
DOI:10.2298/CSIS100102010S

Towards the Methodology for Development of

Fuzzy Relational Database Applications

Srđan Škrbić1, Miloš Racković
1
, and Aleksandar Takači

2

1 Faculty of Science, Trg Dositeja Obradovića 3,
21000 Novi Sad, Serbia

{shkrba, rackovic}@uns.ac.rs
2 Faculty of Technology, Bulevar Cara Lazara 1,

21000 Novi Sad, Serbia
stakaci@tf.uns.ac.rs

Abstract. In this paper we examine the possibilities to extend the
relational data model with the mechanisms that can handle imprecise,
uncertain and inconsistent attribute values using fuzzy logic and fuzzy
sets. We present a fuzzy relational data model which we use for fuzzy
knowledge representation in relational databases that guarantees the
model in 3

rd
 normal form. We also describe the CASE tool for the

fuzzy database model development which is apparently the first
implementation of such a CASE tool. In this sense, this paper presents
a leap forward towards the specification of a methodology for fuzzy
relational database applications development.

Keywords: fuzzy database, fuzzy-relational data model, fuzzy-
relational CASE tool

1. Introduction

Relational model’s disability to model uncertain and incomplete data can be
viewed as its disadvantage in some applications. The idea to use fuzzy sets
and fuzzy logic to extend existing database models to include these
capabilities has been utilized since the 1980s. Although this area has been
researched for a long time, concrete implementations are rare.
Methodologies for fuzzy-relational database applications development are
nonexistent.

However, literature contains references to several models of fuzzy
knowledge representation in relational databases, as well as different
approaches to fuzzy-relational database querying mechanisms. Some good
overviews of these research areas can be found in [1,2,3].

In the next section of this paper we give a detailed description of a number
of references that describe research in the use of fuzzy logic in relational
databases. This overview stretches from the very beginnings of this idea, to
the most recent approaches. Third section contains a description of our

Srđan Škrbić, Miloš Racković, and Aleksandar Takači

ComSIS Vol. 8, No. 1, January 2011 28

approach to fuzzy-relational data modelling. We give a detailed description of
our fuzzy meta model and investigate its theoretical value. Fourth section
contains a description of the fuzzy-relational data modelling CASE tool, the
first of its kind. We compare our approach to some previous approaches in
the fifth section. At the end, we give the conclusion.

2. Related Work

One of the early works, the Buckles-Petry model [4] is the first model that
introduces similarity relations in the relational model. This paper gives a
structure for representing inexact information in the form of a relational
database. The structure differs from ordinary relational databases in two
important aspects: components of tuples need not be single values and a
similarity relation is required for each domain set of the database. Zvieli and
Chen [5] offered a first approach to incorporate fuzzy logic in the ER (Entity-
Relationship) model. Their model allows fuzzy attributes in entities and
relationships. It defines three levels of fuzziness. At the first level, entity sets,
relationships and attribute sets may be fuzzy, i.e. they have a membership
degree to the model. The second level is related to the fuzzy occurrences of
entities and relationships, and on notion which instances belong to the entity
or relationship with different membership degrees. Finally, the third level is
concerned with the fuzzy values of attributes of special entities and
relationships.

Fuzzy functional dependencies and fuzzy normal forms, as well as
algorithms for dependency preserving and lossless join decompositions of
fuzzy relations in specific fuzzy extensions of relational model are
investigated in [6,7].

Umano and Fukami proposed FREEDOM-O, a fuzzy database system
which is an extension of relational model of data [8]. This system supports a
fuzzy data model, and querying. It is the first implementation of a fuzzy
database system. After that result, other researchers have proposed similar
fuzzy extensions to the relational model in such as in [9,10,11,12].

Another serious attempt to implement a fuzzy database system is given in
[13,14]. Authors propose fuzzy extensions of the classical SQL and
implement a system that allows using fuzzy conditions in place of Boolean
ones.

