
DOI: 10.2298/CSIS100827002S

Access Control Framework for XML Document
Collections

Goran Sladić, Branko Milosavljević, Zora Konjović, and Milan Vidaković

Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6
21000 Novi Sad, Serbia

{sladicg, mbranko, ftn zora, minja}@uns.ac.rs

Abstract. It is often the case that XML documents contain information of
different sensitivity degrees that must be selectively shared by user com-
munities. This paper presents the XXACF (eXtensible Role-Based XML
Access Control Framework) framework for controlling access to XML doc-
uments in different environments. The proposed access control model of
XXACF is described. The framework represents an improvement over the
existing systems and enables defining context-sensitive access control
policies on different priority and granularity levels, the enforcement of ac-
cess control for different operations on XML documents, as well as differ-
ent ways of access control enforcement for the same operation.

Keywords: access control, RBAC, context, XML.

1. Introduction

Access control is only one aspect of a comprehensive computer security solu-
tion, but also the one of its most important segments. It provides confidentiality
and integrity of information. In the role-based access control (RBAC) model,
access to resources of a system is based on a role of a user in the system [21].
The basic RBAC model comprises the following entities: users, roles and per-
missions, where permissions are composed of operations applied to objects. In
RBAC, permissions are associated with roles, and users are made members of
roles [21].

The growth of use of XML as a format for data modelling and interchange
accentuates the issue of access control to XML documents. An XML document
may contain data with different levels of accessibility. eXtensible XML Role-
Based Access Control Framework (XXACF) [39] provides the means of defining
access control policies and access control enforcement based on the RBAC
model. Access control policies in XXACF may be defined on different priority
and granularity levels and they may be content dependent, thus facilitating effi-
cient management of access control. The access control policy in XXACF may
be separately defined for each operation on an XML document. The concept of
context-sensitive access control enables customization of access control poli-
cies depending on the environment where XXACF is being used. Therefore,
XXACF can be deployed in various environments.

Goran Sladić, Branko Milosavljević, Zora Konjović and Milan Vidaković

The rest of the paper is structured as follows. Section 2 reviews the related
work. Section 3 presents the XXACF data model. The extended DOM model
is presented in Section 4. Section 5 describes the procedure of access con-
trol enforcement. Section 6 concludes the paper and outlines further research
directions.

2. Related Work

In [29] the authors present a provisional authorization model that provides XML
with element-wise access control mechanism. They have formalized a provi-
sional authorization model that adds extended semantics to traditional autho-
rization models. The proposed model integrates several security features such
as authorization and non-repudiation in unified XML documents and enables
the authorization initiator not only to securely browse XML documents but also
to securely update each document element.

In the paper [11] access control for XML documents in a workflow envi-
ronment is presented. The access control policies of the workflow system are
based on the RBAC model. There are two types of access control policies [11]:
policies which grant access (operation) and policies which deny access (opera-
tion) on the object. The operations that are supported are as follows: read, edit,
add and delete [11]. Each process in the workflow system implies manipulation
of a certain number of XML documents. The definition of the given process de-
fines which roles can execute that process, i.e. its sub-processes. It is possible
to create access control policies not only on the document level but also on the
document fragment level [11].

In the paper [25] the author defines a security model for a native XML
database which supports XUpdate language. Since the model is implemented
in a native XML database supporting XUpdate, a privilege that each XUpdate
operation requires for completion needs to be specified. Presented mode is
inspired by the SQL security model.

X-RBAC [9] [10] is a system for controlling access to XML documents in
web service-based systems. The access control in this system is based on the
RBAC model. Access control policies depend on the user’s session context and
the content of the documents being accessed [9]. Depending on the document
content, the access control policies can be specified on four granularity levels:
the conceptual level, the document schema level, the document instance level
and the document element level [9]. However, policies that deny access cannot
be specified. The supported operations are reading, writing, navigating (reading
the referenced data) and all (supports all three previous operations). The prop-
agation level down through hierarchy can be defined for each access control
policy. The three levels of propagation are supported: (a) without propagation,
(b) first level propagation and (c) cascade propagation [10].

XML ACP (Access Control Processor) [16] [17] represents a system for ac-
cess control for XML documents in web-based applications. The system works
as a plug-in to the existing web server technology [16]. The access control is

592 ComSIS Vol. 8, No. 3, June 2011

Access Control Framework for XML Document Collections

possible on several levels of granularity: the DTD level, the document instance
level, the specific document element/attribute level. The access control policies
can be classified into eight priority groups. Propagation of the access control
policies down through the hierarchy is supported. The policies can grant or
deny access [16] [17]. In access control policy definitions, user identification
is based on the user ID or the user group ID and/or the location (computer or
computer network) ID being the origin of the request to access a document [16]
[17].

The Author-X system [6] [8] provides for defining access control policies
on different granularity levels, which can grant or deny access. The controlled
propagation of access control policies is provided, where policies defined for a
document or DTD can be applied on other semantically related documents or
DTDs on different granularity levels [8]. There are two working modes: pull and
push [6]. In the pull mode, the user explicitly requests access to a document.
After reception of the request, Author-X forms a document that will contain only
the data visible for the user, i.e. the data that the user can change. After the
change has been done, the user sends the changed content to the system and
the system verifies if the changed content is in accordance with security rights
[6]. In the push mode, the system periodically sends documents to all users.
Although the same document is sent to all users, the specified security rights
are enforced by encrypting parts of the document with different keys for different
policies. Each user possesses keys which are available to her or him according
to the specified security rights [6].

