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Abstract. Underwater image denoising technology is of great significance in un-
derwater operation. Underwater operations (such as offshore oil drilling, under-
sea tunnels, pipeline construction, underwater archaeology, biological research, and
lifesaving) require stable and clear underwater images to aid analysis. Due to the
scattering and absorption of light by water bodies, obtaining high-quality underwa-
ter images is a challenging task. Underwater images are prone to low contrast, low
resolution and edge distortion. Therefore, it is difficult to accurately separate the ef-
fective signal when removing the underwater image noise, which leads to the image
contrast reduction. Also the edge contour is not clear, and the detail loss is serious.
Therefore, we propose a novel underwater image denoising method based on curved
wave filter and two-dimensional variational mode decomposition. Firstly, the noisy
image is decomposed by two-dimensional variational mode decomposition, and a
series of modal components with different center frequencies are obtained. The ef-
fective modal components are selected by correlation coefficient and structural sim-
ilarity. And the effective modal components are processed by the curve-wave filter.
Finally, the filtered modal components are reconstructed to remove the noise in
the image. The experimental results show that, compared with other state-of-the-art
methods, the proposed method has clearer denoising results, less mean square error,
and better denoising effect.

Keywords: Underwater image denoising, curved wave filter, two-dimensional vari-
ational mode decomposition, image reconstruction.

1. Introduction

With the rapid development of science and technology, human beings need to further
develop Marine resources and understand the seabed organisms and available resources,
which will be conducive to the study of Marine resources. As an auxiliary means of under-
water vision, clear underwater images are the most intuitive way to understand the under-
water world [1-3]. Although there is a high-quality imaging system for remotely operated
underwater vehicles, due to the dispersion of water molecules, microorganisms in water,
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and the quality of sensing elements in the camera, the underwater images collected will
contain a lot of complex noise, which greatly reduces the visual quality of underwater
images. It seriously affects the application of machine vision and late underwater images,
and brings great challenges to the field of computer vision [4,5].

As a kind of water resources, Marine resources play a very important role in the de-
velopment of human society and the earth’s energy cycle [6]. Different from the terrestrial
environment, the complexity, variability and dynamics of the Marine environment bring
serious challenges to underwater exploration [7]. Underwater image denoising technology
is an early means of ocean exploration, and plays an important role in seabed topography
mapping, underwater target object recognition and detection, and biological population
monitoring [8,9]. Due to the presence of scatterers in the ocean and the reverberation
effect caused by the undulating seafloor and sea surface, the image has serious speck-
led noise, especially in the shallow sea area [10]. Speckled noise and interfering signals
lead to degraded image quality, which adversely affects subsequent image processing.
Therefore, the study of underwater image denoising method has always been the focus of
research [11].

Classical image denoising methods include mean filter [12], median filter [13], wavelet
transform [14], etc. Although the above denoising methods are simple in operation and
have strong adaptability, there are unavoidable problems. Although mean filter is fast in
calculation, it will damage the high frequency region of the image in the process of de-
noising, resulting in the loss of image details. Median filtering replaces the central pixel
value of the window with the middle value after sliding window sorting, which can re-
move the noise in the high frequency part of the image. However, for the part of the image
with relatively dense noise, the denoising effect of median filtering will be weakened, and
the image will become blurred with the increase of sliding window. These methods need
to adjust the filter suitable for the noise characteristics according to the local noise, which
is faced with many difficulties. In the wavelet transform, the selection of the threshold
will affect the denoising effect of the image. In addition, different noise images need to
set different thresholds.