The GEFRED (Generalized Model of Fuzzy Relational Databases) model
[15] is a probabilistic model that refers to generalized fuzzy domains and
admits the possibility distribution in domains. This is a fuzzy relational
database model that has representation capabilities for a wide range of fuzzy
information. In addition, it describes a flexible way to handle this information.
Also, it contains the notion of unknown, undefined and null values. The
GEFRED model experienced subsequent expansions, such as [16,17,18,19].

Chen and Kerre [20,21] introduced the fuzzy extension of several major
EER (Extended Entity-Relationship) concepts. Fuzzy logic was applied to

Towards the Methodology for Development of Fuzzy Relational Database
Applications

ComSIS Vol. 8, No. 1, January 2011 29

some of the basic EER concepts connected to the notion of subclass and
super class. Chaudhry, Moyne and Rundensteiner [22] proposed a method for
designing fuzzy relational databases following the extension of the ER model
of Zvieli and Chen. They also proposed a design methodology for FRDBs
(Fuzzy Relational Databases), which contains extensions for representing the
imprecision of data in the ER model, and a set of steps for the derivation of a
FRDB from this extended ER model.

Galindo, Urrutia and Piattini [23] describe a way to use the fuzzy EER
model to model the database and represent modelled fuzzy knowledge using
relational database in detail. This work gives insight into some new semantic
aspects and extends EER model with fuzzy capabilities. The model is called
FuzzyEER model. Also, a way to translate FuzzyEER model to the FIRST-2,
a database schema that allows representation of fuzzy attributes in relational
databases is given. The FIRST-2 schema introduces a concept of Fuzzy
Meta-knowledge Base (FMB). For each attribute type, it defines how to
represent values and what information about them has to be stored in the
FMB. In addition, in this work, authors introduce and describe specification
and implementation of the FSQL - an SQL language with fuzzy capabilities in
great detail. This language is an extension of the SQL language that allows
users to write flexible conditions in queries, using all extensions defined by
the FuzzyEER model.

We conclude that the current state of the art in this area includes mature
fuzzy EER model extensions that describe a wide range of modelling
concepts for full flavoured fuzzy database modelling. These conceptual
models are supported by robust models for fuzzy data representation in
relational databases, such as the FIRST-2. The possibilities to translate
conceptual models to the relational-based ones are also studied in detail. In
addition, the FSQL is the first implementation of fuzzy database query
language that incorporates the majority of fuzzy logic concepts.

In [24,25,26] authors have studied the possibilities to extend the relational
model with the fuzzy logic capabilities. The subject was elaborated in [27,28],
where a detailed model of Fuzzy Relational Databases (FRDB) was given.
One of the main features of the model is that it allows any fuzzy subset of the
domain to be the attribute value which was not the case in previous FRDB
models.

Moreover, using the concept of the Generalized Priority Constraint
Satisfaction Problem (GPFCSP) from [29] and [30], authors have found a
way to introduce priority queries into FRDB, which resulted in the PFSQL
query language [31,32]. In [33] authors introduce similarity relations on the
fuzzy domain which are used to evaluate the FRDB conditions. The PFSQL
allows the conditions in the WHERE clause of the query to have different
priority i.e. importance degree. It is one of the first languages with such
capabilities. The GPFCSP gives the theoretical background for the
implementation of priority queries.

In this paper, we focus on an innovative fuzzy relational data model
designed to include a more detailed structure and allow better performance.
We analyze concordance of this model to theoretical concepts of relational

Srđan Škrbić, Miloš Racković, and Aleksandar Takači

ComSIS Vol. 8, No. 1, January 2011 30

model, especially normal forms. In addition, we describe the CASE tool that
allows development of fuzzy databases using our model. This appears to be
the first implementation of such a CASE tool. Proposed fuzzy relational data
model and the CASE tool that supports it give a good foundation for
development of the database part in fuzzy relational database (FRDB)
applications. We discuss the possibilities to define a complete methodology
for FRDB applications development and describe steps that need to be made
in that direction.

