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Abstract. The concept of complexity is used in many areas of computer 
science and software engineering. Software complexity metrics can be 
used to evaluate and compare quality of software development and 
maintenance processes and their products. Complexity management 
and measurement is especially important in novel programming 
technologies and paradigms, such as aspect-oriented programming, 
generative programming, and metaprogramming, where complex multi-
language and multi-aspect program specifications are developed and 
used. This paper analyzes complexity management and measurement 
techniques, and proposes five complexity metrics (Relative Kolmogorov 
Complexity, Metalanguage Richness, Cyclomatic Complexity, 
Normalized Difficulty, Cognitive Difficulty) for measuring complexity of 
metaprograms at information, metalanguage, graph, algorithm, and 
cognitive dimensions. 
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1. Introduction 

Complexity is a difficult concept to define. Though the term “complexity” is 
used in many of 25 roadmaps for software [1] and can, e.g., be found in 
relation to software development, software metrics, software engineering for 
safety, reverse engineering, configuration management, empirical studies of 
software engineering [2], so far there is no exact understanding of what is 
meant by complexity with various definitions still being proposed. High 
complexity of a system usually means that we cannot represent it in a short 
and comprehensive description. L.C. Briand et al. [3] state that complexity (of 
a modular software system) is a system property that depends on the 
relationships among elements and is not a property of any isolated element. 
IEEE Std. 610.12:1990 [4] defines software complexity as “the degree to 
which a system or component has a design or implementation that is difficult 
to understand and verify”. Therefore, complexity relates both to 
comprehension complexity as well as to representation complexity.  
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The other definition deals with psychological complexity (also known as 
cognitive complexity) of programs explaining that “true meaning of software 
complexity is the difficulty to maintain, change and understand software” [5]. 
There are 3 specific types of psychological complexity that affect programmer 
ability to comprehend software: problem complexity, system design 
complexity, and procedural complexity [6]. Problem complexity is a function of 
the problem domain. It is assumed that complex problem spaces are more 
difficult for a programmer to comprehend than simple problem spaces. 

Knowledge-based perception of software complexity is described in [7] as a 
process of “translating” human-seen complexity into numbers. The process 
starts with an experiment that involves human beings and provides data with 
embedded knowledge about human perception of complexity. Data 
processing and analysis of data models lead to discovery of simple rules 
which represent human perception of software complexity. 

From the organizational viewpoint, complexity of a system is defined with 
respect to number, dissimilitude and states’ variety of system elements and 
relationships between them [8]. These complexity variables enable distinction 
between structural (static) and dynamic complexity. Structural complexity 
describes the system structure at a defined point in time, and dynamic 
complexity represents the change of system configuration in time.  

How to manage complexity? Many factors influence on better management 
of complexity. E.g., from the cognitive complexity viewpoint, the major factor is 
understandability [9]. One way to avoid exceeding the cognitive constraints 
and creating cognitive overload is to reduce the amount of information that 
needs to be stored in a short-term memory and to decrease the uncertainty of 
that information [10]. A common method to achieve this would be by creating 
new and useful abstractions. As a program is more than just the informative 
code during the process of understanding, a programmer’s level of expertise 
in a given domain, i.e., domain knowledge, greatly affects program 
understanding, as well as programmer’s knowledge. The commonly 
recognized principles for managing complexity are reducing the amount of 
information, decomposing a system into modules, abstracting or hiding 
information, and providing different levels of abstractions.  

The abstraction level is the level of detail of a software system [11]. In this 
sense, abstraction is a basic property for understanding the reality and 
managing complexity of software systems. Abstraction is a gradual increase 
in the level of representation of a software system, when existing detailed 
information is replaced with information that emphasizes certain aspects 
important to the developer while other aspects are hidden. More abstract 
programming language mechanisms allow to replace complex and repeating 
low-level operations, and allow to address complex problems with less code 
and less programming errors.  

Software design complexity is also related with design quality. As 
complexity increases, design quality also tends to decrease. To achieve the 
levels of quality needed in today’s complex software designs, quality must be 
designed in, not tested in. Thus the design-for-quality paradigm is becoming 
extremely important. In this context, M. Keating [12] proposed a simple 
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software design partitioning rules as a basis for a quantitative measure of 
complexity: the number of modules at any level of hierarchy must be 7 +/- 2.  

The complexity growth forces researchers to seek for the adequate means 
for better management of complexity. A number of techniques has been 
identified and followed in software design practice that enforces higher 
program comprehensibility reuse and eases complexity management. These 
include various lexical conventions, design style conventions and design 
process conventions. The primary tasks are understanding of the complexity 
problem and finding of relevant measures for evaluating software complexity. 
These issues may have a direct influence on testability, performance, 
efficiency and other characteristics of software systems to be designed.  