Qi et al. [35] propose an approach to XML access control through rule func-
tions that are managed separately from documents. The key idea is to encode
the access control rules as a set of rule functions that separately perform the
actual access evaluation. A rule function is an executable code fragment that
encapsulates the access rules and is shared by all documents of the same
type. According to authors, the novelties of this model are the high scalability
and high performance.

Fundulaki and Maneth [24] propose language for specifying access control
on XML data in the presence of update operations. The update operations used
in this model are based on the W3C XQuery Update Facility specification. Al-
ternative language that supports access control annotations at the level of the
XML DTD is also presented.

In [36] access to a document and its parts can be defined based both on
the current document content and on the history information that captures the
operations performed on that document. Moreover, the history information in-
cludes the source of the parts of a document that were transferred from different
documents.

Byun and Park [12] propose two phase filtering scheme for access control
enforcement mechanism. The first phase filtering is to abstract only necessary
access control rules based on a user query. The second phase filtering is to
modify an unsafe query into a safe one. Query modification is the development

ComSIS Vol. 8, No. 3, June 2011 593

Goran Sladić, Branko Milosavljević, Zora Konjović and Milan Vidaković

of an efficient query rewriting mechanism that transforms an unsafe query into
a safe yet correct one that keeps the user access control policies.

An and Park [3] present access control labeling scheme for efficient secure
query processing under dynamic XML data streams.

Knowledge based formal approach to ensure the security of web-based
XML documents is presented in [4]. Given approach is based on a high level
language to specify an XML document and its protection authorizations.

The focus of the paper [15] is how to control access to XML documents,
once they have been received. The paper describes how certain access control
policies for restricting access to XML documents can be enforced by encrypting
specified regions of the document. The regions are specified using XPath filters
and the policies based on the hierarchical structure of XML document. Objects
are ordered using containment of their respective XPath expressions. They are
encrypted with a number of different keys based on the relative seniority of
objects. A user is supplied with a master key enabling her/him to decrypt those
objects for which she/he is authorized.

Miklau and Suciu [31] propose framework for enforcing access control poli-
cies on published XML documents using cryptography. In this framework the
owner publishes a single data instance, which is partially encrypted and which
enforces all access control policies. The owner enforces an access control pol-
icy by granting keys to users. A client can access the data conditionally, de-
pending on the keys she/he possesses. The client does not need to decrypt the
entire data instance; it can access to data selectively using a query language.
Authors also present declarative language for access control policies and ex-
tension to XQuery to support selective access to a document.

XACML (eXtensible Access Control Markup Language) [32] provides a gen-
eral purpose access control language. It describes both an access control policy
language and a request/response language. The policy language is used to ex-
press access control policies (who can do what when). The request/response
language expresses queries about whether a particular access should be al-
lowed (requests) and describes answers to those queries (responses). XACML
also suggests a policy authorization model to guide implementers of the autho-
rization mechanism. The hierarchical resource profile of XACML [33] specifies
how XACML can provide access control for resources (including XML docu-
ments) that are organized as a hierarchy. The core and hierarchical role-based
access control (RBAC) profile of XACML [34] defines a profile for the use of
XACML to meet the requirements of RBAC. Haidar et al. [1] analyze RBAC
profile of XACML and they identify several limitations of proposed profile.

Various definitions of context have been proposed in the literature [2] [13]
[19] [23] [37]. Broadly, the notion of a context relates to the characterization
of environment conditions that are relevant for performing appropriate actions
in the computing domain. In order to realize the fine grained access control
many context-sensitive access control models have been proposed. Many au-
thors [20] [27] [38] [41] propose a context-based access control model for web
services. Their approaches grant or adapt permissions to users based on a set

594 ComSIS Vol. 8, No. 3, June 2011

Access Control Framework for XML Document Collections

of contextual information collected from environments of the system. Coving-
ton et al. [14] introduce the notion of environmental role, and provide a uniform
access control framework that can be used to secure context-sensitive applica-
tions. In the paper [22] authors showed the use of context information and its
quality indicators to grant access permissions to resources. Georgiadis et al.
[26] discuss the integration of contextual information with team and role-based
access control. The influence of temporal constraints to access control is prob-
ably the most thoroughly analyzed in [5] [30], while the influence of geospatial
constraints is presented in [7] [18].

By analyzing the previously mentioned XML access control frameworks, we
notice that a significant number of them do not support the RBAC-based access
control, but are based on different access control models. Although the literature
recognizes a significant number of context-dependent access control models,
the impact of context to XML access control is only partial. All presented XML
access control frameworks support the access control enforcement for reading
documents, but not for creating, updating and deleting documents. To the best
of our knowledge, research on access control to XML document in the pres-
ence of XML Schema is very poor. The presented models usually implement
the reading operation by pruning parts of documents for which users are not
authorized. This approach may cause that the newly formed document is not in
accordance with its schema. Cases when a user requests that the documents
that she/he receives are in accordance with theirs XML Schema are only par-
tially considered.

XXACF, the system presented in this paper, has the following notable im-
provements over the aforementioned XML access control systems:

– Access control is based on the RBAC model with the support for the role
hierarchy

– Context-sensitive access control enforcement is supported
– Definition of granting and denying access control policies on different pri-

ority and granularity levels and document content-dependent policies are
supported

– Support for separate access control enforcement for different operations on
documents

– Different ways of implementing read operation on documents in order to
provide: (a) pruned reading, (b) reading when t is required that a document
is in accordance with its schema after access control enforcement and (c)
specific reading to improve performance in case of a large number of ac-
cesses to a document

3. The XXACF Access Control Policies Model

The XML Schema in Figure 1 defines the structure of access control policies,
which is based on policies described in [29] supporting policy conditions. Ac-
cess control policies described in [29] are extended in order to support role hi-
erarchies, to provide priorities of access control policies as defined in [16] [17]

ComSIS Vol. 8, No. 3, June 2011 595

Goran Sladić, Branko Milosavljević, Zora Konjović and Milan Vidaković

and to support arbitrary operations for which policies are defined. We use our
schema for brevity, although this model can be represented through the XACML
language.