3. Fuzzy Relational Data Model

In this section we describe our relational model extensions that constitute our
variant of fuzzy relational data model. Our model stores crisp values in the
same way as relational model does, while, for fuzzy values, we define fuzzy
meta data model. In addition, here we provide an insight into the process of
transformation of an example of the classical relational model with fuzzy
attributes to the corresponding fuzzy relational data model.

If we wish to store a fuzzy value, we need to find a way to store data about
its characteristic function. Theoretically, in this way, we could store any fuzzy
value. But, in practice, only a handful of characteristic functions are in use.
Let us name them fuzzy data types from this aspect. That is why we cover
only a limited number of fuzzy data types and obtain an efficient and
relatively simple data model.

An example relational model shown at Fig. 1 contains tables Worker and
Car as well as an intersection table Uses that we use to model this many- to-
many relationship. Tables Worker and Car have two fuzzy attributes each.

Fig. 1. Example fuzzy data model

Towards the Methodology for Development of Fuzzy Relational Database
Applications

ComSIS Vol. 8, No. 1, January 2011 31

The corresponding fuzzy-relational data model is shown at Fig. 2. The
tables Worker, Car and Uses are shown at the top of the figure. They are the
same as they were before except for the data type of fuzzy columns. In this
model, they are of type INTEGER. Moreover, they became foreign keys that
originate from the attribute ValueID in the table FuzzyValue. In order to
represent these fuzzy values in the database, we extend this model with
some additional tables that make the fuzzy meta data model.

The table IsFuzzy simply stores the information whether an attribute is
fuzzy or not. All attribute names in the database are stored here, and beside
the table and the attribute name (attributes TableName and AttributeName),
the information whether the attribute is fuzzy (value of the attribute IsFuzzy is
1) or not (value of the attribute IsFuzzy is 0) is present.

The table FuzzyValue represents a connection between the fuzzy data
model and the fuzzy data meta model. Every fuzzy value in every table is a
foreign key that references attribute ValueID - the primary key of the table
FuzzyValue. Thus, we have one record in the table FuzzyValue for every
record with the fuzzy value in the database. The attribute Code is a foreign
key from the table FuzzyType. This table stores the name of every possible
type of fuzzy value allowed in the model.

These types are as follows:

 interval - fuzzy value is an interval,

 triangle - fuzzy value is a triangular fuzzy number,

 trapezoid - fuzzy value is a trapezoidal fuzzy number,

 general - fuzzy value is a general fuzzy number given by points,

 fuzzyShoulder - fuzzy value is a fuzzy shoulder,

 linguisticLabel - fuzzy value is a linguistic label,

 crisp - fuzzy value is actually a crisp value.
For every value in this list, there is a separate table in the meta model that
stores data for all fuzzy values of specific fuzzy type. Every one of these
tables has the attribute ValueID, foreign key from the table FuzzyValue. In
this way, the value for the specific fuzzy attribute is stored in one of these
tables depending on its type.

The attribute ForValueID in the table FuzzyValue is a foreign key that
represents a recursive relationship and references the primary key of the
FuzzyValue table. This attribute is used to represent linguistic labels. It has a
value different than null if the type of the attribute that it represents is
linguisticLabel. As mentioned before, linguistic labels only represent names
for previously defined fuzzy values. In this fashion, if an attribute is a
linguistic label, then its name is stored in the table LinguisticLabel. In this
case, the attribute ForValueID has the value of ValueID of a fuzzy value that
this linguistic label represents. We conclude that, in order to represent a
linguistic label, two records in the table FuzzyValue are needed.

Srđan Škrbić, Miloš Racković, and Aleksandar Takači

ComSIS Vol. 8, No. 1, January 2011 32

Fig. 2. Fuzzy relational data model.

