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Abstract. The traditional industrial big data fusion algorithm has low efficiency
and difficulty in processing high-dimensional data, this paper proposes a Q-learning-
based cascade classifier model for industrial big data fusion. By combining cascade
classifier and softmax classifier, feature extraction and data attribute classification
of source industrial big data are completed in this cluster. In order to improve the
classification rate, an improved Q-learning algorithm is proposed, which makes the
improved algorithm randomly select actions in the early stage, and dynamically
change in the late stage in the random selection of actions and actions with the
highest reward value. It effectively improves the defects of traditional Q-learning
algorithm that it is easy to fall into the local optimal and has slow convergence
speed. The experimental results show that compared with other advanced fusion al-
gorithms, the proposed method can greatly reduce the network energy consumption
and effectively improve the efficiency and accuracy of data fusion under the same
data volume.

Keywords: industrial big data fusion, Q-learning, cascade classifier, feature extrac-
tion.

1. Introduction

With the rapid development of industrial Internet of Things (IoT) technology, wireless
sensor networks, as the core component of IoT sensing layer, have been widely used in
various environmental monitoring fields [1-3]. In practice, most sensor nodes are powered
by batteries, which leads to limited network resources. Due to the uneven geographical
distribution of a large number of nodes, there is too much redundant information in the
data [4], which increases energy consumption and transmission delay. In addition, due
to the widespread interference in the application environment of the Internet of Things,
it will directly weaken the data communication transmission capability and reduce the
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accuracy of data acquisition, affecting the overall performance of the Internet of Things
system.

In order to solve the above problems, some fusion technologies for industrial big data
came into being [5,6]. The main idea is to fuse data from multiple different source nodes
to eliminate redundancy and reduce data transmission volume, so as to improve network
performance, extend network life and reduce energy consumption. The traditional fusion
algorithms are mostly based on BP neural network, SOFM and other shallow network
models. These models are prone to problems such as over-fitting, model training trapping
local minimum, slow convergence rate, etc., resulting in reduced algorithm efficiency,
weak feature extraction and classification ability, and unable to effectively process high-
dimensional data [7,8]. In view of the above defects, the application of deep model has
become a new direction for the integration of industrial big data. In 2015, LeCun et al.
[9] proposed the concept of “deep learning”. Then, convolutional neural network (CNN)
[10], stack auto-encoder (SAE) and other models have been widely used. Currently, deep
learning has been studied in the field of data fusion. References [11-13] proposed to use
the SAE model in deep learning to carry out feature fusion on industrial big data, signif-
icantly improving the accuracy of fusion. In reference [14], combining the deep model
and sparse filtering algorithm, the BSSFM model was designed to extract data features,
which improved the efficiency of fusion and reduced energy consumption. However, the
use of SAE and other models would generate a large number of weight parameters in the
training process, increasing the difficulty of model training.

Reference [15] studied a multi-sensor data fusion method in a complex environment.
According to the results of trust, the idea of evidence iterative fusion was introduced to
correct evidence conflicts from the level of evidence sources. Then it fused the modified
evidence data, that is, it realized the fusion of multi-sensor data. Reference [16] proposed
a multi-source sensor data fusion method based on manifold learning. T-SNE algorithm
was adopted to reduce the dimension of high-dimensional multi-source sensor data, and
the low-dimensional probability matrix was updated to generate a reasonable exclusion
gradient between the points with small distance from the multi-source sensor data and
completed the data fusion. Reference [17] proposed a multi-sensor data fusion method
based on data correlation. MDF technology was used to identify hidden association fea-
tures in group data, and the fusion of multi-sensor data was completed through the fusion
of association features. Reference [18] proposed a multi-sensor data fusion method for
UAV detection and tracking to measure the reliability of the data set. According to the re-
liability results, the Gaussian process model was constructed to complete the multi-sensor
data fusion. However, the above methods have low efficiency in the process of fusion.