Different threshold functions in the curve-wave threshold denoising framework [15]
produce different denoising effects. The soft threshold and hard threshold functions de-
scribed in references [16,17] had been widely used, but they had different degrees of de-
fects. The discontinuity of the curve wave hard threshold function at the threshold point
caused obvious visual distortion such as ringing and pseudo-Gibbs effect in de-noised im-
ages. There is a constant deviation between the curve coefficients before and after the soft
threshold function processing, which leads to the blur of the edge of the image and the
decrease of the visual quality of the de-noised image. Therefore, the construction of an
efficient threshold function is the key to improve the de-noising performance of the curve-
wave threshold de-noising method [18]. In addition, the curve-wave threshold denoising
method can only ensure that the noise whose absolute value is less than the threshold
value is removed, and there is no unified standard for the selection of threshold values.
Surround effect will occur, resulting in poor image visual quality [19]. In view of these
inherent performance defects of the wavelet threshold denoising method, researchers will
use Partial Differential Equation (PDE)[20] based on information fusion to improve the
denoising effect of the wavelet threshold method [21].
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In 2014, Dragomiretskiy et al. [22] proposed a completely non-recursive variational
mode decomposition model (VMD), which could adaptively decompose the signal into a
set of band-limited inherent mode functions and obtain the optimal value of the inherent
mode function, thus solving problems such as the sensitivity of empirical mode decom-
position to noise and sampling. In order to facilitate the processing of two-Dimensional
signals, Dragomiretskiy et al. [23] proposed a two-dimensional variational mode decom-
position model (2D-VMD) based on the VMD algorithm. The model was a natural two-
dimensional extension in the context of image segmentation and orientation, and was a
non-recursive, fully adaptive variational method that could decompose an image into a
series of sub-modal components with different center frequencies. Many scholars have
applied the 2D-VMD model to different areas of image processing. Zhang et al. [24]
proposed a denoising method for medical ultrasound images based on two-dimensional
variational mode decomposition combined with fast non-local mean, which could retain
edge information well while denoising, and had a good denoising effect in high noise vari-
ance. Meriem et al. [25] used two-dimensional variational mode decomposition to reduce
the random noise of fringe patterns and improve contour and residual images, thereby
controlling and reducing the existence of defect flatness on the surface. Although some
denoising algorithms based on two-dimensional variational mode decomposition have
been proposed successively, no more effective denoising methods have been proposed
according to the characteristics of underwater images.

Compared with other filtering methods, curve-wave filtering has a better effect on pre-
serving image edge information and details in the process of denoising. Therefore, an un-
derwater image denoising method combining wave-wave and two-dimensional variational
mode decomposition is proposed in this paper. Firstly, the noisy image is decomposed into
a series of modal components with different center frequencies by two-dimensional vari-
ational mode decomposition. Then, the correlation coefficient (CC) and structural simi-
larity (SSIM) are used to select the effective modal components, and the effective modal
components are processed by curvewave filtering. Finally, the filtered modal components
are reconstructed to remove the noise in the image.

This paper has the following organization structure. In section 2, we introduce the Fast
Discrete Curvelet Transform (FDCT). Section 3 detailed shows the proposed underwater
image denoising. Experiments are conducted in section 4. There is a conclusion in section
5.

2. Fast Discrete Curvelet Transform (FDCT)

The Curvelet Transform (CT) [26,27] is decomposed on all possible scales using the
Multi-scale Ridgelet Transform, the implementation of CT can be summarized as follows.
I is the given dimension N × N two-dimensional digital image signal, and its signal is
decomposed by J − th layer binary wavelet, it can obtain:

I = Cj +

J∑
j=1

Dj (1)

Where Cj is the low frequency component on the coarsest scale. DJJ=1,2,··· ,J is the
high frequency. The size value of j = 1, 2, · · · , J represents the thickness of the scale.
The CT transformation process is shown in Figure 1.
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Fig. 1. The process of CT

Table 1. Approximation order under different transformations

Class Approximation order
Fourier ||g − ḡm||22 = o(m−0.5)

Wavelet ||g − ḡm||22 = o(m−1)

Curvelet ||g − ḡm||22 = o(m−2)

CT is a non-adaptive multi-scale geometric analysis method. Different from the adap-
tive method, CT does not need to know the geometric features of the image in priori, but
does directly decompose the signal on a set of fixed frames or basis functions, and makes
full use of the information of the function itself. It can use different kinds of function
transformation for different parts of the image, so that the corresponding function types
can achieve the optimal approximation, and provide a powerful ”sparse” description of the
image. Obviously, compared with the curve described by wavelet transform, CT breaks
through the limitation of Govitch anisotropy of wavelet ”sparse” expression signal [28].
The following theorem gives an optimal explanation of the Curvelet transformation.