For example, let us suppose that worker John Doe has a height designated
with linguistic label Tall which represents the fuzzy shoulder with the
membership function:

 ,

(1)

and weights 80kg. In the table Worker there is a corresponding record with
attribute values SSNumber=001, Name=’John’, Surname=’Doe’, Height=1,
Weight=2. In the table FuzzyType there are three records with the following
attribute values: Record T1: Code=1, Name=’linguisticLabel’; Record T2:
Code=2, Name=’crisp’; Record T3: Code=3, Name=’fuzzyShoulder’.
Attributes Height and Weight in the table Worker are foreign keys that refer to
the attribute ValueID in the FuzzyValue table. In this case, the table
FuzzyValue contains three records with the following attribute values: Record

Towards the Methodology for Development of Fuzzy Relational Database
Applications

ComSIS Vol. 8, No. 1, January 2011 33

F1: ValueID=1, ForValueID=3, Code=1; Record F2: ValueID=2,
ForValueID=NULL, Code=2; Record F3: ValueID=3, ForValueID=NULL,
Code=3. Record F1 represents linguistic label Tall, Record F2 represents
crisp value for weight and Record F3 represents fuzzy shoulder which
corresponds to the linguistic label Tall. Further descriptions of these values
are given in tables corresponding to their types described in the FuzzyType
table. According to this, the table LinguisticLabel contains one record with the
following attribute values: Name=’Tall’, ValueID=1. It describes the linguistic
label Tall. The table FuzzyShoulder contains one record with the following
attribute values: Left=180, Right=200, IsIncreasing=1, ValueID=3, describing
the membership function given in equation (1), while the table Crisp contains
a record describing the weight: ValueID=2, Value=80.

The rest of the values, for other fuzzy types, are stored in the database in
a similar way. The complete description of all values and types that can be
stored in the database can be found in [25, 33, 28]. The difference between
the data model described there and this improved version is in structures that
store fuzzy values. In the previous model, we had only two tables in the fuzzy
meta data model - IsFuzzy and FuzzyValue. In that model, fuzzy values were
stored in the table FuzzyValue as strings with predefined structure - one type
for every type of fuzzy value that can be stored. In this way, the value of a
column in a database record was not atomic, so it had to be decomposed in
order to be used. That implies that our previous model was not even in the
first normal form. Here we use one table for every fuzzy data type and have
atomic values in the whole database.

Presented fuzzy meta model has been put through the synthesis algorithm
[34] that guarantees that resulting model conforms to the 3

rd
 normal form. Of

course, fulfilment of theoretical conditions for the 3
rd

 normal form relational
model depends on the ground database model that we are creating too. In
any case, this feature guarantees that if a database model is at least in the 3

rd

normal form, then the addition of the presented fuzzy meta model will result
in a complete model at least in the 3

rd
 normal form. In this way, presented

fuzzy meta model significantly improves its theoretical and practical
performance. The main reason for insisting on 3

rd
 normal form in this model

is the efficiency of the complete software system. In the previous case, when
the values were not atomic, the system parsed the strings which correspond
to the appropriate fuzzy values. Now, all information is obtained by following
the primary-foreign key pairs, which results in better overall performance.

4. The CASE Tool

In this section we give an overview of the CASE tool for fuzzy relational
model development. The application is implemented using Java
programming language and Swing platform for the GUI (Fig. 3). It can be
downloaded together with the source code and accompanying UML model
from http://www.is.pmf.uns.ac.rs/fuzzydb.

Srđan Škrbić, Miloš Racković, and Aleksandar Takači

ComSIS Vol. 8, No. 1, January 2011 34

4.1. Requirements

Requirements set in the process of modelling of the CASE tool include
functions for simplified building of a fuzzy relational data model, as well as
functions for its transformation to the SQL script.

Our intention was to implement a CASE tool capable for visual modelling
and easy administration of all components of a fuzzy relational data model -
tables, attributes, fuzzy data types and relationships. The CASE tool’s GUI
works in the similar way as in all modern tools of this type that allow
modelling of classical relational models. So we do not describe the details
here. In the model building process all the automation related to the migration
of keys through relationships is included. This feature includes cascade
deletion process, migration of keys during the relationship creation process
and circular reference detection and prevention.

