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Abstract. This paper proposes the median-type filters with an impulse 
noise detector using the decision tree and the particle swarm 
optimization, for the recovery of the corrupted gray-level images by 
impulse noises. It first utilizes an impulse noise detector to determine 
whether a pixel is corrupted or not. If yes, the filtering component in this 
method is triggered to filter it. Otherwise, the pixel is kept unchanged. In 
this work, the impulse noise detector is an adaptive hybrid detector 
which is constructed by integrating 10 impulse noise detectors based on 
the decision tree and the particle swarm optimization. Subsequently, the 
restoring process in this method respectively utilizes the median filter, 
the rank ordered mean filter, and the progressive noise-free ordered 
median filter to restore the corrupted pixel. Experimental results 
demonstrate that this method achieves high performance for detecting 
and restoring impulse noises, and outperforms the existing well-known 
methods. 

Keywords: Impulse noise detector, Decision tree, Particle swarm 
optimization, Median-type image filter, Noise removal.  

1. Introduction 

Digital images are sometimes contaminated by impulse noises during 
transmission processes. These noises usually degrade the image processing 
results severely such as edge detection, image segmentation, and object 
recognition. Thus, it is urgently essential to remove noises before the image 
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processing procedures are performed. For this purpose, several well-known 
filters have been presented in the past years. Nonlinear filters are usually 
better than linear filters because of their good impulse noise removal and 
edge preservation [1]. The median filter which is a nonlinear filter is the 
popular well-known and the most often employed for removing impulse noises 
[1]. Although it is effective in filtering impulse noises, the median filter still 
blurs some fine details and often damages edges when it is applied to the 
digital images uniformly.  

Hence, various modified median-based filters have been proposed to 
enhance the typical median filter in the recent years, such as the weighted 
median (WM) filter [2], the tri-state median (TSM) filter [3], the progressive 
switching median (PSM) filter [4], the center weighted median (CWM) filter 
[13], the adaptive center weighted median (ACWM) filter [5], the multistate 
median (MSM) filter [6], the fuzzy-rule-based median (FM) filter, and the 
iterative median (IM) filter [7]. Although these filters achieve better detection 
and restoration results, they still tend to blur some fine details. In order not to 
damage good pixels, the decision-based median filters with switching 
schemes have been proposed in some papers [3, 13].  

In addition, the directional weighted median (DWM) filter [8] performs well 
at noise ratio higher than 30% when it is compared with the TSM, the ACWM, 
and the MSM filters. Nevertheless, it needs to calculate some fixed 
parameters to perform image enhancement. Moreover, the high performance 
detection (HPD) filter employs the sufficient similar neighbor criteria for image 
restoration [9]. However, it also needs some fixed parameters, such as the 
intensity value and the threshold, to work correctly. Thus, the HPD filter 
cannot completely separate the noise-free pixels from the noise-corrupted 
pixels, either. 

In the recent years, most proposed algorithms for selective impulse noise 
detection need the thresholds to classify the input pixel as either noise-
corrupted or noise-free. These thresholds will severely affect the performance 
for noise detection. They are finally determined by a series of the iterative 
experiments.   

The decision tree (DT) is popularly used in the field of data mining. 
Especially, it is a very efficient method in classification problems. In image 
enhancement, the purpose for noise detection is detecting the pixels whether 
they are corrupted or not. Thus, noise detection will be strongly regarded as a 
classification problem. In the past years, some well-known methods need the 
thresholds for classification which are obtained by manual or forced-searching 
approaches. They are time-consuming, inefficient, and high time complexity. 
Therefore, it is essential to employ a systematic approach for solving this 
problem. In this paper, the particle swarm optimization (PSO) is utilized to 
optimize the thresholds to find out the approximate optimized DT and the 
suboptimal solutions for a set of these parameters. Hence, employing the DT 
is more accurate for noise detection.  

The PSO derives next generation using the error values in each 
generation. It is easier to find the nearer optimal solution using the PSO. The 
main reason is that the PSO calculates the vector of movement and derives 
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the position for next generation by considering the optimal solution from the 
first generation to the current generation. Therefore, the PSO has high ability 
with memory [17]. 

In this paper, the novel selective image filters called the median-type filters 
with an impulse noise detector (IND) using the DT and the PSO for image 
restoration (MDP), is proposed. It integrates the features of 10 impulse noise 
detection algorithms based on the DT to construct an adaptive hybrid IND. 
Also, it employs the PSO to well determine the optimized thresholds for the 
hybrid noise detector.    