Software metrics have always been strongly related to the programming 
paradigm used by the respective researchers. E.g., McCabe's Cyclomatic 
Complexity [13] was proposed for measuring the testing efforts of structural 
programs. For object-oriented programs, complexity metrics are based on 
special object-oriented (OO) features, such as the number of classes, depth 
of inheritance tree, number of subclasses, etc. [13]. With the arrival of new 
higher-level programming paradigms such as aspect-oriented programming, 
generic programming or metaprogramming, new complexity metrics should be 
defined, because metrics applied to programs implemented in different 
paradigms than the one they were developed for may report false results [14]. 

The aim of this paper is to contribute towards research in software 
complexity measurement and management by defining complexity metrics 
specifically for metaprograms. The research is relevant because of the 
importance of ensuring metaprogram testability and reliability and developing 
effective metaprogram testing procedures, to which metaprogram complexity 
measures can contribute similarly to the contribution of software metrics to 
predict critical information about reliability and maintainability of software 
systems using automatic analysis of source code. 

The outline of the paper is as follows. Section 2 discusses related works on 
complexity metrics. Section 3 analyzes evaluation of metaprogramming and 
metaprogram complexity. Section 4 describes the proposed metaprogram 
complexity metrics. Section 5 presents theoretical validation of the proposed 
metrics. Section 6 gives two examples of metaprogram complexity calculation. 
Finally, Section 7 presents conclusions and outlines future work. 

2. Related Work on Complexity Metrics 

Complexity is the intrinsic attribute of systems and processes through which 
systems are created. Complexity measures allow reasoning about system 
structure, understanding system behaviour, comparing and evaluating 
systems or foreseeing their evolution. System design complexity addresses 
complexity associated with mapping of a problem space into a given 
representation. An overall rating of system complexity (System Complexity) 
consists of the sum of the individual module complexities associated with the 
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module's connections to other modules (Structural Complexity) and the 
amount of work the module performs (Data Complexity) [15].  

Structural complexity addresses the concept of coupling, i.e., the 
interdependence of modules of source code. It is assumed that the higher 
coupling between modules is, the more difficult it is for a programmer to 
comprehend a given module. Data complexity addresses the concept of 
cohesion, i.e., the intradependence of modules. In this case, it is assumed 
that the higher cohesiveness is, the easier it is for a programmer to 
comprehend a given module. The structural and data complexity measures 
are based on the module's fan-in, fan-out, and number of input/output 
variables. These metrics address system complexity at the system and 
module levels. Procedural complexity is associated with the complexity of the 
logical structure of a program assuming that the length of a program in Lines 
of Code (LOC) or the number of logical constructs such as sequences, 
decisions, or loops determines complexity of the program.  

M. Rauterberg [16] addresses a similar problem, i.e., how to measure the 
cognitive complexity in human-computer interaction. He proposes to derive 
cognitive complexity (CoC) from behaviour complexity (BC), system 
complexity (SC) and task complexity (TC) as: CoC = SC + TC – BC.  

S.D. Sheetz et al. [17] address complexity of the OO system at the 
application, object, method, and variable levels, and at each level propose  
the measures to account for the cohesion and coupling aspects of the system. 
Complexity of the OO system at each level is presented as a function of the 
measurable characteristics such as fan-in, fan-out, number of I/O variables, 
fan-up, fan-down, and polymorphism. Each measure is defined with 
adherence to the principles that measures must be intuitive and that they 
must be applicable to all phases of the OO development lifecycle. 

Cyclomatic complexity is one of the more widely-accepted static software 
metrics [13]. It is intended to be independent of the language and language 
format. The other metrics bring out other facets of complexity, including both 
structural and computational complexity: Halstead complexity measures [18] 
identify algorithmic complexity, measured by counting operators and 
operands; Henry and Kafura metrics [19] indicate coupling between modules 
(parameters, global variables, calls); Bowles metrics [13] evaluate the module 
and system complexity, coupling via parameters and global variables; Troy 
and Zweben [13] metrics evaluate modularity or coupling; complexity of 
structure (maximum depth of a structure chart). Wang’s cognitive complexity 
measure [20] indicates the cognitive and psychological complexity of software 
as a human intelligence artefact. With the arrival of new programming 
paradigms, new complexity metrics have been proposed for aspect-oriented 
programming (AspectJ) [21] and generic programming (C++ Standard 
Template Library) [22]. 

