
UDC 659.2:004, DOI:10.2298/CSIS090315004D

Metrics for Evaluation of Metaprogram

Complexity

Robertas Damaševičius
1
 and Vytautas Štuikys

1

1
Kaunas University of Technology, Software Engineering Department, Studentų 50,

LT-51368, Kaunas, Lithuania
{robertas.damasevicius, vytautas.stuikys}@ktu.lt

Abstract. The concept of complexity is used in many areas of computer
science and software engineering. Software complexity metrics can be
used to evaluate and compare quality of software development and
maintenance processes and their products. Complexity management
and measurement is especially important in novel programming
technologies and paradigms, such as aspect-oriented programming,
generative programming, and metaprogramming, where complex multi-
language and multi-aspect program specifications are developed and
used. This paper analyzes complexity management and measurement
techniques, and proposes five complexity metrics (Relative Kolmogorov
Complexity, Metalanguage Richness, Cyclomatic Complexity,
Normalized Difficulty, Cognitive Difficulty) for measuring complexity of
metaprograms at information, metalanguage, graph, algorithm, and
cognitive dimensions.

Keywords: Metaprogramming, complexity evaluation, metaprogram
metric.

1. Introduction

Complexity is a difficult concept to define. Though the term “complexity” is
used in many of 25 roadmaps for software [1] and can, e.g., be found in
relation to software development, software metrics, software engineering for
safety, reverse engineering, configuration management, empirical studies of
software engineering [2], so far there is no exact understanding of what is
meant by complexity with various definitions still being proposed. High
complexity of a system usually means that we cannot represent it in a short
and comprehensive description. L.C. Briand et al. [3] state that complexity (of
a modular software system) is a system property that depends on the
relationships among elements and is not a property of any isolated element.
IEEE Std. 610.12:1990 [4] defines software complexity as “the degree to
which a system or component has a design or implementation that is difficult
to understand and verify”. Therefore, complexity relates both to
comprehension complexity as well as to representation complexity.

Robertas Damaševičius and Vytautas Štuikys

ComSIS Vol. 7, No. 4, December 2010 770

The other definition deals with psychological complexity (also known as
cognitive complexity) of programs explaining that “true meaning of software
complexity is the difficulty to maintain, change and understand software” [5].
There are 3 specific types of psychological complexity that affect programmer
ability to comprehend software: problem complexity, system design
complexity, and procedural complexity [6]. Problem complexity is a function of
the problem domain. It is assumed that complex problem spaces are more
difficult for a programmer to comprehend than simple problem spaces.

Knowledge-based perception of software complexity is described in [7] as a
process of “translating” human-seen complexity into numbers. The process
starts with an experiment that involves human beings and provides data with
embedded knowledge about human perception of complexity. Data
processing and analysis of data models lead to discovery of simple rules
which represent human perception of software complexity.

From the organizational viewpoint, complexity of a system is defined with
respect to number, dissimilitude and states’ variety of system elements and
relationships between them [8]. These complexity variables enable distinction
between structural (static) and dynamic complexity. Structural complexity
describes the system structure at a defined point in time, and dynamic
complexity represents the change of system configuration in time.

How to manage complexity? Many factors influence on better management
of complexity. E.g., from the cognitive complexity viewpoint, the major factor is
understandability [9]. One way to avoid exceeding the cognitive constraints
and creating cognitive overload is to reduce the amount of information that
needs to be stored in a short-term memory and to decrease the uncertainty of
that information [10]. A common method to achieve this would be by creating
new and useful abstractions. As a program is more than just the informative
code during the process of understanding, a programmer’s level of expertise
in a given domain, i.e., domain knowledge, greatly affects program
understanding, as well as programmer’s knowledge. The commonly
recognized principles for managing complexity are reducing the amount of
information, decomposing a system into modules, abstracting or hiding
information, and providing different levels of abstractions.

The abstraction level is the level of detail of a software system [11]. In this
sense, abstraction is a basic property for understanding the reality and
managing complexity of software systems. Abstraction is a gradual increase
in the level of representation of a software system, when existing detailed
information is replaced with information that emphasizes certain aspects
important to the developer while other aspects are hidden. More abstract
programming language mechanisms allow to replace complex and repeating
low-level operations, and allow to address complex problems with less code
and less programming errors.

Software design complexity is also related with design quality. As
complexity increases, design quality also tends to decrease. To achieve the
levels of quality needed in today’s complex software designs, quality must be
designed in, not tested in. Thus the design-for-quality paradigm is becoming
extremely important. In this context, M. Keating [12] proposed a simple

Metrics for Evaluation of Metaprogram Complexity

ComSIS Vol. 7, No. 4, December 2010 771

software design partitioning rules as a basis for a quantitative measure of
complexity: the number of modules at any level of hierarchy must be 7 +/- 2.

The complexity growth forces researchers to seek for the adequate means
for better management of complexity. A number of techniques has been
identified and followed in software design practice that enforces higher
program comprehensibility reuse and eases complexity management. These
include various lexical conventions, design style conventions and design
process conventions. The primary tasks are understanding of the complexity
problem and finding of relevant measures for evaluating software complexity.
These issues may have a direct influence on testability, performance,
efficiency and other characteristics of software systems to be designed.

Software metrics have always been strongly related to the programming
paradigm used by the respective researchers. E.g., McCabe's Cyclomatic
Complexity [13] was proposed for measuring the testing efforts of structural
programs. For object-oriented programs, complexity metrics are based on
special object-oriented (OO) features, such as the number of classes, depth
of inheritance tree, number of subclasses, etc. [13]. With the arrival of new
higher-level programming paradigms such as aspect-oriented programming,
generic programming or metaprogramming, new complexity metrics should be
defined, because metrics applied to programs implemented in different
paradigms than the one they were developed for may report false results [14].