The multi-modal data fusion methods can be roughly divided into two categories:
model-independent fusion methods and model-based fusion methods. Among them, the
model independent method is simpler but less practical, and the fusion process is easy
to produce losses. Model-based fusion method is more complex, but it has high accuracy
and practicability, and is also the mainstream method used at present [19].

In the process of multimodal fusion, the time of fusion is an important consideration.
According to different fusion periods or fusion levels, there are three model-independent
fusion methods, each of which has its own characteristics [20]. In different experiments,
different fusion methods can be tried to get better results. Some of the characteristics of
the modes, such as the different data acquisition rates, present new challenges on how to
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synchronize the entire fusion process. The following is a detailed overview of the three
fusion methods. Table 1 compares the three data fusion methods.

Table 1. Performance comparison of three model-independent fusion methods

Method Information loss  Fusion difficulty ~Fault tolerance Fusion level Fusion stage

Early fusion =~ Middle Hard Poor Low After feature extraction
Post fusion Big Middle Middle Middle Post-decision

Hybrid fusion Small Easy Good High Simultaneously

Early fusion, also known as feature fusion, is a fusion method that is carried out im-
mediately after the feature extraction of the modes. The advantage of feature fusion is that
the correlation between multiple features from different modes can be exploited early on,
and is suitable for situations where the modes are highly correlated. For example, early
fusion is used when combining audio and video features of speech recognition. However,
it is difficult to extract features, so it is not the most ideal fusion method.

This method is difficult to represent the time synchronization cabinet between multi-
modal features. Since the representation, distribution, and density of various modes may
vary, simple connections between properties may ignore the properties and correlations
unique to each mode, and may create redundancy and data dependencies between the data.
Features that need to be fused are also required to be represented in the same format before
fusion. As the number of features increases, it is difficult to obtain cross-correlations
between these features. Figure 1 shows an early fusion approach.

Result
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Fig. 1. Early fusion process

Late fusion, also known as decision-level fusion, refers to the fusion that occurs after
a decision (classification or regression) has been made for each mode. For post-fusion,
it is necessary to use corresponding models to train different modes, and then fuse the
output results of these models. Compared with the earlier fusion cooperation, this fusion
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approach can handle simple data asynchronism. Another advantage is that it allows the
use of methods that are best suited to analyzing each single mode, such as Hidden Markov
Model (HMM) for audio and Support Vector Machines (SVM) for images.

However, the late fusion ignores the low-level interaction between multiple modes,
and the fusion is difficult. Since different classifiers require different decisions, the learn-
ing process becomes both time-consuming and laborious. Figure 2 shows the structure of
the late fusion method.
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Fig. 2. Post fusion process

References [21,22] adopted fuzzy set, neural network, evidence theory and FIM al-
gorithms for data fusion respectively, which did not consider the characteristics of sensor
nodes and assumed that the collected data was correct. They did not judge the credibility
of the source of the data, so the accuracy of the data was not guaranteed. Reference [23]
proposed a fusion algorithm based on variable weights (VWFFA), which considered some
influential factors in the communication process to weight the data. An improved fuzzy
fusion algorithm was proposed in reference [24], which was weighted by considering the
influence of external conditions on the calculation reliability. Both reduce redundancy and
improve the accuracy of data, but they lack pertinence for different fusion stages, and the
accuracy and real-time performance of data need to be further improved.

In order to improve the quality of industrial big data classification and fusion, this
study proposes a new data fusion method from the perspective of deep learning.

2. Related Works

Model-based data fusion methods have a wider application range and better effect than
model-independent methods, and current research is more inclined to such methods. Com-
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mon methods include multi-core learning method, image model method and neural net-
work method.

