
UDC 004.652.4, DOI:10.2298/CSIS101020035S

Advanced Indexing Technique for Temporal Data

Bela Stantic, Rodney Topor, Justin Terry, and Abdul Sattar

Institute for Integrated and Intelligent Systems
Griffith University,

Queensland, Australia
{b.stantic, r.topor, j.terry, a.sattar}@griffith.edu.au

Abstract. The need for efficient access and management of time de-
pendent data in modern database applications is well recognised and re-
searched. Existing access methods are mostly derived from the family of
spatial R-tree indexing techniques. These techniques are particularly not
suitable to handle data involving open ended intervals, which are com-
mon in temporal databases. This is due to overlapping between nodes
and huge dead space found in the database. In this study, we describe a
detailed investigation of a new approach called “Triangular Decomposition
Tree” (TD-Tree). The underlying idea for the TD-Tree is to manage tempo-
ral intervals by virtual index structures relying on geometric interpretations
of intervals, and a space partition method that results in an unbalanced
binary tree. We demonstrate that the unbalanced binary tree can be ef-
ficiently manipulated using a virtual index. We also show that the single
query algorithm can be applied uniformly to different query types without
the need of dedicated query transformations. In addition to the advan-
tages related to the usage of a single query algorithm for different query
types and better space complexity, the empirical performance of the TD-
tree has been found to be superior to its best known competitors.

Keywords: Temporal Databases, Access Methods, Performance Evalua-
tion.

1. Introduction

While being ever changing, time is an important aspect of all real world phe-
nomena. Each event bears a time attached to it, sometimes in more than one
form. Time marks the starting and ending of an event and establishes the va-
lidity of data. Facts, i.e. data, valid today may have had no meaning in the past
and may hold no identity in the future. Some data, on the other hand may hold
historical significance or may continue to be valid up to a predefined point in
time. This relationship with time adds a temporal identity to most data and, in
this light, it would be hard to identify applications that do not require or would
not benefit from database support for time-varying data. Most current database
systems represent a single state of data and this is most commonly assumed
to be its current state. Any modifications normally result in the overwriting of
the data with the old data being discarded. Although commercial databases of-
fer some capabilities to keep track of old and discarded data (e.g. the Oracle



Bela Stantic, Rodney Topor, Justin Terry, Abdul Sattar

TimeSeries cartridge, Oracle “Flash-Back”, and the Informix TimeSeries Data-
Blade), this is solely for the purpose of database recovery and not to retain the
previous state of the data.

In the last two decades, research on temporal databases has advanced
in various aspects and reported many important results, however, many chal-
lenges still remain [4], [18]. In most of the previous studies, core concepts have
been established, but it is yet to be shown how they can be applied for efficiently
managing time dependent data. Because temporal databases are in general
append-only and usually very large in size, an efficient access method is even
more important than for conventional databases. Numerous access structures
were proposed, however, they have usually lacked practical credibility. More-
over most of these structures cannot handle now-relative data adequately. This
means that these structures assume that the starting and ending points of in-
tervals are known explicitly when recorded into the database. Obviously, this is
unrealistic and this particular constraint makes these structures unsuitable for
practical temporal applications.

Many multidimensional access structures have been proposed and some of
them have been recommended for handling temporal data [12]. The effective-
ness of the majority of these index structures has been theoretically evaluated
[17]. We classify existing access methods for temporal data into four groups.
The first group contains methods which represents extensions of data partition-
ing spatial indexing structures such as the Segment R-tree [9], 4R-tree [3], or
a number of partially persistent methods [12]. In the second group, we have
identified modifications of regular B+-tree access structures, such as the Fully
Persistent B+-tree [13] and the Snapshot index [23]. The third group includes
techniques based on incremental structures, such as, the Time Index [5], Time
Index+ [24], and the Monotonic B+-tree [16]. Finally, in fourth group are meth-
ods which are employing the existing B+-tree access structure by mapping of
one dimensional ranges to one dimensional points, such as, MAP21 [14], map-
ping strategy that linearize the data like Interval Space Transformation method
(IST) [7] or managing the intervals by two relational indexes the RI-tree [11], [6].

Data partitioning access methods, such as spatial indexes, use a spatial
containment hierarchy that clusters data into bounding regions at the leaf level.
The nearby internal nodes are then clustered into bounding regions of the par-
ent node forming a hierarchical directory structure. These regions may not
represent the entire data space and could overlap. Overlapping is a problem
for data partitioning access methods because even for a simple point query it
may need to examine multiple paths. When open ended now-relative intervals
(where the ending point of the temporal interval follows the current time) are
represented with widely used maximum timestamp approach a significant over-
lapping between nodes and dead space causes very poor performance of the
index [19], [21].

We intend to propose an access method for temporal data that relies on
the exploitation of the relational database systems built-in functionalities; to
utilises the native Data Definition Language (DDL), Data Manipulation Lan-

680 ComSIS Vol. 7, No. 4, December 2010



Advanced Indexing Techniques for Temporal Data

guage (DML); and to use PL/SQL procedure environment within the SQL stan-
dard.

A number of access methods for temporal data that utilise the relational
database systems built-in functionalities have been proposed, including: MAP21
[14], Time Index [5], Interval B-tree [2], those based on interval space transfor-
mation [7] and RI-tree [11]. We observe that the proposed access methods that
rely on relational database systems built-in functionalities, such as Time Index,
Interval B-tree and those based on interval space transformation IST, have ei-
ther space complexity problem or are generally tailored to be efficient only for
specific query types. In [11], it has been shown that the RI-tree is superior to
the Window-List [15], Oracle Tile Index (T-Index) and IST-technique. In the work
[10], it was extended and an algorithm for general interval relationships has
been presented, but there is still a need to tailor query transformation to the
specific query types. It is our intention to propose an efficient access method
for temporal data with logarithmic access time and guaranteed minimum space
complexity that can answer a wide range of query types with the same query
algorithm.

In this paper we present and investigate the “Triangular Decomposition Tree”
(TD-tree) access method to index and query temporal data. In contrast to pre-
viously proposed access methods for temporal data, this method can efficiently
answer a wide range of query types, including point queries, intersection queries,
and all nontrivial interval relationships queries, using a single algorithm, without
dedicated query transformations.