The aim of this paper is to contribute towards research in software
complexity measurement and management by defining complexity metrics
specifically for metaprograms. The research is relevant because of the
importance of ensuring metaprogram testability and reliability and developing
effective metaprogram testing procedures, to which metaprogram complexity
measures can contribute similarly to the contribution of software metrics to
predict critical information about reliability and maintainability of software
systems using automatic analysis of source code.

The outline of the paper is as follows. Section 2 discusses related works on
complexity metrics. Section 3 analyzes evaluation of metaprogramming and
metaprogram complexity. Section 4 describes the proposed metaprogram
complexity metrics. Section 5 presents theoretical validation of the proposed
metrics. Section 6 gives two examples of metaprogram complexity calculation.
Finally, Section 7 presents conclusions and outlines future work.

2. Related Work on Complexity Metrics

Complexity is the intrinsic attribute of systems and processes through which
systems are created. Complexity measures allow reasoning about system
structure, understanding system behaviour, comparing and evaluating
systems or foreseeing their evolution. System design complexity addresses
complexity associated with mapping of a problem space into a given
representation. An overall rating of system complexity (System Complexity)
consists of the sum of the individual module complexities associated with the

Robertas Damaševičius and Vytautas Štuikys

ComSIS Vol. 7, No. 4, December 2010 772

module's connections to other modules (Structural Complexity) and the
amount of work the module performs (Data Complexity) [15].

Structural complexity addresses the concept of coupling, i.e., the
interdependence of modules of source code. It is assumed that the higher
coupling between modules is, the more difficult it is for a programmer to
comprehend a given module. Data complexity addresses the concept of
cohesion, i.e., the intradependence of modules. In this case, it is assumed
that the higher cohesiveness is, the easier it is for a programmer to
comprehend a given module. The structural and data complexity measures
are based on the module's fan-in, fan-out, and number of input/output
variables. These metrics address system complexity at the system and
module levels. Procedural complexity is associated with the complexity of the
logical structure of a program assuming that the length of a program in Lines
of Code (LOC) or the number of logical constructs such as sequences,
decisions, or loops determines complexity of the program.

M. Rauterberg [16] addresses a similar problem, i.e., how to measure the
cognitive complexity in human-computer interaction. He proposes to derive
cognitive complexity (CoC) from behaviour complexity (BC), system
complexity (SC) and task complexity (TC) as: CoC = SC + TC – BC.

S.D. Sheetz et al. [17] address complexity of the OO system at the
application, object, method, and variable levels, and at each level propose
the measures to account for the cohesion and coupling aspects of the system.
Complexity of the OO system at each level is presented as a function of the
measurable characteristics such as fan-in, fan-out, number of I/O variables,
fan-up, fan-down, and polymorphism. Each measure is defined with
adherence to the principles that measures must be intuitive and that they
must be applicable to all phases of the OO development lifecycle.

Cyclomatic complexity is one of the more widely-accepted static software
metrics [13]. It is intended to be independent of the language and language
format. The other metrics bring out other facets of complexity, including both
structural and computational complexity: Halstead complexity measures [18]
identify algorithmic complexity, measured by counting operators and
operands; Henry and Kafura metrics [19] indicate coupling between modules
(parameters, global variables, calls); Bowles metrics [13] evaluate the module
and system complexity, coupling via parameters and global variables; Troy
and Zweben [13] metrics evaluate modularity or coupling; complexity of
structure (maximum depth of a structure chart). Wang’s cognitive complexity
measure [20] indicates the cognitive and psychological complexity of software
as a human intelligence artefact. With the arrival of new programming
paradigms, new complexity metrics have been proposed for aspect-oriented
programming (AspectJ) [21] and generic programming (C++ Standard
Template Library) [22].

There were efforts to describe formal properties of complexity metrics that
could be used for evaluation and theoretical validation of complexity
measures. J. Weyuker [23] introduces a set of syntactic software complexity
properties as criteria and examines the strengths and weaknesses of the
known complexity measures, which include statement count, cyclomatic

http://www.sei.cmu.edu/str/indexes/glossary/complexity.html
http://www.sei.cmu.edu/str/descriptions/halstead.html#1227444

Metrics for Evaluation of Metaprogram Complexity

ComSIS Vol. 7, No. 4, December 2010 773

number, effort measure, and data flow complexity. L.C. Briand et al. [3]
provide a theoretical framework for relating structural complexity, cognitive
complexity and external quality attributes.

3. Complexity of metaprogramming and metaprograms

It is a well-known fact that the same algorithm implemented in different
programming paradigms or languages can have very different complexity of
description (i.e., description complexity is not a property of an algorithm but
rather a property of an implementation language). For example, one study
[24] shows that complexity of Quick Sort algorithm implementations measured
using Halstead Volume, Program Effort and Program Difficulty metrics [18] is
highest for C and lowest for Assembly and Visual Basic language programs.

Metaprogramming [25], as a paradigm for developing programs that create
other programs, is a level of complexity above traditional programming
paradigms. There are two types of metaprogramming: homogeneous
metaprogramming and heterogeneous metaprogramming.

In case of homogeneous metaprogramming, we have two subsets of a
domain language: one is dedicated for expressing domain functionality, and
the other is used for managing variability at meta-level (generic parameters,
templates, etc.). The developer has to know only one programming language
syntax, the metaprogram is as readable as a domain program written in the
same domain programming language, and the development flow uses the
same development toolset. Therefore, the complexity of developing
metaprograms using homogeneous metaprogramming technique is only
slightly higher than complexity of traditional programming.