Each access control policy is defined by the <policy> element to which the
unique identifier (the id attribute) is assigned. The policy (<permission>) per-
mits or denies the subject to execute the operation (<operation>) on the ob-
ject (<object>). Since access control policies are based on the RBAC model,
the subject for which the policy is defined represents the role. The object of
the access control policy is a document schema or a document instance iden-
tified by its unique ID. Policies defined for a document schema are applied to
all document instances of that type (all documents that are valid according to
the schema), while policies defined for a particular document instance are ap-
plied only to that instance. If the policy is defined only for the particular docu-
ment/schema fragment, it is necessary to specify the XPath expression which
selects that fragment. Also, by using XPath expressions with conditions, an ob-
ject (policy) which is content dependent, may be specified.

XXACF can support context-sensitive access control and dynamic capturing
of context information through <condition> element. If the condition is satis-
fied, the access control policy will be applied. Otherwise, it will not be the case.
Each condition consists of the name of a logical operation (not, and, nand,
or, nor, and xor) (attribute operation) and subconditions and/or predicates
(<predicate> element). A predicate is a function which returns a Boolean
value. The value calculated by applying a specified logical operation on return
values of subconditions and predicates represents the return value of the con-
dition. Functionality of a predicate should be properly implemented. This facili-
tates the implementation of the specific access control which is not supported
through the RBAC model. For example, insertion of a digital signature into a
document is allowed only if the signature is valid and is generated using the
valid key of the logged user. This verification can be realized by implementing
a predicate that will verify a signature of the document using the certificate of
the logged user and also verify if the certificate is revoked. By using a predicate
where the return value depends on the state of the environment (e.g. access to
the document depends on the current state of the process which the document
belongs to), it is possible to implement context-sensitive access control.

Although the standard RBAC model supports only granting policies, results
in the literature (see Section 2) identify a need for denying policies to achieve
more efficient security administration. The permission is described by the ele-
ment <permission> shown in Figure 1. The permission can be dual, granting
access (the value of the type attribute is “grant”) or denying it (the value of the
type attribute is “deny”). In order to avoid specifying explicitly the policy for each
entity, propagation of policies is enabled, starting from the entity specified by the
<object> element down or up the hierarchy. The propagation direction
attribute defines the propagation direction. If the attribute value is “down”, the
propagation is directed from the specified object downwards along the hierar-
chy. On the other hand, if the value is “up”, it is directed from the specified

596 ComSIS Vol. 8, No. 3, June 2011

Access Control Framework for XML Document Collections

policy_set

1..�

policy

attributes

id

subject

object

operation

permission

attributes

type

propagation_level

propagation_direction

strength

conditionType

condition

attributes

operation

0..�

predicate

0..�

condition

Fig. 1. XML Schema of access control policies

object upwards. The level of propagation, i.e. the maximum number of hier-
archy levels where the propagation is performed, is specified by the attribute
propagation level. The propagation level can be arbitrary, it can include a
certain number of levels, or with no propagation at all. Access control policy
strength is defined by the strength attribute as defined in [17]. Values of the
strength attribute can be “normal”, “hard” and “soft”. The value “normal” can
be specified if the object of the access control policy is a document schema or
a document instance, “hard’ is specified only for a document schema and “soft”
if the object is a document instance. Detailed explanation of the semantics of
the strength attribute and it’s values can be found in [17].

Access control policies defined for a descendant role have a higher priority
than the policies defined for an ascendant role. The priority of access control
policies defined for the same role is determined according to the object they
are related to (a document schema or a document instance), to the strength
of the policy and also to the propagation level of the policy. On the basis of
these elements it is possible to define eight priority levels presented in Table
1. We believe that this approach for determining priorities is more applicable in
practice than the explicit priority assignment, because the explicit assignment
does not necessary have the semantics of the priority values.

ComSIS Vol. 8, No. 3, June 2011 597

Goran Sladić, Branko Milosavljević, Zora Konjović and Milan Vidaković

Table 1. Priority levels of access control policies

Priority level Schema/Instance Propagation Strength
1 schema no hard
2 schema yes hard
3 instance no normal
4 instance yes normal
5 schema no normal
6 schema yes normal
7 instance no soft
8 instance yes soft

4. The Extended DOM Model

The process of access control enforcement for XML documents in XXACF is
performed on DOM (Document Object Model) of the document. In order to
achieve access control, the DOM model is extended with necessary functional-
ity.

The diagram in Figure 2 shows the classes which represent a node in a
document tree. Each implementation of the XACNode interface contains the
MarkMap object. It contains all access control policies applied on that node
(Figure 2 shows the example for XACElementImpl). The role for which the
access control policy is defined is used as a key to the hash map contained in
the MarkMap class. Hash map values are instances of the MarkMatrix class.
This class contains access control policies defined for the given role and applied
to that node.

MarkMatrix distributes access control policies on one of the Set sets of
the matrixmatrix. The row index depends on if the access control policy grants
or denies access to that node. The column index represents the priority level of
the access control policy. Therefore, the matrix has two rows and eight columns.

Each of these sets contains instances of MarkItem. MarkItem contains
the access control policy and the distance from the root node selected by the
given policy to the node to which that MarkItem instance belongs.

For each access control policy, the class Marker determines which nodes
of the tree are selected by the object of the policy and applies the policy to these
nodes.