The TD-tree is a space partitioning access method. The basic idea is to
manage the temporal intervals by a virtual index structure that relies on a
two-dimensional representation of intervals [20], and a triangular decomposi-
tion method. The resulting binary tree stores a bounded number of intervals
at each leaf and, hence, may be unbalanced. As data is only stored in leaves,
traversing the tree avoids disk accesses, and the tree depth does not affect the
performance. Using the interval representation, any query type can be reduced
to a spatial problem of finding those (triangular) leaves that intersect with the
spatial query region. TD-trees can be implemented on top of a standard rela-
tional DBMS.

The efficiency of the TD-tree is due to the virtual internal structure, so there
is no need for physical disk I/O’s, query algorithms that ensures pruning, and
efficient clustering of interval data. On top of the advantages related to the
usage of a single query algorithm for different query types and better space
complexity, the empirical performance of the TD-tree is demonstrated to be
superior to its best known competitors.

The remainder of this paper is organised as follows: In the next Section, we
briefly describe several temporal access methods of interest for this discussion
and highlight their advantages and disadvantages. In Section 3, we define the
mapping strategy and determine regions of interest. Section 4 describes the
structure of TD-trees, and the key insertion and query algorithms. Section 5
contains the results and analysis of the empirical study conducted to demon-

ComSIS Vol. 7, No. 4, December 2010 681



Bela Stantic, Rodney Topor, Justin Terry, Abdul Sattar

strate the practical relevance and efficiency of the TD-tree. Finally, in Section 6,
we present our conclusions.

2. Related work

In the literature, two time lines of interest have been mentioned, transaction
time and valid time. The valid time line represents when a fact is valid in the
modelled world and the transaction time line represents when a transaction
was performed. A bitemporal database is a combination of valid and transac-
tion time databases [4]. Because temporal databases are in general append
only, they are usually very large in size, thus efficient access method is even
more important in temporal databases than in conventional databases. A num-
ber of index structures for temporal data are described in the literature [17].
The existing temporal access structures, as highlighted in section 1, fit in one
of four groups. We will focus on indexing structures from group four, which can
be utilised by exploiting the structures and functionality of commercial RDBMSs
and rely on the relational paradigm. We briefly discuss typical representatives
from group three and four and highlight their advantages and disadvantages.

The Time Index [5] is an index structure for valid time intervals. It is a set of
linearly ordered indexing points that is maintained by a B+−tree. To overcomes
the deficiencies of the Time Index, related to the space requirement which is
O(n2) for storing n intervals, the Time Index+ has been proposed [24]. Time
Index+ relies on efficient storage model for partitioning logical buckets and on
employing a new method to handle object versions with long and very long time
intervals. The Time Index+ requires less storage than the Time Index but but still
requires significantly more space, even more than the spatial index methods.
The disadvantage of this approach is the space required for the index, as for
each point in time a bucket of pointers refers to the associated set of valid
intervals. Since an interval may be registered with several points in time, This is
a problem, particularly for data with many long living tuples.

The Interval B-tree (IB-tree) [2] overcomes the problems related to the ex-
tensive space usage of the Time index. It represents an implementation of the
Edelsbrunner’s interval tree using an augmented B+-tree rather than a binary
tree. The main memory model of the interval tree is transformed into an effi-
cient secondary storage structure that preserves the optimal space and time
complexity. The disadvantage of this approach is the complex three-fold model,
which requires a dedicated structure for each level. This makes the IB-tree less
attractive from the view point of time complexity.

The access method (ISP) [7] is based on interval space transformation.
Since the data space may grow dynamically at the upper bound, this method is
well suited for appending intervals. It indexes lists on different orders, start time,
end time or duration. This access method is highly specialized with respect to
the suggested mapping and can not efficiently answer more complex queries
such as intersection query or point query.

682 ComSIS Vol. 7, No. 4, December 2010



Advanced Indexing Techniques for Temporal Data

The Hierarchical Triangular Mesh (HTM) is method [22] suited for indexing
the sphere and especially for astronomy data. It subdivides the half surface of
a sphere into four spherical triangles of similar, but not identical, shapes and
sizes. Every triangle is further subdivided into four smaller triangles. Division
forms a balanced tree, which is then indexed with the Quad-tree. The HTM
is highly dedicated for the data that have an inherent location on the celestial
sphere. The HTM has been mentioned as it has triangles as a region as our
method and to highlight the differences.

The Relational Interval Tree (RI-tree) is an access method for general closed
interval data, it can be created for any relational or object-relational table con-
taining intervals [11]. Analytical and experimental evaluation of the RI-tree shows
that the performance of this method is superior to the other approaches. This
is achieved by introducing a virtual primary structure. Although the structure is
space-oriented, the storage of intervals is object-driven so no storage space is
wasted for empty regions in the data space. In [10] work was extended and an
algorithm for general interval relationships has been presented but still there is
a need for tailored query transformation to the specific query types. It is our in-
tention to propose an efficient access method for temporal data that can answer
wide range of query types with the same algorithm and that does not require
tailored query transformation for different query types.

3. Representation of intervals and interval relationships

We assume a discrete, totally ordered time model with epochs in the range
[0..λ], for some (large) λ > 0. It is straightforward to map absolute timestamps
into such a range of natural numbers, as every Unix system, for example, does.
We consider only semi-open intervals [is, ie), where 0 ≤ is < ie ≤ λ. Each
such interval can then be represented as a point (is, ie) in two-dimensional
space as shown in Fig. 1. Here, the first coordinate represents the start, S, of
the interval and the second coordinate represents the end, E, of the interval.
Fig. 1 shows a set of intervals A, B, C and D and their representation in two-
dimensional space .

For point data there are only a few distinct query types, e.g., point queries
and range queries, but for interval data there are many different query types,
e.g.. In particular, Allen described 13 distinct interval algebra (IA) relationships
that may hold between pairs of intervals [1].

Each of the 13 IA relationships may now be represented as a region, line or
point in our two-dimensional space, as shown in Fig. 2. When we study Allen’s
relationships with indexing and query evaluation in mind, we observe that they
fall into two distinct groups.