2.1. Multi-Kernel Learning (MKL)

The Multi-Kernel Learning (MKL) method is an extension of the kernel support vector
machine (SVM) method and is the most commonly used method before deep learning,
which allows different views of the data to be checked using different methods [25]. Be-
cause kernel can be regarded as similar function between data points, this method can
better fuse heterogeneous data and use flexibly. Mirbeygi et al. [26] used MKL to sort
the similarity of music artists from three aspects: acoustics, semantics and artists’ social
view, and proposed a new multi-core learning (MKL) algorithm, which could learn sim-
ilar spatial items to generate similar spaces and combine all feature spaces into a unified
embedded space in an optimal way. Figure 3 is the process of MKL.
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Fig. 3. Multi-kernel learning process

In some applications, there may be different information sources from different modes
or results corresponding to different experimental methods, and each information source
has one or more kernel questions of its own. The advantages of this method are flexible
kernel selection, convex loss function (minimum value is the minimum value), and global
optimal solution can be used to train the model and improve the model performance.
Better MKL algorithms can be designed to improve accuracy, reduce complexity and
training time.

Because in many applications, people propose many possible kernel functions, not
choosing one of them but using them together, there is a lot of work in multi-kernel learn-
ing methods. The high time and space complexity is the main reason that the multi-core
learning method can not be widely used. Another disadvantage is the large memory foot-
print and a slight dependence on training data.

2.2. Image Model Method

Image model method is also a common fusion method, which mainly fuses shallow or
deep graphics through image segmentation, splicing and prediction operations, so as to
obtain the final fusion resultl.
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Common image models are divided into generative (joint probability) models and dis-
criminative (conditional probability) models. The use of image models in many studies,
especially in statistical natural language processing, focuses on generative models that
attempt to model the joint probability distribution of inputs and outputs.” In the early
days, generative models were mainly used, such as dynamic Bayesian Networks (Dy-
namicBayesian Networks) and hidden Markov models. In later studies, discriminative
models were more popular, simpler and easier to learn than generative models. Common
discrimination models, such as Conditional Random Field (CRF), classify and label the
components of the image2. Table 2 compares the generative model with the discriminant
model [27,28].

The main advantage of image models is that they are easy to explore the spatial and
temporal structure of the data, and the interpretability of the model is enhanced by em-
bedding expert knowledge into the model. The disadvantage is that there are complex
dependencies between features, and the generalization of the model is not strong.

Table 2. Comparison of generation model and discrimination model

Comparison item  Generative model Discrimination model
Characteristic Finding the optimal classification surface between different categories A posteriori probability modeling
Distinction Model the joint distribution Model the conditional distribution
Sample size more Less than the generative model
Accuracy rate Low Higher than the generation model

2.3. Neural Network Method

Neural network method is one of the most widely used methods at present. Long Short-
Term Memory (LSTM) and Recurrent Neural networks (RNNS) are often used to fuse
multi-modal information. For example, bidirectional long short-term memory network is
used for multi-modal emotion recognition; multimodal Recurrent Neural Networks (m-
RNN) are used to directly take the image representation, word vector and implicit vector
as the input of multimodal judgment, which shows a good effect in image subtitle pro-
cessing and other tasks [29].

Some researchers have achieved better results through model patchwork than multi-
core learning and image models. The application of neural network method in multi-
mode fusion has strong learning ability and good expansibility. The drawback is that as
the number of modes increases, deep learning becomes less interpretable and needs to
rely on large amounts of training data. Table 3 compares the three model-based fusion
approaches.

Table 3. Performance comparison of three model-independent fusion methods

Method workload Model interpretability Feature dependence Applications
MKL big weak simple EasyMKL
Image-based small strong Complex Multimodal data classification

NNM big weak simple Multi-modal emotion recognition
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Neural network structure optimization based on Genetic algorithm (GA) is one of the
earliest meta-heuristic search algorithms for neural network structure search and opti-
mization. In the early 2000s, an algorithm called Neural Evolution of Augmented Topol-
ogy (NEIT), which also uses GAs to evolve increasingly complex neural network struc-
tures, received a lot of attention. Shinozaki et al. P applied GAs and covariance matrix
evolution strategies to optimize the structure of DNN and parameterized the structure of
DNN to a simple binary vector based on directed acyclic graph representation. Since the
GA search space can be very large and each model in the search space is expensive to
evaluate, parallel searches using large GPU clusters speed up the process. These neural
network structure search and optimization techniques can be easily extended to multi-
modal settings if a suitable representation of the network architecture is designed and it is
not very expensive to train and test multiple architectures during the search process.