There were efforts to describe formal properties of complexity metrics that 
could be used for evaluation and theoretical validation of complexity 
measures. J. Weyuker [23] introduces a set of syntactic software complexity 
properties as criteria and examines the strengths and weaknesses of the 
known complexity measures, which include statement count, cyclomatic 

http://www.sei.cmu.edu/str/indexes/glossary/complexity.html
http://www.sei.cmu.edu/str/descriptions/halstead.html#1227444
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number, effort measure, and data flow complexity. L.C. Briand et al. [3] 
provide a theoretical framework for relating structural complexity, cognitive 
complexity and external quality attributes.  

3. Complexity of metaprogramming and metaprograms 

It is a well-known fact that the same algorithm implemented in different 
programming paradigms or languages can have very different complexity of 
description (i.e., description complexity is not a property of an algorithm but 
rather a property of an implementation language). For example, one study 
[24] shows that complexity of Quick Sort algorithm implementations measured 
using Halstead Volume, Program Effort and Program Difficulty metrics [18] is 
highest for C and lowest for Assembly and Visual Basic language programs. 

Metaprogramming [25], as a paradigm for developing programs that create 
other programs, is a level of complexity above traditional programming 
paradigms. There are two types of metaprogramming: homogeneous 
metaprogramming and heterogeneous metaprogramming.  

In case of homogeneous metaprogramming, we have two subsets of a 
domain language: one is dedicated for expressing domain functionality, and 
the other is used for managing variability at meta-level (generic parameters, 
templates, etc.). The developer has to know only one programming language 
syntax, the metaprogram is as readable as a domain program written in the 
same domain programming language, and the development flow uses the 
same development toolset. Therefore, the complexity of developing 
metaprograms using homogeneous metaprogramming technique is only 
slightly higher than complexity of traditional programming.  

In case of heterogeneous metaprogramming, we have two different 
languages: a domain language itself and a metalanguage, which manipulates 
with source code of domain language programs. As a result, the cognitive 
complexity of heterogeneous metaprograms expressed in terms of their 
readability and understandability is significantly higher, because the developer 
must know, understand and use the syntactical constructs of two different 
languages in the same metaspecification. The development flow is 
significantly more complex: not only two development environments have to 
be used, but also the testing of metaprograms is a significant and time-
consuming problem. Therefore, complexity of developing metaprograms using 
heterogeneous metaprogramming techniques is considerably higher than 
complexity of traditional programming. 

Complexity measures may be helpful for reasoning about metaprogram 
structure, understanding the relationships between different parts of 
metaprograms, comparing and evaluating metaprograms. Here we distinguish 
between: 1) first-order properties, or characteristics, which are derived directly 
from the metaprogram description itself using simple mathematical actions 
such as counting, e.g., program size (count of symbols in a file); and 2) 
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second-order properties, or metrics, which cannot be derived directly from 
artefacts, but are calculated from the first-order properties.  

Metaprogram complexity can be evaluated at several dimensions: 
1) Information: Metaprogram as message (sequence of symbols) 

containing information with unknown syntax and structure. 
2) Metalanguage: Metaprogram as annotated domain knowledge. 

Domain knowledge is expressed using a domain language, whereas domain 
variability is specified using a metalanguage. Such separation of domain and 
meta levels is a first step towards the creation of a metaprogram. 

3) Graph: Metaprogram as a graph of execution paths, where a root is a 
metaprogram, the nodes are the metalanguage constructs, and the leaves are 
the domain program instances. 

4) Algorithm: Metaprogram as a high-level program specification 
(algorithm), which contains a collection of functional (structural) operations. 
An operation may have one or more operands specified as metaprogram 
attributes (parameters). 

5) Cognition: Metaprogram as a number of different information units 
available for human cognition. A unit may represent either a metalanguage 
construct (macro, template, function), its argument or a meta-parameter.  

4. Metaprogram Complexity Metrics 

We use the following metrics for evaluating complexity at different dimensions 
of a metaprogram: Relative Kolmogorov Complexity (RKC), Metalanguage 
Richness (MR), Cyclomatic Complexity (CC), Normalized Difficulty (ND), and 
Cognitive Difficulty (CD). 

