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Abstract. : Kernel vectors represent an elegant representation for the 
retrieval of pattern associations, where the input patterns are corrupted 
by both erosive and dilative noise. However, their action completely 
fails when a particular kind of erosive noise, even of very low 
percentage, corrupts the input pattern.  In this paper, a theoretical 
justification of this fact is given and a new method is proposed for the 
construction of kernel vectors for binary patterns associations. The new 
kernels are not binary but „gray‟, because they contain elements with 
values in the interval [0, 1]. It is shown, both theoretically and 
experimentally that the new kernel vectors carry the good properties of 
conventional kernel vectors and, at the same time, they can be easily 
computed. Moreover, they do not suffer from the particular noise 
deficiency of the conventional kernel vectors. The recalling result is in 
general a gray pattern, which in the sequel undergoes a simple 
thresholding action and passes through a simple Hamming network to 
produce high recall rates, even in heavily corrupted patterns. Retrieval 
of pattern associations is very significant for a variety of scientific 
disciplines including data analysis, signal and image understanding 
and intelligent control. 

Keywords: Neural networks, Associative memory, Kernel vectors, 
Noise Robustness. 

1. Introduction 

Morphological Neural Networks (MNNs) represent artificial neural networks 
whose neurons perform an elementary operation of mathematical 
morphology [1], [2]. Unlike Hopfield network [3,4], MNNs provide the result in 
one pass through the network, without any significant amount of training. A 
number of researchers devised MNNs for a range of applications like those 
appearing, for example, in [5-13]. 
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Artificial neural network models are specified by the network topology, unit 
characteristics, and training or learning rules. The underlying algebraic 
system used in these models is the set of real numbers R together with the 
operations of addition and multiplication and the laws governing these 
operations. This algebraic system, known as ring, is commonly denoted by 
(R,+,x). The basic computations occurring in morphological networks are 

based on the algebraic lattice structure ( , , , )R    , where ,   denote the 

binary operations for minimum and maximum, respectively. The basic 
axiomatic operations of lattice algebra [14] are:  
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 (1.1) 

An associative memory (AM) is an input-output system that describes a 

relation R R
mR

n
. If (x, y)R, i.e. if the input x produces the output y, then 

the associative memory is said to store or record the memory association (x, 

y). NN models serving as associative memories are generally capable of 

retrieving a complete output pattern y even if the input pattern x is corrupted 

or incomplete. The purpose of auto-associative memories is the retrieval of x 

from corrupted or incomplete versions x . If an artificial associative memory 
stores associations (x, y), where x cannot be viewed as a corrupted or 

incomplete version of y, then we speak about hetero-associative memory. 
Research on neural associative memories goes back in the 1950s [15-17]. 

Linear associative memory or correlation memory [17-19] is one well known 

neural associative memory. Association of patterns x  R
n
 and y  R

m
 is 

achieved by means of a matrix-vector product  y W x . If we suppose that 

the goal is to store k vector pairs (x
1
, y

1
),...,(x

k
, y

k
), where x

r
  R

n
 and y

r
  

R
m
 for all r = 1,...,k, then W is an nm  matrix given by the following outer 

product rule: 

1

( )


 
k

r r

r

W y x  (1.2) 

If X denotes the matrix whose column are the input patterns x
1
,...,x

k
 and Y 

denotes the matrix whose columns are the output patterns y
1
,...,y

k
 , then this 

equation can be written in the simple form Y∙X'. If the input patterns x
1
,...,x

k
 

are orthonormal, then 
1 1(( ) ... ( ) )r k k r r        W x y x y x x y  (1.3) 

Thus, we have perfect recall of the output patterns y
1
,...,y

k
. In case the 

patterns are not orthonormal the capacity of the memory is extremely limited 
and its ability to retrieve associations is further reduced when input patterns 
are noisy [20]. 

Morphological associative memories (MAMs) are based on the algebraic 

lattice structure ( , , , )R    . They have been initially proposed in [14], [21], 

[22] for associating binary pattern vectors and are far more robust to noise 
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than the conventional linear associative memories. Moreover, their memory 
capacity in stored associations is significantly larger than the capacity of 
conventional linear associative memories. These properties and the fact that 
a number of notable features such as optimal absolute storage capacity and 
one-step convergence have been shown to hold in the general case for real-
valued patterns [14], motivated for their extension to gray-coded vector 
associations [23]  or recently in general gray-scale MAMs and fuzzy oriented 
treatments [24], [25],[26 - 28]. Recent works report also on recall and storage 
performance of various types of MAMs in color patterns under various types 
and percentages of noise [29], [30], while other works present new dynamic 
MAMs and test their performance in recalling gray and color pattern 
associations [31], [32], [33]. According to [14], there are two alternative 
approaches to construct MAMs. In the first approach the constructed memory 
is very robust in the presence of input patterns containing erosive noise. In 
the dual approach the constructed memory is very robust in the presence of 

input patterns containing dilative noise.  In case the input pattern x r
is 

corrupted by both erosive and dilative noise none of the memories is able to 
recall y

r
.  

To overcome this problem Ritter and his coworkers [34-36] proposed the 
idea of two-step MAMs and the production of the so-called kernel vectors, as 
an elegant representation of the associations (x

r
, y

r
). These vectors, in 

conjunction with appropriate morphological operations, are suitable to recall 

y
r
 when an arbitrarily corrupted (both eroded and dilated) input pattern 

x r appears at the input of the MAM. A binary vector z is said to be a kernel of 

the association (x, y) between the binary vectors x and y if it is a subset of x 
and satisfies some conditions given in [34], [35]. More recent developments 
on reconstructing patterns from noisy inputs extend the definition of kernels 
and associate them with the property of strong morphological independence 
which should be present in the stored patterns [37-40].  