Relationships between two intervals such as ‘start’, ‘start-by’, ‘finish’, ‘finish-
by’, ‘before’, ‘after’, ‘meet’and ’meet-by’: mi can be queried efficiently by one
dimensional index structures such as B+-tree. This is because the problem is
reduced to a simple comparison of two points, start or end. However to effi-
ciently answer queries with relationships between two intervals that require the

ComSIS Vol. 7, No. 4, December 2010 683



Bela Stantic, Rodney Topor, Justin Terry, Abdul Sattar

Fig. 1. Interval representation in two-dimensional space

Fig. 2. Allen’s 13 IA relationships between two intervals

comparison of both starting and ending points of both intervals such as: ‘over-
lap’, ‘overlap-by’, ‘during’, ‘contain’ and ‘equal’ require special access method

From now on, we focus on the problem of efficiently answering queries about
relationships in the second group. We also study queries about the more gen-
eral ‘intersects’ relationship and its special case the ‘membership’ relationship
(or ‘point’ query). The basic query types we consider are queries from group
two plus intersection and point query.

If the universe of intervals is U = { [us, ue] | 0 ≤ us < ue ≤ λ}. Due to the
definition of intervals that they are semi-open us must be only less than ue and
can not be equal. Then Fig. 3 (a) shows a set of intervals A, B, C, D, a query
point at T0, and a query interval Iqt = (T1, T2). The result of each query type
above is then a two-dimensional rectangle, or point, as defined below.

– Equality Query EMQ - checks if the database contains an interval which
equals the query interval:
EMQ([is, ie]) = { [rs, re] | rs = is ∧ re = ie } is a point in
two-dimensional space;

684 ComSIS Vol. 7, No. 4, December 2010



Advanced Indexing Techniques for Temporal Data

Fig. 3. Query regions

– Intersection Query (IQ), Fig. 3 (b) - finds all intervals that intersect the query
interval:
IQ([is, ie]) = { [rs, re] | (rs < ie) ∧ (is < re) } is a rectangle
[(0, λ), (ie, is)], in our example is = T1 and ie = T2);

– Point Query (PQ), Fig. 3 (c) - also called timeslice query is a special case of
intersection query it finds all intervals that contain the query point: PQ(p) =
{ [rs, re] | rs < T0 < re } is a special case of IQ and results in the rectangle
[(0, λ), (p, p)], in our example p = T0;

ComSIS Vol. 7, No. 4, December 2010 685



Bela Stantic, Rodney Topor, Justin Terry, Abdul Sattar

– Contained-in Query (CQ), Fig. 3 (d) - finds all intervals that are contained in
the query interval:
CQ([is, ie])] = { [rs, re] | (is < rs < ie) ∧ (is < re < ie) } can be simplified
to { [rs, rs] | (is < rs < re < ie)}, maps to the rectangle [(is, ie), (ie, is)];

– Enclosure Query (EQ), Fig. 3 (e) - finds all intervals that contain the query
interval.: EQ([is, ie]) = { [rs, re] | (rs < is < re) ∧ (rs < ie < re) } can be
simplified to {[rs, re]|(rs < is < ie < re)}, as rs < re and is < ie, and results
in the query box [(0, λ), (is, ie)], ,

– Overlap Query (OQ), Fig. 3 (f): OQ([is, ie]) = { [rs, re] | (is < rs) ∧ (rs <
ie < re) }, maps to the rectangle [(0, ie), (is, is)];

– Overlap by Query (OBQ), Fig. 3 (g): OBQ([is, ie]) = { [rs, re] | (rs <
is < re) ∧ (rs < ie) }, is rectangle [(is, λ), (ie, ie)];

The point of this analysis is that the evaluation of every query type can now
be reduced to the spatial problem of finding all data intervals that belong to the
rectangle associated with that query. In particular, this means that every query
type can be evaluated by a common algorithm, which is what we now study.
Note, to form a rectangular query region for particular query type, the query
region can extend under the line E = S, as for example for intersection query
Figure 3 (b) and containment query Figure 3 (d). Because 0 ≤ is < ie ≤ λ
no intervals will be registered under the line E = S so extending query region
under the line E = S to form rectangular query region will not affect the answer.

4. The Triangular Decomposition Tree (TD-tree)

The structure of our indexing method is based on the observation, that all data
and query intervals of interest represented in two dimensional space lie in the
isosceles, right-angle triangle with vertices at (0,0), (0, λ) and (λ, λ), which lies
above the line E = S. We call this triangle the basic triangle Figure 1. This is
due to nature of interval space transformation and fact that is < ie.

Given that our region of interest is a triangle, our main proposal is to recur-
sively decompose the basic triangle into two smaller triangles. This triangular
decomposition of the basic triangle forms a tree which we call a TD-tree. This
tree is not balanced in general. Data intervals (points in two-dimensional space)
are stored in the database in blocks associated with the leaves of the TD-tree.
Figure 4 shows the second and third level of a unbalanced triangular decompo-
sition. Arrows point to the “apex”, the right-angled vertex of the triangle, of each
triangle,

In such a triangular decomposition, each triangle is uniquely identified by
its apex position (s, e) , and its direction d, the direction of the arrow from the
midpoint of the triangle’s hypotenuse to the apex. Note that there are eight
possible directions, corresponding to the eight points of the compass, all of
which are shown in Fig. 5.

Given a Parent (P) triangle in this decomposition, its apex and direction
uniquely determine the apex and direction of each of its two subtriangles. We

686 ComSIS Vol. 7, No. 4, December 2010



Advanced Indexing Techniques for Temporal Data

Fig. 4. Unbalanced triangular decompositions of the basic triangle.

Fig. 5. Positions of low and high subtriangles

call these subtriangles low and high Children (C). Figure 5 shows, for each pos-
sible direction, which are the low and high subtriangles, and where the apexes
of these two subtriangles are. Note that we number the possible directions 0
to 7 clockwise starting from direction “north”.

Input: (P.d: Parent direction)
Output: L.d: Left child direction, R.d: Right child direction
begin

if (1 <= P.d <= 4) then
L.d = (P.d + 5) mod 8;
H.d = (P.d+ 3);

else
L.d = (P.d + 3) mod 8;
H.d = (P.d + 5) mod 8;

end
end

Algorithm 1: Children apex directions

ComSIS Vol. 7, No. 4, December 2010 687



Bela Stantic, Rodney Topor, Justin Terry, Abdul Sattar

By observation of Fig. 5, we see that it is possible to define the apex position
and direction of the subtriangles of a given triangle using the following two al-
gorithms. Algorithm 1 computes the direction d of the lower (L) and higher (H)
Children (C) subtriangles of a Parent triangle P with direction d.