3. Q-learning Algorithm

The basic idea of reinforcement learning is to maximize the cumulative reward value ob-
tained by the Agent from the environment in order to learn the optimal strategy to achieve
the goal [30]. Reinforcement learning is a self-supervised learning method, which is dif-
ferent from supervised and unsupervised learning [31]. It does not require any data to be
given in advance, but obtains learning information and updates model parameters by re-
ceiving environment’s reward for action. The most important idea of reinforcement learn-
ing is continuous interaction with the environment, whose interaction elements include
state, behavior and reward [32]. The process of reinforcement learning is shown in Figure
4. At time ¢, the Agent accepts the reward value R given by the environment and the state
s at the next moment. At time ¢ + 1, the agent responds to the environment with an action
a.
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Fig. 4. Basic model of reinforcement learning

Reinforcement learning is divided into two types: model-based reinforcement learning
and model-free reinforcement learning. In this paper, Q-learning algorithm in model-free
reinforcement learning is selected to solve the problem and establish the algorithm model
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[33]. In Q-learning algorithm, the environment will make the corresponding reward value
R according to the action feedback of the Agent. The algorithm combines state s and
action a together to construct Q-table and store the Q value of each update. It selects the
action that can get the maximum reward according to the Q-table. After each action is
selected, Q-table is updated. The Q-table update rules are as follows:

Q(s,a) + Q(s,a)—l—oz[R—l—'ymamQ(s’,a’) - Q(s,a)l. (D

Where s represents the current state. a represents the action selected from the current
state. s’ is the next state. a’ represents the action selected from the next state. v represents
the learning rate of control convergence (0 < a < 1). v represents the discount factor
(0 < v < 1),y = 0 indicates immediate reward, and v = 1 indicates future reward).

Where « stands for learning rate. If the learning rate is higher, the previous learning
results will be retained less, and the Agent will more prefer the present and future results.
As a discount factor, if v — 0, the Agent tends to choose the immediate reward; if v — 1,
it means that the Agent is more far-sighted and tends to consider the influence of the
subsequent reward. Algorithm 1 shows the update steps of Q-learning algorithm.

Algorithm 1 Power method

Input: Parameters;

Output: State;

: Initialize Q(s, a), s € S,a € A;

: for each episode

. Initialize current-s

: while not finished (all states) do

At a certain time ¢, an optional action a is selected according to the current state s through
the greedy dream strategy;

Perform action a to obtain the state s” at time ¢ + 1 and the reward R.
Update Q-table;

Compute formula (1);

Record next state s’ and convert it to the current state;

10: end while

HI-J;L»J[\)H

o XA

Q-learning algorithm selects actions in two ways. One is exploration, which randomly
explores an action and a state to transform; The other is utilization, for all the actions that
may be selected to search for the next state, generate the maximum reward value and the
action corresponding to the next state value.

4. Data Fusion Strategy

In this paper, the deep learning algorithm is used to design a hierarchical automatic di-
mension reduction classifier to process low-dimensional data from multi-source sensors
and obtain ideal feature extraction results [34]. The specific implementation process is
detailed as follows. Data dimension reduction is the process of mapping data from high-
dimensional feature space to low-dimensional feature space, which can avoid the interfer-
ence of chaotic and invalid data and improve the quality and efficiency of computation.
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The designed automatic dimension reduction classifier (ADRS) is a single hidden layer
structure. The ADRS structure is shown in Figure 5.

Input
layer

Hidden
layer 1

Output
layer

Fig. 5. ADRS structure. (a) k=1, (b) k=2

The input layer refers to the data input into the neural network. The input data must
be numeric, meaning that non-numeric content needs to be converted to numeric value.
Typically, data processing is the most time-consuming part of creating a machine learning
model.