4.1. Information dimension: Relative Kolmogorov Complexity 

There are several methods to evaluate informational software complexity such 
as Shannon entropy, computational complexity, network complexity and 
topological complexity. We use the algorithmic complexity metric also known 
as Kolmogorov Complexity [26]. Kolmogorov complexity is a measure of 
randomness of strings and other objects based on their information content. 
Kolmogorov Complexity measures complexity of an object by the length of the 
smallest program that generates it. Suppose, we have an object x and a 
description system (e.g., a programming language) φ that maps from a 
description w to this object. Kolmogorov Complexity Kφ(x) of an object x is the 
size of the shortest program in the description system φ capable of producing 
x on a universal computer: 

  }:{min xwxK w
w

   (1) 
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Different description systems can provide distinct values of K(x), but one 
can prove that the differences are only up to a fixed additive constant. 
Intuitively, Kolmogorov Complexity Kφ(x) is the minimal size of information 
required to generate x by an algorithm. Unfortunately, it cannot be computed 
in the general case and must be approximated. Usually, compression 
algorithms are used to give an upper bound to Kolmogorov Complexity. 
Suppose that we have a compression algorithm Ci. Then, a shortest 
compression of w in the description system φ will give the upper bound to 
information content in x: 

    },{min: xφCxCxK
iCi

i
  (2) 

Kolmogorov Complexity has been used earlier (under the name of 
Generative Software Complexity) to measure the effectiveness of applying 
program generation techniques to software [27]. Program generators were 
defined as compressed programs, and the shortest generator is assumed to 
have maximal generative complexity. 

Here we evaluate the complexity of a metaprogram M using the Relative 
Kolmogorov Complexity (RKC) metric, which can be calculated using a 
compression algorithm C as follows: 

 

M

MC
RKC 

 

(3) 

where M  is the size of a metaprogram M, and  MC  is the size of a 

compressed metaprogram M. 
A high value of RKC means that there is a high variability of text content, 

i.e., high complexity. A low value of RKC means high redundancy, i.e., the 
abundance of repeating fragments in metaprogram code.  

4.2. Metalanguage dimension: Metalanguage Richness 

Metaprogram M can be defined as a collection of domain language 
statements with corresponding annotations (metadata) expressed 

symbolically:   *,|,  msmsO , where s  is a domain language statement, 

m  is the metadata of s , and *  is a string of symbols from alphabet  . For 

the evaluation of metaprogram complexity at the metalanguage dimension, 
we use the Metalanguage Richness (MR) metric: 

M

m

MR Mm


  

(4) 
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where M  is the size (length) of a metaprogram M, and m  is the size 

(length) of the metalanguage constructs in a metaprogram M. 
A higher value of MR means that a metaprogram contains more metadata 

and its description is more complex. 

4.3. Graph dimension: Cyclomatic Complexity 

Cyclomatic Complexity (CC) [28] of a program directly measures the number 
of linearly independent paths through a program's source code from entrance 
to each exit. For metaprograms, CC is equal to the number of distinct domain 
program instances that can be generated from a metaprogram.  

A metaprogram M can be defined as a function   IPM  : that maps 

from a set of its parameters P to a set of its domain program instances I. 
Following this definition, CC of a metaprogram is equal to the cardinality of a 
set of the distinct domain program instances described by a metaprogram. 

ICC   cod  (5) 

Since   is an injective function, which associates distinct metaprogram 
parameter values with distinct domain program instances, the cyclomatic 
complexity of a metaprogram M can be computed using only the interface 
description of a metaprogram. For independent parameters, the value of CC 
can be calculated as a product of the number of allowed parameter values for 
each parameter of a metaprogram: 






Pp

pCC  dom  (6) 

A higher value of CC indicates higher complexity of the metaprogram’s 
parameter set (meta-interface).  

4.4. Algorithmic complexity: Normalized Difficulty 

A functional program specification S is a sequence of functions  FffS  | , 

where   AAaaf ,:  is a specific function (operator) that may have a 

sequence of operands as its arguments, and A is a set of function operands. 
For metaprograms we accept that operations are specified as metalanguage 
functions, and operands are specified as metaprogram parameters. For the 
evaluation of metaprogram complexity at the algorithm dimension, we use the 
Halstead complexity metrics [18]. From a metaprogram we derive the number 

of distinct operators Fn 1 , the number of distinct operands An 2 , the 

total number of operators SN 1 , the total number of operands AN
Sf




2 .  
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Halstead Difficulty D indicates the cognitive difficulty of a program:  





















2

21

2 n

Nn
D  

(7) 

The Halstead Volume V measures the size of a program specification: 

nNV 2log  (8) 

For evaluating metaprogram complexity at the algorithm dimension we 
propose the Normalized Difficulty (ND) metric, which is a normalized ratio of 
the cognitive difficulty and size metrics: 

  2121

21

nnNN

Nn
ND


  

(9) 

The ND metric measures the complexity of a metaprogram as an algorithm. 
A high value of the ND metric means that metaprogram is highly complex in 
terms of time and effort required to understand it. 