Input: (P.s: Parent start, P.e: Parent end, d: direction), length length
Output: C.s: Child start, C.e: Child end
begin

if (d = 0) then
C.s := P.s; C.e := P.e − length

else if (d = 1) then
C.s := P.s − length/root(2); C.e := P.e − length/

√
2

else if (d = 2) then
C.s := P.s − length; C.e := P.e

else if (d = 3) then
C.s := P.s − length/root(2); C.e := P.e + length/

√
2

else if (d = 4) then
C.s := P.s; C.e := P.e + length

else if (d = 5) then
C.s := P.s + length/root(2); C.e := P.e + length/

√
2

else if (d = 6) then
C.s := P.s + length; C.e := P.e

else
C.s := P.s + length/root(2); C.e := P.e − length/

√
2

end
end

Algorithm 2: Children apex position calculation
Algorithm 2 computes the position (s, e) of the apex of each subtriangle C

of a parent triangle P at any level l. This is possible only knowing the position
of the parent apex and its level.

From Fig 1 it is straight forward that the basic triangle apex is (0, λ) and
we accepted that the basic triangle has level 0. Without loss of generality, we
may assume that λ = 2k, for some k > 0. To find the children’s apex position
the adjustment length that has to be applied to the parent apex position as
presented in Algorithm 2. Adjustment length depends only on level of partition l
and k. It can be calculated as:

length = 2k ∗ (21/2/2)(l−1) (1)

Note that both child subtriangles of the parent triangle have the same apex
position. Position of the child C apex (s, e) will be calculated depending to the
direction d of the parent P apex using the Algorithm 2.
Note that the level of the subtriangles of a triangle are one more than the level
of the triangle. Note also that the resulting tree need not be balanced. In an
unbalanced tree, different leaves may be at different levels. The shape of a tree
depends on the distribution and density of data intervals.

688 ComSIS Vol. 7, No. 4, December 2010



Advanced Indexing Techniques for Temporal Data

Because we can identify the apex and direction of every node of a TD-tree,
starting from the basic triangle, using the two algorithms, we do not need to
store the internal tree nodes. Thus, a TD-tree is a virtual tree. All we need to
store is the value λ and a reference to the root node.

The actual data intervals, together with information about the intervals, are
stored in a table indexed by a leaf identifier. The tree is organised so that at most
b data intervals are stored with each leaf, for some integer blocking factor b > 0.
A node identifier is a binary string, stored as a (binary) integer, constructed
as follows. The identifier of the base triangle or tree root is 1. If a node has
identifier φ, the lower and upper children of the node have identifiers φ0 and φ1
respectively. The length of the identifier is thus one greater than the depth of
the node.

Information about leaf nodes themselves are stored in a separate directory,
containing an identifier and number of records per leaf. The root node stores
the blocking factor b and current maximum depth of the tree l.

4.1. Insertion algorithm

Insertion of data interval into a TD-tree is performed according to Algorithm
3. We first descend the tree from the root to the virtual leaf at maximum tree
depth containing the interval. This is done arithmetically, without disk access,
by repeatedly selecting the lower or upper child of each node depending on the
value of the interval.

The leaf found is called “virtual” because that branch of the tree may have
length less than the maximum depth. For example, the upper child of the root
node in Fig. 6 labelled ‘g’ is a leaf on a path of length 2, whereas the tree has
maximum depth 7, as it can be seen in Table 1.

Input: (object for insertion: OBJ , Directory: D, blocking factor: b,
max population, max depth)

begin
Find maxregion at max depth where OBJ would belong;
target region = region in D with longest number of bits in common

left to right with the maxregion;
Find target region population;
if (target regionpopulation > max population) then

Increment the population in D of target region;
Update region with target region;

else
perform Split;

end
end

Algorithm 3: Insertion
Given the sample decomposition from Fig. 6, the directory would be as

shown in Table 1. This table shows the label, identifier (in both binary and dec-
imal) and identifier extension (in both binary and decimal) for each leaf of the

ComSIS Vol. 7, No. 4, December 2010 689



Bela Stantic, Rodney Topor, Justin Terry, Abdul Sattar

tree. The identifier extension is the unique extension of the leaf identifier with
zeros so that it is of length l, where l is the maximum depth of the tree. Val-
ues for binary identifier and both binary and decimal identifier extension are not
stored as they can be calculated from decimal identifier and max depth of the
tree ‘l’.

Fig. 6. Running example regular decomposition

Table 1. Directory for sample tree

Label Identifier Identifier Extension
(binary) (decimal) (binary)

a 100 4 1000000
b 1010 10 1010000
c 10111 23 1011100
d 101100 44 1011000
e 1011010 90 1011010
f 1011011 91 1011011
g 11 3 1100000

We attempt to insert the data interval into the actual leaf that is an ancestor
of the virtual leaf found by the above traversal.

If the identifier of the virtual leaf w containing the interval is z, then the
identifier of the actual leaf v that is ancestor of w is given by the longest identifier
in the directory that is a prefix of z. For example, if the identifier of the virtual
leaf containing the interval is 1010010, then the identifier of the actual leaf in
which the interval should be stored is 1010.

690 ComSIS Vol. 7, No. 4, December 2010



Advanced Indexing Techniques for Temporal Data

Considering the sample from Figure 6 and Table 1, let for example an inter-
val, according to the start and end points, would belong to region on max depth
’1010010’. This max depth region ‘1010010’ at the maximum depth doesn’t
does not exist so it is required to locate the actual region to store the interval
in. That region is given by the longest identifier in the directory that is a prefix
of max depth region ‘1010010’ and in our case it is the region ‘1010’. Having
found the region which to store the interval, we simply update leaf identifier in
table with that identifier and in directory increment number of records that region
holds by one.

To ensure efficient retrieval, we store at most b data intervals with each
leaf. If a leaf already has that many intervals, we construct the two children of
the leaf, replace the parent with the two children in the directory, distribute the
current (and new) intervals between the two children as appropriate, and repeat
this process recursively if all intervals go into the same child. If this operation
increases the maximum tree depth, we record the new maximum depth. This
split is performed according to Algorithm 4.