The hidden layer is composed of most of the neurons in the neural network and is the
core part that processes the data to obtain the desired output. The data will pass through
the hidden layer and undergo many weight and bias adjustments.

The output layer is the end product of processing data in a neural network and can
represent different things. Typically, the output layer is made up of neurons, each repre-
senting an object.

The objective of ADRS dimension reduction classifier is to find the optimal fusion pa-
rameters in the sensor nodes (W, b). Fusion parameters determine the performance of data
fusion. Selecting the optimal fusion parameters can improve the data fusion capability.

The global optimal solution of multi-source sensor network was found to optimize the
initial weights and thresholds of the classification process. The essence of deep learning
training is to update the weight. Before training a new model, it is necessary that each
parameter has a corresponding initial weight. The selection of initial weight has certain
influence on the placement of local minimum points and the improvement of network
convergence speed. A neuron is a nonlinear unit with multiple inputs and single outputs.
Only when the sum of inputs exceeds a certain value can the output respond, which is
generally called the threshold value.

The input sensor node information x can achieve dimension reduction under the action
of the output result y, so as to obtain the output result a(*2) of the hidden layer. And
a®2) is regarded as the characteristic result obtained after dimensionality reduction of
input items for classification.

In the calculation process, to ensure the sparse robustness of features of a®2) | three
constraint functions should be used to achieve this, as shown in Equation (2):

-1 s; s;1+1

1 m ) ) )\ ny S2
minL(W.bargws) = — > la"y' 145 >0 > S WP+ KL(p/p))- @
=1

=1 i=1 j=1 j=1
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Where L(W,b) represents the node energy loss function. p, A and 3 represent the
weight coefficient value of the classifier. K L represents constant constraint term in spar-
sity condition, K L = 0.5||y® —z®||2. (9 and y(*) represent constraint constant of input
layer and output layer respectively. m indicates the number of samples in the ADRS. n;
indicates the number of network layers of the sensor. s; represents the number of units
contained in layer [. Wj(ik 4 represents the weight of connection between layer [ and unit
jinlayer [ + 1 in the k — th ADRS network. W (*:!) represents cell bias at each level in
the sensor network.

In order to minimize the value of loss function, parameters in sensor network are
trained by gradient descent algorithm to achieve dimension reduction. The specific im-
plementation process is detailed as follows:

— Step 1. For all layers [ — , the element bias variable parameter satisfies AW (%)) = 0,
ApkD = 0.
— Step 2. Set i € [1, m]. The calculation formula is as follows:

AWED = AWED 4 700 sEHD (DT A3)

AbFD = Ap®D 7 §RIHD. )

Where o*!) represents the loss parameter of unit . in layer 1. 6%+ represents the
residual of element n in layer [ + 1. T stands for loss constraint.
— Step 3. Update the parameter values in ADRS.

1
Wb = kb _ a[EAW(’“’l)] + AW ED, )

bk — p(kd) _ qr L Ay, ©)
m

— Step 4. Return to step 2, loop calculation, until meet preset conditions, then output
(W kD pk1) 7 (k,2) p(k.2))

After the above dimension reduction, the classifier is designed. Cascade automatic
classifier ADRS is obtained by several dimension reduction processors through the cas-
caded action. ADRS has an obvious advantage that the output result of the input item can
only be obtained after several dimensional reduction processing, eliminating most redun-
dant information. The parameter values of each layer in ADRS can be calculated by the
greedy floor algorithm, even if the output results of the upper layer are used as the input
items of the next layer. The specific implementation process is as follows.

Set the number of hidden layers in ADRS to Nj. After the input data x is processed
by the greedy algorithm, the parameters and output result a(!:?) are obtained, as shown in
Figure 5(a). Then a("?) is taken as the input item, and the output result a(>?) is obtained
after the next round of greedy algorithm [35]. The process is shown in Figure 5(b).

