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Abstract. Even though there are a number of software size and effort 
measurement methods proposed in literature, they are not widely 
adopted in the practice. According to literature, only 30% of software 
companies use measurement, mostly as a method for additional 
validation. In order to determine whether the objective metric approach 
can give results of the same quality or better than the estimates relying 
on work breakdown and expert judgment, we have validated several 
standard functional measurement and analysis methods (IFPUG, 
NESMA, Mark II, COSMIC, and use case points), on the selected set of 
small and medium size real-world web based projects at CMMI level 2. 
Evaluation performed in this paper provides objective justification and 
guidance for the use of a measurement-based estimation in these kinds 
of projects. 

Keywords: software measurement, effort estimation, comparative 
analysis, empirical evaluation. 

1. Introduction 

Estimating size and cost of a software system is one of the biggest 
challenges in software project management. It is one of the basic activities in 
the entire software development process, since a project budget, size of a 
development team, and schedule directly depend on the estimate of the 
project size and cost. Software teams use many different approaches for 
estimating effort required for implementing a given set of requirements. 
Approaches may rely on the experience (as in the expert judgment methods 
such as Wideband Delphi[1] or Planning Game [2]) or exploit requirement 
analysis by breaking requirements into elementary work items that can be 
easily estimated. This research focuses on algorithmic methods that try to 
quantify systems using certain measurement techniques, and apply 
algorithms and formulas in order to derive an estimate based on the 
measured size of the system. 
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Even though algorithmic methods provide more objective and accurate 
estimates, many software organizations are reluctant to apply them in 
practice. According to Hill [3], approximately 60% of the software 
organizations still use task-based estimates that rely on work breakdown 
structures (WBS) and expert judgment, 20% combines expert methods with 
the measurement methods as an additional validation, and only 10% rely 
solely on measurement methods. Goal of this research is to evaluate 
reliability of the methods that are most commonly used in practice, by 
applying them on preselected set of the real world projects. 

Current studies [4] show that success rate of software project 
implementation is very low – only 30% to 35% of all software projects get 
finished within the planned time and within the budget. One of the most 
common reasons for such low success rate is an unsuccessful estimation 
(mostly based on the subjective judgment) and a lack of objectivity. As a 
result, there is an increasing pressure on software project teams to abandon 
the experience-based methods for estimating and planning, and to replace 
them with more objective approaches, such as measurement and analysis 
based methods. Measurement and analysis is a required process, even for 
the organizations with the lowest maturity level (level two) according to the 
CMMI standard [5], which supersedes the older SW-CMM.  

Estimate accuracy varies with the phase of the project in which it was 
determined. Boehm [6, 7] presented this accuracy as so-called “Cone of 
uncertainty” shown on the Figure 1. 

 

 

Fig. 1. Cone of uncertainty with effort estimate errors throughout project lifecycle 
(error varies from 400% at the start of the project and converges to the accurate 
effort at the end of the project) 

Effort estimate determined in earlier phases of the project, such as 
definition of the initial concepts, might differ up to four times from the final 
one. This variation can be explained by the fact that initial concepts do not 
describe the final software system accurate enough. As more details get 
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defined, the effort estimate converges to the actual value (that can be 
accurately determined when project is completed). Project Management 
Institute (PMI) [8] presents similar results about uncertainty, except that their 
results introduce an asymmetric cone where initial estimates vary between 
+75% and –25%, budgetary estimate between +25% and -10%, and the final 
estimate between +10% and -5%. We are using these boundary values as an 
evaluation criterion for the measurement methods used in the paper. 
Deviation between estimated and actual effort of the measurement methods 
used in this research needs to be within Boehm’s and PMI boundaries; 
otherwise, methods should be rejected as inaccurate.  

The rest of the paper, presenting the results of our analysis, is organized 
as follows: 
1. Second section contains the problem statement and explains importance 

of evaluating applicability of the measurement methods in the practice; 
2. Third section describes projects used for the analysis, classified 

measurement methods found in the literature, and methodology of 
measurement and analysis used in the research;  

3. Fourth section describes how the measurements found in the literature 
were applied on the projects in our data set, how they can be applied in 
different phases of the project lifecycle, and what deviations exist between 
the effort estimated using the measurement methods and the real effort 
values; 

4. The last section presents results of evaluation and shows that estimating 
effort using the measurement methods proposed in the literature has better 
accuracy than the one reported in practice. 

2. Problem Statement 

Avoiding the use of measurement and analysis in practice opens an 
important question – whether the measurement process is applicable in the 
software projects at all. In other engineering branches, scientific results and 
laws based on measurement are successfully applied in practice, giving 
engineering teams a valuable help in managing their own projects. 
Unfortunately, in software engineering, measurement is still not a preferred 
approach. According to Hill [3], only 30% of software companies use 
measurement, mostly as a method for additional validation. In order to 
determine whether the objective scientific approach can give better results 
than experience, we have evaluated several well-known measurement and 
analysis methods, applied them on a set of real-world projects and 
determined whether they are applicable or not. By obtaining a satisfactory 
evaluation results, we would prove that measurement techniques could be 
used for software project estimating, and it would allow us to define a 
methodology for applying measurement and analysis in practice. 