To avoid implementation of the functionality defined by the interfaces of the
DOM model (interfaces from the package org.w3c.dom), Apache Xerces im-
plementation of the DOM model is used. An example of implementation of the
XACElement interface is shown in Figure 2. The class XACElementImpl rep-
resents implementation of XACElement. ElementImpl is Xerces implemen-
tation of the Element interface. By extending this class, implementation of the
functionality defined by Node and Element interfaces is avoided. Other spe-
cializations of the XACNode interfaces are implemented in the same way.

598 ComSIS Vol. 8, No. 3, June 2011

Access Control Framework for XML Document Collections

-GRANT : int = 0

-DENY : int = 1

-SOFT_RECURSIVE_DOC : int = 0

-SOFT_LOCAL_DOC : int = 1

-RECURSIVE_SCH : int = 2

-LOCAL_SCH : int = 3

-RECURSIVE_DOC : int = 4

-LOCAL_DOC : int = 5

-HARD_RECURSIVE_SCH : int = 6

-HARD_LOCAL_SCH : int = 7

-matrix : Set [2] [8]

MarkMatrix

-map : HashMap

MarkMap

«interface»

XACNode

«interface»

XACElement

XACElementImplMarker

-distance : int

MarkItem

«interface»

Policy

*..01..0

0..10..*1..1

1..1

0..*

0..1

org.apache.xerces.dom::ElementImpl

«interface»

org.w3c.dom::Node

«interface»

org.w3c.dom::Element

Fig. 2. Classes for marking a node

5. Access Control Enforcement

The process of access control is performed in four steps:

1. selection of the applicable access control policies,
2. marking document nodes,
3. conflict resolution, and
4. execution of the requested operation.

These four steps are described in the following subsections.
The description of the access control enforcement process adopts the fol-

lowing notions.
The set of all document schemas (S) is comprised of all document schemas

defined in a system, i.e. S = {Sti | 0 < i ≤ n} where Sti is the i-th document
schema and n is the number of schemas in the system. Each Sti consists of
the main XML Schema and all XML Schemas that are included in the main.

Let D be the set of all documents in the system and Dti be the set of all
documents of a particular type ti (all documents which are in accordance with
a certain schema). Then D is defined as follows D =

∪n
i=1 Dti, where n is the

number of different schemas (document types) in the system.
The set of all access control policies is defined as follows P = PD ∪ PS,

where: PD =
∪n

i=1 PDti, PS =
∪n

i=1 PSti, PD is the set of all policies defined
for documents, PDti is the set of all policies defined for documents belonging
to the set Dti, PS is the set of all policies defined for document schemas and
PSti is the set of policies defined for the document schema Sti.

Let R be the set of all user roles, U is the set of all users in the system and
O is the set of operations defined in the system.

markItem is defined as a tuple of the form: markItem = (policy, distance),
where: policy ∈ PDti ∪ PSti and distance ∈ N0 is the distance between the
root node selected by the object of the policy and the node to which the access
control policy is applied.

ComSIS Vol. 8, No. 3, June 2011 599

Goran Sladić, Branko Milosavljević, Zora Konjović and Milan Vidaković

5.1. The Selection of the Applicable Access Control Policies

The goal of this task is to find access control policies that will be used for access
control enforcement on the document being accessed.

When a document doc ∈ Dti is being accessed in order to execute a certain
operation, only access control policies that apply to the document doc from
PDti and its schema (PSti) are loaded from repositories. The access control
policies being loaded must be defined for the specified operation and for the
roles assigned to the user who performs the operation on that document. The
system tests the condition of usage (if the condition is specified) for each loaded
access control policy. If the condition is satisfied, the policy will be applied (it is
added to applicable policies set, APS); otherwise it will not be applied.

5.2. Marking Document Nodes

Marking of document nodes is a process of determining and applying each
policy from the applicable policy set to the nodes selected by that policy.

Depending on if the propagation direction for a policy is down (“DOWN”)
or up (“UP”) the hierarchy (see Section 3), the appropriate propagation is per-
formed until the maximum level of propagation is reached. A MarkItem in-
stance is created for each selected node and added to the appropriate instance
of MarkMatrix of the node’s MarkMap.

Upon completing this task, each node will be associated with access control
policies to be applied to it.

5.3. Conflict Resolution

Since XXACF supports granting and denying policies it is possible that on
some nodes both policy types are applied. In these cases a conflict need to
be resolved, i.e. determine whether granting or denying policies will be ap-
plied. Our procedure for conflict resolving is presented in Algorithm 1. The
NodeConflictResolve function is invoked for each node of the specified sub-
tree to resolve the conflict for the given node.

The first activity of selecting the final access control policies for the given
node is conflict resolution according to the “more specific subject takes prece-
dence” (MSSTP) principle (invoking the ResolveConflictByMSSTPPrinciple
function). According to this principle, access control policies defined for more
specific roles have a greater priority than the ones defined for less specific roles
(if the role ri extends the role rj then ri has greater priority). For each user’s
role it is checked if there are policies defined for that role. If the policies defined
for that role exist, they are selected. On the other hand, if they do not exist, the
role hierarchy is recursively traversed in search of policies.