In addition, the CASE tool is required to allow easy SQL script generation
for the specific database management system. In this sense, capabilities to
specify the data types used by the DBMS and rules for mapping of the types
used in the model (together with fuzzy data types) to these types had to be
included.

The complete UML model that includes the use case diagrams, the static
system model (class diagrams) and the dynamic model of the main
processes, as mentioned before, is available for download.

4.2. Elements

The main window consists of five parts shown at Fig. 3: menu, toolbar,
navigation tree, main panel and status bar.

The menu and the toolbar contain all of the commands available in the
CASE tool. Using those commands user can manage data model, specify
data types in the model and their mapping to SQL data types. The only data
type that exists by default is Fuzzy. Crisp data types have to be explicitly
defined together with their mapping to SQL data types that are specific to the
DBMS used.

The navigation tree is a visual representation of data about the model that
exists in the repository. The repository can contain a set of tables, while the
tables contain attributes and relationships (Fig. 3). The main panel is located
to the left of the navigation tree. Its content depends on the element selected
at the navigation tree. For every type of element at the navigation tree, the
panel that allows editing of that element is defined. The status bar with some
useful information is located at the bottom of the application window.

Towards the Methodology for Development of Fuzzy Relational Database
Applications

ComSIS Vol. 8, No. 1, January 2011 35

Fig. 3. The main window

4.3. Generating the SQL DDL script

This section provides insight into the process of generation of the SQL DDL
(Structured Query Language Data Definition Language) script based on the
fuzzy relational data model.

Activity diagram at Fig. 4 models the actions that need to be conducted in
order to generate data definition SQL code from the model existing in the
CASE tool. The first activity in the code generation is related to the
FuzzyValue table definition. As mentioned above, this table is essential in our
model, and presents a link between the model and the fuzzy meta model.
The rest of the fuzzy meta model is defined in the similar way.

After that, the SQL code for the tables in the model is created. This activity
has three sub activities. At first, for every table in the model we open a
CREATE TABLE clause. After that, based on the table attributes, SQL code
describing those attributes is generated inside the clause. At the end, the
primary key constraint is added.

When all tables are created, foreign key constraints that connect tables
need to be added. At first, code that links tables in the model to the fuzzy
meta model via FuzzyValue table is created. Then the rest of the foreign key
constraints are generated. Result of this process is a sequence of SQL
clauses written into the file system as a DDL (Data Definition Language) text
file.

Srđan Škrbić, Miloš Racković, and Aleksandar Takači

ComSIS Vol. 8, No. 1, January 2011 36

Fig. 4. The SQL DDL code generation process.

5. Motivation and Comparison

Here we give a comparison of our data model to the most advanced fuzzy
relational data model available today - the FIRST-2 [6]. Our conclusion is that
there are several similarities between them. Although the methods for fuzzy
value representation are completely different, functionally, our model is a
subset of the FIRST-2 model. Our intention was to define the simplest
possible model that supports most widely used fuzzy concepts, and stores
values as effectively as possible without too much overhead.

Fuzzy attributes of the type 1 in the FIRST-2 model are crisp values that
our model also supports. Fuzzy types that our model covers are a subset of
those represented by the fuzzy attributes type 2 and 3. Null values, intervals
and trapezoidal fuzzy numbers in the FIRST-2 are represented by the
structures that have these same names. A subset of the set of triangular
fuzzy numbers, isosceles triangle, is represented by the approximate value
with explicit margin in the FIRST-2 model. All other types of triangular fuzzy
numbers, as well as fuzzy quantities can be represented by the possibility
distributions with 2 and with 4 values in the FIRST-2, although these
distribution types are more general.