In case of heterogeneous metaprogramming, we have two different
languages: a domain language itself and a metalanguage, which manipulates
with source code of domain language programs. As a result, the cognitive
complexity of heterogeneous metaprograms expressed in terms of their
readability and understandability is significantly higher, because the developer
must know, understand and use the syntactical constructs of two different
languages in the same metaspecification. The development flow is
significantly more complex: not only two development environments have to
be used, but also the testing of metaprograms is a significant and time-
consuming problem. Therefore, complexity of developing metaprograms using
heterogeneous metaprogramming techniques is considerably higher than
complexity of traditional programming.

Complexity measures may be helpful for reasoning about metaprogram
structure, understanding the relationships between different parts of
metaprograms, comparing and evaluating metaprograms. Here we distinguish
between: 1) first-order properties, or characteristics, which are derived directly
from the metaprogram description itself using simple mathematical actions
such as counting, e.g., program size (count of symbols in a file); and 2)

Robertas Damaševičius and Vytautas Štuikys

ComSIS Vol. 7, No. 4, December 2010 774

second-order properties, or metrics, which cannot be derived directly from
artefacts, but are calculated from the first-order properties.

Metaprogram complexity can be evaluated at several dimensions:
1) Information: Metaprogram as message (sequence of symbols)

containing information with unknown syntax and structure.
2) Metalanguage: Metaprogram as annotated domain knowledge.

Domain knowledge is expressed using a domain language, whereas domain
variability is specified using a metalanguage. Such separation of domain and
meta levels is a first step towards the creation of a metaprogram.

3) Graph: Metaprogram as a graph of execution paths, where a root is a
metaprogram, the nodes are the metalanguage constructs, and the leaves are
the domain program instances.

4) Algorithm: Metaprogram as a high-level program specification
(algorithm), which contains a collection of functional (structural) operations.
An operation may have one or more operands specified as metaprogram
attributes (parameters).

5) Cognition: Metaprogram as a number of different information units
available for human cognition. A unit may represent either a metalanguage
construct (macro, template, function), its argument or a meta-parameter.

4. Metaprogram Complexity Metrics

We use the following metrics for evaluating complexity at different dimensions
of a metaprogram: Relative Kolmogorov Complexity (RKC), Metalanguage
Richness (MR), Cyclomatic Complexity (CC), Normalized Difficulty (ND), and
Cognitive Difficulty (CD).

4.1. Information dimension: Relative Kolmogorov Complexity

There are several methods to evaluate informational software complexity such
as Shannon entropy, computational complexity, network complexity and
topological complexity. We use the algorithmic complexity metric also known
as Kolmogorov Complexity [26]. Kolmogorov complexity is a measure of
randomness of strings and other objects based on their information content.
Kolmogorov Complexity measures complexity of an object by the length of the
smallest program that generates it. Suppose, we have an object x and a
description system (e.g., a programming language) φ that maps from a
description w to this object. Kolmogorov Complexity Kφ(x) of an object x is the
size of the shortest program in the description system φ capable of producing
x on a universal computer:

  }:{min xwxK w
w

  (1)

Metrics for Evaluation of Metaprogram Complexity

ComSIS Vol. 7, No. 4, December 2010 775

Different description systems can provide distinct values of K(x), but one
can prove that the differences are only up to a fixed additive constant.
Intuitively, Kolmogorov Complexity Kφ(x) is the minimal size of information
required to generate x by an algorithm. Unfortunately, it cannot be computed
in the general case and must be approximated. Usually, compression
algorithms are used to give an upper bound to Kolmogorov Complexity.
Suppose that we have a compression algorithm Ci. Then, a shortest
compression of w in the description system φ will give the upper bound to
information content in x:

    },{min: xφCxCxK
iCi

i
 (2)

Kolmogorov Complexity has been used earlier (under the name of
Generative Software Complexity) to measure the effectiveness of applying
program generation techniques to software [27]. Program generators were
defined as compressed programs, and the shortest generator is assumed to
have maximal generative complexity.

Here we evaluate the complexity of a metaprogram M using the Relative
Kolmogorov Complexity (RKC) metric, which can be calculated using a
compression algorithm C as follows:

 

M

MC
RKC 

(3)

where M is the size of a metaprogram M, and  MC is the size of a

compressed metaprogram M.
A high value of RKC means that there is a high variability of text content,

i.e., high complexity. A low value of RKC means high redundancy, i.e., the
abundance of repeating fragments in metaprogram code.

4.2. Metalanguage dimension: Metalanguage Richness

Metaprogram M can be defined as a collection of domain language
statements with corresponding annotations (metadata) expressed

symbolically:   *,|,  msmsO , where s is a domain language statement,

m is the metadata of s , and * is a string of symbols from alphabet  . For

the evaluation of metaprogram complexity at the metalanguage dimension,
we use the Metalanguage Richness (MR) metric:

M

m

MR Mm




(4)

Robertas Damaševičius and Vytautas Štuikys

ComSIS Vol. 7, No. 4, December 2010 776

where M is the size (length) of a metaprogram M, and m is the size

(length) of the metalanguage constructs in a metaprogram M.
A higher value of MR means that a metaprogram contains more metadata

and its description is more complex.

4.3. Graph dimension: Cyclomatic Complexity

Cyclomatic Complexity (CC) [28] of a program directly measures the number
of linearly independent paths through a program's source code from entrance
to each exit. For metaprograms, CC is equal to the number of distinct domain
program instances that can be generated from a metaprogram.

A metaprogram M can be defined as a function   IPM  : that maps

from a set of its parameters P to a set of its domain program instances I.
Following this definition, CC of a metaprogram is equal to the cardinality of a
set of the distinct domain program instances described by a metaprogram.