There are two major issues related to the kernel method. The first is the 
very selection of representative kernel vectors. The conditions for a vector z 
to be a kernel vector, given in [34], [35], they do not provide with a fast 
method for selecting such vectors. As it will be pointed out in section 3 the 
procedure of selecting kernel vectors is quite time consuming, especially 
when the pattern vectors are of large dimension. Additional conditions for 
kernels and selection procedures, which alleviate in some extent this 
problem, are proposed in [35],[41-43] while in [37-40] the procedure of 
selecting the kernels emerges through the steps of the proof of the relevant 
theorems, provided that the patterns are initially modified to meet the 
property of strong morphological independence.  

The second major issue, which is of this paper concern, is related to the 
behavior of kernel method in the presence of noisy input patterns. Although 
this issue has received only minor attention in the relevant literature [43], the 
kernel method is not entirely robust to noise.  It can be experimentally 
verified that, although kernel vectors are quite satisfactory in retrieving 
associations based on noisy (both dilated and eroded) data, in some cases, 
they entirely fail even in the presence of very small noise percentages. This 
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happens when one or more nonzero element of the input pattern, which 
correspond to respective nonzero elements of the kernel vector are “hit” by 
erosive noise, which converts them to zero-valued elements. In this case, the 
retrieval procedure recalls nothing, even if the amount of noise is quite 
limited.   

In this paper, a theoretical proof of this observation is established and the 
mechanism of producing this failure is explained. Next, a new kernel 
definition method is proposed which overcomes this problem and is more 
robust to such kind of noise than the traditional kernel vectors. The new 
kernels are not anymore binary but they contain elements of variable values 
in the range [0, 1]. The values of the elements of each selected kernel are 
related to the frequency of appearance of the corresponding elements of the 
input training patterns. Different alternatives of selecting kernels based on 
frequencies are proposed and are compared in respect to their robustness in 
noise. All frequency based kernel vectors no longer suffer from the particular 
noise deficiency of conventional kernels. Moreover, the procedure of 
selecting the kernel vectors is quite simple and well defined; therefore it is not 
time consuming. The development is given for an auto-associative scheme, 
but hetero-association can be tackled with the same procedure. The pattern 
association recall is performed in three steps. The first step is the (input 
pattern -> kernel) and (kernel -> output pattern) recall. The result is an output 
pattern, which in general is not binary but gray and keeps in a large extend 
the shape of the output pattern to be recalled. Therefore a simple 
thresholding action is the second step and may produce the corresponding 
binary pattern. The third step increases the performance of the proposed 
method by passing the recalled binary pattern through a simple Hamming 
network equipped with index selection. The performance of the new kernel in 
binary pattern recall is demonstrated by using extensive character recognition 
experiments under various types and percentages of noise. 

The paper is organized as follows. First, in section 2, a brief but complete 
introduction to the morphological associative memories is given. The kernel 
method is also reported in the same section and its weaknesses are 
demonstrated. In the sequence, in section 3, the theoretical justification of the 
failure of the kernel method in the presence of the particular kind of erosive 
noise is given. In section 4, the new kernel definition method is introduced 
and its validity and noise robustness is theoretically established. Section 5 
provides experimental results regarding the capacity and noise robustness of 
the proposed kernels, presenting also comparisons between the alternative 
versions of the frequency based kernels. Conclusions and discussion are 
finally given in section 6. 
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2. Morphological associative memories and the kernel 

method 

There are two basic approaches to record k vector pairs (x
1
, y

1
),...,(x

k
, y

k
) 

using a morphological associative memory (MAM) [14]. The first approach 

consists of structuring an m n matrix WXY with elements computed by 

1
( ), 1,..., 1,...,

k
r r

ij i j
r

w y x i m j n


      (2.1) 

The dual approach consists of constructing an m n matrix MXY with 
elements computed by  

1
( ), 1,..., 1,...,

k
r r

ij i j
r

m y x i m j n


      (2.2) 

If matrix WXY receives a vector x
r
 as input, the product r r

XY y W x  is 

formed. The product is called max product and each element of the resulting 

vector r
y is computed by the formula 

1
( ) , 1,...,

n
r r

i ij j
j

y w x i m


     (2.3) 

Likewise, if matrix MXY receives x
r 

as input the so-called min product 
r r

XY y M x  is formed, where each element of the resulting vector y
r
 is 

computed by the formula. 

1
( ) , 1,...,

n
r r

i ij j
j

y m x i m


     (2.4) 

Matrices WXY and MXY, computed by (2.1) and (2.2) respectively, constitute 
the memory of the MAM. The only required training of the network is simply 
the computation of either of the two matrices W or M. The difference between 
the two memories arises when noisy patterns appear at their input. Memory 

MXY is able to retrieve y
r
 in case a noisy vector x r corrupted by dilative noise 

appears at its input, while memory WXY is able to retrieve y
r
 in case an 

eroded version of the input pattern appears at its input. The nature of dilative 
and erosive noise in binary patterns, as well as the retrieval results of MXY 

and WXY respectively is depicted in Fig. 2.1 and 2.2. In case the input pattern 

x r
is corrupted by both erosive and dilative noise none of the memories is 

able to recall y
r
.  

Other types of memories have also been proposed in the recent years. The 
median operator (instead of min or max) is initially proposed in [31] to 
produce a memory that is robust in strictly mixed type of noise, which 
presents perfect recall if this noise is of median zero and if the fundamental 
(uncorrupted) pattern set fulfills some strict conditions. To overcome these 
restrictions the authors in [31] propose the construction of the memory using 
specially constructed surrogates of the fundamental pattern set and an 
algorithm for the training and recall phase using these surrogates. The idea of 
using surrogates appears also in [32], [33], where a dynamic type of memory 
is presented and the mid operator is employed. Although successful in storing 
and recalling general pattern associations, dynamic associative memories are 
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not appropriate for binary pattern associations, because an essential part of 
their algorithm, namely the determination of active region [32], fails when 
binary patterns are involved. 

MXY

 

WXY

 
Fig. 2.1. Pattern recall of a 
dilated input using the min 
product and memory matrix M. 

Fig. 2.2. Pattern recall of an 
eroded input using the max 
product and memory matrix W. 