4.5. Cognitive complexity: Cognitive Difficulty 

Following the works of G. Miller [29] stating that humans can hold 7 (+/- 2) 
chunks of information in their short-term memory at one time, and M. Keating 
[12], who claims that the number of modules at any level of software hierarchy 
must be 7 +/- 2, for evaluating complexity of metaprograms we propose the 
Cognitive Difficulty (CD) metric. Cognitive Difficulty is calculated as the 
maximal number of meta-level units (metaparameters P, metalanguage 
constructs N1, or their respective arguments N2) in a metaprogram. 

 21,,max NNPCD   (10) 

The proposed metaprogram complexity metrics are summarized in Table 1. 

Table 1. Summary of metaprogram complexity metrics 

Metric Objects of measurement Meaning for a 
metaprogram 

Relative 
Kolmogorov 
Complexity 

Object: metaprogram 
Program: compressed metaprogram 

High variability of 
content 

Metalanguage 
Richness 

Data: domain language constructs  
Metadata: metalanguage constructs 

Complexity of 
description at meta 
level 

Cyclomatic 
Complexity 

Independent paths: number of 
distinct instances 

Complexity of a 
meta-interface 

Normalized 
Difficulty 

Operators: metalanguage functions 
Operands: metaprogram parameters 

Algorithmic 
complexity of a 
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metaprogram  

Cognitive 
Difficulty 

Metaprogram parameters, 
metalanguage functions, 
metalanguage function arguments 

Cognitive 
understandability of 
a metaprogram 

5. Theoretical validation of complexity metrics 

Validation of software metrics is important to ensure that metrics are accepted 
by the scientific community and used properly. There are two methods of 
metrics validation: theoretical and empirical [30]. Theoretical validation 
ensures that the metric is a proper numerical characterization of software 
property it claims to measure. Empirical validation relates metrics with some 
important external attributes of software (such as the number of faults). While 
both types of validation are necessary, the empirical validation requires much 
time and many researchers to contribute since many studies need to be 
performed to gather convincing evidence from many real-world libraries and 
applications that a metric is valid. The domain of metaprogram complexity 
research is not mature yet, therefore while there are open metaprogram 
libraries available (such as Boost [31] in C++) for such research currently 
there are not sufficient data available publicly on the external characteristics 
of such metaprograms such as reliability or maintainability.  

Therefore, we validate the proposed metaprogram complexity metrics 
theoretically using Weyuker's properties [23], a set of formal properties that 
can be used to evaluate any software metrics.  

Property 1 (Eq. 11) will be satisfied when we can find two metaprograms 
of different complexity. All proposed complexity metrics satisfy Property 1. 

   QPQP   (11) 

Property 2 is satisfied when there are finitely many programs of complexity 

c , where c  is a non-negative number. The property is not satisfied for all 

complexity measures that are size-independent (scaled). Therefore Property 2 
is not satisfied for all proposed metaprogram complexity metrics. 

Property 3 (Eq. 12) is satisfied if we can find two distinct metaprograms 
that have equal complexity. The property is satisfied by all proposed 
metaprogram complexity metrics. 

    QPQPQP   (12) 

Property 4 (Eq. 13) is satisfied if equivalent metaprograms of different 
complexity can be written. The property is not satisfied by RKC and MR 
metrics. 

   QPQPQP  &  (13) 

Property 5 (Eq. 14) is satisfied if after concatenating two metaprograms, 
the complexity of the merged metaprogram increases beyond individual 
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complexities of original metaprograms. The property is satisfied by all metrics, 
except MR (because of averaging). 

   QPQQPPQP  &  (14) 

Property 6 (Eq. 15) is satisfied if concatenation of two equal complexity 
metaprograms with some other metaprogram gives different complexity 
metaprograms. The property is satisfied by all metrics (because 
metaprograms can have common metaparameters, but distinct metabodies). 

    RQRPQPRQP ;;&   (15) 

Property 7 is satisfied if by permuting the order of statements in a 
metaprogram, the complexity of a metaprogram changes. The property is not 
satisfied by all metaprogram complexity metrics except RKC metric.  

Property 8 is satisfied if renaming of the symbols and variables of a 
metaprogram does not change the complexity of a program. The property is 
satisfied for all metaprogram complexity metrics except RKC metric. 

Properties 9a (Eq. 16) and 9b (Eq. 17) are satisfied when a two (or more) 
metaprograms are concatenated, the sum of complexities of the original 
metaprograms is less than the complexity of the bigger metaprogram. The 
property is satisfied by RKC (because the concatenation provides more 
opportunities for compression), CC (because adding new metaparameters 
leads to geometrical increase of metaprogram instance number), CD 
(because two metaprograms can have the same metaparameters, 
metalanguage constructs or their arguments) metrics. Properties 9a and 9b 
are not satisfied by MR metric (because combining two metaprograms will not 
lead to their increased coupling). Only property 9a is satisfied by ND metric. 