ICC  cod (5)

Since  is an injective function, which associates distinct metaprogram
parameter values with distinct domain program instances, the cyclomatic
complexity of a metaprogram M can be computed using only the interface
description of a metaprogram. For independent parameters, the value of CC
can be calculated as a product of the number of allowed parameter values for
each parameter of a metaprogram:






Pp

pCC dom (6)

A higher value of CC indicates higher complexity of the metaprogram’s
parameter set (meta-interface).

4.4. Algorithmic complexity: Normalized Difficulty

A functional program specification S is a sequence of functions  FffS  | ,

where   AAaaf ,: is a specific function (operator) that may have a

sequence of operands as its arguments, and A is a set of function operands.
For metaprograms we accept that operations are specified as metalanguage
functions, and operands are specified as metaprogram parameters. For the
evaluation of metaprogram complexity at the algorithm dimension, we use the
Halstead complexity metrics [18]. From a metaprogram we derive the number

of distinct operators Fn 1 , the number of distinct operands An 2 , the

total number of operators SN 1 , the total number of operands AN
Sf




2 .

Metrics for Evaluation of Metaprogram Complexity

ComSIS Vol. 7, No. 4, December 2010 777

Halstead Difficulty D indicates the cognitive difficulty of a program:





















2

21

2 n

Nn
D

(7)

The Halstead Volume V measures the size of a program specification:

nNV 2log (8)

For evaluating metaprogram complexity at the algorithm dimension we
propose the Normalized Difficulty (ND) metric, which is a normalized ratio of
the cognitive difficulty and size metrics:

  2121

21

nnNN

Nn
ND




(9)

The ND metric measures the complexity of a metaprogram as an algorithm.
A high value of the ND metric means that metaprogram is highly complex in
terms of time and effort required to understand it.

4.5. Cognitive complexity: Cognitive Difficulty

Following the works of G. Miller [29] stating that humans can hold 7 (+/- 2)
chunks of information in their short-term memory at one time, and M. Keating
[12], who claims that the number of modules at any level of software hierarchy
must be 7 +/- 2, for evaluating complexity of metaprograms we propose the
Cognitive Difficulty (CD) metric. Cognitive Difficulty is calculated as the
maximal number of meta-level units (metaparameters P, metalanguage
constructs N1, or their respective arguments N2) in a metaprogram.

 21,,max NNPCD  (10)

The proposed metaprogram complexity metrics are summarized in Table 1.

Table 1. Summary of metaprogram complexity metrics

Metric Objects of measurement Meaning for a
metaprogram

Relative
Kolmogorov
Complexity

Object: metaprogram
Program: compressed metaprogram

High variability of
content

Metalanguage
Richness

Data: domain language constructs
Metadata: metalanguage constructs

Complexity of
description at meta
level

Cyclomatic
Complexity

Independent paths: number of
distinct instances

Complexity of a
meta-interface

Normalized
Difficulty

Operators: metalanguage functions
Operands: metaprogram parameters

Algorithmic
complexity of a

Robertas Damaševičius and Vytautas Štuikys

ComSIS Vol. 7, No. 4, December 2010 778

metaprogram

Cognitive
Difficulty

Metaprogram parameters,
metalanguage functions,
metalanguage function arguments

Cognitive
understandability of
a metaprogram

5. Theoretical validation of complexity metrics

Validation of software metrics is important to ensure that metrics are accepted
by the scientific community and used properly. There are two methods of
metrics validation: theoretical and empirical [30]. Theoretical validation
ensures that the metric is a proper numerical characterization of software
property it claims to measure. Empirical validation relates metrics with some
important external attributes of software (such as the number of faults). While
both types of validation are necessary, the empirical validation requires much
time and many researchers to contribute since many studies need to be
performed to gather convincing evidence from many real-world libraries and
applications that a metric is valid. The domain of metaprogram complexity
research is not mature yet, therefore while there are open metaprogram
libraries available (such as Boost [31] in C++) for such research currently
there are not sufficient data available publicly on the external characteristics
of such metaprograms such as reliability or maintainability.

Therefore, we validate the proposed metaprogram complexity metrics
theoretically using Weyuker's properties [23], a set of formal properties that
can be used to evaluate any software metrics.

Property 1 (Eq. 11) will be satisfied when we can find two metaprograms
of different complexity. All proposed complexity metrics satisfy Property 1.

   QPQP  (11)

Property 2 is satisfied when there are finitely many programs of complexity

c , where c is a non-negative number. The property is not satisfied for all

complexity measures that are size-independent (scaled). Therefore Property 2
is not satisfied for all proposed metaprogram complexity metrics.

Property 3 (Eq. 12) is satisfied if we can find two distinct metaprograms
that have equal complexity. The property is satisfied by all proposed
metaprogram complexity metrics.

    QPQPQP  (12)

Property 4 (Eq. 13) is satisfied if equivalent metaprograms of different
complexity can be written. The property is not satisfied by RKC and MR
metrics.

   QPQPQP  & (13)

Property 5 (Eq. 14) is satisfied if after concatenating two metaprograms,
the complexity of the merged metaprogram increases beyond individual

Metrics for Evaluation of Metaprogram Complexity

ComSIS Vol. 7, No. 4, December 2010 779

complexities of original metaprograms. The property is satisfied by all metrics,
except MR (because of averaging).

   QPQQPPQP  & (14)

Property 6 (Eq. 15) is satisfied if concatenation of two equal complexity
metaprograms with some other metaprogram gives different complexity
metaprograms. The property is satisfied by all metrics (because
metaprograms can have common metaparameters, but distinct metabodies).

    RQRPQPRQP ;;&  (15)

Property 7 is satisfied if by permuting the order of statements in a
metaprogram, the complexity of a metaprogram changes. The property is not
satisfied by all metaprogram complexity metrics except RKC metric.