 
Another type of memories for binary pattern associations follows from 

fuzzy oriented treatments [25 - 28]. A new set theoretic interpretation of 
recording and recall of binary AMM is given in [25-27] and a generalization is 
provided using fuzzy set theory. This results in the definition of the so-called 
fuzzy morphological associative memories and the use of the fuzzy max 

product of W and  x and the fuzzy min product of M and x. When a corrupted 

binary pattern appears as input to memory W or M the outcome is a gray-
level pattern. The respective binary recall is obtained by using appropriate 
normalized threshold, which however has to be different depending on the 
type of memory used. An iterative algorithm is also proposed in [25] for the 
determination of the appropriate threshold.  The recall scores are further 
improved in [28], where an enhanced fuzzy autoassociative morphological 
memory is presented and is combined with a discrete Hamming neural 
network that increases the accuracy of the recall. Experiments with patterns 
corrupted with various noise levels are presented, however the pattern set 
used is very limited and is not sufficient for drawing clear conclusions. 

A well established approach to overcome the problem of the complete 
failure of memories W (eq. 2.1) and M (eq. 2.2) in dilative and erosive noise 
respectively is the kernel method.  To overcome the problem Sussner, Ritter 
and coworkers [34], [35] proposed the idea of two-step MAMs and the 
production of the so-called kernel vectors, as an elegant representation of the 

associations (x
r
, y

r
). These vectors, in conjunction with matrices M and W, 

are suitable to recall y
r
 when an arbitrarily corrupted (both eroded and dilated) 

input pattern x r appears at the input of the MAM. A binary vector z is said to 

be a kernel of the association (x, y) between the vectors x and y if it is a 
subset of x and satisfies the following conditions. 

zz  M x z  (2.5) 

ZY  W z y , (2.6) 

where matrices MZZ and WZY are computed according to (2.1), (2.2). In case 
of autoassociation (2.5) and (2.6) are written as  

ZZ  M x z  (2.7) 

and 

ZX  W z x  (2.8) 
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respectively. Fig. 2.3 shows a sample of binary patterns (letters) and their 
corresponding kernel patterns, which satisfy equations (2.7) and (2.8). When 

an arbitrarily corrupted input pattern x appears at the input of a 

morphological autoassociative network, the original uncorrupted input pattern 
x  is recalled by the following equation: 

 ZX ZZ  W M x x  (2.9) 

More recent developments on reconstructing patterns from noisy inputs 
extend the definition of kernels and associate them with the property of 
strong morphological independence which should be present in the stored 
patterns [37-40]. A procedure for selecting such kernels is proposed in [37], 
which also involves a mechanism of altering the initial patterns so that they 
fulfill the property of strong morphological independence. 

 

Fig. 2.3.  Input patterns and underneath their respective kernels 

There are two major issues related to the traditional kernel method. The 
first is the very selection of representative kernel vectors. Equations (2.5), 
(2.6) (or (2.7), (2.8) for autoassociation) provide the necessary and sufficient 
conditions for a vector z to be a kernel vector but they do not provide with a 
fast method for selecting such vectors. An apparent procedure is the random 
selection of kernel vectors and their acceptance or rejection on the basis of 
(2.5) and (2.6). This procedure is quite time consuming, especially when the 
pattern vectors are of large dimension. Additional conditions for kernels and 
selection procedures are proposed in [35],[41-43].   

The second major issue, which is of this paper concern, is related to the 
behavior of kernel method in the presence of noisy input patterns. Although 
this issue has received only minor attention in the relevant literature [43], the 
kernel method is not entirely robust to noise.  It can be experimentally 
verified that, although kernel vectors are quite satisfactory in retrieving binary 
patterns associations based on noisy (both dilated and eroded) data, in some 
cases of erosive noise, they entirely fail even in the presence of very small 
noise percentages. This happens when one or more nonzero elements of the 
input pattern, which correspond to respective nonzero elements of the kernel 
vector are “hit” by noise, which converts them to zero-valued elements. In 
this case, the retrieval equation (2.9) recalls nothing. A theoretical 
explanation of this fact is given in the following section.  

Closing this section, it is worth noting that even in the dynamic MAM 
presented in [32], [33], there is a part of the memory, namely a one column 
vector of the respective matrix of the memory, that the authors call kernel of 
the associative memory. The elements of such a kernel play an important 
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role in recalling patterns altered by some kind of noise. The recall procedure 
will fail if kernel changes, leading to “loss of memory” [32], [33]. However, in 
this paper, we will not further refer to this type of memories, because 
dynamic MAM is not appropriate for storing and recalling binary pattern 
associations. This is due to the failure of determining the so-called “active 
region” [32] when binary patterns are involved. Another reason is that, with 
binary patterns, the low accuracy condition (see [32], section 4.2) is very 
often activated. 

3. Noise deficiency of the kernel method 

The basic idea of kernel method is to construct a vector (the kernel vector), 
which is a subset, or otherwise a sparse version, of the binary input vector it 
represents. Actually, the stricter the subsethood it is the better the 
performance of the method is.  Two very useful conditions for binary kernels 
are proposed in [34] and in [35]. They are described by the following 
equations  

r r
z x  (3.1) 
  z z 0  (3.2) 

Equation (3.1) expresses the condition of subsethood described above, 
while equation (3.2) expresses the demand that different kernels should not 
have common nonzero points. A pictorial interpretation of the subsethood 
condition can be drawn from Fig. 2.3. Each binary letter of dimension (10x10) 
can be scanned row by row and be represented by a (100x1) vector 
containing only the values 0 and 1. Here, 1 represents the black pixel and 0 
represents the white pixel. Similarly, the corresponding kernel patterns can 
be represented by the (100x1) kernel vectors. The 1s in the kernel vectors 
are much fewer than the 1s of the corresponding patterns and this is a direct 
interpretation of (3.1). Moreover, the kernel patterns do not have common 
non-zero elements and therefore condition (3.2) is fulfilled.  

Since each kernel vector satisfies (3.1), each input vector r
x can be 

considered as a dilated version of its corresponding kernel vector r
z . 