Input: (SR: Split Region, D: Directory, blocking factor, max pop,
max depth)

begin
while not both child regions population < max pop do

divide data of SR into children; current depth = SR depth + 1;
if current depth > max depth then

max depth = max depth + 1;
end
if child region is POINT then

Exit;
end

end
end

Algorithm 4: Split
It is possible that all intervals in a region that has to be split are located

within one newly created smaller region, which will cause a further split. Splits
will be performed until intervals can be distributed between two child regions or
the maximum split was reached (region represents a point). If maximum split
was reached the population of the region is allowed to grow beyond blocking
factor, which means that multiple blocks may associate with one region.

4.2. Query algorithm

Following the analysis of Section 3, we can assume that every query corre-
sponds to a rectangular region of the two-dimensional interval space, defined
by the top-left and bottom-right corners of this region. The task of the query
evaluation is to find all data intervals that occur within this query region. The
particular region chosen depends on whether we are performing an intersec-
tion query, an overlaps query, a contains query, and so on, but in each case the
query evaluation algorithm is identical, an important property of our approach.

ComSIS Vol. 7, No. 4, December 2010 691



Bela Stantic, Rodney Topor, Justin Terry, Abdul Sattar

Query evaluation itself proceeds in two phases Algorithm 5. In the first phase
we find those TD-tree nodes which are contained entirely within the query re-
gion and those TD-tree leaves which overlap (but are not contained in) the query
region. This phase accesses the disk to retrieve nodes from the directory and to
retrieve data intervals from overlapping leaves. In the second phase, we return
the intervals in the first set of nodes, and scan the intervals in the second set of
leaves for those that occur in the query region. This second phase requires no
additional disk access.

The first phase may be implemented as follows. It takes as input the query
region Q and the directory D. It returns the set of data intervals that occur
within Q.

Input: (D: Directory, Q: Query region)
Output: A1: Containing leaves, A2: Overlapping leaves
begin

Add all nonempty leaves in D to a LIST;
let length L be 1;
while LIST is not empty do

let F be the first leaf in LIST;
let R be the ancestor of F whose identifier consists
of the first L digits of F’s identifier;
if R is contained within Q then

add all leaves in LIST with the same prefix as R to A1 and
remove them from LIST;
set L to 1;

else if R is disjoint from Q then
remove all leaves in LIST with the same prefix as R from LIST;
set L to 1;

else if R equals F then
add R to A2 and remove it from LIST;

else
increment L;

end
end

end
Algorithm 5: Query algorithm

This phase terminates with A1 containing the set of nodes whose descendent
leaves are contained entirely within Q, and A2 containing the set of leaves which
overlap Q. By testing whether the ancestor R of F is contained within Q, we can
select all leaves under R in one operation. This property of our algorithm sig-
nificantly reduces the number of disk accesses and improves its overall perfor-
mance. To test whether a triangle is contained within a rectangle or whether a
triangle intersects a rectangle are straightforward geometric operations based
on the vertices of the two operations.

On Figure 7 and 8 virtual region ‘100’ (dark grey) lies completely outside the
region for point query at T0, and for that reason all leaf regions that are children
of virtual region ‘100’ are excluded from the answer (10001, 100000, 100001,

692 ComSIS Vol. 7, No. 4, December 2010



Advanced Indexing Techniques for Temporal Data

10010, 100110, 100111). This bulk exclusion improves the query efficiency. On
Figure 7 and 8 we show total exclusion and total inclusion with the dark and
light grey respectively.

Fig. 7. Point query on transformed region

Fig. 8. Unbalanced Binary tree

ComSIS Vol. 7, No. 4, December 2010 693



Bela Stantic, Rodney Topor, Justin Terry, Abdul Sattar

In the second phase, it suffices to return all data intervals in all descendent
leaves of nodes of O1 and to scan all data intervals in all leaves of O2, return-
ing those intervals that occur within Q. This latter test is a simple arithmetic
comparison. No additional disk accesses are required in this phase.

Deletion Algorithm removes regions from the directory that contain zero ob-
jects due to the decrement of population. Also, this algorithm merges two chil-
dren into parent region if sum of population of both children falls under the one
third of the blocking factor.

Input: D: Directory, object for deletion, blocking factor)
begin

delete region = region where object for deletion belongs; Delete
object for deletion; Decrement the population of delete region; if
combined population of delete region and its sibling< blocking factor/3
then

merge two children into parent regions;
end

end
Algorithm 6: Deletion

Update can be seen as delete and insert and therefore is handled by Dele-
tion and Insert algorithms.

It is straightforward to show that the query evaluation algorithm of the previ-
ous subsection returns all data intervals that occur within the query region and
only these. In the interests of brevity we omit the details. It is perhaps more
important to note the following complexity result.

Proposition 1: An intersection query on a TD-tree with blocking factor b and
n data intervals with answer size of phase one of the query algorithm a having
the directory size m, performs O(m/b+ logbn+ a/b) disk accesses.

Proof Because the TD-tree has no internal nodes, to find the answer size
of phase one of the query algorithm a having the directory size m and block
size b, O(m/b) I/O complexity is performed. Additionally, scanning the index
organised table has I/O complexity of O(logb n ) and reporting the total of a
results requires O(a/b) operations. Therefore, the I/O complexity for TD-tree is
O(m/b+ logbn+ a/b).

Note that in worst case scenario, due to the secondary filtering of phase two
of the query algorithm, a can be equal to n. Similarly to any query algorithm that
has secondary filtering in worst case scenario I/O complexity can be basically
O(n/b). However, in our experiments we could not replicate such scenario.

In Table 2, we present the complexity cost for TD-tree and several other
access methods of interest. a denotes the size of the point query while n rep-
resents the number of interval objects. For RI-tree h is a virtual backbone tree
that corresponds to the current expansion and granularity of the data space but
does not depend on n. Because there is no internal nodes in TD-tree and the
size of the directory is significantly smaller than the data table, the complex-
ity cost for TD-tree practically depends only on answer size. Our experimental
results support this claim.

694 ComSIS Vol. 7, No. 4, December 2010



Advanced Indexing Techniques for Temporal Data

Table 2. Performance analysis of access methods of interest

Access Space Point
Method Usage Query

R− Trees O(n/b) O(n/b)
T ime Index O(n2/b) O(logbn+ a/b)
Bitemp.R− Tree O(n/b) O(logbn+ a/b)
RI − tree O(n/b) O(hlogbn+ a/b)
TD − tree O(m/b) O(m/b+ logbn+ a/b)

5. Experimental evaluation

To show the practical relevance of our approach, we performed an extensive
experimental evaluation of the TD-tree and compared it to the RI-tree [11].