Property 8 is satisfied if renaming of the symbols and variables of a
metaprogram does not change the complexity of a program. The property is
satisfied for all metaprogram complexity metrics except RKC metric.

Properties 9a (Eq. 16) and 9b (Eq. 17) are satisfied when a two (or more)
metaprograms are concatenated, the sum of complexities of the original
metaprograms is less than the complexity of the bigger metaprogram. The
property is satisfied by RKC (because the concatenation provides more
opportunities for compression), CC (because adding new metaparameters
leads to geometrical increase of metaprogram instance number), CD
(because two metaprograms can have the same metaparameters,
metalanguage constructs or their arguments) metrics. Properties 9a and 9b
are not satisfied by MR metric (because combining two metaprograms will not
lead to their increased coupling). Only property 9a is satisfied by ND metric.

   QPQPQP ; (16)

   QPQPQP ; (17)

Table 2. Summary of metaprogram complexity validation

Complexity
metric

Weyuker’s property

1 2 3 4 5 6 7 8 9

RKC + – + – + + + – +

MR + – + – – + – + –

CC + – + + + + – + +

ND + – + + + + – + +/–

CD + – + + + + – + +

The results of theoretical validation are summarized in Table 2. Note that

Weyuker's properties were developed for procedural languages. Hence, there
might be possibility that a proposed metaprogram complexity measure may
not satisfy all the properties, but still may be valid for metaprogramming

Robertas Damaševičius and Vytautas Štuikys

ComSIS Vol. 7, No. 4, December 2010 780

domain as, e.g., some object-oriented metrics that do not satisfy Weyuker's
properties are still considered valid for object-oriented programs [32].

6. Example of metaprogram complexity calculation

6.1. Heterogeneous metaprogramming

We demonstrate the complexity calculation of the heterogeneous
metaprogram developed for hardware design domain. In hardware design
domain, a great number of similar domain entities exist. For example, the
most widely used hardware library components are gates (see Fig. 1; in
VHDL), which implement a particular logical function. The hardware designer
requires many different gate components implementing different functions and
having a different number of inputs. All these components are very similar to
each other both syntactically and semantically, and thus they constitute a
component family.

entity gate is

 port (X1, X2 : in bit; Y : out bit);

end gate;

architecture behave_gate of gate is

 begin

 Y <= X1 and X2;

end behave_gate;

entity gate is

 port (X1, X2, X3 : in bit; Y : out bit);

end gate;

architecture behave_gate of gate is

 begin

 Y <= X1 or X2 or X3;

end behave_gate;

Fig. 1. Instances of VHDL gate family: a) 2-input AND gate, and b) 3-input OR gate

Next, we develop a metaprogram, which describes a gate component
family. For example, the identified generic parameters and their values for the
gate component family are as follows:

Gate_function = { AND, OR, XOR, NAND, NOR, XNOR }
Gate_inputs = { integer numbers from 2 to 8 }

Metrics for Evaluation of Metaprogram Complexity

ComSIS Vol. 7, No. 4, December 2010 781

A gate metaprogram (see Fig. 2) was developed using Open PROMOL [33]
metalanguage. The metaprogram has 2 parameters, 3 metalanguage
functions, and its size is 291 B.

 $
"Enter gate function: " {and, or, xor, nor, nand, xnor} f := and;

"Enter number of inputs:" {2..8} num := 2;

$

entity gate is

 port (@gen[num,{, }] : in bit; Y : out bit);

end gate;

architecture behave_gate of gate is

 begin

 Y <= @gen[num, { @sub[f] }];

end behave_gate;

Fig. 2. Generic gate described using Open PROMOL metalanguage

We calculate RKC value using a BWT (Burrows-Wheeler Transform)
compression algorithm, because currently it allows achieving best
compression results for text-based information and thus allows to better
approximate information content. The size of the gate metaprogram is 271 B.
The size of the compressed metaprogram will put the upper limit on its
information content. After compression we obtain 245 B, therefore RKC value
of a gate metaprogram is equal to 245/271 = 0.90.

We calculate MR of the gate metaprogram by calculating the size of its
metainterface and the length of its metalanguage functions, which is equal to
139 B. Therefore, its MR value is equal to 139/271 = 0.51.

Cyclomatic Complexity of a metaprogram is a number of different program
instances that can be generated from it. The metric can be calculated as the
number of distinct metaprogram parameter values. Parameters f and num are
independent. Parameter f can have 6 different values, and parameter num
can have 7 values. The gate metaprogram covers a family of 4276 

different component instances. Therefore, its CC value is 42.
The gate metaprogram has 3 metalanguage functions, 2 distinct functions

(@gen, @sub), 4 metalanguage function arguments and 3 distinct arguments

(num, {,}, {@sub[f]}). Therefore, its ND is equal to:
   

23.0
35

8

3243

42





. From

the same values, we calculate that its CD is   44,3,2max  .

The values of the calculated complexity metrics for the gate metaprogram
are summarized in Table 3.

Based on the metaprogram complexity metric values we can make the
following conclusions on complexity of the gate metaprogram. The RKC value
is high, therefore the metaprogram almost has no repeating fragments, it is
coded at a meta-level efficiently and there is hardly room for any additional
generalization without introducing new parameters or widening the scope of
the metaprogram. The MR value shows that metalanguage constructs cover
only about a half of the metaprogram’s size, therefore, its understandability
and readability is good. Following Frappier et al. [34], who introduce the

Robertas Damaševičius and Vytautas Štuikys

ComSIS Vol. 7, No. 4, December 2010 782

following boundaries of the CC values based on empirical research and
practical implementations of large software systems: simple (1-10), slightly
(moderately) complex (11-20), complex (21-50), over-complex and untestable
(> 50), we conclude that due to large parameter space of the metaprogram,
the exhaustive testability of its instances is complex. The CD value is below
lower threshold (< 5) for short-term memorability of chunks of information as
formulated by [29], therefore, cognitive complexity of the metaprogram is low.