Therefore, since memory MZZ is very capable in retrieving patterns corrupted 

by dilative noise it can recall r
z by using equation (2.5) (or (2.7)) and the 

vector r
x  as its input. In the sequel, each recalled kernel vector r

z can be 

used as the input to the memory WZX or WZY to retrieve r
x  or  r

y by using 

equation (2.6) or (2.8) respectively. The combination of these two steps is 

expressed in equation (2.9), In case an arbitrarily corrupted version x r of the 
input pattern is considered, equation (2.9) can still provide reasonably good 

results, provided that x r  can be considered as a dilated version of r
z . If, 

however, x r  can be considered as a corrupted version r
z , which contains 

even the slightest amount of erosive noise, the recall procedure entirely fails 
and equation (2.5) and consequently (2.9) recalls nothing. The theorems that 
follow theoretically explain this situation. A pictorial representation of the 
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situation is also given in Fig. 3.1. It can be observed that if the input pattern is 
hit by erosive noise, which affects even one pixel that corresponds to a 
nonzero element of the corresponding kernel pattern, then the recall 
procedure completely fails. 

For notational convenience, we call as kernel point any element of the 
kernel vector which has nonzero value (value 1). We also recall that, kernel 
vectors satisfy (3.1) and (3.2). 

 
Theorem 3.1. The rows of Mzz are vectors with values 

1. All zeros ( 0,ijm j  ) if the row index (i) does not correspond to any 

kernel point of any kernel vector. 

2. All ones ( 1,ijm j  ) if the row index (i) corresponds to a kernel point 

belonging to any kernel vector z , except when the column index (j) 

corresponds to another kernel point of the same kernel vector z . In 

this case 0ijm   

The proof of Theorem 3.1 is given in the Appendix. A pictorial 
representation of Mzz for the kernels of Fig. 2.3 is given in Fig. 3.2, where 

the values of Mzz are displayed in the form of a binary image (0 = black, 1= 

white). In this example, Mzz is of dimension (100x100). 
 

Theorem 3.2. If there is at least one index i, such that 0r

ix  and 1r

iz  , 

then equation (2.5) recalls nothing. That is 

ZZ  M x 0  (3.3) 

and consequently 

 ZX ZZ  W M x 0  (3.4) 

The proof of Theorem 3.2 is given in the Appendix. It explains why there is 
such a complete failure in the presence of this particular kind of erosive 
noise, even if the noise percentage is very low. 

4. The new kernel definition method 

In the sequel we propose a new method for recalling associations between 
binary patterns, by constructing kernel vectors which does not present the 
noise deficiency of the conventional kernel vectors described in the previous 
section. Moreover, the procedure of constructing the kernels requires only 
moderate processing time and therefore is computationally much more 
efficient than the conventional kernel method. In our approach kernel vectors 
are not binary but their elements are allowed to take values in the interval [0, 
1]. Each kernel vector z is constructed to be a subset of an input vector x 
(see equation (3.1)), but the subsethood is defined in a fuzzy-like manner.   
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Fig. 3.1. Failure of the recall 
procedure when even a slight 
amount of erosive noise affects 
pixels, which correspond to 
nonzero kernel elements. 

Fig. 3.2. Pictorial repre-sentation 

of the values of Mzz. A black pixel 

cor-responds to 0ijm  , while a 

white pixel corresponds to 1ijm  . 

 
Definition 4.1. The new kernel vectors are formed based on the following 

conditions.  
1. Kernel vectors contain values that are in the interval [0,1]. 
2. The values of the elements of each kernel vector are zero when the 

corresponding values of the input vector are zero and nonzero when 
the corresponding input vector values are nonzero. 

3. The nonzero values of each kernel vector are formed based on the 

frequency, jf , of appearance of the corresponding nonzero input 

vector element in all the input vectors according to the following 
method 1:  

4. 1r

jz   if 1jf  ,  0.8r

jz   if 2jf  ,  0.7r

jz   if 3jf  ,  0.4r

jz   if 

4jf   

We call the non-zero elements of a kernel vector kernel points. Each 

kernel point is associated with its strength. The kernel points with 1r

jz   are 

the strongest kernel points, while kernel points with 0.8, 0.7, 0.4r

jz  are 

weaker kernel points. In using the frequencies to construct kernels there are 
more than one alternative. Two such alternatives, termed method 2 and 
method 3, are presented later on in this section. However, method 1 is 

enough to demonstrate the idea and draw the relevant conclusions.  
Fig. 4.1 shows examples of kernel vectors constructed according to 

method 1 and associated with the input patterns (letters) of Fig. 2.3. Different 
gray levels represent the kernel points of different strength with the stronger 
kernel points corresponding to the brighter intensity.  The algorithm for 
constructing kernel vectors is quite simple and obvious and therefore its 
computational burden is quite low in comparison with the conventional kernel 
method. Indeed, to construct a kernel vector z that corresponds to an input 

vector x we proceed as follows: If the value of the element of the input vector 
is 0 the corresponding element of the kernel vector is set to 0. For each 
nonzero element of the input vector we count the nonzero occurrences of the 
same element in the other input vector. We call this frequency of 
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appearance. Next we assign a nonzero value to the corresponding element of 
the kernel vector according to the counted frequency and according to 
method 1of definition 4.1. The same procedure is applied for the construction 
of all the kernel vectors.   
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Fig. 4.1. Pictorial representation of patterns and their corresponding kernel patterns 
constructed using the proposed new method. The brighter pixels correspond to 
stronger kernel points.  