Next, the conflict resolution using the “more specific object takes prece-
dence” (MSOTP) principle is performed on the policies previously retreived. In
this step, the policies where the object is nearest to the node which the policy
is applied to are selected. First, in the grant policies set (Grant Mark Item Set,

600 ComSIS Vol. 8, No. 3, June 2011

Access Control Framework for XML Document Collections

Algorithm 1 Conflict resolution for a node
NAME: NodeConflictResolve
INPUT: node - node for which conflict resolving is preformed
URS ⊆ R - user’s roles
defaultConflictResolution - default conflict resolution for document
defaultPolicy - default policy
OUTPUT: node - node with determined final policies

Let FPS be the set of final policies for node
Let markMap be the mark map of node
markMatrix := CreateEmptyMarkMatrix()
markMatrix := ResolveConflictByMSSTPPrinciple(markMap, URS, markMatrix)
collIndex := FindTheHigestNonEmptyColumn(markMatrix)

{If there is such a column, resolve conflict for policies in that column using
the MSOTP principle}
if collIndex ̸= −1 then

Let GMIS be the mark item set with grant policies in markMatrix at the
column collIndex
GMIS := KeepPoliciesWithMSO(GMIS)
Let DMIS be the mark item set with deny policies in markMatrix at the
column collIndex
DMIS := KeepPoliciesWithMSO(DMIS)
MIS := ResolveConflictByMSOTPPrinciple(GMIS, DMIS)

if HasGrantPolicies(MIS) ∧ HasDenyPolicies(MIS) then
if defaultConflictResolution = grant takes precedence then

FPS := GetGrantPolicies(MIS);
else

FPS := GetDenyPolicies(MIS);
end if

else if HasGrantPolicies(MIS) then
FPS := GetGrantPolicies(MIS);

else if HasDenyPolicies(MIS) then
FPS := GetDenyPolicies(MIS);

else
FPS := {defaultPolicy} {No policies}

end if
else

FPS := {defaultPolicy} {No policies}
end if
SetFinalPolices(node, FPS)

GMIS) only policies with the minimal distance are kept and the remaimning
policies are removed. The same action is preformed on the denial policies set
(Deny Mark Item Set, DMIS). The result of conflict resolution using the MSOTP
principle is the one of these two sets (GMIS or DMIS) which has the minimal
distance, or the union of these two sets (GMIS ∪DMIS) if the distance is the
same.

At the end of the conflict resolution process it is checked if there are access
control policies that grant and deny access. If there are both, the default con-
flict resolution (defaultConflictResolution) is verified. In the case that in the
selected priority level all access control policies either grant or deny access, the
final access control policies either grant access, or deny it. If no policies are
applied to a node, then depending on the value of the default policy, access to
that node will be granted or denied.

ComSIS Vol. 8, No. 3, June 2011 601

Goran Sladić, Branko Milosavljević, Zora Konjović and Milan Vidaković

After the conflict resolutiont each node is associated with its final access
control policies, either granting or denying access. There may be more than
one final policy associated with a node.

5.4. Executing Operations in XXACF

XXACF supports the following operations on XML documents:

– updating documents (adding new nodes, deleting and changing (replac-
ing) the existing ones) and

– reading documents. The reading operation is implemented in three different
ways: pruned reading, fake reading and encrypted reading.

Modifying Operations The complete process of adding new nodes into a tree
along with access control enforcement is defined by Algorithm 2. Each new
subtree to be inserted into the document tree is temporarily inserted. Then, the
selected access control policies are applied and the conflict resolution process
on the inserted nodes is performed. If the final access control policies on each
node of the inserted subtree grant access, the insertion is allowed. If insertion
of any node of the inserted subtree is not allowed, the subtree is removed from
the document tree.

Algorithm 2 Add operation
NAME: AddOperation
INPUT: session - user’s session
doc ∈ Dti - document being accessed
ANS = {(node, pos) | node - root node of subtree, pos - position in document
where node should be inserted} - set of subtree root nodes which are added to the
document
URS ⊆ R - user’s roles
OUTPUT: doc - document with new nodes if insertion of new nodes is allowed

{Conditialnally insert all new nodes in the document on the specified position}
for each item ∈ ANS do

doci := InsertNodeInDocument(doci, item.node, item.pos)
end for

schi := GetDocumentSchema(doci)
APS := GetApplicablePolicies(session, doci, schi, add, USR)
xdom := MarkDocument(doci, APS)

for each item ∈ ANS do
xdom := ResolveConflict(xdom, item.node, URS)
if ¬InsertionOfSubtreeAllowed(xdoc, item.node) then

xdoc := RemoveSubtree(xdoc, item.node)
end if

end for
doc := Transform(xdom)

In the same way as in the case of the insertion operation, the delete oper-
ation of the subtree is allowed if deletion of all nodes of the subtree is allowed,

602 ComSIS Vol. 8, No. 3, June 2011

Access Control Framework for XML Document Collections

i.e. if the final access control policies of each node of the subtree permit this
operation.

For replacement of a subtree by another subtree, it is necessary that ac-
cess control policies allow replacement of the nodes, i.e. that it is allowed to
replace one of the nodes and that replacement with the given node is allowed.
Hence, two sets of access control policies have to be defined for the operation
of replacing a subtree. The first set defines the precondition (if the node can
be replaced). The second set defines the postcondition (if replacement with the
given node is allowed).

Reading Operations XXACF currently supports three types of reading opera-
tions: pruned reading, fake reading and encrypted reading.

Pruned reading provides only reading of those parts of the XML document
that are allowed to be read by the user - the content for which the user has no
read authorization is removed. Given the extended DOM model of a document,
this process is performed by removing nodes of the document tree for which
access is not granted. If a node, for which access is not granted, is a leaf, it
is removed from the tree. If a node with denied access is not a leaf (hence it
is an XML element) then, in order to preserve the document structure, it is not
removed from the tree, but its attributes which the user is not granted to read
are removed.

The fake reading operation processes the document in such a way that the
parts of the document not granted to be read are replaced by fake (dummy)
values. The purpose of this type of reading operation is to obtain the document
which is in accordance with its XML schema. Since the XML Schema standard
supports the large number of data types and defining new ones, generating
fake values according to the given data type may be very complex. We have
opted for using the approach that multiple dummy value generators may be
implemented and integrated into XXACF, each targeting a specific data type.