The RI-tree was chosen, since it provides the same practically important
properties as our approach. It is easy to implement and integrate, it uses stan-
dard RDBMS methods which provides scalability, update-ability, concurrency
control and space efficiency. Furthermore it has been proven [11] that the RI-
tree is superior to the Window-List [15], Oracle Tile Index (T-Index) and IST-
technique [7] so performance results of the TD-tree can be transferred to these
indexing techniques. We could not compare our TD-tree with improved imple-
mentation of RI-tree [6] as it indexes Interval-and-Value tuples together while
our method only index intervals.

All experimental results presented in this section are computed on eight
850MHZ CPU - SUN UltraSparc II processor machine, running Oracle 10.2.0
RDBMS, with a database block size of 8K and SGA (System Global Area) of
500MB. At the time of testing database server did not have any other significant
load. We used Oracle built-in methods for statistics collection, analytic SQL
functions and the PL/SQL procedural runtime environment.

5.1. Data sets

In order to simulate different real applications scenarios we used different data
distributions. The start position of the intervals was always uniformly distributed
on the interval domain, while the duration was varied. Following data distribu-
tions have been considered:

– Uniformly distributed start and uniform distributed length within the range
[1, 10000] with 20% of uniformly distributed now-relative data.

– Uniformly distributed start and exponentially distributed length according to
the exponential distribution function y = e−0.00041∗x with 20% of uniformly
distributed now-relative data.

Uniform distribution of interval start, appearance of now-relative data and
exponential distribution of the duration reflects most real world applications

ComSIS Vol. 7, No. 4, December 2010 695



Bela Stantic, Rodney Topor, Justin Terry, Abdul Sattar

where short intervals are more likely to occur than long intervals. We used max-
imum timestamp approach to represent current time. Furthermore, in real world
applications there is usually a upper bound for the interval duration and in our
case we have chosen 10,000 (days) for the upper bound, not considering now-
relative data, which are represented with maximum timestamp approach.

All data set distributions had separate relations with different number of tu-
ples, 250,000, 500,000 and 1,000,000.

5.2. Query sets

In our experiment we tested performance on intersection queries and partic-
ularly on point query as its specific case. Because of the nature of our query
algorithm, by comparing the data region with the rectangular query region, as
has been shown in subsection 3, results for performance evaluation apply to
the other query types.

The point query that timeslices the timeline at the current time was used
to determine how access method performs with now-relative data. The point
query that timeslices the time line at the current time is considered to be the
most important because most often we will ask queries about the current state
of reality.

5.3. Update sets

Most often updates in Temporal databases happen when facts cease to be
valid (in valid time databases) or tuple is logically deleted (in transaction time
databases). In both cases ending time of interval that contain sematic for ‘now’
(now-relative data) is replaced with the current time. We tested performance
of our TD-tree on updates of randomly selected now-relative interval data of
100 tuples. As explained in update algorithm to perform update it is required to
perform delete from the previous region and insert interval into the new region.

5.4. Experiments

The same data set is used both for RI-tree and TD-tree testing experiment. The
initial relations with structure Employment(ID, Name, Position, Start, End) were
replicated and altered accordingly to suit each particular method.

Relations for testing the performance of the RI-Tree, were altered with col-
umn node, which is calculated for every row of data by algorithm as explained
in paper [10]. Two B+-tree composite indexes have been created LowerIndex
(node, Start) and UpperIndex (node, End). A point query is performed by call-
ing the dedicated procedure that collects leftnodes and rightnodes and then
performs the transformed SQL statement as instructed in [11].

Relations for testing the performance of the TD-tree were altered with col-
umn Region, which is calculated according the algorithm as explained in Sub-
section 4.1. The root node, which contains information for λ, blocking-factor,

696 ComSIS Vol. 7, No. 4, December 2010



Advanced Indexing Techniques for Temporal Data

adjustment date and maximum depth of the tree we stored as one tuple re-
lation. Because TD-tree has only leaf nodes it can be organised as a list and
stored in directory tables. To ensure that the population of a region corresponds
to one block, so it can be be efficiently retrieved, we introduced a blocking fac-
tor. We built relation Employment as index organised table using Region and ID
as a primary key.

5.5. Results

To compare the space requirements for RI-tree and TD-tree, we considered
tables with different number of rows. We generated tables with 250,000 rows,
500,000 rows and 1,000,000 tuples. All tables are altered to suit the particular
approach and all required primary and secondary indexes are created. In Fig. 9
we show the space requirement for the TD-tree and RI-tree. Results represent
the sum of used space for table, primary/secondary indexes and for the TD-tree
we also added required space for the directory table.

Fig. 9. Comparison of the space usage (Table plus indexes)

To measure the query performance we used a data set of one million tuples.
Results shown in Fig. 10 are for the point query with uniformly distributed start
and exponentially distributed length with 20% of now-relative data. Results rep-
resent disk I/O and average CPU usage for different points on timeline which
contain different answer sizes. We performed tests with all data distributions
mentioned in subsection 5.1, but testing resulted in similar qualitative results as
those presented here.

The Theory of Indexability [8] identifies I/O complexity cost, measured by
the number of disk accesses, as one of the most important factors for mea-
suring query performance. Other measures of importance such as CPU usage
and query response time are also used in conjunction with the number of disk
accesses to assess the performance of the query processes.

ComSIS Vol. 7, No. 4, December 2010 697



Bela Stantic, Rodney Topor, Justin Terry, Abdul Sattar

Fig. 10. Physical disk I/O as a factor of answer size

Table 3. Average number of answers per one Physical disk I/O

Answer TD − tree Answers/ RI − tree Answers/
Size DiskI/O DiskI/O DiskI/O DiskI/O

19365 6102 3.17 11902 1.63
74727 8952 8.35 43891 1.70
124280 12958 9.59 72426 1.72
163530 16012 10.21 92776 1.76
186795 18054 10.35 107068 1.74

For the TD-tree the number of leaf regions accessed to answer the query is
simply the number of regions returned in the Primary filter. Secondary filtering
only does pruning so it does not require any additional disk access, it only
adds CPU usage. When the answer is smaller, interval objects pruned with the
secondary filter effect the performance of the TD-tree and number of answers
per one physical disk I/O is relatively smaller. In Table 3 we can see that TD-
tree even for a small answer size has better factor of answers per physical
disk reads. For the RI-tree the number of answers per physical disk read is not
dependent on query load, however for the TD-tree, due to the secondary filter
features, the number of answers per physical read is dependent on query load
and reaches the best performance on larger query loads.