The remainder of this paper is arranged as follows. Basic concept is stated 
in Section 2. Principles for the DT and the PSO are then in detail described in 
Section 3. In Section 4, the design for the MDP filter will be next depicted. The 
training structure diagram for the proposed impulse noise detector in the MDP 
filter is shown in this section. Subsequently, the experimental results 
demonstrate the comparison for the PSNR values and the restored images at 
various noise ratios in some well-known corrupted images for different 
methods in Section 5. Finally, conclusion is given in Section 6. 

2. Basic Concept  

A gray-level image is represented as a two-dimensional KL×  matrix 
{ }KjLixX ij ≤≤≤≤= 1 ,1| , where L  and K  are its height and width, respectively, 

and { }255,,2,1,0 L∈ijx  is the pixel gray-level value at position ),( ji  in X .  

A filter window with size 12)12( 2 +=+= nS τ  will slide over the image X  at 
position ),( ji  to formulate a sample matrix ijX , where Li ≤≤1 , Kj ≤≤1 , and 
S  is generally an odd number. Let the value for the central pixel in the filter 
window ijX  be ijx . The filter window ijX  usually slides over the image X  
from left to right and top to bottom. For better clarity, the sample matrix ijX  
can be rewritten as ).,,,,,,( ,1,1,, ττττττττ ++−+++−−−−= jijiijjijiij xxxxxX LL   
In order to change the )12()12( +×+ ττ  filter window into a one-dimensional 
vector, it is reorganized by ( ),)(),(),(),(,),()( 101 kxkxkxkxkxk nn LL −−=x  where 

)(0 kx (or x(k)) is the original central pixel value at location k . For instance, a 
33×  filter window centered at )(0 kx  is considered, such that 

)),(,),(),(),(,),(()( 41014 kxkxkxkxkxk LL −−=x  where jKik +×−= )1(  indicates 
the pixel located at position (i, j) in the image X, and )(0 kx (or x(k)) stands for 
the central pixel in the filter window.   
The general output value in the MF filter with the filter window sized 12 +n  is 

described as 

( )
)),(,),(),(),(,),(( 

)(   )(

101 kxkxkxkxkxmedian
kmedianky

nn LL −−=
= x

 
where median  represents the median operation.  
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3. Principles for the DT and the PSO 

3.1. Decision Tree 

The DT is a kind of tree structure which is applied in classification problems 
[16]. It can automatically classify the data according to the splitting condition. 
The DT can deal with variables with continuous type or category type. Its 
model can sufficiently show each variable’s relative importance and effectively 
deal with a huge dataset with many variables [16].  

The purpose for noise detection is detecting the pixels whether they are 
corrupted or not when the images are processed. Noise detection is certainly 
considered as a classification problem. Thus, it is necessary to employ a 
systematic approach for solving this problem. In this paper, the algorithm for 
classification and regression trees (CART) is employed to construct a DT for 
the IND in noise detection. Experimentally, employing the DT is more 
accurate in noise detection. 

3.2. Particle Swarm Optimization 

Kennedy proposed the PSO algorithm in 1995 [17]. It is designed according to 
birds’ path of movement for food searching. The algorithm integrates the 
relationship between birds’ individual and group features. Birds will decide the 
next direction and the distance of movement by referencing the past 
directions of movement and the current position when they search for foods. 
A particle in the PSO algorithm is simulated as an individual for a bird’s food 
searching. The feature that a particle is simulated as a biological individual in 
the hyper-dimensional search space is employed to search for the optimal 
solution. Each particle will simulate the psychological tendencies from every 
other individual in the group of society. Apart from the individual direction 
searching, each individual will also learn from the best individual in the group 
of society. By the way of mutual learning, the individual will be able to find out 
the place for more food. In other words, the particles can therefore search for 
better solutions [17]. 

Here, the detailed procedure for the PSO is described as follows: 
1.  Set the initial parameters 

The parameters swarm size, weight, range of movement for particles, and the 
number for training generations, must be initially set. The swarm size 
indicates the number of the particles in each generation. The weight 
represents one of the parameters employed in calculating the movement 
vector. The number for training generations means the number for training.  

2.  Get the fitness 
The method for defining the fitness function can be designed by a function of 
the error value or the accuracy rate. The returned fitness values, such as the 
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error value and the accuracy rate, are usually the ultimate goal in a problem. 
Therefore, the fitness can be utilized to decide the merit or demerit of the 
current location for the particles, and can be employed to determine whether 
to continue training. 

3.  The conditions to stop training 
Here, two conditions for stop of training will be listed. First, the maximum 
number of generations for training is reached. Second, the fitness value has 
satisfied the problem’s requirements.   