The pruned reading and dummy reading operations are executed on the
user demand, i.e. on each request for reading a document. In the case of the
large number of accesses to documents for reading, using the previously de-
scribed reading operations may seriously diminish the system performance.

An effective alternative to these approaches is to use encrypted reading -
by creating a new document based on the original one, according to the access
control policies defined for the original document. Users can access only the
parts of the new document for which they are authorized. One of the methods
to form that kind of document is to use cryptographic techniques based on
keys. According to access control policies, different parts of a document are
encrypted with different keys. A user possesses only those keys that enable him
or her to decrypt the parts of the documents that she or he is allowed to access.
The major problem for this type of reading is to determine which document
parts will be encrypted by which key. The simplest approach is to encrypt each
document node with a different key, while this key is accessible only to users
authorized for access to that node. This approach is simple for implementation,

ComSIS Vol. 8, No. 3, June 2011 603

Goran Sladić, Branko Milosavljević, Zora Konjović and Milan Vidaković

but can cause generation of a large number of keys. Our solution to this problem
is to determine role groups, where each group consists of all roles to which
access to some node(s) is granted. One key is generated for each role group;
all nodes for which that group has the access right are encrypted by that key.

The XML Encryption specification allows only encryption on the element
level and it is possible to encrypt the whole element or its content only [28]. If
an attribute role group differs from the role group of its element, it is necessary
to encrypt that attribute with another key. In order to enable attribute encryption
and maintain conformance with the XML Encryption specification, it is neces-
sary to transform it into the element. The similar case occurs if it is necessary
to encrypt an element content (child nodes) with different keys. Since it is not
possible to encrypt the whole element with one key, it is necessary to transform
all attributes to subelements of the given element. For the same reason, there
are situations when all non-element subnodes must be transformed.

Algorithm 3 Creation of an encrypted node set
NAME: CreateEncryptionDOM
INPUT: node - currently processed node
ENS - contains root nodes of subtree which are encrypted with the same key in
the previous call
OUTPUT: node - modifyed node, if required in order to enable encryption using
XML Encryption
ENS - set which contains root nodes of subtree which are encrypted with same
key

Let ANS be attributes set of the node
Let CNS be child nodes set of the node
if ANS ̸= ∅ ∨ CNS = ∅ then

if ANS ̸= ∅ then
for each attr ∈ ANS do

CreateEncryptionDOM(attr, ENS) {Recursive call}
end for

end if

if CNS ̸= ∅ then
for each childNode ∈ CNS do

CreateEncryptionDOM(childNode, ENS) {Recursive call}
end for

end if

if SameRoleGroup(node, ANS, CNS) then
RemoveNodes(ANS, ENS)
RemoveNodes(CNS, ENS)
AddNode(node, ENS)

else
node := TransformNode(node, ENS)

end if
else

AddNode(node, ENS)
end if

Determining role groups is defined by Algorithm 3. It describes the our pro-
cedure for both determining the set of the root nodes of the subtrees in which
each node should be encrypted by the same key, and possible subtrees trans-
formation.

604 ComSIS Vol. 8, No. 3, June 2011

Access Control Framework for XML Document Collections

Since, the secret keys are stored into the document it is necessary to en-
crypt those keys with the public keys of users who will read the document us-
ing the asymmetric encryption procedure. Only secret keys assigned to user’s
roles are encrypted with the public key of each user (i.e., keys that belong to
role groups which contain one or more user’s roles). Then a user will be able
to decrypt only secret keys which are encrypted with her/his public key. In this
manner, a user can access only secret keys assigned to her/his roles and there-
fore she/he can decrypt only document fragments which she/he is authorized
for.

6. Conclusion

This paper presents the main features of eXtensible XML Role-Based Access
Control Framework (XXACF).The proposed access control model provides ac-
cess control representation according to the RBAC model and enables defini-
tion of the context-sensitive access control. It allows specification of the ac-
cess control policies on the document schema, instance, and fragment lev-
els. Also, content-dependent access control policies specification is possible.
XXACF provides access control enforcement for different operations on a doc-
ument, as well as the possibility of different ways of access control enforcement
for the same operation. The presented model separates XML documents from
RBAC components and provides independent design and administration of ac-
cess control policies.

The most notable improvements over the systems reviewed in Section 2
include: (a) context-sensitive access control based on the hierarchical RBAC
model, (b) document-dependent definition of access control policies on differ-
ent priority and granularity levels, and (c) support for separate access control
enforcement for different operations on documents and different ways of imple-
menting the same operation.

The XXACF prototype implementation is verified on a document-centric work-
flow system based on XML documents. The presented prototype implementa-
tion represents the proof of the proposed model practical value. Response time
for the most documents was satisfactory. The time for access control enforce-
ment is significantly less than the overall time to a document access. Only for a
few quite large documents, the access control enforcement time is a significant
part of the total access time. XXACF is yet to be verified in different environ-
ments. So far we have not considered performance implications outside of the
prototype workflow system.

Future work in XXACF development includes the integration with other ac-
cess control systems, enabling an application that uses XXACF to operate not
only with XML documents, but also with data in other formats (such as relational
databases). Moreover, we plan to adjust XXACF for access control in distributed
agent-based systems like [40]. We think that a formal specification of the con-
text has to be done in order to enable efficient usage of XXACF in different

ComSIS Vol. 8, No. 3, June 2011 605

Goran Sladić, Branko Milosavljević, Zora Konjović and Milan Vidaković

systems. Functionality of defining constraints of static and dynamic separation
of duties (SoD) is also under way.