Each new kernel vector is a subset of its corresponding input vector 
according to equation (3.1), but the subsethood is now defined in a fuzzy like 
manner since for each element of the kernel vector the following relation 
holds 

,r r

i i i z x  (4.1) 

The new kernel definition comes as an intuitive extension of conventional 
binary kernels. In meeting (3.1) and (3.2), denoting subsethood and 
uniqueness, the resulting binary kernels are sparse vectors, carrying all 
information in the few nonzero values. All these nonzero values are crucial 
and, as pointed out in section 3, even if one of them is missing (has zero 
value) in the input pattern the whole recalling procedure collapses. In the new 
definition, the “gray” kernel vectors are allowed to include also other 
supporting non-zero values, associated with non-zero pattern elements 
appearing in more than one pattern. Due to the definition of the new kernel 
vectors, which is based on the frequencies of the elements of the 
corresponding input vectors, the form of memory matrix Mzz is now 
completely different than the corresponding matrix produced by conventional 
kernels. The new form of Mzz allows the recalling procedure to be successful 
even if the input vector is corrupted by the special erosive noise described in 
section 3. The particular method 1 for selecting the gray values {1, 0.8, 0.7, 
0.4} to be attributed in kernel points associated with the respective pattern 

non-zero element frequencies {1, 2, 3,  4}, came out of author‟s 
observations and is sufficient for demonstrating the idea and drawing the 
conclusions. As it is proved in the next theorems, the proposed method 1 
serves the purpose of removing the particular noise deficiency of traditional 
kernels. Other frequency based methods may also be valid. Two such 
alternative methods (method 2 and method 3) are presented at the end of this 
section, which carry the good property of method 1, and perform better in 
large pattern sets and are more robust in mixed noise. 

  
Theorem 4.1. The rows of Mzz are vectors with values 

 All zeros ( 0,ijm j  ) if the row index (i) does not correspond to any 

kernel point of any kernel vector (frequency 0). 
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  1 1, 0.6, 0.3, 0.2, 0ijm I   if the row index i corresponds to kernel 

value 1r

iz   (frequency 1).  

  2 0.8, 0.4, 0.1, 0ijm I  if the row index i corresponds to kernel value 

0.8r

iz   (frequency 2). 

  3 0.7, 0.3, 0ijm I  if the row index i corresponds to kernel value 

0.7r

iz   (frequency 3) 

  4 0.4, 0ijm I  if the row index i corresponds to kernel value 

0.4r

iz   (frequency 4 ).  

The proof of Theorem 4.1 is given in the Appendix.  
 

Theorem 4.2. If there are one or more indices i, such that 0r

ix  and 

0r

iz  , then equation (2.5) recalls the kernel vector or an eroded version of it. 

That is 

ZZ  M x z   (4.2) 

and consequently 

 ZX ZZ  W M x x  (4.3) 

The proof of Theorem 4.2 is given in the Appendix. Fig. 4.2 shows 
examples of perfect recall using the new kernel vectors constructed by 
method 1 and as input vectors uncorrupted patterns. Figure 4.3 shows 
examples of perfect recall using the new kernel vectors and as input vectors 
patterns corrupted by the erosive noise described in section 3. 
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Fig. 4.2. Examples of perfect recall using the new kernel vectors and input vectors 
the uncorrupted patterns: (a) the input, uncorrupted vector (b) the original kernel 
vector (c) perfect recall of the kernel vector by (2.5) (d) perfect recall of the pattern by 
(2.9)  
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Fig. 4.3. Examples of perfect recall using the new kernel vectors and input vectors 
corrupted by the erosive noise described in section 3. (a) the corrupted vector used 
as input (b) the original kernel vector (c) non-perfect recall of the kernel vector by 
(2.5) (d) perfect recall of the pattern by (2.9) 
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It has to be noted that term  ZZ M x in (4.3) will produce z , which can 

be considered as an eroded version of x . Memory 
ZXW is robust in erosive 

noise but its robustness depends also on the amount of the erosion. 
Therefore, with the exception of experiments involving small pattern sets with 
probably small percentages of mixed noise, eq. (4.3) will not produce a binary 
pattern but a gray surrogate of it, having a shape quite close to it. A binary 
version of the recall can be obtained after a simple thresholding action. 
Similar to [28], the recalling results can be further improved if the binary 
recall passes through a simple Hamming network to produce an index 
pointing to a pattern of the initial uncorrupted pattern base. The overall 
recalling scheme is shown in Fig. 4.4 and its performance is demonstrated by 
the experiments appearing in the next section. 

 k

ZX ZZ W M xkx

k

grayx Simple 
Thresholding

k

binaryx
Hamming &
Index recall


x



 

Fig. 4.4. The three step recall procedure. The corrupted binary pattern 
k

x passes 

through eq. (4.3) to produce the gray recall
k

grayx , which after simple thresholding will 

produce a probably corrupted binary pattern recall. The third step will produce an 

index  to be used for retrieving the uncorrupted binary pattern
y

x .  If k  we have 

perfect recall.  

In definition 4.1 the values of the elements of kernel vectors are 
determined by their frequency of appearance of the corresponding element in 
the patterns. However, in method 1 only 4 different values are employed, as 
all elements having frequency greater than 4 receive the same value 

0.4r

jz  . Two alternative frequency based methods are presented below. 

 
Method 2: A plausible extension of method 1 is to allow for a finer 

determination of kernel point values taking into account all available 
frequencies of appearance. Since the maximum frequency of a non-zero 
pixel cannot be greater than the number of available patterns (nop) the kernel 
elements receive the following grading  

1r

jz   if 1jf  ,  1
jr

j

f
z

nop
   if 2jf   

Regarding the special noise deficiency of kernels, method 2 carries the 
same good properties of method 1, because theorems 4.1 and 4.2 can be 
easily extended to cover this method by simply increasing the number of 
different cases examined to at most nop cases. In this approach the sets Ii in 
Theorem 4.1 now contain more and different values than those of method 1, 
but the rationale of their development and their usage in Theorem 4.2 remain 
the same. Regarding noise robustness, in the experiments carried out in the 
next section, method 2 proves to be more robust than method 1.  
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Method 3: A slightly different approach for constructing the gray kernels is 
the frequency dependent two-step kernel construction method, which is 
described here in detail. In the first step frequency patterns are created. Then 
the kernel vectors are determined by giving values to the kernel points 
according to the strength of common frequencies in the frequency patterns. 
More specifically, 

Step 1. For each initial pattern 
r

x a corresponding frequency pattern 
rp is 

constructed. The elements of the frequency pattern are constructed according 
to the following rule 

0r

jp   if 0r

jx  ,  r

j jp f  if 0r

jx   

Where, as usual, 
jf is the frequency of appearance of the non-zero j

th
 

element in all patterns.  Apparently the minimum value jf can take is 1.   