Another important question is whether the software teams should use a 
single measurement method in the analysis, or they should combine multiple 
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methods together. In practice, a software team is obliged to give various 
estimates throughout a project life cycle. At the beginning of the project, 
some ballpark estimates are needed with minimal engagement and analysis. 
In the later phases of the project, more accurate and more obliging estimates 
are needed. Various estimation methods are proposed in the open literature, 
of varying complexities. Hence, they provide different accuracies. We believe 
that the most efficient way for estimating a required effort is to use the proper 
combination of several different measurement methods. By combining the 
measures together, and applying them in the correct points of time in the 
project lifecycle, we get a continual estimating process, where the accuracy 
of an estimate converges to the right value as the project matures. The goal 
of this evaluation is to derive a methodology for applying the most 
appropriate measurement techniques during the software project lifecycle, 
including best practices in using measurement activities.  

The evaluation performed in this paper is to provide objective justification 
and guidelines for using measurement-based estimates in software projects. 
Research results should prove that software companies could benefit from 
this methodology and increase the success rate of their projects over the 
value that can be expected from the current statistical results [4]. 

3. Measurement Approach 

A measurement approach defines what kind of information, techniques, and 
tools will be used in the analysis. Our measurement approach is specified 
with the following elements: 
1. A project data set gives details about a data collection used in the 

research. A data collection is a set of the software projects used for 
applying measurement methods and estimating the effort that is required 
for the projects to be completed; 

2. Description and classification of the existing measurement methods found 
in the literature, with the detailed analysis of methods that might be applied 
on the project data set used in the research; 

3. An analysis model describes the mathematical models and tools used in 
the research. A measurement model defines a structure for storing data, as 
well as techniques that are used in the analysis. 
Once the measurement approach is defined, the measurement methods 

can be applied on the project data set, and the results can be evaluated and 
compared. The following sections describe concepts important for the 
measurement approach in more details. 

3.1. Project Data Set 

In this research, we have used a set of real-world software projects 
implemented from 2004 to 2010. All projects in the dataset are implemented 



A Comparative Evaluation of Effort Estimation Methods in the Software Life Cycle 

ComSIS Vol. 9, No. 1, January 2012 459 

by a single company for various clients located in the United Kingdom. 
Historical company database contains information about 94 projects, 
categorized by technology and application domain as shown in the figure 2. 

 

 

Fig. 2. Classification of the projects from the project dataset by used technology and 
by business domains. Highlighted projects are used in the analysis 

In order to homogenize project dataset used in the analysis, we have 
excluded 36 ASP projects (OO approach is not applied in these projects and 
they are poorly documented), and 8 experimental Windows/MVC projects. 
The remaining 50 ASP.NET applications in the various domains represent set 
of the project used in the analysis. 

Programming languages used in the ASP.NET projects are C#, T-SQL, 
HTML, and JavaScript. Consistent object-oriented analysis and design 
methodology was used in all projects in the dataset, and general software 
development [49] and project management practices [8] were applied. High-
level domain models and use cases models were created in the earlier 
phases of the projects. These models were refined into the more detailed use 
case scenarios, sequence and entity-relationship diagrams. The core 
architectural elements were created according to the analysis models in the 
design phase. In addition, physical design of the system integration was 
described using the deployment diagrams. Most of the projects in the data set 
contain only partial technical design documentation. Detailed design 
documentation is created only for integration of third party components or 
legacy systems, where off-site teams have to review them before the project 
start. Only basic technical documents are created for detailed functionalities 
implemented in the projects, and in most of the cases, they are automatically 
generated using documentation generation tools. Hence, they do not contain 
enough information for applying the measurements based on detailed 
technical documentation. 

A company that developed projects in observed data set implemented all 
practices at CMMI maturity level two. Hence, project management activities 
(e.g. planning, monitoring and control) were consistently performed across all 
projects in the data set providing enough information about the effort required 
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for completing the project. Values of the effort spent on projects are recorded 
in the project plans, as well as in the invoices sent to customers; therefore, 
those values can be considered as valid. Various types of documents and 
specifications describe project parameters, functionalities, lifecycle, and team 
structure. Table 1 shows how many projects in the data set contain a 
particular type of documentation. 

