selection of suitable
algorithms in order to hybridize them in order to create complementary effects.

- The proposed GA-Powell hybrid algorithm has the advantages of high accuracy, high
efficiency and high robustness in solving multi-solution problems.

- The experience of the GA-Powell hybrid algorithm is given to guide the parameter
selection in different scenarios.

In this study, the method of mixing genetic algorithm with Powell algorithm to en-
hance the performance of geometric constraint solving algorithm is proposed, which pro-
vides a new idea to improve the solving of geometric constraints. The effectiveness of the
GA-Powell algorithm is verified by conducting scientific analog simulation tests, which
provides an important method for CAD systems to solve geometric constraint problems
with multiple solutions. The results of the research are of great significance in guiding the
further development and improvement of geometrically constrained solvers in the field of
CAD, providing practical experience and suggestions for related work.

Future work in this research includes enhancing the parameter adaptivity of the al-
gorithm, using more test cases, and applying the algorithm to a real geometric constraint
solver through user experience in order to test the effectiveness of the algorithm.
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