The general fuzzy number from our model is known as the fuzzy attribute
type 3 in the FIRST-2 model. Moreover, the FIRST-2 model describes a
wider range of other possibilities for fuzzy values and combines atomic
values according to their respective structure. In this paper we described an
advanced version of our model that treats fuzzy values similarly. Although,
functionally, our model is a subset of the FIRST-2, it gives theoretical

Towards the Methodology for Development of Fuzzy Relational Database
Applications

ComSIS Vol. 8, No. 1, January 2011 37

contribution in modelling from the aspect of relational model theory because
it conforms to the 3

rd
 normal form. The basic disadvantage of the FIRST-2

model is non conformance even to the 1
st
 normal form.

The fuzzy database query language FSQL is built on top of the FIRST-2
model using Oracle DBMS and PL/SQL stored procedures [23]. Similarly, we
used the fuzzy-relational data model described in this paper to build an
interpreter for the PFSQL language. We have developed the PFSQL query
language from ground up, extending the features of SQL into the fuzzy
domain. The PFSQL language is an extension of the SQL language that
allows fuzzy logic concepts to be used in queries. Among other features
described in [27,31,32] in detail, this query language allows priority
statements to be specified for query conditions. For calculating the
membership degree of query tuples when priority is assigned to conditions,
we use the GPFCSP systems mentioned in introduction. Although the FSQL
language has more features than the PFSQL, it does not allow usage of
priority statements. The PFSQL is the first query language that does.
Moreover, the PFSQL is implemented using Java, outside the database,
which makes our implementation database independent.

Following this idea, we implemented the CASE tool described here in order
to ease the fuzzy-relational model development and its usage in the real
world applications with the PFSQL.

6. Conclusion

In this paper we present an innovative fuzzy-relational data model and a
unique CASE tool for FRDB model development. Presented data model
extends the relational model with capabilities to store fuzzy values and
supports the execution of PFSQL queries. The CASE tool for fuzzy relational
model development has been implemented using the Java programming
language and the Swing platform for the graphic user interface. To the best of
our knowledge, this is the only CASE tool with such capabilities in existence
today.

In addition, we give a comparison between this model and the more
general FIRST-2 model. It is our conclusion that this model represents a
significant improvement compared to our previous model given in [28]. On
the other hand, it is a functional subset of the FIRST-2 model, although the
methods for the fuzzy value representation are completely different. Its
compliance to the 3

rd
 normal form makes it better theoretically founded than

other known models of this kind.
In an effort to ease the PFSQL usage further, we implemented a fuzzy

JDBC driver [24,27,32] that allows easy PFSQL statement execution within
the Java environment. This set of tools supports the idea to specify the
complete methodology for fuzzy-relational database applications
development. A working version of our model, the CASE tool and the PFSQL
is available for download from http://www.is.pmf.uns.ac.rs/fuzzydb.

Srđan Škrbić, Miloš Racković, and Aleksandar Takači

ComSIS Vol. 8, No. 1, January 2011 38

References

1. Bosc, P., Kraft, D., Petry, F.: Fuzzy Sets in Database and Information Systems
Status and Opportunities. Fuzzy Sets and Systems, Vol. 156, No. 3, 418–426.
(2005)

2. Ma, Z.M., Mili, F.: Handling Fuzzy Information in Extended Possibility-Based
Fuzzy Relational Databases. International Journal of Intelligent Systems, Vol. 17,
No. 10, 925–942. (2002)

3. Prade, H., Testemale, C.: Fuzzy Relational Databases: Representational Issues
and Reduction Using Similarity Measures. Journal of the American Society for
Information Science, Vol. 38, No. 2, 118-126. (1987)

4. Buckles, B., Petry, F.: A Fuzzy Representation of Data for Relational Databases.
Fuzzy Sets and Systems, Vol. 7, No. 3, 213-226. (1982)

5. Zvieli, A., Chen, P.: ER Modelling and Fuzzy Databases. In Proceedings of the
2nd International Conference on Data Engineering, Los Angeles, CA, 320-327.
(1986)