Step 2. Based on the set of “frequency” patterns, the set of common 
frequencies F is determined. That is, F  contains all the distinct frequencies 

that appear in all the “frequency‟ patterns. Apparently, the cardinality Fc of 

F is at most equal to the number of patterns nop; usually it is smaller. Let 

also min min if f F   and 
max max if f F   denote the minimum and 

maximum of the frequencies participating in F . Next, for each pattern, its 

kernel vector 
rz is constructed according to the following rule. 

0r

jz   if 0r

jp  , or r

jp F  

1r

jz   if min

r

jp f ,    
min

max min

1

r

jr

j

p f
z

f f


 


 if min

r

jp f  

That is, the nonzero elements of each kernel vector correspond to 
elements of the “frequency” patterns having frequencies that appear in all 
other “frequency” patterns. The concept of strong and weaker kernel points 
remain, because the values of the kernel points are determined by the 
corresponding frequencies, with the largest value (=1) taken by elements that 
correspond to the minimum common frequency and the other values (<1) are 
gradually reducing according to the increase of the corresponding common 
frequency.  

Regarding the special noise deficiency of kernels, method 3 carries the 
same good properties of method 1 and method 2, because the construction of 

Mzz is analogous to that of the other methods. Theorems 4.1 and 4.2 can be 
easily extended to cover this method by simply considering different number 

of cases examined (the number of cases is 1Fc  , counting also the 0ijm   

case). The sets Ii in Theorem 4.1 now contain different values than those of 
the other methods, but the rationale of their development and their usage in 
Theorem 4.2 remain the same. Regarding noise robustness, in the 
experiments carried out in the next section, method 3 proves to be much 
more robust than the other two methods. 
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5. Experimental results 

To test the performance of the proposed method, a number of experiments 
were carried out. In order to have a meaningfully sized data set, 26 
uncorrupted binary patterns were initially created. The set contains the 35x34 
binary images of the capital letters of the Latin alphabet and is shown in Fig. 
5.1. Some examples of gray kernels produced by method 1, 2 and 3 
respectively are shown in Fig. 5.2.  

 

 

Fig. 5.1. The complete pattern set consisting of 35x34 binary images of the 26 capital 
letters of English alphabet. 

 

Fig. 5.2. Sample of kernel vectors produced by the three frequency based methods. 

(a) Kernels of method 1 (b) Kernels of method 2  (c) Kernels of method 3. 

All methods (1, 2 &3) of constructing kernels were initially tested on their 
recall performance of uncorrupted patterns, when the three step procedure of 
Fig. 4.4 was applied. All methods had a 100% success in recalling the 
uncorrupted pattern.   

Fig. 5.3 shows three examples (one for each method) of the overall 
procedure. The pattern interacts with memory M according to (4.2) to produce 

z. Then, z interacts with memory W according to (4.3) to produce a gray 

pattern x having the shape of x. Next, the gray outcome passes from a 
simple thresholding scheme to produce a binary pattern. In this simple 
thresholding scheme every gray value greater than zero receives value 1.  In 
the sequel, the binary recall may pass through a Hamming network to recall 
an index pointing to a member of the initial pattern set. Finally, the 
uncorrupted pattern associated with this index appears as the final recall of 
this procedure. It has to be noted that, in the experiments carried out, we did 
not use a Hamming network. Instead the Hamming distances 

1

1, ,
n

r

r i i

i

H r k


   x x   (5.1) 
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between the  binary recall and each one of the patterns of the initial pattern 
space were computed and the index of the pattern giving the smallest 

distance was selected. The pattern recalled is 
x  , where   

 arg min , 1, ,r
r

H r k     (5.2) 

In (5.1), n denotes the size (in pixels) of a pattern, i denotes the i
th
 element 

of the pattern vector and k is the number of patterns in the pattern space.  
 

 

Fig. 5.3. Steps of uncorrupted pattern recall according to the procedure of Fig. 4.4 

using the three frequency based kernel methods. (a) recall using method 1, (b) recall 

using method 2, (c) recall using method 3. From left to right: 1
st

 column - input 

pattern, 2
nd

 column - kernel recall using (4.2), 3
rd

 column - pattern recall using 

(4.3), 4
th

 column – binarization of column 3 recall using simple thresholding, 5
th

 

column – final recall after computing the minimum Hamming distance. 

The use of (5.1) and (5.2) provides also a means for indirectly evaluating 
the storage capacity of the overall scheme. Starting from a small sized 
pattern space (k = 5) and gradually increasing the size by 2 until k = 26, the 
average minimum distance of all pattern recalls at each pattern space for 
each method is recorded. Figure 5.4 shows the plot of the average minimum 
distance (AMD) of recalls in respect to the size of the pattern space. It is 
evident that the AMD increases in the beginning but it approaches an upper 
bound as the number of patterns increases. That is, after a certain number of 
patterns the AMD and indirectly the storage capacity of the scheme is not 
affected by the size of the pattern space. Moreover, Fig. 5.4 demonstrates 
the superiority of method 3, since it provides always more confident results 
(smaller AMD).  

The next set of experiments is concerned with the robustness of all 
methods under the presence of various percentages of mixed type (both 
dilative and erosive) noise. Mixed noise was randomly applied on each binary 
pattern. The noise percentage is computed by counting the number of the 
altered (noisy) pixels and divide them with the total number of image pixels. 
Figure 5.5 shows three examples (one for each method) of the overall recall 
procedure, when a corrupted by 30% mixed noise pattern appears in the input 
of the proposed 3-step recall scheme.  
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Fig. 5.4. Average minimum Hamming distance for the three frequency based kernel 
methods in respect to the size of the pattern space. 

 

Fig. 5.5. Steps of successful pattern recall of a corrupted pattern according to the 

procedure of Fig. 4.4 using the three frequency based kernel methods. (a) recall 

using method 1, (b) recall using method 2, (c) recall using method 3. From left to 

right: 1
st

 column – corrupted input pattern, 2
nd

 column - kernel recall using (4.2), 3
rd

 

column - pattern recall using (4.3), 4
th

 column – binarization of column 3 recall 

using simple thresholding, 5
th

 column – final recall after computing the minimum 
Hamming distance. 