References

1. Abi Haidar, D., Cuppens-Boulahia, N., Cuppens, F., Debar, H.: An extended RBAC
profile of XACML. In: SWS ’06: Proceedings of the 3rd ACM workshop on Secure
web services. pp. 13–22. ACM, New York, NY, USA (2006)

2. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a
better understanding of context and context-awareness. In: HUC ’99: Proceedings
of the 1st international symposium on Handheld and Ubiquitous Computing. pp.
304–307. Springer-Verlag, London, UK (1999)

3. An, D.C., Park, S.: Access control labeling scheme for efficient secure XML query
processing. In: Proceedings of the 12th international conference on Knowledge-
Based Intelligent Information and Engineering Systems, Part II. pp. 346–353.
Springer, Berlin (2008)

4. Bai, Y.: Access control for XML document. In: IEA/AIE ’08: Proceedings of the 21st
international conference on Industrial, Engineering and Other Applications of Ap-
plied Intelligent Systems. pp. 621–630. Springer-Verlag, Berlin, Heidelberg (2008)

5. Bertino, E., Bonatti, P.A., Ferrari, E.: TRBAC: A temporal role-based access control
model. ACM Trans. Inf. Syst. Secur. 4(3), 191–233 (2001)

6. Bertino, E., Castano, S., Ferrari, E.: Securing XML documents with Author-X. IEEE
Internet Computing 05(3), 21–31 (2001)

7. Bertino, E., Catania, B., Damiani, M.L., Perlasca, P.: GEO-RBAC: a spatially aware
RBAC. In: SACMAT ’05: Proceedings of the tenth ACM symposium on Access con-
trol models and technologies. pp. 29–37. ACM, New York, NY, USA (2005)

8. Bertino, E., Ferrari, E.: Secure and selective dissemination of XML documents. ACM
Trans. Inf. Syst. Secur. 5(3), 290–331 (2002)

9. Bhatti, R., Bertino, E., Ghafoor, A., Joshi, J.B.: XML-based specification for web
services document security. Computer 37(4), 41–49 (2004)

10. Bhatti, R., Joshi, J.B., Bertino, E., Ghafoo, A.: Access control in dynamic XML-
based web-services with X-RBAC. In: 1st International Conference on Web Ser-
vices (2003)

11. Botha, R.A., Eloff, J.H.: A framework for access control in workflow environments.
Information Management and Computer Security 9(3), 126–133 (2001)

12. Byun, C., Park, S.: Two phase filtering for XML access control. In: Secure Data
Management. pp. 115–130. Springer (2006)

13. Chen, G., Kotz, D.: A survey of context-aware mobile computing research. Tech.
rep., Hanover, NH, USA (2000)

14. Covington, M.J., Long, W., Srinivasan, S., Dev, A.K., Ahamad, M., Abowd, G.D.:
Securing context-aware applications using environment roles. In: Proceedings of
the 6th ACM Symposium on Access Control Models and Technologies (SACMAT).
pp. 10–20. ACM, New York, NY, USA (2001)

15. Crampton, J.: Applying hierarchical and role-based access control to XML docu-
ments. In: SWS ’04: Proceedings of the 2004 workshop on Secure web service. pp.
37–46. ACM, New York, NY, USA (2004)

16. Damiani, E., Samarati, P., di Vimercati, S.D.C., Paraboschi, S.: Controlling access
to XML documents. IEEE Internet Computing 5(6), 18–28 (2001)

606 ComSIS Vol. 8, No. 3, June 2011

Access Control Framework for XML Document Collections

17. Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.: A fine-grained access
control system for XML documents. ACM Trans. Inf. Syst. Secur. 5(2), 169–202
(2002)

18. Damiani, M.L., Bertino, E., Catania, B., Perlasca, P.: GEO-RBAC: A spatially aware
RBAC. ACM Trans. Inf. Syst. Secur. 10(1), 2 (2007)

19. Dey, A.K.: Understanding and using context. Personal Ubiquitous Comput. 5(1), 4–7
(2001)

20. Feng, X., Jun, X., Hao, H., Li, X.: Context-aware role-based access control model
for web services. Grid and Cooperative Computing GCC 2004Workshops, Interna-
tional Workshop on Information Security and Survivability for Grid 3252, 430–436
(2004)

21. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur. 4(3),
224–274 (2001)

22. Filho, J.B., Martin, H.: Using context quality indicators for improving context-based
access control in pervasive environments. In: EUC ’08: Proceedings of the 2008
IEEE/IFIP International Conference on Embedded and Ubiquitous Computing. pp.
285–290. IEEE Computer Society, Washington, DC, USA (2008)

23. de Freitas Bulcao Neto, R., da Graca Campos Pimentel, M.: Toward a domain-
independent semantic model for context-aware computing. In: Proceedings of the
3rd Latin American Web Congress (LA-WEB). pp. 61–70. IEEE Computer Society,
Washington, DC, USA (2005)

24. Fundulaki, I., Maneth, S.: Formalizing XML access control for update operations. In:
SACMAT ’07: Proceedings of the 12th ACM symposium on Access control models
and technologies. pp. 169–174. ACM, New York, NY, USA (2007)

25. Gabillon, A.: An authorization model for XML databases. In: SWS ’04: Proceedings
of the 2004 workshop on Secure web service. pp. 16–28. ACM, New York, NY, USA
(2004)

26. Georgiadis, C.K., Mavridis, I., Pangalos, G., Thomas, R.K.: Flexible team-based ac-
cess control using contexts. In: SACMAT ’01: Proceedings of the sixth ACM sympo-
sium on Access control models and technologies. pp. 21–27. ACM, New York, USA
(2001)