6. Bahar, O., Yazici, A.: Normalization and Lossless Join Decomposition of
Similarity-Based Fuzzy Relational Databases. International Journal of Intelligent
Systems, Vol. 19, No 10, 885 – 917. (2004)

7. Raju, K., Majumdar, A.: Fuzzy functional Dependencies and Lossless Join
Decomposition of Fuzzy Relational Database Systems. ACM Transactions on
Database Systems, Vol. 13, No. 2, 129-166. (1988)

8. Umano, M.: Freedom-O: A Fuzzy Database System. Fuzzy Information and
Decision Processes. In: Gupta, Sanchez (eds.): Fuzzy Information and Decision
Processes, North-Holand, Amsterdam. (1982)

9. Kacprzyk, J., Zadrozny, S., Ziolkowski, A.: Fquery III+: A “Human-Consistent”
Database Querying System Based on Fuzzy Logic with Linguistic Quantifier.
Information Systems, Vol. 14, No. 6, 443–453. (1989)

10. Sanchez, E.: Importance in Knowledge Systems. Information Systems, Vol. 14,
No. 6, 455–464. (1989)

11. Vandenberghe, R., Schooten, A.V., Caluwe, R. D., Kerre, E.: Some Practical
Aspects of Fuzzy Database Techniques: An Example. Information Systems, Vol.
14, No. 6, 465–472. (1989)

12. Wong, M., Leung, K.: A Fuzzy Database-Query Language. Information Systems,
Vol. 15, No. 5, 583–590. (1990)

13. Bosc, P., Pivert, O., Farquhar, K.: Integrating Fuzzy Queries into an Existing
Database Management System: An Example. International Journal of Intelligent
Systems, Vol. 9, No. 5, 475–492. (1994)

14. Bosc, P., Pivert, O.: SQLf: A Relational Database Language for Fuzzy Querying.
IEEE Transactions on Fuzzy Systems, Vol. 3, No. 1, 1-17. (1995)

15. Medina, J.M., Pons, O., Vila, M.A.: GEFRED: A Generalized Model of Fuzzy
Relational Databases. Information Sciences, Vol. 76, No. 1-2, 87-109. (1994)

16. Galindo, J., Medina, J.M., Aranda, M.C.: Querying Fuzzy Relational Databases
Through Fuzzy Domain Calculus. International Journal of Intelligent Systems,
Vol. 14, No. 4, 375-411. (1999)

17. Galindo, J., Medina, J.M., Aranda-Garrido, M.C.: Fuzzy Division in Fuzzy
Relational Databases: an Approach. Fuzzy Sets and Systems, Vol. 121 No. 3,
471–490. (2001)

18. Galindo, J., Medina, J.M., Cubero, J.C., Garcia, M.C.: Relaxing the Universal
Quantifier of the Division in Fuzzy Relational Databases. International Journal of
Intelligent Systems, Vol. 16, No. 6, 713-742. (2001)

Towards the Methodology for Development of Fuzzy Relational Database
Applications

ComSIS Vol. 8, No. 1, January 2011 39

19. Galindo, J., Medina, J.M., Pons, O., Cubero, J.C.: A Server for Fuzzy SQL
Queries. Lecture Notes in Computer Science, Vol. 1495, 164-174. (1998)

20. Chen, G., Kerre, E.: Extending ER/EER Concepts Towards Fuzzy Conceptual
Data Modelling. In Proceedings of the IEEE International Conference on Fuzzy
Systems. Anchorage, AK, 1320-1325. (1998)

21. Kerre, E., Chen, G.: Fuzzy Data Modelling at a Conceptual Level: Extending
ER/EER Concepts. In: O. Pons (ed.): Knowledge Management in Fuzzy
Databases, Physica Verlag, Heidelberg, 3-11. (2000)