4.  Get Gbest and Pbest 
The current fitness value for each particle is compared with that of each 
individual best position. If the particle’s fitness value is less than that of its 
Pbest, the individual best position will be replaced with the particle current 
position. Similarly, its fitness value is compared with that of its Gbest. If the 
particle’s fitness value is less than that of its Gbest, the position of Gbest will 
be substituted with that of the particle. Here, getting Gbest and Pbest is 
described in Eq. (1).   

),(Gbest then est)fitness(Gb  )fitness( if
),(Pbest then )estfitness(Pb  )fitness( if

t
t

ii

iii

XX
XX

=<
=<

 (1) 

where t represents the tth generation, ni ,,1 L= , n indicates the number of the 
particles, ( ) m

imiii ℜ∈= X,,X,X 21 LX  stands for the particle current position, m 

denotes the particle dimensionality, m
i ℜ∈Pbest  represents the best position 

for the ith individual particle’s path of movement, mℜ∈Gbest  indicates the 
position closest to the optimal solution in the group, and fitness means the 
fitness function.  

5.  Calculate the movement vector 
The movement vector is defined as follows: 

        )),((Gbest))((Pbest)()1( 2211 trctrctwt iiiii XXVV −××+−××+=+  (2) 
where ( ) m

imiii ℜ∈= V,,V,V 21 LV  is the movement vector for the ith particle, w 

indicates the inertia weight, 1c  and 2c  are the acceleration coefficients which 

are random numbers in the interval [0, 1], 1r  and 2r  are also random numbers 
in the interval [0, 1], the first part )(tw iV  represents the particle’s inertia, the 
second part ))((Pbest11 trc ii X−××  stands for the particle’s cognition-only model, 
and the third part ))((Gbest22 trc iX−××  denotes the particle’s social-only model.   

6.    Modify the particle’s position  
The method for modifying the particle’s position is defined as follows: 

).1()()1( ++=+ ttt iii VXX  (3) 
The particle i’s (t + 1)th generation position is the vector addition of the tth 
generation position and the (t + 1)th generation’s movement vector. That is, 
adding the particle’s current position and its movement vector becomes the 
particle’s new position.  
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4. Design for the MDP Filter 

4.1. The Structure for the MDP Filter 

The IND employs the DT and the PSO algorithm to integrate 10 noise 
detection algorithms to find out the positions for the corrupted pixels in the 
images. Fig. 1 demonstrates the structure for the MDP image filter. In this 
paper, the MDP filter replaces the pixel with the modified median filters’ 
results employing the MF, the ROM, and the PNOM filters, when the pixel is 
considered as noise-corrupted. Otherwise, the pixel will be kept unchanged.  

Corrupted Image 'X  

IND 

MF, ROM, 

PNOM filters 

Restored Image X̂  

Identity Filter 

 
Fig. 1. The structure for the MDP image filter 

4.2. The Employed Noise Detection Algorithms 

Generally, the values for most pixels which are corrupted by impulse noise 
are more eminent than those for fine pixels. Therefore, the difference between 
the input pixel )(kx  and the median value ))(( kmedian x  in the filter window 
shows a sufficient reason to determine a corrupted pixel [10]. Here, 10 feature 
variables are employed as 10 impulse noise detectors to respectively 
estimate the feature value for each pixel. For clarity, )(kx  and )(0 kx  will be 
used interchangeably throughout this paper. Also, the filter window ijX  and 
one-dimensional vector )(kx  will be employed alternatively.      
  
Detector 1: the difference between the central pixel value and the median 
pixel value 

The variable )(ku  specifies the absolute difference between the input pixel 
)(kx  and the median value ))(x( kmedian  as follows:  

,))(x()()( kmediankxku −=        
(4) 
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where median indicates the median operation. The variable )(ku  proposes a 
simple method for detecting impulse noise. A large )(ku  value which is 
greater than the threshold uT  represents that the input )(kx  is dissimilar to the 
median value ))(x( kmedian  in the filter window )(kx ; that is, it strongly 
suggests the central pixel )(kx  is corrupted by impulse noise.  

 
Detector 2: the difference between the individual pixel value and the average 
of the sample pixels’ values   

The variable )(kp j  of the local contrast at location k  in the filter window 
)(kx  is defined as follows:      

,

|)()(|

|)()(|)(

∑
−=

−

−
= n

ni
i kxkx

kxkxkp        
(5) 

where )(kx  represents the average gray-level value in the filter window )(kx  
with size 1  2 +n . A large p(k) value which is greater than the threshold pT  
indicates that it heavily suggests the central pixel )(kx  is corrupted by impulse 
noise.  