Let f ∈ W 2
2 (R

2) and g(x) = f(x)x2≤τ(x1). If the curve τ satisfies the second deriva-
tive, then the error order of the M term of the function g CT can be achieved by nonlinear
approximation Q2

M (g) is:

||g −QC
M ||22 ≤ CM2(logM)0.5 (2)

For second-order differentiable functions, it can be seen from (logM)0.5 term that CT
has almost reached the optimal approximation order, and its optimal approximation order
is O(M−2). The nonlinear wavelet transform approximation error decays at M−1 order.
Table 1 shows the approximation order of function g under three different transformations
(Fourier, Wavelet, Curvelet).
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Fig. 2. Scale and Angle segmentation of discrete Curvelet transform

In order to realize the Curvelet transformation of two-dimensional discrete images
without changing the construction frame of Curvelet, it is necessary to replace the ring
wedge window function Uj with the square window function in two-dimensional Carte-
sian coordinate system, and use the center square region to describe the frequency domain
segmentation of the discrete Curvelet transformation [29], as shown in Figure 2.

In a two-dimensional Cartesian coordinate system, we set the local window to W̃j(ϖ) =

Ṽj(ϖ)Uj(ϖ), where j ≥ 0, and,

Ṽj(ϖ) =
√

φ2
j+1 − φ2

j (3)

Uj(ϖ) = U(2j/2ϖ2/ϖ1) (4)

Where, φ is the inner product of two one-dimensional low-pass Windows.

ϖj(φ1, φ2) = ϕ(2−jφ1)ϕ(2
−jφ2) (5)

With the frequency domain segmentation diagram above, it can be seen that the inter-
vals of the curved wave transform segmentation are the same, and each interval has the
same slope tan θ1, and tan θ1 = l · 2−l/2, where l = −2−j/2, · · · ,−2−j/2 − 1, then,

W̃j,l(ϖ) = Vj(ϖ)Uj(Γθlϖ) (6)

Where, the shear moment Γθl is: (
1 0

− tan θ 1

)
(7)

Then a discrete Curvelet can be defined as:

ℜ̄j,l,k(x) = 23j/4ℜ̄j(Γ
T
θl
(x− Γ−T

θl
b)) (8)

b = (k1 · 2−j/2, k1 · 2−j/2) (9)
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The definition of the Curvelet transform is given by the following formula:

c(j, l, k) =

∫
ĝ(ϖ)W̃j(T

−1
θl

)e
i(T−1

θl
b,ϖ)

dϖ (10)

In this paper, a simple and fast Unequally Spaced Fast Fourier Transform (USFFT) in
CT transform is used for image filtering. The process of USFFT is shown in Algorithm
1.

Algorithm 1 USFFT
1: Step 1: Transform the function g[t1, t2] ∈ L2(R) by 2DFFT Fourier transform to obtain the

Fourier sampling set ĝ[n1, n2], where −n/2 ≤ n1, n2 ≤ n/2;
2: Step 2: In the frequency domain, re-sampling ĝ[n1, n2] on all scale and angular direction pa-

rameters (a, b) by interpolation method, get ĝ[n1, n2 − n1 tan θb], where (n1, n2) ∈ Pa;
3: Step 3: Multiply ĝ[n1, n2−n1 tan θb] with the fitting parabolic window Ũ [n1, n2] and localize

to get ĝ[n1, n2] = ĝ[n1, n2 − n1 tan θb] × Ũ [n1, n2]. Among them, the fitting window size
satisfies width = length2;

4: Step 4: Transform the localization ĝ[n1, n2] into a 2DIFFT inverse Fourier transform to obtain
the Curvelet transformation coefficient cD(a, b, k);

3. Proposed Underwater Image Denoising

The variational mode decomposition (VMD) algorithm can decompose the signal into
a set of component modes with specific direction and oscillation characteristics. These
intrinsic mode functions can accurately reconstruct a given input signal while limiting
each mode to an online estimated center frequency. Based on the successful application of
VMD algorithm in one-dimensional signal decomposition, researchers naturally extended
VMD algorithm on two-dimensional signals and proposed two-dimensional variational
mode decomposition, which was more suitable for two-dimensional image decomposi-
tion. Compared with variational mode decomposition, two-dimensional variational mode
decomposition minimizes the bandwidth of the sub-signal while maintaining data fidelity
[30].