22. Chaudhry, N., Moyne, J., Rundensteiner, E.: A Design Methodolgy for Databases
with Uncertain Data. In Proceedings of the 7th International Working Conference
on Scientific and Statistical Database Management. Charlottesville, VA, 32-41.
(1994)

23. Galindo, J., Urrutia, A., Piattini, M.: Fuzzy Databases: Modeling Design and
Implementation. IDEA Group Publishing, Hershey, USA. (2006)

24. Škrbić, S., Takači, A.: On Development of Fuzzy Relational Database
Applications. In Proceedings of the 12th International Conference on Information
Processing and Management of Uncertainty in Knowledge-Based Systems,
Malaga, Spain, 268-273. (2008)

25. Takači, A., Škrbić, S.: How to Implement FSQL and Priority Queries. In
Proceedings of the 3rd Serbian-Hungarian Joint Symposium on Intelligent
Systems, Subotica, Serbia, 261-267. (2005)

26. Takači, A.: Towards a Priority Based Logic. In Proceedings of the 11th
International Conference on Information Processing and Management of
Uncertainty, Paris, France, 247-252. (2006)

27. Škrbić, S.: Fuzzy Logic Usage in Relational Databases. Doctoral dissertation,
Faculty of Science, Novi Sad. (2009) (in Serbian)

28. Takači, A., Škrbić, S.: Data Model of FRDB with Different Data Types and
PFSQL. In: Galindo, J. (ed.): Handbook of Research on Fuzzy Information
Processing in Databases, IGI Global, Hershey, PA, 403-430. (2008)

29. Luo, X., Lee, J., Leung, H., Jennings, N.: Prioritized Fuzzy Constraint
Satisfaction Problems: Axioms, Instantiation and Validation. Fuzzy Sets and
Systems, Vol. 136, No. 2, 151-188. (2003)

30. Takači, A.: Schur-concave Triangular Norms: Characterization and Application in
PFCSP. Fuzzy Sets and Systems, Vol. 155, No. 1, 50-64. (2005)

31. Škrbić, S., Racković, M.: PFSQL: a Fuzzy SQL Language With Priorities. In
Proceedings of the 4th International Conference on Engineering Technologies,
Novi Sad, Serbia, 58-63. (2009)

32. Škrbić, S., Takači, A.: An Interpreter for Priority Fuzzy Logic Enriched SQL. In
Proceedings of the 4th Balkan Conference in Informatics, Thessaloniki, Greece,
96–100. (2009)

33. Takači, A., Škrbić, S.: Measuring the Similarity of Different Types of Fuzzy Sets
in FRDB. In Proceedings of the 5th Conference of the EUSFLAT, Ostrava, Czech
Republic, 247-252. (2007)

34. Bernstein, P.A.: Synthesizing Third Normal Form Relations From Functional
Dependencies. ACM Transactions on Database Systems, Vol. 1, No. 4, 277-298.
(1976)

Srđan Škrbić, Miloš Racković, and Aleksandar Takači

ComSIS Vol. 8, No. 1, January 2011 40

Srđan Škrbić received the PhD degree in 2009 from the Department of
mathematics and informatics, Faculty of Science at University of Novi Sad.
He is currently an assistant professor at the same department. His research
interests include intelligent database systems and fuzzy database modeling.
He has published more than 30 scientific papers.

Miloš Racković is a full professor at the Department of mathematics and
informatics, Faculty of Science at University of Novi Sad. He received the
PhD from the same department in 1996. He works in the fields of computer
science, artificial intelligence and databases. Professor Racković has
published 82 scientific papers, two monographs and three books. He
mentored more than 200 Bsc theses, 20 Msc theses and two PhD theses.

Aleksandar Takači, received the PhD degree in 2006 from the Department
of mathematics and informatics, Faculty of Science at University of Novi
Sad. He is currently an assistant professor at the Faculty of Technology,
University of Novi Sad. His research interests include fuzzy systems and
fuzzy logic. He has published more than 30 scientific papers.

Received: January 02, 2010; Accepted: April 13, 2010.