Nevertheless, if only variables )(ku  and p(k) are employed to determine 
whether the input )(kx  is corrupted or not, then it is difficult to completely 
detect impulse noise [17]. For instance, a line component usually exists in the 
image and its width is only one pixel; hence, if the input pixel )(kx  is located 
on the line, it may be identified as an impulse noise and be removed [10]. In 
order to prevent bad judgments, it is essential to utilize other observations to 
enhance the detecting correctness, thus )(kv  and q(k) are proposed as 
follows: 

 
Detector 3: the average of the differences between the central pixel value 
and two closest pixels’ values  

If only variable )(ku  is employed to determine whether the input pixel )(kx  
is corrupted or not, then it will mistakenly detect )(kx  as noise-corrupted in 
Fig. 2(a). In order to remove the weakness, the variable )(kv  is further 
employed for better noise detection in Eq. (6).  

,
2

|)()(||)()(|
)( 21

kxkxkxkx
kv ββ −+−
=            (6) 

where ,|)()(||)()(||)()(|
21

kxkxkxkxkxkx i−≤−≤− ββ .,, 21 ββ≠≤≤− inin  The pixel 
values for )(1 kxβ  and )(2 kxβ  are closest to that of )(kx  in the filter window 

)(kx . A large )(kv  value which is greater than the threshold vT  indicates that it 
strongly suggests the central pixel )(kx  is corrupted by impulse noise. If we 
employ )(kv  as a detector, then the pixels on the line component in the filter 
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window )(kx  will not be detected as impulse noises because of the small )(kv  
value [10, 15, 17].  
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Fig. 2. The filter window )(kx  with size 3× 3 (a) the line component (b) the edge 
component and (c) the thin line component in the filter window, respectively 

Detector 4: the difference between the central pixel value and the median 
value of the filter window )(kx  with the repeating central pixels     

In Fig. 2(b), the input pixel )(kx  is mistakenly considered as noise-
corrupted by )(ku  when it is on the edge component in the filter window )(kx . 
To get good judgment, the variable )(kq  is utilized for enhancement. It is 
described as follows: 

|,)()(|)( 0 kckxkq s−=  (7) 

where 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
= −− )(,),(),(),(),(,),()( 0001 kxkxkxkxkxkxmediankc n

timess
n

s K
444 3444 21

K , (8) 

and s indicates a positive integer for the repeating times [5, 11].  
A large )(kq  value which is greater than the threshold qT  indicates that it 

heavily suggests the central pixel )(kx  is corrupted by impulse noise. In [10], 
Lin presented that any pixel on the edge and the line components in the filter 
window )(kx  will not be detected as noise-corrupted if the variables )(kq  and 

)(kv  are employed. Thus, the system can correctly determine that no impulse 
noise is located at the pixel )(kx  because of the small )(kq  and )(kv  values. A 
small )(kq  value represents that it heavily suggests the central pixel )(kx  is 
not corrupted by impulse noise, in Fig. 2(b). 

 
Detector 5: the difference between the central pixel value and the average of 
the sample pixels’ values 

The variable )(kg  is defined as follows: 
( ) |,)()(|)( kavgkxkg x−=  (9) 

where ( ) ∑ ≠−=
=

n

ini i kx
n

kavg
0,

)(
2
1)(x , it denotes the average of all pixels’ values 

in the filter window )(kx  without )(0 kx . A large )(kg  value which is greater 
than the threshold gT  indicates that a big difference between the input pixel 
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)(kx  value and the average gray-level value in the filter window )(kx , and the 
central pixel )(kx  is possibly corrupted by impulse noise [10]. 

 
Detector 6: the average of differences between the central pixel value and 
four closest pixels’ values  

The variable )(kd  is defined as follows: 

          ,
4

)()(

)(

4

1
0∑

=

−

= i

kxkx

kd
iβ

 
  

(10) 

where 3,2,1|,)()(||)()(|
100 =−≤−
+

jkxkxkxkx
jj ββ , 

1βx ,
2βx ,

3βx , and 
4βx are the first 

four pixels in the filter window )(kx  which are nearest to )(kx . A large )(kd  
value which is greater than the threshold dT  indicates that it heavily suggests 
the central pixel )(kx  is corrupted by impulse noise because the difference 
between )(kx  value and its four nearest pixels’ values is too big, respectively 
[10]. Here, although )(kd  can effectively detect impulse noise in the image, 
the thin line components in the filter window )(kx  will be mistakenly detected 
as noise-corrupted in Fig. 2(c). 