27. Haibo, S., Fan, H.: A context-aware role-based access control model for web ser-
vices. Proceedings of the IEEE International Conference on e-Business Engineering
(ICEBE) 0, 220–223 (2005)

28. Imamura, T., Dillaway, B., Simon, E.: XML encryption syntax and processing. W3C
Recommendation (2002), http://www.w3.org/TR/xmlenc-core/

29. Kudo, M., Hada, S.: XML document security based on provisional authorization. In:
CCS ’00: Proceedings of the 7th ACM conference on Computer and communica-
tions security. pp. 87–96. ACM Press (2000)

30. Latif, U., Joshi, J.B.D., Bertino, E., Ghafoor, A.: A generalized temporal role-based
access control model. IEEE Trans. on Knowl. and Data Eng. 17(1), 4–23 (2005)

31. Miklau, G., Suciu, D.: Controlling access to published data using cryptography. In:
VLDB ’2003: Proceedings of the 29th international conference on Very large data
bases. pp. 898–909. VLDB Endowment (2003)

32. OASIS: Extensible access control markup language (XACML) v 2.0. OASIS Speci-
fication (2005), www.oasis-open.org/committees/xacml

33. OASIS: Hierarchical resource profile of XACML. OASIS Specification (2005),
www.oasis-open.org/committees/xacml

34. OASIS: XACML profile for role based access control (RBAC). OASIS Specification
(2005), www.oasis-open.org/committees/xacml

ComSIS Vol. 8, No. 3, June 2011 607

Goran Sladić, Branko Milosavljević, Zora Konjović and Milan Vidaković

35. Qi, N., Kudo, M., Myllymaki, J., Pirahesh, H.: A function-based access control model
for XML databases. In: CIKM ’05: Proceedings of the 14th ACM international con-
ference on Information and knowledge management. pp. 115–122. ACM, New York,
NY, USA (2005)

36. Roder, P., Tafreschi, O., Eckert, C.: History-based access control for XML docu-
ments. In: ASIACCS ’07: Proceedings of the 2nd ACM symposium on Information,
computer and communications security. pp. 386–388. ACM, New York, NY, USA
(2007)

37. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: Proc of
IEEE Workshop on Mobile Computing Systems and Applications. pp. 85–91. IEEE
Computer Society, Washington, DC, USA (1994)

38. Shang, C., Yang, Z., Liu, Q., Zhao, C.: A context based dynamic access control
model for web service. In: International Conference on Embedded and Ubiquitous
Computing, IEEE/IFIP. vol. 2, pp. 339–343. IEEE Computer Society, Los Alamitos,
CA, USA (2008)

39. Sladić, G., Milosavljević, B., Konjović, Z.: Extensible access control model for XML
document collections. In: ICETE SECRYPT: Proceedings of the 2nd International
Conference on Security and Cryptography. pp. 373–380. INSTICC (2007)

40. Vidaković, M., Milosavljević, B., Konjović, Z., Sladić, G.: Extensible java EE-based
agent framework and its application on distributed library catalogues. Computer Sci-
ence and Information Systems 6(2), 28 (2009)

41. Wolf, R., Keinz, T., Schneider, M.: A model for context-dependent access control
for web-based services with role-based approach. Proceedings of the 14th IEEE
International Workshop on Database and Expert Systems Applications (DEXA) 00,
209–214 (2003)

Goran Sladić is teaching assistant at the Faculty of Technical Sciences, Novi
Sad, Serbia. Mr. Sladić received his Bachelor degree (2002) and Master de-
gree (2006) all in Computer Science from the University of Novi Sad, Faculty
of Technical Sciences. Since 2002 he is with the Faculty of Technical Science
in Novi Sad. His research interests include information security, context-aware
computing and document management. He is the corresponding author and
can be contacted at: sladicg@uns.ac.rs

Branko Milosavljević is holding the associate professor position at the Faculty
of Technical Sciences, Novi Sad, Serbia since 2008. Mr. Milosavljević received
his Bachelor degree (1997), Master degree (1999), and PhD degree (2003) all
in Computer Science from the University of Novi Sad, Faculty of Technical Sci-
ences. Since 1998 he is with the Faculty of Technical Science in Novi Sad. His
research interests include information retrieval, digital libraries, document man-
agement and information security.He can be contacted at: mbranko@uns.ac.rs

Zora Konjović is holding the full professor position at the Faculty of Technical
Sciences, Novi Sad, Serbia since 2003. Mrs. Konjović received her Bachelor de-
gree in Mathematics from the University of Novi Sad, Faculty Science in 1973,
Master degree (1985) and Ph. D. degree (1992) booth in Robotics from the Uni-
versity of Novi Sad, Faculty of Technical Sciences. Since 1973 till 1980 she was

608 ComSIS Vol. 8, No. 3, June 2011

Access Control Framework for XML Document Collections

with the Faculty of Science in Novi Sad, and since 1980 she is with the Faculty
of Technical Sciences, University of Novi Sad. Her research includes the fields
of artificial intelligence, intelligent document management, and the applications
of formal modeling in education. She can be contacted at: ftn zora@uns.ac.rs

Milan Vidaković is holding the associate professor position at the Faculty of
Technical Sciences, Novi Sad, Serbia. He received his PhD degree (2003)
in Computer Science from the University of Novi Sad, Faculty of Technical
Sciences. Since 1998 he has been with the Faculty of Technical Sciences in
Novi Sad. Mr. Vidaković participated in several science projects. He published
more than 60 scientific and professional papers. His main research interests
include web and internet programming, distributed computing, software agents,
and language internationalisation and localisation. He can be contacted at:
minja@uns.ac.rs

Received: August 27, 2010; Accepted: April 5, 2011.

ComSIS Vol. 8, No. 3, June 2011 609