Table 3. Complexity measures of the gate metaprogram

Complexity

dimension

Complexity metric Value

Information Relative Kolmogorov Complexity (RKC) 0.90

Metalanguage Metalanguage Richness (MR) 0.51

Graph Cyclomatic Complexity (CC) 42

Algorithm Normalized Difficulty (ND) 0.23

Cognitive Cognitive Difficulty (CD) 4

Finally, we present complexity values calculated for Open PROMOL meta-
programs created from Altera’s library for OrCAD VHDL components (Table
4). Altera’s library is a large collection of specific components, which are
supposed to cover the entire circuit design domain (it contains 282 macro-
functions and 73 primitives, i.e., 355 VHDL components at all). The
components were generalized using Open PROMOL metalanguage to create
a generic VHDL component library [35].

Table 4. Complexity of Open PROMOL components of generic VHDL library

No
.

PROMOL
metaprogram

Complexity metric Complexity

RKC MR CC ND CD

1 Serial multiplier 0.219 0.03 4 0.229 27 Simple

2 Trigger 0.271 0.27 80 0.111 52 Over-complex

3 Gate 0.502 0.49 181 0.026 26 Over-complex

4 Adder 0.478 0.25 4 0.169 20 Simple

5 Register 0.457 0.34 512 0.136 94 Over-complex

6 Multiplexer 0.507 0.36 32 0.051 22 Complex

7 Comparator 0.429 0.31 9 0.123 33 Simple

8 Shift Register 0.392 0.31 18 0.091 121 Moderate

9 Subtractor 0.378 0.20 4 0.072 84 Simple

10 Parallel
multiplier

0.328 0.38 96 0.092 126 Over-complex

11 Register File 0.358 0.24 36 0.084 255 Complex

12 Counter 0.323 0.28 30 0.044 172 Complex

13 Multiplier 0.331 0.64 8 0.092 28 Simple

14 Divider 0.527 0.38 30 0.096 48 Complex

Metrics for Evaluation of Metaprogram Complexity

ComSIS Vol. 7, No. 4, December 2010 783

We evaluate the results presented in Table 4 as follows. Most complex
metaprograms are those, which describe components with largest variability
in the domain, thus requiring a larger number of parameters for selection of a
specific instance and a larger number of metalanguage functions to represent
their variability (see values of CC and CD metrics). Such metaprograms are
difficult to test and maintain. Their complexity can be decreased by
introducing hierarchical decomposition at the metaprogram level.

6.2. Homogeneous metaprogramming

As an example of complexity measurement of homogeneous metaprograms,
we analyze Boost C++ Libraries [31]. Boost is a collection of open source
libraries that extend the functionality of C++. To ensure efficiency and
flexibility, Boost extensively uses C++ template metaprogramming techniques.
In C++, the template mechanism provides a rich facility for computation at
compile-time. Here we analyze complexity of template functions in a
Boost.Math. This library several contributions in the domain of mathematics
such as complex number and special mathematical functions. An example of
such template function (a fragment) is presented in Fig. 3.

 template<class T>
inline T fabs(const std::complex<T>& z)

{

 return ::boost::math::hypot(z.real(), z.imag());

}

Fig. 3. An example of template function (fabs)

The complexity measurement results using the proposed metaprogram
complexity metrics are presented in Table 5.

Template functions in the Boost.Math library are rather simple. They mostly
have CC values either 3, 16 or 19 meaning that each template function has a
single template parameter, which can accept either 3 floating point, 16 integer
or 19 floating point and integer C++ type values. Only common_factor_ct

has template function static_lcm, whose template parameters are numbers
of long type rather than types. All template functions also have the same ND
value, because all template references are to the same template parameter
class and have only one template parameter, therefore the number of distinct
metaprogram operators and operands is equal to 1, and ND is equal to 0.25.
The value of the CD metric is larger for components, which have a larger
number of template references. The values of the RKC and MR metrics are
larger for smaller components, which have less domain language (C++ non-
template) code. When evaluating testability and maintainability of Boost.Math
library components, the CD value could be used using the boundaries
proposed by Frappier et al. [34] (see last column of Table 5.).