   QPQPQP ;  (16) 

   QPQPQP ;  (17) 

Table 2. Summary of metaprogram complexity validation 

Complexity 
metric 

Weyuker’s property 

1 2 3 4 5 6 7 8 9 

RKC + – + – + + + – + 

MR + – + – – + – + – 

CC + – + + + + – + + 

ND + – + + + + – + +/– 

CD + – + + + + – + + 

 
The results of theoretical validation are summarized in Table 2. Note that 

Weyuker's properties were developed for procedural languages. Hence, there 
might be possibility that a proposed metaprogram complexity measure may 
not satisfy all the properties, but still may be valid for metaprogramming 
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domain as, e.g., some object-oriented metrics that do not satisfy Weyuker's 
properties are still considered valid for object-oriented programs [32]. 

6. Example of metaprogram complexity calculation 

6.1. Heterogeneous metaprogramming 

We demonstrate the complexity calculation of the heterogeneous 
metaprogram developed for hardware design domain. In hardware design 
domain, a great number of similar domain entities exist. For example, the 
most widely used hardware library components are gates (see Fig. 1; in 
VHDL), which implement a particular logical function. The hardware designer 
requires many different gate components implementing different functions and 
having a different number of inputs. All these components are very similar to 
each other both syntactically and semantically, and thus they constitute a 
component family.  
 

 
entity gate is 

   port ( X1, X2 : in bit; Y : out bit );  

end gate; 

 

architecture behave_gate of gate is 

  begin 

  Y <= X1 and X2; 

end behave_gate; 

entity gate is 

   port ( X1, X2, X3 : in bit; Y : out bit );  

end gate; 

 

architecture behave_gate of gate is 

  begin 

  Y <= X1 or X2 or X3; 

end behave_gate; 

 

Fig. 1. Instances of VHDL gate family: a) 2-input AND gate, and b) 3-input OR gate 

Next, we develop a metaprogram, which describes a gate component 
family. For example, the identified generic parameters and their values for the 
gate component family are as follows:  

 
Gate_function = { AND, OR, XOR, NAND, NOR, XNOR } 
Gate_inputs = { integer numbers from 2 to 8 } 
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A gate metaprogram (see Fig. 2) was developed using Open PROMOL [33] 
metalanguage. The metaprogram has 2 parameters, 3 metalanguage 
functions, and its size is 291 B. 

 $ 
"Enter gate function: "  {and, or, xor, nor, nand, xnor} f := and; 

"Enter number of inputs:" {2..8}         num := 2; 

$ 

entity gate is 

   port ( @gen[num,{, }] : in bit; Y : out bit );  

end gate; 

 

architecture behave_gate of gate is 

  begin 

  Y <= @gen[num, { @sub[f] }]; 

end behave_gate; 

 

Fig. 2. Generic gate described using Open PROMOL metalanguage 

We calculate RKC value using a BWT (Burrows-Wheeler Transform) 
compression algorithm, because currently it allows achieving best 
compression results for text-based information and thus allows to better 
approximate information content. The size of the gate metaprogram is 271 B. 
The size of the compressed metaprogram will put the upper limit on its 
information content. After compression we obtain 245 B, therefore RKC value 
of a gate metaprogram is equal to 245/271 = 0.90. 

We calculate MR of the gate metaprogram by calculating the size of its 
metainterface and the length of its metalanguage functions, which is equal to 
139 B. Therefore, its MR value is equal to 139/271 = 0.51. 

Cyclomatic Complexity of a metaprogram is a number of different program 
instances that can be generated from it. The metric can be calculated as the 
number of distinct metaprogram parameter values. Parameters f and num are 
independent. Parameter f can have 6 different values, and parameter num 
can have 7 values. The gate metaprogram covers a family of 4276   

different component instances. Therefore, its CC value is 42. 
The gate metaprogram has 3 metalanguage functions, 2 distinct functions 

(@gen, @sub), 4 metalanguage function arguments and 3 distinct arguments 

(num, {,}, {@sub[f]}). Therefore, its ND is equal to: 
   

23.0
35

8

3243

42





. From 

the same values, we calculate that its CD is   44,3,2max  . 

The values of the calculated complexity metrics for the gate metaprogram 
are summarized in Table 3.  