Repeat training process. For the ADRS with Ny, layers, after a greedy training, pa-
rameter set (WD p(ED) |k = 1,... N}, is obtained. (W %1 p(¥:1)) is regarded as the
connection weight value between ADRS levels. The multi-source sensor coding classifier
is shown in Figure 6.
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Fig. 6. Multi-source sensor feature classification model

The result of feature extraction plays a decisive role in the accuracy of subsequent
data fusion and is the key to the successful completion of data fusion. Therefore, ADRS
and Softmax classifier are combined to realize feature classification through cascading.
The implementation process is as follows:

Step 2. Through Q-learning processing of sample features, the best data features are
obtained.

Step 3. After training, data features are obtained. After supervised training and the
function of Softmax classifier, output parameters (., 6.) are obtained.

Step 4. Consider the parameters obtained in steps 2 and 3 as the original data. In the
ADRS model, the supervised training algorithm is used to adjust the original data.
Then, the adjusted sensor network and Softmax classifier [36] are used as the extrac-
tion module and classification module in the feature extraction model to complete the
feature extraction and classification of multi-source sensor data.

In the process of solving problems, Q-learning algorithm generally uses the greedy
strategy to make selection. This strategy selects the corresponding action with the max-
imum reward value in each selection, which is called greedy. However, it does not take
the global consideration into account. In the initialization process, the Q value is set as
the equal value or random value, that is, the learning is carried out in the environment
without prior knowledge. At the same time, the learning rate is generally not dynamically
adjusted after initialization, and the learning process is characterized by large decision-
making space, slow learning speed and uncertain learning effect [37]. As a result, the
result is easy to fall into local optimal and the optimal solution cannot be found. In this
paper, Q-learning algorithm is improved, and a ”Sigmoid “function is introduced as a dy-
namic selection strategy, so that the improved Q-learning algorithm can randomly select

Step 1. By training industrial big data samples to get parameter (W (%1 p(e:D) |k =1, ...
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actions in the early stage and dynamically select the optimal actions in the late stage. This
improved method can improve the phenomenon that the greedy strategy falls into the lo-
cal optimal in the early stage and may choose the sub-optimal action in the late stage of
learning.

This paper introduces ’Sigmoid” as an action selection strategy, and its expression is
as follows:

_ eopl@s1,a)
1+ exp(Q(ss,a))

According to Equation (7), when Q value of the initial state is set to 0, each action has
the same selection probability and is more random in the early stage of selection. When
the learning reaches a certain level, the reward value of each action starts to stand out, and
the probability P changes with the update of Q value. The system will gradually tend to
choose the action with high reward value.

In this paper, three kinds of selection strategies are discussed, which are completely
random” strategy, “semi-random” strategy and greedy strategy. We introduce parameter
B and have the following options.

P(s¢,a)

(N

1. When B = 0, then P > B. Implement the greedy dream strategy.

2. When B = 1, then P < B. Implement the ”completely random” strategy, that is, the
actions are randomly selected throughout the selection process.

3. When B € (0,1). Implement the ”semi-random” strategy, that is, a ”Sigmoid “func-
tion is introduced as a dynamic selection strategy. When P > B, the algorithm carries
out the exploration strategy and selects the action with the maximum current reward
value. When P < B, the algorithm adopts a "completely random” strategy and se-
lects actions at random.

4. Combined with the improvement objectives of this paper, the strategy selection when
B € (0,1) is implemented, and B = 0.5 is set through a large number of experiments.

5. Experiments and Analysis

Matlab platform is used to simulate and analyze the data fusion algorithm, and the facility
industry monitoring system is taken as the application scenario. In order to highlight the
performance of the proposed data fusion, STDF [38], CCA [39] and FKCI [40] are used
for comparative analysis.