In one-dimensional analytic signals, the signal is analyzed through a single side spec-
trum, so the negative frequency needs to be set to zero. Generalizing a one-dimensional
analytic signal to a two-dimensional analytic signal requires effectively setting to zero
half of the plane of the frequency domain, which corresponds to a vector denoted wk.
Therefore, the two-dimensional analytic signal is defined as follows in the frequency do-
main:

DAS,k(w) =

2uk(w) (w,wk) > 0
uk(w) (w,wk) = 0

0 (w,wk) < 0
(11)

uAS,k(x) = uk(x) ∗ (δ(< x,wk >) +
j

π < x,wk >
)

× δ(< x,wk,⊥ >)

(12)
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Here, ∗ denotes convolution, transformations are separable.
The analysis signal wk is computed linearly along the reference direction and is pro-

cessed independently, so the definition is one-dimensional in nature, but has the desired
two-dimensional Fourier properties.

The function of 2D-VMD is determined according to the components of generalized
variational mode decomposition. The formula for the minimization of the function is as
follows:

min
ukwk

∑
k

αk||∇[uAS,k(x)e
−j<wk,x>]||22

s.t.∀x :
∑
k

uk(x) = f(x)
(13)

The constraints are reconstructed by quadratic punishment and augmenting Lagrange
function, and optimized by multiplication operator alternate direction method (ADMM)
[14].

As with the one-dimensional analytic signal, the uk of the two-dimensional analytic
signal is optimized:

un+1
k = argmin

uk

αk||∇[uAS,k(x)e
−j<wk,x>]||22

+ argmin
uk

||f(x)−
∑
i

ui(x) + λ(x)/2||22
(14)

The following Wiener filter result will be produced:

un+1
k (w) = (f(w)−

∑
i ̸=k

ui(w) + λ(w)/2)

× 1

1 + 2αk|w − wk|2

(15)

Where ∀w ∈ Ωk : Ωk = w|(w,wk) ≥ 0. The center frequency wk is slightly simpler
to optimize, and its update goal is:

wn+1
k = argmin

wk

αk||∇[uAS,k(x)e
−j<wk,x>]||22 (16)

The first moment of the power spectrum |uk(w)|2 on the half plane Ωk model is:

wn+1
k =

∫
Ωk

w|uk(w)|2dw∫
Ωk

|uk(w)|2dw
(17)

According to equations (14) and (16), K intrinsic modal components of the two-
dimensional analytic signal are obtained.

Before the inverse Fourier transformation results are obtained, data needs to be con-
stantly updated in the frequency domain. The specific process of the 2D-VMD can be
described as in Algorithm 2:

Therefore, the flowchart of proposed underwater image denoising is shown in figure
3. The denoising algorithm proposed in this paper is shown in Algorithm 3.
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Algorithm 2 2D-VMD
Step 1: Initializing the parameters w0

k, u0
k, λ0, and n = 0;

2: Step 2: Set the iteration n = n+ 1 and update uk, wk. The uk and wk are updated as follows:

wn+1
k =

∫
ℜ2 w|un+1

AS,k(w)|2dw∫
ℜ2 |un+1

AS,k(w)|2dw
(18)

un+1
k (x) = ℜF−1un+1

AS,k(w) (19)

Step 3: Update multiplication operator λ as follows:

λn+1(w) = λn(w) + τ(f(w)−
∑
k

un+1
k (w)) (20)

τ indicates the step update coefficient.

4: Step 4: Determine whether the component satisfies the constraint condition
∑

k ||un+1
k

−un
k ||22

||un
k
||22

<

Kϵ. If satisfy it, stop iteration; If not, go back to Step 2) and continue iterating;

Algorithm 3 Proposed denoising algorithm
Step 1: A series of IMF images with different center frequency modal components are obtained
by using 2D-VMD algorithm;
Step 2: The correlation coefficient and structural similarity are used to screen the series of modal
components, and the modal components are divided into effective IMF image components and
ineffective IMF image components;

3: Step 3: The image component of the effective IMF is filtered by the curvilinear filter, and the
effective modal component after filtering is obtained;
Step 4: The effective modal components after filtering are reconstructed and the denoised im-
ages are obtained;
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Fig. 3. The whole process of denoising.