Based on the metaprogram complexity metric values we can make the 
following conclusions on complexity of the gate metaprogram. The RKC value 
is high, therefore the metaprogram almost has no repeating fragments, it is 
coded at a meta-level efficiently and there is hardly room for any additional 
generalization without introducing new parameters or widening the scope of 
the metaprogram. The MR value shows that metalanguage constructs cover 
only about a half of the metaprogram’s size, therefore, its understandability 
and readability is good. Following Frappier et al. [34], who introduce the 
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following boundaries of the CC values based on empirical research and 
practical implementations of large software systems: simple (1-10), slightly 
(moderately) complex (11-20), complex (21-50), over-complex and untestable 
(> 50), we conclude that due to large parameter space of the metaprogram, 
the exhaustive testability of its instances is complex. The CD value is below 
lower threshold (< 5) for short-term memorability of chunks of information as 
formulated by [29], therefore, cognitive complexity of the metaprogram is low. 

Table 3. Complexity measures of the gate metaprogram 

Complexity 

dimension 

Complexity metric Value 

Information Relative Kolmogorov Complexity (RKC) 0.90 

Metalanguage Metalanguage Richness (MR) 0.51 

Graph Cyclomatic Complexity (CC) 42 

Algorithm Normalized Difficulty (ND) 0.23 

Cognitive Cognitive Difficulty (CD) 4 
 

Finally, we present complexity values calculated for Open PROMOL meta-
programs created from Altera’s library for OrCAD VHDL components (Table 
4). Altera’s library is a large collection of specific components, which are 
supposed to cover the entire circuit design domain (it contains 282 macro-
functions and 73 primitives, i.e., 355 VHDL components at all). The 
components were generalized using Open PROMOL metalanguage to create 
a generic VHDL component library [35]. 

Table 4. Complexity of Open PROMOL components of generic VHDL library 

No
. 

PROMOL 
metaprogram 

Complexity metric Complexity 

RKC MR CC ND CD 

1 Serial multiplier 0.219 0.03 4 0.229 27 Simple 

2 Trigger 0.271 0.27 80 0.111 52 Over-complex 

3 Gate 0.502 0.49 181 0.026 26 Over-complex 

4 Adder 0.478 0.25 4 0.169 20 Simple 

5 Register 0.457 0.34 512 0.136 94 Over-complex 

6 Multiplexer 0.507 0.36 32 0.051 22 Complex 

7 Comparator 0.429 0.31 9 0.123 33 Simple 

8 Shift Register 0.392 0.31 18 0.091 121 Moderate 

9 Subtractor 0.378 0.20 4 0.072 84 Simple 

10 Parallel 
multiplier 

0.328 0.38 96 0.092 126 Over-complex 

11 Register File 0.358 0.24 36 0.084 255 Complex 

12 Counter 0.323 0.28 30 0.044 172 Complex 

13 Multiplier 0.331 0.64 8 0.092 28 Simple 

14 Divider 0.527 0.38 30 0.096 48 Complex 
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We evaluate the results presented in Table 4 as follows. Most complex 
metaprograms are those, which describe components with largest variability 
in the domain, thus requiring a larger number of parameters for selection of a 
specific instance and a larger number of metalanguage functions to represent 
their variability (see values of CC and CD metrics). Such metaprograms are 
difficult to test and maintain. Their complexity can be decreased by 
introducing hierarchical decomposition at the metaprogram level. 

6.2. Homogeneous metaprogramming 

As an example of complexity measurement of homogeneous metaprograms, 
we analyze Boost C++ Libraries [31]. Boost is a collection of open source 
libraries that extend the functionality of C++. To ensure efficiency and 
flexibility, Boost extensively uses C++ template metaprogramming techniques. 
In C++, the template mechanism provides a rich facility for computation at 
compile-time. Here we analyze complexity of template functions in a 
Boost.Math. This library several contributions in the domain of mathematics 
such as complex number and special mathematical functions. An example of 
such template function (a fragment) is presented in Fig. 3. 

 

 template<class T>  
inline T fabs(const std::complex<T>& z) 

{ 

   return ::boost::math::hypot(z.real(), z.imag()); 

} 
 

Fig. 3. An example of template function (fabs) 

The complexity measurement results using the proposed metaprogram 
complexity metrics are presented in Table 5. 

Template functions in the Boost.Math library are rather simple. They mostly 
have CC values either 3, 16 or 19 meaning that each template function has a 
single template parameter, which can accept either 3 floating point, 16 integer 
or 19 floating point and integer C++ type values. Only common_factor_ct 

has template function static_lcm, whose template parameters are numbers 
of long type rather than types. All template functions also have the same ND 
value, because all template references are to the same template parameter 
class and have only one template parameter, therefore the number of distinct 
metaprogram operators and operands is equal to 1, and ND is equal to 0.25. 
The value of the CD metric is larger for components, which have a larger 
number of template references. The values of the RKC and MR metrics are 
larger for smaller components, which have less domain language (C++ non-
template) code. When evaluating testability and maintainability of Boost.Math 
library components, the CD value could be used using the boundaries 
proposed by Frappier et al. [34] (see last column of Table 5.).  
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Table 5. Complexity of components of Boost.Math library 