The simulation parameters are shown in Table 4, where the number of nodes and the
network scope refer to the random distribution of 100 sensor nodes in the perception area
within the range of 100m x 100m. In order to compare the efficiency of various data fusion
algorithms, the un-optimized LEACH protocol is adopted, and the energy consumption
of sending, receiving and fusion data of nodes is calculated according to the first type of
wireless communication energy consumption model.

The classification error rate of feature extraction with each algorithm is shown in Ta-
ble 5. Where n, d and c represent the network layer number, the dimension of input data
and the number of data classification respectively. As can be seen from Table 5, for low-
dimensional and low-category data, the classification error rate of proposed method is
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Table 4. Experiments parameters

Parameter Value Parameter Value
Network range 100m x 100m  Packet length 2000bit
Note number 100 Cluster message length 100bit
Sink node coordinate (50,50) Packet head length 100bit
Initial node energy 0.5] Maximum simulation number 2000
Convolution kernel size 3 x 3 Convolution step 1

basically the same as that of STDF and CCA. With the increase of the input data dimen-
sion, the number of parameters of CCA and FKCI increases sharply, and the performance
begins to decline, resulting in a significant increase in the error rate. In contrast, the error
rate of proposed method based on the depth model is always at a low level.

Table 5. Inaccuracy of feature extraction and classification with different algorithms%

Method d=200, c=4 d=600, c=6 d=900, c=12 d=2500, c=12

STDF(n=4) 8.4 16.7 19.6 28.1
STDF(n=5) 8.1 14.2 16.2 259
CCA 7.8 13.7 15.9 24.6
FKCI 7.1 12.5 134 20.2
Proposed 6.4 8.2 8.9 10.5

The average time of feature extraction and classification process of each algorithm
is shown in Table 6. The analysis shows that Proposed has higher execution efficiency
and can achieve faster data fusion compared with STDF, CCA and FKCI. Based on the
powerful dimension reduction ability of CNN, as the dimension of input data increases,
Compared with the other two algorithms, the feature extraction time of Proposed is greatly
shortened, showing the advantages of processing high-dimensional data.

Table 6. Average time of feature extraction and classification with different algorithms/ms

Method d=200, c=4 d=600, c=6 d=900, c=12 d=2500, c=12

STDF(n=4) 4.71 7.59 9.12 38.37
STDF(n=5) 5.49 8.04 9.58 40.96
CCA 522 7.54 8.69 36.54
FKCI 4.27 6.93 8.44 32.82
Proposed 3.18 3.26 3.71 9.50

This paper considers the effect of different number of nodes on the performance of
wireless sensor networks in the 200m x 200m region. Assuming that the flow rate is
20 packets/s, the average accuracy rate (AAR), average delay time (ADT) and average
energy consumption (AEC) of the data within 10s are calculated and normalized, and the
result is shown in Figure 7 and table 7.
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Fig. 7. Effect of node number on algorithm performance

Table 7. Effect of node number on algorithm performance

?
(

Node number AAR ADT AEC

50 0.18 0.16 0.02
100 021 0.16 0.15
150 0.2 0.18 0.19
200 0.19 021 025

250 0.19 024 0.28
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In a fixed area, AAR, ADT and AEC increase with the increase of nodes. When the
number of nodes is increased from 100 to 150, the increase rate of data accuracy de-
creases, while the time delay and energy consumption increase significantly. Therefore,
this paper selects 100 nodes as reference values for subsequent experiments.

MTS420/400 is used as the sensor plate model, the sensor plate includes humidity,
temperature, PH, carbon dioxide concentration, smoke concentration and light sensor as
a communication component, and the random high-frequency noise signal is added to the
sensor to simulate the effect of the actual sensor noise. The parameters of the MTS420/400
are shown in Table 8.