Beside the queries mentioned in subsection 5.2, we tested applicability and
performance of the TD-tree on several other query types, such as during, con-
tain, and even before and after. These results will be mentioned and analysed
in the next subsection.

The TD-tree performs well on now-relative data using MAX approach to rep-
resent current time, because the area where these intervals are stored can be
divided as often as required as shown in Figure 12. If we represent interval ob-
jects that belong to the particular RI-tree nodes in two dimensional space, it can

698 ComSIS Vol. 7, No. 4, December 2010



Advanced Indexing Techniques for Temporal Data

Fig. 11. CPU usage as a factor of answer size

Fig. 12. Now-relative data in TD-tree and RI-tree

be seen that all now-relative data will be located in the root node (biggest rect-
angle in Figure 12) or on the right edge of the RI-tree. Knowing the importance
of now-relative data in temporal databases this is a significant constraint.

5.6. Comparative analysis

When making performance measurements of index structures, it is important
to not only consider response time but also other parameters such as space
requirements, clustering, CPU usage, updates, and locking. In our analysis, we
have concentrated on space requirements, physical disk reads, CPU usage and
clustering of data. Because both the RI-tree and TD-tree rely on the relational
paradigm, updates and locking are handled well by the RDBMS itself.

ComSIS Vol. 7, No. 4, December 2010 699



Bela Stantic, Rodney Topor, Justin Terry, Abdul Sattar

The TD-tree requires only one virtual index structure, which means only leaf
nodes have to be stored. The list of leaf nodes are stored in the directory table
and its size is very small comparing to the table itself. In our experiment the
TD-tree directory for one million interval objects required only 26 data blocks.
In addition to directory table there is a need for extra space considering that
table is index organised by region, which is comparable with the primary index
of RI-tree method.

The RI-tree requires two composite index structures lowerIndex and the up-
perIndex. One composite index is on node and Start - start of the interval, and
another composite index is on node and End - end of the interval. The size of
the indexes depend on the number of interval objects and in our experiment
one million interval objects required 6708 data blocks (3354 each index), which
is significantly bigger than the 26 blocks required for the TD-tree directory. For
this reason, the total number of blocks required for table and index structures
for TD-tree is much smaller than the number of total blocks required for RI-tree.
This difference increases with increasing number of interval objects, as shown
in Fig. 9.

The TD-tree enables efficient usage of clustering of the data by one di-
mension, i.e region, as every region associate with block size. Clustering data
improves the query performance and reduces the number of physical I/O, as
shown in Table 3, clustering ensures higher number of answers per physical
disk I/O. In contrast, the RI-tree can not efficiently use clustering of data as it
has to decide which dimension to use start or end. If it is clustered by node it
will not result in similar improvements, as in RI-tree node are fixed size and are
too large to provide effective clustering.

In Figure 10 it can be seen that the virtual structure of the TD-tree, clustering
of data and the query algorithm significantly reduces the physical disk I/O reads.
This is particularly the case when the answer size is bigger due to the good
clustering, which is achieved by dividing the regions as often as needed.

The TD-tree performs as good on now-relative data as on any other data.
We could not notice any difference in the number of physical disk I/O’s and CPU
usage for a point query, which timeslices time line at the current time and at any
other time point on the time line. This is because the area where these intervals
are stored can be divided as often as required.

Our experimental testing shows that the TD-tree query algorithm performs
well on other query types such as: during, contain, before and after. This is be-
cause it compares the data region with the query region and uses the same al-
gorithm. It is important to mention that the RI-tree needs dedicated query trans-
formation for specific query type. Despite the TD-tree performing well on before
and after query types it has worse performance in comparison with the straight
forward usage of one dimensional indexes, as was anticipated and highlighted
in section 3. The TD-tree does not perform well on query types such as start
and finish because the query region is a line. However, these query types can
be efficiently answered with one dimensional index, which is also highlighted in
section 3.

700 ComSIS Vol. 7, No. 4, December 2010



Advanced Indexing Techniques for Temporal Data

6. Conclusions

We described a new approach that is demonstratively better than existing ap-
proaches for handling temporal, and more generally, interval data. More specif-
ically, in this study, we:

– Presented a two-dimensional interval space representation of intervals and
interval relationships to reduce all interval relationship problems to simpler
spatial intersection problems;

– Showed that a wide range of interval query types can be reduced to an in-
tersection of data with a rectangular region, so one algorithm can be applied
uniformly;

– Proposed the “Triangular Decomposition Tree” (TD-tree) and associated al-
gorithms that can efficiently answer a wide range of query types including
point or timeslice queries;

– Experimentally evaluated the TD-tree by comparing its performance with
RI-tree, and demonstrated its overall superior performance.

The TD-tree is a unique access method as it uses tree structures, and at
the same time has some characteristics of hashing approaches due to it only
stores data in leaf nodes. In contrast to hashing methods that do not perform
well on range queries, the TD-trees can efficiently answer a wide range of dif-
ferent query types. It is important to mention that the management of the virtual
structures is done automatically by using database triggers, which fire on insert,
calculates, updates the region of the record and also increments the region in
the directory. If required, it also initiates and performs splits. Similarly, database
triggers fire on updates/deletes and performs actions in line with Deletion and
Insert Algorithms.

As a wide range of query regions of interest can be reduced to rectangles,
it is possible to answer such queries using a single algorithm without requiring
any query transformation. This itself, and the fact that the TD-tree can be in-
corporated within commercial RDBMS, makes the TD-trees superior to other
methods proposed for temporal data.

References

1. J. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832–843, 1983.

2. C. Ang and K. Tan. The Interval B-tree. Information Processing Letters, 53(2):85–
89, 1994.

3. R. Bliujute and et al. Light-Weight Indexing of General Bitemporal Data. In Statistical
and Scientific Database Management, pages 125–138, 2000.