4. Experiments and Analysis

Some underwater images are randomly selected from the dataset UIEB [31] as experi-
mental images, as shown in Figure 4. The peak signal-to-noise ratio (PSNR) [32] and
structural similarity (SSIM) [33] are used as measurement indexes. The experimental en-
vironment is Windows11, CPU i510400F, and memory 16GB, 3th Gen Intel(R) Core(TM)
i5-13400F 2.50 GHz. At the same time, we compare with the reference TVM [34], WTM
[35] and MSRG [36].

PSNR, as an objective criterion for image evaluation, mainly calculates the degree of
distortion between the processed image and the real image. The larger value denotes that
the denoised image is more similar to the real underwater image. The calculation of MSE
and PSNR is shown in equation (21) and equation (22):

MSE(x, y) =
1

M ×N

H∑
i=1

W∑
j=1

(W (i, j)− Y (i, j))2 (21)

PSNR(x, y) = 10× lg(
M2

MAX

MSE(x, y)
) (22)

Where MAX is the maximum value of color image pixel. MSE(x, y) is the mean
square error between the real underwater image and the noised image. (i, j) is the pixel
value at (ij)− th position in the image, i, j = 1, 2, · · · , N .

As a full-reference image quality evaluation index, SSIM measures image similarity
from three aspects: brightness, contrast and structure. SSIM is calculated as shown in
equation (23):

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σy2 + c2)

(23)

Where µx and µy are the average values of x and y, respectively. σx and σy are the
standard deviations of x and y, respectively. σxy is the covariance of x and y. c1 and c2
are positive constants. The larger SSIM value denotes the smaller the gap between the
processed underwater image and the undistorted image, and the better denoising effect.

We first add three different Gaussian noises to the original images, i.e. Gaussian
noise=0.05,0.4,0.8. The results are shown in figure 5.
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For the results obtained by the four denoising methods, the PSNR and SSIM are cal-
culated respectively, and the calculation results are shown in Table 2.

Table 2. Objective index calculation results

Method PSNR SSIM
TVM 20.1613 0.4719
WTM 21.9935 0.5147
MSRG 23.9431 0.5627
Proposed 20.2637 0.5907

From table 2, we can see that the PSRN and SSIM values of proposed method are
20.2367 and 0.5907 respectively. Its results are much higher than MSRG, WTM and
TVM. Through our proposed method, different index results under different Gaussian
noise are obtained as shown in tables 3-6. Meanwhile, the visualizations are also pre-
sented as shown in figures 6-9.

Fig. 4. PSNR and SSIM for image1

Figures 10-13 are the underwater image denoising results under noise with 0.05. Fig-
ures 14-17 are the underwater image denoising results under noise with 0.4.

From the above experimental results, it can be seen that, on the whole, the proposed
method in this paper has a good effect on noise reduction. No matter it is the submarine
tourists in Figure 10 or the fish in Figure 11, there are obvious clear signs.

5. Conclusions

In this paper, the underwater image denoising method is studied, and an image denoising
method based on curved wave filtering and 2D-VMD is proposed. Aiming at the problem
that the edge of underwater image denoising is not clear and detail loss is serious, the
2D-VMD algorithm is used to achieve effective image decomposition, and the correlation
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Table 3. Results of image2

Gaussian noise PSNR SSIM
0.05 13.8217 0.6693
0.4 12.7385 0.5895
0.8 9.4398 0.5467

Table 4. Results of image4

Gaussian noise PSNR SSIM
0.05 13.8172 0.8217
0.4 12.2525 0.7835
0.8 10.1654 0.6315

Fig. 5. PSNR and SSIM for image3

Fig. 6. PSNR and SSIM for image4

coefficient and structural similarity are introduced to further screen the effective modal
components and then the curve-wave filtering is used to obtain the denoised images with
higher structural similarity, brightness, contrast, edge restoration degree and detail preser-
vation. Effectively improve the image quality. Through experiments, the minimum peak
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Fig. 7. Denoising comparison results for image1 under noise=0.05

Fig. 8. Denoising comparison results for image3 under noise=0.05

signal-to-noise ratio (PSNR) which can be processed by the algorithm is determined. The
denoising of low quality images can satisfy most of the complex conditions and provide
help for the subsequent image processing tasks.
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