Table 8. Effect of node number on algorithm performance

Parameter MTS420/400
Temperature range/(°C) -3941.3
Humidity range 0100

Signal-to-noise ratio/dB 01

This paper compares these four algorithms by counting the accuracy rate of receiving
data from base station. Figure 8 shows the relationship between the accuracy rate of re-
ceiving data and the communication time of the base station. As can be seen from figure
8 and table 9, when FKCI, CCA, STDF and proposed method (node=25) are adopted for
data fusion, the AAR values are 83.5%, 79.2%, 68.8% and 88.7%, respectively. Both the
STDF and proposed method exclude unreliable data, while the CCA algorithm does not
distinguish whether the data is correct or not, and all the data are weighted and fused,
among which some incorrect data have high weights, affecting the overall accuracy rate.
The algorithm in this paper considers not only the amount of data and time delay, but
also the reliability of the data. High reliability will increase the weight value. Therefore,
compared with the other three algorithms, the data accuracy of the proposed algorithm is
increased by 5.2%, 9.5% and 19.9%, respectively.

Table 9. AAR/%
Node Proposed FKCI CCA STDF
5 85.1 802 795 764
10 86.7 793 775 725
15 88.6 814 764 719
20 89.4 81.7 769 723
25 88.7 835 792 6838

In this section, the average end-to-end delay of data is used to measure the real-time
performance of data. The shorter the delay, the better the real-time performance. In the
simulation, data is set to eventually arrive at the base station. In this algorithm, there are
three kinds of data with priorities ranging from 0O to 2, and each hop delay is required to
be lower than 200ms, 400ms and 600ms respectively. Other algorithms do not consider
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Fig. 8. The relationship between the accuracy rate of BS receiving data and the commu-
nication time

priorities. Figure 9 shows the relationship between data average end-to-end latency and
traffic.

The wireless communication model [41,42] adopted in this paper is shown in equa-
tions (10-12).

Ery(l,d) = [Eejee + 1045d*,d < dy. (8)
ETac (l7 d) = lEelec + leampd47 d > d0~ (9)
ERz(la d) = lEelec~ (10)

Where E.;.. represents the energy consumption of the transmitter running the trans-
mitter or receiver, 04, represents the energy consumption of the signal amplifier, and
dy is the threshold of free space energy attenuation. Through network simulation calcu-
lation, the relationship between the average energy consumption of nodes in the network
and the communication time is obtained, as shown in Figure 10. As can be seen from
Figure 10 and table 10, the average energy consumed by nodes gradually increases with
the communication time. STDF algorithm uploads data directly, which results in a large
number of data packets and consumes a lot of energy. Compared with STDF algorithm,
CCA algorithm adopts fuzzy weighting method for data fusion, which reduces the amount
of data and energy consumption. However, it does not distinguish whether the data is cor-
rect or not, and all the fusion processing, at the cost of data accuracy in exchange for
less energy consumption. The algorithm in this paper removes part of the wrong data, and
then merges and uploads, saving energy. FKCI algorithm in the initial phase out some
of the inaccurate data, and within the cluster, the cluster between the fusion respectively,
reduces the amount of data. In terms of energy consumption, compared with FKCI, STDF
and CCA, the proposed algorithm is reduced by 21%, 9% and 4% respectively.
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Fig. 10. Comparison of energy consumption

Table 10. Comparison of energy consumption

Time Proposed FKCI CCA STDF

2 0.15 021 025 028
4 0.36 042 044 057
6 0.48 0.56 0.63 0.71
8 0.59 0.67 0.72 0.77
10 0.69 0.74 0.81 0.86

12 0.78 0.82 0.87 0.99

1645
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6. Conclusion

Based on the characteristics of large amount and high complexity of data collected by
industrial multi-source sensors, in order to meet the actual demand, the deep learning
autoencoder theory and Q-learning are used to conduct in-depth research on the multi-
source sensor data fusion method. The performance of the fusion method is studied from
both theoretical and experimental aspects. The method can accurately extract and classify
data features, reduce the energy consumption of data fusion, and greatly improve the
quality of multi-source sensor data fusion. Therefore, the proposed method has obvious
advantages and can provide a new reference idea for the development of multi-source
sensor data fusion technology.
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