 
Detector 7: the noise detection employing the edge detection median (EDM) 
filter   

The variable )(ku  will mistakenly detect the input pixel )(kx  as noise-
corrupted which is on the thin line component in the filter window )(kx . Thus, 
Zhang proposed the EDM filter with the variable )(kr  to detect the corrupted 
pixels which are on the thin line component [12]. The variable )(kr  is defined 
as follows: 

{ },4 3, 2, ,1min)( =⊗= tKXkr tij  (11)   
where tK  is the tth convolution kernel and ⊗  represents the convolution 
operator. Four different absolute values are obtained that the filter window 

ijX is operated with 4 different convolution kernels, respectively. The minimum 
of four values is selected for impulse noise detection [12]. Four different 
convolution kernels are shown in Fig. 3. In convolution operation, each pixel 
value in the filter window ijX  is multiplied by the corresponding weight. The 
result for convolution operation is the summary of all operation results. That 
is, it is the summary for each pixel in the filter window ijX  multiplied by the 
weight of the corresponding position in the tth convolution kernel.  
  



Bae-Muu Chang, Hung-Hsu Tsai, Xuan-Ping Lin, and Pao-Ta Yu 

ComSIS Vol. 7, No. 4, December 2010 868 

 

0 0 0 0 0 

0 0 0 0 0 

-1 -1 4 -1 -1 

0 0 0 0 0 

0 0 0 0 0 

0 0 -1 0 0 

0 0 -1 0 0 

0 0 4 0 0 

0 0 -1 0 0 

0 0 -1 0 0 

-1 0 0 0 0 

0 -1 0 0 0 

0 0 4 0 0 

0 0 0 -1 0 

0 0 0 0 -1

0 0 0 0 -1 

0 0 0 -1 0 

0 0 4 0 0 

0 -1 0 0 0 

-1 0 0 0 0 

 
Fig. 3. four 5×5 convolution kernels  

 
The variable )(kr  utilized to detect impulse noise has 3 following 

significations: 
1. Large )(kr  value indicates all of 4 convolution products are very large. 
Thus, )(kx  is considered as an impulse noise. 
2. Small )(kr  value denotes all of 4 convolution products are very small or 
close to zero. Hence, )(kx  is regarded as a noise-free pixel. 
3. Because one of 4 convolution products is very small (or close to zero) and 
the others are possibly large, the variable )(kr  will be small when the central 
pixel )(kx  is on the edge or the thin line component in the filter window ijX .  
According to aforementioned )(kr , if the input pixel )(kx  is considered as 
noise-corrupted, the minimum of four convolution products is relatively large. 
The )(kr  for the noise-free input pixel )(kx  which is on the edge or the thin 
line component will be relatively small. Here, the threshold rT  will be 
employed to determine whether the pixel )(kx  is corrupted or not.     

 
Detector 8: the noise detection employing the SD-ROM filter  

The variable )(kh  is defined as follows [13]: 
)(kh  is a one-dimensional vector that is obtained from the filter window )(kx  

without )(0 kx , shown by  
( ).)(,),(),(,),()( 11 kxkxkxkxk nn LL −−=h  (12) 

The elements in )(kh  are sorted by ascending order as follows: 
( ),)('),...,('),(')(' )2()2()1( khkhkhk n=h  (13) 

where )(')(')(' )2()2()1( khkhkh n≤≤≤ L . Subsequently, the rank ordered mean 
(ROM) is defined as follows: 

( ) ,2/)(')(')( )1)2/2(()2/2( khkhkm nn ++=  (14) 
where )(km  is the value for the ROM. Also, the rank ordered difference is 
formulated by  

( ),)(),(),(),()( 4321 kzkzkzkzk =z  (15) 
where  

.4,,1  
)()(),(')(

)()(),()('
)(

)2(

)(
K=

⎪⎩

⎪
⎨
⎧

>−

≤−
=

−
ifor

kmkxifkhkx

kmkxifkxkh
kz

in

i
i  (16) 
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)(kz  is employed to determine the input pixel )(kx  whether it is corrupted or 
not. For instance, if )(1 kz  is positive, it means that the input pixel )(kx  is larger 
in the filter window )(kx . If )(1 kz  is greater than the threshold 

1zT , the input 
pixel )(kx  is considered as noise-corrupted. Similarly, )(2 kz , )(3 kz  and )(4 kz  
can also provide the determination for noise detection. If each inequality in the 
following formula satisfies, the input pixel )(kx  is regarded as noise-corrupted.  
 

,4,,1,)( K=> iTkz
izi  (17) 

where 
4321

,,, ZZZZ TTTT  are the thresholds and 
4321 ZZZZ TTTT <<< .  