The various recall stages are similar with those appearing in Fig. 5.3, 
however the effect of noise is now evident in the intermediate results. It is 
also clear that method 2 is more robust to noise than method 1, because the 
intermediate results are closer to the actual ones. Similarly, method 3 
performs much better than the other two.  

Finally, Fig. 5.6 depicts the robustness of each method in mixed noise. 
The failure recall rate of each method is displayed in respect to the 
percentage of the mixed noise. Since the noise is randomly applied, in order 
to have statistically reliable results, each experiment corresponding to a 
different noise percentage was carried out 50 times and the average failure 
recall rate is actually recorded and displayed. It is evident that method 3 is far 
more robust than the other two methods and method 2 is significantly more 
robust than method 1. Therefore, although all frequency based kernel 
methods do not present the particular noise deficiency of traditional kernel 
methods, they present significant differences regarding their noise 
robustness.  This in turn may prompt for future seeking of alternative 
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frequency based kernel construction methods with better performance in 
recall of noisy patterns.  
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Fig. 5.6. Failure recall rates of the three frequency based kernel vector methods in 
respect to mixed noise percentage. 

6. Conclusion 

A new method for constructing kernel vectors was proposed in this paper to 
be used for recalling associations between binary patterns. The need for a 
new kernel definition arose from a special noise deficiency of the 
conventional binary kernel vectors of the relevant literature. The new kernels 
are not binary but „gray‟, because they contain elements with values in the 
interval [0, 1]. These values are determined by the frequency of appearance 
of nonzero elements of the input pattern vectors. Alternative schemes of 
producing kernels based on frequency were presented and it was shown, both 
theoretically and by character recall examples that the new kernel vectors 
carry the good properties of conventional kernel vectors and, at the same 
time, they can be easily computed. Moreover, they do not suffer from the 
particular noise deficiency of the conventional kernel vectors. Experiments, 
performed on large set of binary patterns corrupted by various degrees of 
mixed noise demonstrate the robustness and the limits of the proposed 
approach.  Future extension of this work might extend the proposed approach 
to cover more frequency dependent kernel alternatives as well as an 
investigation regarding the applicability of the proposed concepts in gray and 
possibly color pattern associations. 
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7. Appendix (Proof of Theorems) 

Notation: In the following theorems an element of a conventional binary 
kernel vector is said to be a kernel point if its value is 1. An element of a new, 
“gray” kernel vector is said to be a kernel point if its value is > 0.  

 
Proof of Theorem 3.1. To prove the theorem we start from the formula of 

computing the elements of Mzz. According to equation (2.2) the elements 

ijm of Mzz are computed by 

1
( ), 1,..., 1,...,

p
r r

ij i j
r

m z z i n j n


      (A.1) 

   
where n is the length of kernel vector z. 

 

In general the internal term ( )r r

i jz z  can take the following values 

(a) 0r r

i jz z  . This happens when for a specific r both r

iz and r

jz  are 

kernel points or both are not kernel points 

(b) 1r r

i jz z   This happens when for a specific r r

iz   is a kernel points and 

r

jz is not a kernel points 

(c) 1r r

i jz z    This happens when for a specific r r

iz  is not a kernel point 

and r

jz is a kernel point 

  
Taking now into account that (A.1) is computed by taking the maximum of 

all the internal terms ( )r r

i jz z  for 1r p  , we conclude the following. 
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(1) If index i does not correspond to any kernel point of any kernel vector 

then 0,r

iz r  . Consequently, for each j ( ), 1r r

i jz z r p    takes the values 0 

and –1. Therefore, the maximum of these values is 0 and therefore 

0,ijm j  . 

(2) In case index i  equals the index of a kernel point in any kernel vector 

z , then taking into account situation (b) above, 1,ijm j   except when 

1jz   (that is situation (a) above holds) and simultaneously 

0,r r

i jz z r     , where 0ijm  . This means that when the kernel points of a 

kernel vector do not coincide with the kernel points of another kernel vector 
(or otherwise kernel points appear only once)  (which holds true due to 

condition (3.2)), then 0ijm  when both i and j correspond to kernel points. 

 
Proof of Theorem 3.2. We take into account that in computing equation 

(2.5), that is,  

zzM x z  ,  the i
th
 element of z is computed using the elements of the i

th
 

row of Mzz according to equation (2.4) as follows  

1
( ) , 1,...,

n
r r

i ij j
j

z m x i n


     

We distinguish the following cases 
1. Index of line, i, of Mzz does not correspond to any kernel point of any 

kernel vector. In this case according to Theorem 3.1 0,ijm j  , and 

therefore 
1 1
( ) 0

n n
r r

ij j j
j j

m x x
 
     . The last equation holds because 

there is the plausible assumption that at least one element of the 

input vector r
x  is of zero value. 

2. Index of line, i, of Mzz corresponds to a kernel point of kernel vector 
rz . In this case, according to Theorem 3.1, ( 1,ijm j  ), except when 

the column index (j) corresponds to a kernel point of the same kernel 

vector z . In this case 0ijm  .Therefore, 
1
( )

n
r

ij j
j

m x

    

 
ker int ker int

0 0 : ker int
( (1 ) , (0 ) )

1

r

r r j

j j
j npo s j npo s

if x j npo s
x x

otherwise 

   
      



 

 
In the above notation an index, j, is said to belong to the kernel points if the 

element of the kernel vector having the same index, j, is a kernel point. The 

above equation proves that a kernel vector r
z can be recalled by equation 

(2.5) only if all the elements of the input vector r
x , which correspond to 

kernel points, have the value 1. In other words, if even one element of the 
input vector, which corresponds to a kernel point, is hit by erosive noise then 
equation (2.5) recalls nothing and so does equation (2.9). 
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Proof of Theorem 4.1. To prove the theorem we start from the formula 

(A.1), which computes the elements of Mzz. Now, the new kernel vectors are 
used.  