Robertas Damaševičius and Vytautas Štuikys

ComSIS Vol. 7, No. 4, December 2010 784

Table 5. Complexity of components of Boost.Math library

No. Template function Complexity metric Complexity

RKC MR CC ND CD

1. acos 0.229 0.037 3 0.25 34 Moderate

2. acosh 0.488 0.128 3 0.25 3 Simple

3. asin 0.218 0.037 3 0.25 34 Moderate

4. asinh 0.488 0.144 3 0.25 2 Simple

5. atan 0.423 0.116 3 0.25 10 Simple

6. atanh 0.231 0.035 3 0.25 23 Complex

7. bessel 0.149 0.157 3 0.25 127 Over-complex

8. beta 0.134 0.090 3 0.25 199 Over-complex

9. binomial 0.373 0.201 16 0.25 19 Moderate

10. cbrt 0.438 0.144 3 0.25 15 Moderate

11. common_factor_ct 0.171 0.042 1.9E19 0.25 13 Moderate

12. common_factor_rt 0.160 0.043 3 0.25 32 Complex

13. cos_pi 0.410 0.216 3 0.25 14 Moderate

14. digamma 0.224 0.061 3 0.25 45 Complex

15. ellint_1 0.242 0.133 3 0.25 40 Complex

16. ellint_2 0.264 0.167 3 0.25 39 Complex

17. ellint_3 0.213 0.116 3 0.25 48 Complex

18. ellint_rc 0.391 0.137 3 0.25 17 Moderate

19. ellint_rd 0.354 0.121 3 0.25 20 Moderate

20. ellint_rf 0.363 0.127 3 0.25 22 Complex

21. ellint_rj 0.320 0.105 3 0.25 24 Complex

22. erf 0.210 0.055 3 0.25 88 Over-complex

23. expint 0.234 0.038 3 0.25 128 Over-complex

24. expm1 0.279 0.172 3 0.25 61 Over-complex

25. fabs 0.666 0.150 3 0.25 1 Simple

26. factorials 0.244 0.141 16 0.25 47 Complex

27. fpclassify 0.146 0.086 19 0.25 98 Over-complex

28. gamma 0.138 0.140 3 0.25 329 Over-complex

29. hermite 0.421 0.208 3 0.25 14 Moderate

30. hypot 0.396 0.211 3 0.25 22 Complex

31. laguerre 0.260 0.164 3 0.25 30 Complex

32. lanczos 0.225 0.070 3 0.25 638 Over-complex

33. legendre 0.237 0.136 3 0.25 43 Complex

34. log1p 0.204 0.112 3 0.25 91 Over-complex

35. modf 0.293 0.233 3 0.25 10 Simple

36. next 0.202 0.085 19 0.25 60 Over-complex

37. octonion 0.030 0.013 19 0.25 599 Over-complex

38. pow 0.239 0.196 3 0.25 42 Complex

39. powm1 0.390 0.254 3 0.25 15 Moderate

40. quaternion 0.059 0.029 19 0.25 348 Over-complex

41. round 0.274 0.229 3 0.25 20 Moderate

42. sign 0.516 0.155 19 0.25 5 Simple

43. sin_pi 0.471 0.209 3 0.25 9 Simple

44. sinc 0.215 0.098 3 0.25 36 Complex

45. sinhc 0.224 0.084 3 0.25 30 Complex

46. spherical_harmonic 0.210 0.150 9 0.25 50 Complex

47. sqrt1pm1 0.468 0.238 3 0.25 8 Simple

48. trunc 0.276 0.225 3 0.25 20 Moderate

49. zeta 0.257 0.041 3 0.25 61 Over-complex

Metrics for Evaluation of Metaprogram Complexity

ComSIS Vol. 7, No. 4, December 2010 785

7. Conclusions and Future Work

Complexity of metaprograms and metaprogramming techniques is an
important factor in developing and maintaining generic components and
software generators. Complexity of metaprograms can be evaluated at
several dimensions (information, metalanguage, graph, algorithm, cognition)
using a variety of measures adopted from information theory and software
engineering domain. Such metrics can be used to rank metaprograms based
on their complexity values, to assess testability and maintainability of
metaprograms, and can be used by reusable software library developers for
evaluating complexity of their work artefacts. Despite the lack of larger-scale
empirical validation, we still expect that metaprogram complexity metrics
could be used to indicate poorly written or untestable metaprograms, when
the metric values exceed predefined maximal or minimal boundaries.

Future work will focus on the empirical validation of proposed metrics using
open metaprogram libraries implemented in different metalanguages.

References

1. Bennett, K.H., Rajlich, V.: Software maintenance and evolution: A roadmap. In:
A.C. Finkelstein (ed.), Future of Software Engineering. ACM Press, 73-87, 2000.

2. Visscher, B.-F.: Exploring Complexity in Software Systems. Ph.D. thesis.
Department of Computer Science and Software Engineering. University of
Portsmouth, UK, June 2005.

3. Briand, L.C., Morasca, S., Basili, V.R.: Property-Based Software Engineering
Measurement. IEEE Trans. Software Eng. 22(1): 68-86, 1996.

4. IEEE Computer Society: IEEE Standard Glossary of Software Engineering
Terminology, IEEE Std. 610.12 – 1990.

5. Zuse, H.: Software Complexity – Measures and Methods. DeGruyter Publ., 1991.
Card, D.N., Agresti, W.W.: Measuring software design complexity. The Journal of
Systems and Software, vol. 8, 185-197, 1988.

6. Reformat, M., Musilek, P., Wu, V., Pizzi, N.J.: Human Perception of Software
Complexity: Knowledge Discovery from Software Data. In: Proc. of 16

th
 IEEE Int.

Conf. on Tools with Artificial Intelligence (ICTAI 2004), Nov. 15-17, 202-206, 2004.
7. Blecker, T., Abdelkafi, N., Kaluza, B., Kreutler, G.: A Framework for Understanding

the Interdependencies between Mass Customization and Complexity. In: Proc. of
the 2nd Int. Conf. on Business Economics, Management and Marketing,
Athens/Greece, June 24 - 27, 2004.

8. Misra, S., Akman, I.: A Model for Measuring Cognitive Complexity of Software. In:
Proc. of 12th Int. Conf. on Knowledge-Based Intelligent Information and
Engineering Systems (KES 2008), Zagreb, Croatia, September 3-5, 2008, Part II.
LNCS vol. 5178, pp. 879-886. Springer, 2008.

9. Mayrhauser, A.V., Vans, A.M.: From Code Understanding Needs to Reverse
Engineering Tools Capabilities. In: Proc. of 6th Int. Conference on Computer
Aided Software Engineering (CASE’93), 19-23 July 1993, 230-239.

10. Damaševičius, R.: On the Quantitative Estimation of Abstraction Level Increase in
Metaprograms. Computer Science and Information Systems (ComSIS), 3(1): 53-
64, 2006.