 
Detector 9: the difference between the central pixel value and the neighbored 
pixels’ values after sorted  

In [14], Aizenberg proposed a noise detection algorithm about the variable 
)(ke  to detect the corrupted pixels. The variable )(ke  is defined as follows: 

(differential rank impulse detector, DRID) 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+<−

+>−

= +

−

.                              ,0

)1( ,)(')(

)1( ,)(')(

)( )1(

)1(

 otherwise

naifkkx

naifkkx

ke a

a

x

x

 (18) 

The filter window )(kx  is sized with 12 +n . After the elements in the filter 
window )(kx  being sorted, a new filter window )(' kx  is obtained. The rank for 
the input pixel )(kx  in the new filter window )(' kx  is a. )(' )1( ka−x  and )(' )1( ka+x  
represent the (a-1)th and the (a+1)th pixel’s values in the new filter window 

)(' kx , respectively. Similarly, large )(ke  value which is larger than the 
threshold eT  represents that the input pixel )(kx  is more relatively corrupted 
by impulse noise [12].  

 
Detector 10: the noise detection employing the adaptive center-weighted 
median (ACWM) filter  

The ACWM is a modified center-weighted median (CWM) filter [5]. It 
employs the difference between the input pixel )(kx  and the output of the 
CWM filter to detect impulse noise.  

|,)()(||)()(| 12 kckxkckxo is
i

+−=−=  (19) 

where 1,,1,0 −= ni L , and )(kci  means as Eq. (8).   
If any inequality satisfies in the following equation, the input pixel )(kx  is 
determined as an impulse noise [17].  

,3,,0,)( K=> iTko
ioi  (20) 

where 
ioT  is the threshold. The corresponding threshold is obtained from the 

following equation: 
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,MAD ioi
T δσ +⋅=  (21) 

where σ  and iδ  are predefined parameters, and MAD represents the median 
of the absolute deviations from the median, defined as follows:  

( ),|)()(|,|,)()(|,|,)()(|MAD 11
0

1 kckxkckxkckxmedian nn −−−= − KK  (22) 
where the filter window ijX  is sized with 12 +n  and )(1 kc  means as Eq. (8).      

Each one of 10 noise detectors has its own decision threshold. Several 
tests by implementation must have been done before the optimal thresholds 
are obtained. The thresholds for 10 noise detectors will absolutely affect the 
accuracy rate in noise detection. Therefore, the optimal thresholds for training 
the DT with the PSO algorithm will be obtained. Also, the accuracy rate which 
the DT estimates is considered as the fitness for the PSO.  

4.3. The Training Method for the IND in the MDP Filter 

Each one of 10 aforementioned detectors has its own threshold in the hybrid 
noise detector. The threshold in each detector usually affects the accuracy in 
noise detection for each noise detector. The optimal thresholds are 
determined only after many repeated experiments. Thus, a systematic method 
needs to be employed to obtain a set of optimal thresholds. Each noise 
detection algorithm has its strengths, weaknesses, and reciprocal 
characteristics. Therefore, the MDP filter adopts the DT to integrate each 
detector’s characteristics and reciprocal relationships, and utilizes the PSO 
algorithm to determine the required optimal thresholds for the hybrid detection 
algorithm. Doing so can construct an adaptive hybrid noise detector to 
improve the detection rate and achieve better performance for image 
restoration.  

The MDP filter adopts the PSO to find out the optimal thresholds for training 
the DT. Subsequently, it employs the error rate of the DT classification as the 
fitness of the PSO. Finally, it outputs a set of thresholds T determined by the 
PSO algorithm and a set of DT impulse noise detectors. 

4.4. The Structure for the IND 

Fig. 4 shows the structure for the IND. , , ,,,,,,,,(
321 zzzrdgqvpu TTTTTTTTTT=T  

), , , , , , , 43214
δδδδσez TT  where uT , pT ,…, 4321 ,,,, δδδδσ  are the thresholds for 

Detector 1, Detector 2, …, Detector 10, respectively. They are the optimal 
thresholds for the noise detection component which are found by the PSO 
algorithm.  
The operation procedure is that the input image X employs the PSO to 
determine the optimal thresholds for noise judgment and then calculates the 
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judgment results for 10 detectors. Subsequently, the detection results of 10 
noise detectors are fed into the trained DT (TDT) to judge whether the input 
pixel x(k) is corrupted and the MDP filter will output the binary noise flag map 

),( jiB . ),( jiB  clearly indicates that each pixel in the image is corrupted or not. 