4. C. Date, H. Darwen, and N. Lorentzos. Temporal Data and the Relational Model.
Morgan Kaufmann, 2002.

5. R. Elmasri, G. Wuu, and Y. Kim. The time index: An access structure for temporal
data. Proc. 16th Conf. Very Large Databases, pages 1–12, 1990.

ComSIS Vol. 7, No. 4, December 2010 701



Bela Stantic, Rodney Topor, Justin Terry, Abdul Sattar

6. J. Enderle, N. Schneider, and T. Seidl. Efficiently processing queries on interval-
and-value tuples in relational databases. In VLDB ’05: Proceedings of the 31st
international conference on Very large data bases, pages 385–396. VLDB Endow-
ment, 2005.

7. C. H. Goh and et al. Indexing temporal data using existing b+-trees. Data and
Knowledge Engineering, (18):147–165, 1996.

8. J. Hellerstein, E. Koutsupias, and C. Papadimitriou. On the Analysis of Index-
ing Schemes. 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, 1997.

9. C. Kolovson and M. Stonebraker. Segment indexes: Dynamic indexing techniques
for multi-dimensional interval data. Proc. ACM SIGMOD, pages 138–147, 1991.

10. H.-P. Kriegel, M. Potke, and T. Seidl. Object-relational indexing for general inter-
val relationships. In Proc. 7th Intl Symposium on Spatial and Temporal Databases
(SSTD01), 2001.

11. H.-P. Kriegel, M. Ptke, and T. Seidl. Managing intervals efficiently in object-
relational databases. Proceedings of the 26th International Conference on Very
Large Databases, pages 407–418, 2000.

12. A. Kumar, V. Tsotras, and C. Faloutsos. Designing Access Methods for Bitemporal
Databases. IEEE Transactions on Knowledge and Data Engineering (TKDE’98),
10(1):1–20, 1998.

13. S. Lanka and E. Mays. Fully persistent b + trees. Proc. ACM SIGMOD Conf. on the
Management of Data, pages 426–435, 1991.

14. M. A. Nascimento and M. H. Dunham. Indexing Valid Time Databases via B+-Tree.
IEEE Transactions on Knowledge and Data Engineering, 11(6):929–947, 1999.

15. S. Ramaswamy. Efficient Indexing for Constraint and Temporal Databases. In Pro-
ceedings of the 6th International Conference on Database Theory, pages 419–431,
1997.

16. R.Elmasri, G. Wuu, and V.Kouramajian. The Time Index and the Monotonic B+-Tree.
In A. Tansel et.al., editors Temporal Databases: Theory Design and Implementation,
pages 433–456, 1993.

17. B. Salzberg and V. J. Tsotras. Comparison of Access Methods for Time Evolving
Data. ACM Computiong Surveys, 31(1), 1999.

18. R. T. Snodgrass. Developing Time-Oriented Database Applications in SQL. Morgan
Kaufmann, 2000.

19. B. Stantic, S. Khanna, and J. Thornton. An Efficient Method for Indexing Now-
relative Bitemporal data. In Proceeding of the 15th Australasian Database confer-
ence (ADC2004), Denidin, New Zealand, 26(2):113–122, 2004.

20. B. Stantic, J. Terry, R. Topor, and A. Sattar. Indexing Temporal Data with Virtual
Structure. In Advances in Databases and Information Systems - ADBIS2010, pages
591–594, 2010.

21. B. Stantic, J. Thornton, and A. Sattar. A Novel Approach to Model NOW in Tem-
poral Databases. In Proceeding of the 10th International Symposium on Temporal
Representation and Reasoning (TIME-ICTL 2003), Cairns, pages 174–181, 2003.

22. A. S. Szalay, J. Gray, G. Fekete, P. Z. Kunszt, P. Kukol, and A. Thakar. Indexing the
Sphere with the Hierarchical Triangular Mesh. CoRR, abs/cs/0701164, 2007.

23. V. J. Tsotras, B. Gopinath, and G. Hart. Efficient management of time-evolving
databases. IEEE Trans. Knowledge and Data Eng, 7(4):591–608, 1995.

24. V.Kouramajian and et.al. The time index+: An incremental access structure for tem-
poral databases. In Proceedings of the Third Interbnational Conference on Knowl-
edge and Data Engineering (CIKM’94), pages 232–242, 1994.

702 ComSIS Vol. 7, No. 4, December 2010



Advanced Indexing Techniques for Temporal Data

Dr Bela Stantic is Senior Lecturer at the School of Information and Communi-
cation Technology, Griffith University, and member of the Institute for Integrated
and Intelligent Systems (IIIS). He is also a Senior Researcher at National ICT
Australia (NICTA) Queensland Research Lab (QR). He has been an academic
staff member at Griffith University since 2001. His research interests include ef-
ficient management of complex data structures, temporal and spatio-temporal
databases, bioinformatics, and database systems.

Rodney Topor has been a Professor of Computing Science in the School of In-
formation and Communication Technology at Griffith University since July 1991.
Prior to that he worked in the Computer Science departments at The University
of Melbourne and Monash University. He has served as Head of School and in
other management roles at Griffith. His research interests include programming
methodology, programming languages, database systems, knowledge repre-
sentation and Web application development.

Dr Justin Terry is member of the Institute for Integrated and Intelligent Sys-
tems (IIIS). He completed his PhD in 2010 and his topic was on indexing multi-
dimensional data. His research interest includes efficient management of high-
dimensional data.

Professor Abdul Sattar is the founding Director of the Institute for Integrated
and Intelligent Systems and a Professor of Computer Science and Artificial
Intelligence at Griffith University. He is also a Research Leader at National
ICT Australia (NICTA) Queensland Research Lab (QRL). He has been an aca-
demic staff member at Griffith University since February 1992 within the School
of Information and Communication Technology. His research interests include
knowledge representation and reasoning, constraint satisfaction, intelligent schedul-
ing, rational agents, propositional satisfiability, temporal reasoning, temporal
databases, and bioinformatics.

Accepted: October 20, 2010.

ComSIS Vol. 7, No. 4, December 2010 703




	Advanced Indexing Technique for Temporal Data 
	Bela Stantic cl@@auth, Rodney Topor cl@@auth, Justin Terry cl@@auth, Abdul Sattar 