Robertas Damaševičius and Vytautas Štuikys

ComSIS Vol. 7, No. 4, December 2010 786

11. Keating, M.: Measuring Design Quality by Measuring Design Complexity. In: Proc.
of the 1st Int. Symp. on Quality of Electronic Design (ISQED’2000), p. 103, 2000.

12. Software Engineering Institute (SEI). Software Technology Roadmap, 2006.
Sipos, A., Pataki, N., Porkolab, Z.: On Multiparadigm Software Complexity Metrics.
Pure Mathematics and Applications, 17(3-4): 469-482, 2006.

13. Card, D.N., Glass, R.L.: Measuring Software Design Quality. Prentice Hall,
1990.Rauterberg, M.: How to Measure Cognitive Complexity in Human-Computer
Interaction. In: Proc. of the 13th European Meeting on Cybernetics and Systems
Research, Vienna, Austria, 9–12 April 1996, Vol. 2, 815-820.

14. Sheetz, S.D., Tegarden, D.P., Monarchi, D.E.: Measuring Object-Oriented System
Complexity. Proc. of. First Workshop of Information Technologies and Systems,
285-307. MIT Sloan School of Management, Cambridge, MA, 1991.

15. Halstead, M.H.: Elements of Software Science. New York: Elsevier, 1977. Henry,
S.M., Kafura, D.G.: Software Structure Metrics Based on Information Flow. IEEE
Trans. Software Eng. 7(5): 510-518, 1981.

16. Wang, Y.: On the Cognitive Complexity of Software and its Quantification and
Formal Measurement. International Journal of Software Science and
Computational Intelligence 1(2): 31-53, 2009.

17. Pataki, N., Sipos, A., Porkolab, Z.: Measuring the Complexity of Aspect-Oriented
Programs with a Multiparadigm Metric. In: Proc. of European Conf. on Object-
Oriented Programming - Quantitative Approaches in Object-Oriented Software
Engineering Workshop (ECOOP-QAOOSE), Nantes, France, 1-10, 2006.

18. Pataki, N., Pocza, K., Porkolab, Z.: Towards a Software Metric for Generic
Programming Paradigm. In: 16th IEEE Int. Electrotechnical and Computer Science
Conference, 24-26 September 2007, Portorož, Slovenia.

19. Weyuker E.J.: Evaluating Software Complexity Measures. IEEE Transactions on
Software Engineering, vol. 14, no. 9, 1357-1365, September, 1988.

20. Olabiyisi, S.O., Ayeni, R.O., Omidiora, E.O.: Comparative Study of Implementation
Languages on Software Complexity Measures of Quick Sort Algorithm. Journal of
Engineering and Applied Sciences 3 (1): 118-122, 2008.

21. Damaševičius, R., Štuikys, V.: Taxonomy of the Fundamental Concepts of
Metaprogramming. Information Technology and Control, 37(2), 124-132, 2008.

22. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applications.
Springer Verlag, 1997.

23. Heering, J.: Quantification of structural information: on a question raised by
Brooks. ACM SIGSOFT Software Engineering Notes 28(3): 6, 2003.

24. McCabe, T.J.: A Complexity Measure. IEEE Transactions on Software
Engineering, vol. se-2, no. 4, 308-320, 1976.

25. Miller, G.: The Magic Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information. The Psychological Review, March, 1956.

26. El Emam, K.: A Methodology for Validating Software Product Metrics. National
Research Council of Canada, Ottawa, Ontario, Canada NCR/ERC-1076, 2000.

27. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming: Concepts, Tools,
and Techniques from Boost and Beyond. Addison-Wesley Professional, 2004.

28. Misra, S., Akman, I.: Applicability of Weyuker’s Properties on OO Metrics: Some
Misunderstandings. Computer Science and Information Systems (ComSIS), Vol.
5(1), 17-24, June 2008.

29. Štuikys, V., Damaševičius, R., Ziberkas, G.: Open PROMOL: an experimental
language for target program modification. In: A. Mignotte, E. Vilar and L. Horobin
(eds.), System on chip design languages: extended papers: best of FDL’01 and
HDLCon’01. Netherlands: Kluwer Academic Publishers, 235-246, 2002.

Metrics for Evaluation of Metaprogram Complexity

ComSIS Vol. 7, No. 4, December 2010 787

30. Frappier, M., Matwin, S., Mili, A.: Software Metrics for Predicting Maintainability.
Software Metrics Study: Tech. Memo. 2. Canadian Space Agency, 1994.

31. Damaševičius, R.: Scripting Language Open PROMOL: Extension, Environment
and Application. MSc. Thesis. Kaunas University of Technology, Lithuania, 2001.

Robertas Damaševičius received his MSc (2001) and PhD (2005) degrees
in informatics from Kaunas University of Technology (KTU), Kaunas,
Lithuania. Currently he is an associated professor at Software Engineering
Department, KTU. He teaches several computer science, programming and
software engineering courses. He is also the member of Design Process
Automation Group at Software Engineering Department. His research
interests include hardware design, design automation, metaprogramming,
software generation and program transformation, as well as domain analysis
methods. He is an author of more than 50 scientific papers in the area.

Vytautas Štuikys is a professor at Software Engineering Department of KTU,
Lithuania. He received the PhD and doctor habilitatis titles from KTU in 1970
and 2002, respectively. He is a lecturer and a researcher as well as a leader
of the Design Process Automation Group. His research interests include
software and hardware design methodologies, software reuse, component-
based programming, metaprogramming and program generation, CAD
systems and soft IP design. He has published more than 100 papers in the
area. He is an author of several books and a monograph.

Received: March 15, 2009; Accepted: December 04, 2009.