 

Detector u 

Detector p 

Detector v 

Detector q 

Detector g 

Detector d 

Detector r 

Detector z 

Detector e 

Detector o 

Corrupted Image 

VPC 

T

TDT 

Estimated 
Noise Flag Map 

),( jiB  

Each pixel is corrupted 
or not VPC : Verification Pattern Collection 

IND : Impulse Noise Detector 
 

Fig. 4. The structure for the MDP noise detector  

4.5. The MF, ROM, and PNOM Filters 

In the MDP filter, after the noise detection procedure is finished, the binary 
flag map ),( jiB  indicates the locations where the pixels are corrupted by 
impulse noise. When the input pixel )(kx  is corrupted it will be replaced with 
the outputs of the MF, the ROM, and the PNOM filters, respectively. The MF 
filter outputs the median value of all sorted pixels in the filter window )(kx . 
The ROM filter calculates the average of the fourth and the fifth pixels for all 
sorted pixels without the central pixel in the original filter window )(kx . The 
PNOM filter sorts the noise-free pixels in the filter window )(kx  by ascending 
order. They will be indicated as one dimensional vector as follows:  

( ),)(,),(),()( )()2()1( kfkfkfk CK=f  (23) 
where )()()( )()2()1( kfkfkf C≤≤≤ K and C represents the number of the noise-
free pixels in the filter window )(kx .  

Here, the algorithm for the PNOM filter is described as follows: 
Step 1.   Input the corrupted image 'X  and the noise detector, output the 
binary noise flag map ),( jiB . 1),( =jiB  indicates the central pixel x(k) is noise-
corrupted.  
Step 2.    Slide the filter window )(kx  over the corrupted image 'X  from left to 
right and top to bottom. 
Step 2.1  Count the number C of the noise-free pixels in the filter window )(kx  
for each input corrupted pixel x(k). 
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Step 2.2  If C > 0, x(k) = median(sort( )(kx  excluding the corrupted pixels)), 
0),( =jiB , C = 0,  

                 Else x(k) is kept unchanged.  
Step 3             Extend the filter window )(kx  with size 5×5, perform Step 2 through 
Step 2.2 
Step 4      Output the restored image X̂ .   

5. Experimental Results 

Fig. 5 depicts that 10 different images which are gray-level images with size 
256 × 256 are adopted for the experiments in this work. They respectively 
represent ‘Airplane’, ‘Baboon’, ‘Barbara’, ‘Bridge’, ‘Butterfly’, ‘Couple’, 
‘Fishingboat’, ‘Goldhill’, ‘Lena’ and ‘Peppers’. 

 
 

    

     
Fig. 5. The images adopted for evaluation in the experiments 

5.1. The Training and the Testing Methods Adopted in the 
Experiments  

In order to evaluate the performance of impulse noise detector and image 
restoration in the MDP image filter, the training patterns are collected from the 
images at 20% noise ratio. In the training and the testing methods, PIP∈ , 
where P indicates the noise ratio, { }%30 ..., %,22 %,18,%,4%,2 K∈PI . The testing 
patterns are collected from the same images at 2~30% different noise ratios 
excluding 20%.    

5.2. The Evaluation for the MDP Image Filter  

To evaluate the performance for the MDP filter, the noise detection 
performance needs to be examined and its detector will be compared with 
various noise detectors applied on different images at different noise ratios. 
Also, the error rate in noise detection for the noise detectors is considered as 
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the evaluating criterion. In the experiments, the existing well-known noise 
detection algorithms include: the CSAM [18], the GP [15], the SD-ROM [13], 
the PSM [4], the EDM [12], the ACWM [5] algorithms, where the PSM, the 
SD-ROM, and the ACWM algorithms employ the filter window with size 3 × 3, 
the EDM algorithm utilizes 5 × 5 filter window, both the CSAM and the GP 
algorithms use the filter windows with size 3 × 3 and 5 × 5. In the quality 
evaluation of image restoration, two other filters, the MF [1] and the TSM [3] 
filters, are also employed.   

5.3. The Performance Evaluation for the MDP Filter Applied on the 
Images Corrupted by Salt and Pepper Impulse Noise   
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Fig. 6. The comparison for the average error rate in noise detection for different 
methods in 10 different images corrupted by the salt and pepper impulse noise at 
various noise ratios 

Fig. 6 shows the quantitative comparison for the average error rate in noise 
detection for different detectors while 10 different images corrupted by salt 
and pepper impulse noise at various noise ratios. Fig. 7 depicts the 
quantitative comparison for the average PSNR in image restoration for 
different methods while 10 different images corrupted by salt and pepper 
impulse noise at various noise ratios. Fig. 8 illustrates the visual comparison 
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for different methods in image restoration when the image ‘Butterfly’ is 
corrupted by salt and pepper impulse noise at 24% noise ratio. Fig. 9 
demonstrates the visual partial enlargement for the image ‘Butterfly’.  
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Fig. 7. The comparison for the average PSNR (dB) in image restoration for different 
methods in 10 different images corrupted by salt and pepper impulse noise at various 
noise ratios 