 

In general the internal term ( )r r

i jz z  can take values from the set {-1, -

0.8, -0.7, -0.6, -0.4, -0.2, -0.1, 0,, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1} with the 
extreme values to appear as follows 

(a) 0r r

i jz z  . This happens when for a specific r both r

iz and r

jz  are 

kernel points of the same value (strength). 

(b) 1r r

i jz z   This happens when for a specific r r

iz  is one of the strongest 

kernel points (value 1) and r

jz is not a kernel point (value 0) 

(c) 1r r

i jz z    This happens when for a specific r r

iz  is not a kernel points 

and r

jz is one of the strongest kernel points 

 
Taking now into account that (A.1) is computed by taking the maximum 

of all the internal terms ( )r r

i jz z  for 1r p  we conclude the following. 

(1) If index i does not correspond to any kernel point of any kernel vector 

then 0,r

iz r  . Consequently, for each j ( ), 1r r

i jz z r p   takes the values 0, 

-0.4, -0.7, -0.8, –1. Therefore, the maximum of these values is 0 and 

therefore 0,ijm j  . 

(2) If index i  corresponds to a kernel point with value 1r

iz   (frequency 1),  

then  1 1, 0.6, 0.3, 0.2, 0ijm I   with the value 1ijm   being the most frequent. 

It has to be noted that the values of 
ijm  are formed by ( )r r

i jz z  of kernel r 

only. The values ( ),i jz z r     are always smaller since 

0iz r   (Frequency 1 means only 1r

iz  ) The values of  
ijm  are resolved 

as follows: 1, 0r

ij jm if z  , 0.6, 0.4r

ij jm if z  , 0.3, 0.7r

ij jm if z  , 

0.2, 0.8r

ij jm if z  , 0, 1r

ij jm if z   

(3) If index i  corresponds to a kernel point with value 0.8r

iz   (frequency 

2), then  2 0.8, 0.4, 0.1, 0ijm I   with the value 0.8ijm   being the most 

frequent. For the formation of ijm  only two kernel vectors are actually 

responsible, which have 0.8r

iz  . We call this set of (two) kernels as forming 

ser and denote it as F. The values of ( ),i jz z F     are always smaller since 

0iz F   (Frequency 2 means only two 0.8,r

iz r F  ) The values of  ijm  

are resolved as follows: 

0.8 0,at least for oneij jm if z F     

0.4 0.4,at least for one  and for the remaining 0.4    ij j jm if z F z  
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0.1 0.7,at least for one  and for the remaining 0.7ij j jm if z F z       

0ijm if i j 
 or

 

0 0.8,at least for one  and for the remaining 0.8ij j jm if z F z      

(4) If index i  corresponds to a kernel point with value 0.7r

iz   (frequency 

3), then  3 0.7, 0.3, 0ijm I   with the value 0.7ijm   being the most 

frequent. For the formation of ijm  only three kernel vectors are actually 

responsible, which have 0.7r

iz  . We call this set of (three) kernels as 

forming ser and denote it as F. The values of ( ),i jz z F     are always 

smaller since 0iz F   (Frequency 3 means only three 0.7,r

iz r F  ).  

The values of  
ijm  are resolved as follows: 

0.7 0,at least for oneij jm if z F     

0.3 0.4,at least for one  and for the remaining 0.4ij j jm if z F z      

0ijm if i j   

0 0.7,at least for one  and for the remaining 0.7ij j jm if z F z      

(5) If index i  corresponds to a kernel point with value 

0.4r

iz  (frequency 4 ), then  4 0.4, 0ijm I   with the value 0.4ijm   being 

the most frequent. For the formation of 
ijm  only the kernel vectors, which 

have 0.4r

iz   are actually responsible. We call this set of kernels as forming 

set and denote it as F. The values of ( ),i jz z F     are always smaller since 

0iz F   The values of  
ijm  are resolved as follows: 

0.4 0,at least for oneij jm if z F     

0ijm if i j   

0 0.4,at least for one  and for the remaining 0.4ij j jm if z F z      

Proof of Theorem 4.2. Similarly to the proof of theorem 3.1, we take into 

account that in computing equation (2.5), that is, zz  M x z ,  the i
th
 element 

of z is computed using the elements of the i
th
 row of Mzz according to 

equation (2.4) as follows  

1
( ) , 1,...,

n
r r

i ij j
j

z m x i n


     

We distinguish the following cases 
 

1. Index of line, i, of Mzz does not correspond to any kernel point of any 

kernel vector. In this case 0,ijm j  , therefore 
1 1
( ) 0

n n
r r

ij j j
j j

m x x
 
     . 

The last equation holds because there is the plausible assumption 

that at least one element of the input vector r
x  is of zero value. 
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2. Index of line, i, of Mzz corresponds to a kernel point of any strength 

of kernel vector r
z . In this case ( [0, ]ij strm m ), where 

 1, 0.8, 0.7, 0.4strm  depending on the strength of the kernel point 

with index i. Therefore, if  1,r

jx j  being an index corresponding to a 

kernel point of r
z of any strength then 

1
( )

n
r r

ij j str i
j

m x m z

     . On the 

other hand if  ker int : 0
r r

jj npo s x   then 

1
( ) [0, )

n
r

ij j str
j

m x m

  

r

iz  

In the above notation an index, j, is said to belong to the kernel points if the 
element of the kernel vector having the same index, j, is a kernel point. The 

above equation proves that a kernel vector r
z can be exactly recalled by 

equation (2.5) if all the elements of the input vector r
x , which correspond to 

kernel points, have the value 1. In case, however, one or more points of the 
input vector, which correspond to kernel points, are hit by erosive noise then 

(2.5) does not entirely fail. In this case (2.5) recalls an eroded version of r
z . 

Here however erosion of the value of one pixel means the replacement of its 
value by another smaller value. This fact is expressed by equation (4.2), 
which is repeated here 

ZZ  M x z    

Where z denotes the eroded version of z. Since memory WZX is robust in 
erosive noise, equation (2.9) results in recalling the original, uncorrupted 
pattern according to equation (4.3) as follows 

 ZX ZZ  W M x x   
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