No. Template function Complexity metric Complexity 

RKC MR CC ND CD 

1.  acos 0.229 0.037 3 0.25 34 Moderate 

2.  acosh 0.488 0.128 3 0.25 3 Simple 

3.  asin 0.218 0.037 3 0.25 34 Moderate 

4.  asinh 0.488 0.144 3 0.25 2 Simple 

5.  atan 0.423 0.116 3 0.25 10 Simple 

6.  atanh 0.231 0.035 3 0.25 23 Complex 

7.  bessel 0.149 0.157 3 0.25 127 Over-complex 

8.  beta 0.134 0.090 3 0.25 199 Over-complex 

9.  binomial 0.373 0.201 16 0.25 19 Moderate 

10.  cbrt 0.438 0.144 3 0.25 15 Moderate 

11.  common_factor_ct 0.171 0.042 1.9E19 0.25 13 Moderate 

12.  common_factor_rt 0.160 0.043 3 0.25 32 Complex 

13.  cos_pi 0.410 0.216 3 0.25 14 Moderate 

14.  digamma 0.224 0.061 3 0.25 45 Complex 

15.  ellint_1 0.242 0.133 3 0.25 40 Complex 

16.  ellint_2 0.264 0.167 3 0.25 39 Complex 

17.  ellint_3 0.213 0.116 3 0.25 48 Complex 

18.  ellint_rc 0.391 0.137 3 0.25 17 Moderate 

19.  ellint_rd 0.354 0.121 3 0.25 20 Moderate 

20.  ellint_rf 0.363 0.127 3 0.25 22 Complex 

21.  ellint_rj 0.320 0.105 3 0.25 24 Complex 

22.  erf 0.210 0.055 3 0.25 88 Over-complex 

23.  expint 0.234 0.038 3 0.25 128 Over-complex 

24.  expm1 0.279 0.172 3 0.25 61 Over-complex 

25.  fabs 0.666 0.150 3 0.25 1 Simple 

26.  factorials 0.244 0.141 16 0.25 47 Complex 

27.  fpclassify 0.146 0.086 19 0.25 98 Over-complex 

28.  gamma 0.138 0.140 3 0.25 329 Over-complex 

29.  hermite 0.421 0.208 3 0.25 14 Moderate 

30.  hypot 0.396 0.211 3 0.25 22 Complex 

31.  laguerre 0.260 0.164 3 0.25 30 Complex 

32.  lanczos 0.225 0.070 3 0.25 638 Over-complex 

33.  legendre 0.237 0.136 3 0.25 43 Complex 

34.  log1p 0.204 0.112 3 0.25 91 Over-complex 

35.  modf 0.293 0.233 3 0.25 10 Simple 

36.  next 0.202 0.085 19 0.25 60 Over-complex 

37.  octonion 0.030 0.013 19 0.25 599 Over-complex 

38.  pow 0.239 0.196 3 0.25 42 Complex 

39.  powm1 0.390 0.254 3 0.25 15 Moderate 

40.  quaternion 0.059 0.029 19 0.25 348 Over-complex 

41.  round 0.274 0.229 3 0.25 20 Moderate 

42.  sign 0.516 0.155 19 0.25 5 Simple 

43.  sin_pi 0.471 0.209 3 0.25 9 Simple 

44.  sinc 0.215 0.098 3 0.25 36 Complex 

45.  sinhc 0.224 0.084 3 0.25 30 Complex 

46.  spherical_harmonic 0.210 0.150 9 0.25 50 Complex 

47.  sqrt1pm1 0.468 0.238 3 0.25 8 Simple 

48.  trunc 0.276 0.225 3 0.25 20 Moderate 

49.  zeta 0.257 0.041 3 0.25 61 Over-complex 
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7. Conclusions and Future Work 

Complexity of metaprograms and metaprogramming techniques is an 
important factor in developing and maintaining generic components and 
software generators. Complexity of metaprograms can be evaluated at 
several dimensions (information, metalanguage, graph, algorithm, cognition) 
using a variety of measures adopted from information theory and software 
engineering domain. Such metrics can be used to rank metaprograms based 
on their complexity values, to assess testability and maintainability of 
metaprograms, and can be used by reusable software library developers for 
evaluating complexity of their work artefacts. Despite the lack of larger-scale 
empirical validation, we still expect that metaprogram complexity metrics 
could be used to indicate poorly written or untestable metaprograms, when 
the metric values exceed predefined maximal or minimal boundaries.  

Future work will focus on the empirical validation of proposed metrics using 
open metaprogram libraries implemented in different metalanguages. 
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