5.4. The Performance Evaluation for the MDP Filter Applied on the 
Images Corrupted by Fixed-length Impulse Noise    

Fig. 10 shows the quantitative comparison for the average error rate in noise 
detection for different detectors while 10 different images corrupted by fixed-
length impulse noise at various noise ratios. Fig. 11 depicts the quantitative 
comparison for the average PSNR in image restoration for different methods 
while 10 different images corrupted by fixed-length impulse noise at various 
noise ratios. Fig. 12 illustrates the visual comparison for different methods in 
image restoration when the image ‘Lena’ is corrupted by fixed-length impulse 
noise at 18% noise ratio. Fig. 13 demonstrates the visual partial enlargement 
for the image ‘Lena’.  
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Fig. 8. The comparison for different methods in image restoration for the image 
‘Butterfly’ is corrupted by salt and pepper impulse noise at 24% noise ratio  
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(g) ACWM, 
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Fig. 9. The comparison for the partial enlargement using different methods in image 
restoration for the image ‘Butterfly’ corrupted by salt and pepper impulse noise at 24% 
noise ratio   
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Fig. 10. The comparison for the average error rate in noise detection for different 
methods in 10 different images corrupted by fixed-length impulse noise at various 
noise ratios 
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Fig. 11. The comparison for the average PSNR (dB) in image restoration for different 
methods in 10 different images corrupted by fixed-length impulse noise at various 
noise ratios 
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Fig. 12. The comparison for different methods in image restoration in the image ‘Lena’ 
is corrupted by fixed-length impulse noise at 18% noise ratio  
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Fig. 13. The comparison for the partial enlargement for different methods in image 
restoration for the image ‘Lena’ corrupted by fixed-length impulse noise at 18% noise 
ratio 

The important observation is proposed in Figs. 6 and 7. Although the 
CSAM filter can effectively detect the locations where the input pixels are 
corrupted by salt and pepper impulse noise and restore the corrupted images, 
it can not achieve good results for image restoration when the images are 
corrupted by fixed-length impulse noise. The reason is that the pixels will be 
nearly considered as noise-corrupted by the CSAM filter when their gray-level 
values are 0 or 255. Therefore, although the CSAM filter can achieve good 
performance in image restoration for filtering salt and pepper impulse noise, it 
can not obtain good results for fixed-length impulse noise.  
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5.5. The Performance Evaluation for the MDP Filter When the Images 
Are Corrupted by Random-valued Impulse Noise 

Fig. 14 shows the quantitative comparison for the average error rate in noise 
detection for different detectors while 10 different images corrupted by 
random-valued impulse noise at various noise ratios. Fig. 15 depicts the 
quantitative comparison for the average PSNR in image restoration for 
different methods while 10 different images corrupted by random-valued 
impulse noise at various noise ratios. Fig. 16 illustrates the visual comparison 
for different methods in image restoration when the image ‘Fishingboat’ is 
corrupted by random-valued impulse noise at 10% noise ratio. Fig. 17 
demonstrates the visual partial enlargement for the image ‘Fishingboat’.  

An important observation is presented again in Figs. 6 and 7. Although the 
CSAM filter can effectively detect the corrupted pixels caused by salt and 
pepper impulse noise and restore the corrupted images, it cannot also 
achieve good results in image restoration for fixed-length or random-valued 
impulse noise.  
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Fig. 14. The comparison for the average error rate in noise detection for different 
methods in 10 different images corrupted by random-valued impulse noise at various 
noise ratios   
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Fig. 15. The comparison for the average PSNR (dB) in image restoration for different 
methods in 10 different images corrupted by random-valued impulse noise at various 
noise ratios 
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Fig. 16. The comparison for different methods in image restoration in the image 
‘Fishingboat’ corrupted by random-valued impulse noise at 10% noise ratio 
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Fig. 17. The comparison for the partial enlargement for different methods in image 
restoration for the image ‘Fishingboat’ corrupted by random-valued impulse noise at 
10% noise ratio  

6. Conclusion 

This paper has proposed a novel image filter, called the MDP filter, which is 
used for the recovery of the corrupted pixels by impulsive noises in gray-level 
images. The IND is an adaptive hybrid noise detector which is constructed by 
integrating 10 impulse noise detectors based on the DT and the PSO. In the 
MDP filter, the high performance IND is employed to powerfully detect 
impulse noises and the modified MFs effectively restore for the corrupted 
images. Subsequently, the restoring process in the MDP filter respectively 
utilizes the MF, the ROM, and the PNOM filters to restore the corrupted 
pixels. The computational complexity of the proposed filter is high. It shall be 
improved with a modified algorithm in the future work. Experimental results 
demonstrate that the MDP filter can effectively restore the gray-level images 
corrupted by impulse noises and outperform the existing well-known methods.  
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