Table 1. Documentation and lifecycle models available in the projects  

Project items/characteristics Number of projects 

Project management documents  

Project plan 46 

Estimate/Budget 50 
Specification documents  
Vision scope and domain models 24 
Requirement document 9 
Use case models/scenarios 27 
Database models 30 
Functional specification 23 
Analysis model 14 
Software architecture document 7 
Detailed UML design 3 
Lifecycle model  
Phased(UP/MSF) 23 

Agile(XP/Scrum) 7 
Project characteristics/constraints  
Team structure description 4 
Post mortem analysis 5 

  
Total amount of 30 projects, with enough technical documentation aligned 

with project plans where we can apply several different measurement 
methods, were selected for the final dataset. Statistical information about the 
effort, duration, team size, and experience of the project team members are 
shown in the table 2. The final set of the projects that is used in the analysis 
is homogenous by the team structure, with identical technical parameters 
(e.g. platform, programing languages, and complexity). 

Table 2. Project statistical parameters 

 Effort 
(Person-month) 

Duration 
(Months) 

Team size  
(Person) 

Experience 
(Years) 

Minimum 2 2 4 1 
First quartile 4 4 6 4 
Median 7 5 7 5 
Third quartile 12 7 8 6 
Maximum 15 12 10 8 
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3.2. Metrics Used in Research 

One of the important tasks in the research was to select measures and 
metrics to be used for defining type of information that should be collected, 
as well as shaping the entire analysis process. There are many software size 
measurement approaches present in the literature. Metrics can be 
categorized as:  
1. Metrics based on the source code such as a number of source lines of 

code [9], Halstead's [14] or McCabe's [15] complexity metrics; 
2. Functional metrics such as IFPUG [10], NESMA [16], Mark II [17] or 

COSMIC [12] methods. These metrics are widely used in the software 
industry and they are standardized as ISO/IEC standards [13]. 

3. Object oriented metrics such as use case points [11], class points [18] or 
object oriented design function points [19].  

4. Web metrics – a set of methods specialized for web application 
development. The first papers in this field were Reifer's web objects [21], 
followed by the work of Mendes[34, 35], and Ferrucci [36], 

5. Other techniques and enhancements such as Galea’s 3D function points 
[20], Fetche's [22], Uemura's [23], or Buglione [40] approaches. 
We examined project documentation shown in the table 1 in order to 

determine which measurement methods can be applied in the project data 
set. Results are shown in the table 3. 

Table 3. Number of projects that can be used for the measurement methods  

Measurement methods Number of projects 

Source code based 0 

Functional methods  
FPA/NESMA 23 
NESMA Estimated/Indicative 30 
Mark II 30 
COSMIC 21 
Object oriented methods  
Use case point 27 

Class points/OOAD points 6 
Web methods N/A 
Other methods N/A 

 
Source code based metrics are not applied in the project data set. There 

are at least four different languages applied in each project, without the 
information what effort was required to implement pieces of code written in 
different language. Hence, it is questionable whether these metrics can be 
successfully applied in the project data set. In addition, as a significant (but 
unknown) amount of source code is automatically generated, it is impossible 
to isolate the code that is directly created by the development team and to 
measure just a size of that code. 
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All projects have enough functional documentation; therefore, it was 
suitable to apply measures in the functional group (IFPUG, NESMA, Mark II, 
and COSMIC). These measurements are widely used in the practice and 
certified as ISO/IEC standards [13] indicating that they should give 
satisfactory results. 

The only object-oriented measure that is applied is a use case point metric. 
Functional specification has defined use case scenarios and models; hence, 
there is enough information for applying this metric successfully. The other 
object-oriented metrics are not applied in this research, as there is no 
sufficient information in the technical documentation. Therefore, applying 
these techniques on inadequate data will cause too many errors. 

We have not applied web metrics in the research, although the projects in 
our dataset are web applications for several reasons. Application framework 
used in the projects (ASP.NET) encapsulates most of the web related code, 
and generates most of the HTML/JavaScript code automatically. Hence, 
there are many parameters used in the web methods that hidden from the 
development team in the framework, and therefore these parameters do not 
affects the effort. There are only few projects in the data set where web 
aspects of the application development are not completely encapsulated; 
however, there are not enough projects for the analysis.  

The other nonstandard methods [20], [22], [23] were not applied, since 
each of them requires some specific information. In the existing 
documentation, we have not found enough information required for these 
methods; and our decision was to avoid any change or producing new 
documentation. 

Most of these metric use both functional and nonfunctional parameters of 
the system when a final size is determined. Usually, two different sizes are 
created, the one that depends on the functional parameters, which we call 
unadjusted size; and another that is determined by adjusting an unadjusted 
size using nonfunctional parameters, which we call adjusted size. 

As an example, there are 17 cost drivers and 5 scale factors used in 
COCOMO II [2] in order to adjust the functional size of the system. Each 
factor takes one of the rates (very low, low, nominal, high, very high, and 
extra high) and appropriate numeric weight. We have evaluated applicability 
of COCOMO II drivers in the projects from our data set, and we have found 
that most of them are too unreliable or undocumented. COCOMO II factors 
evaluated in our project data set are: 
1. Product factors – required reliability (RELY), database size (DATA), and 

complexity (CPLX) might be considered as nominal according to the 
subjective judgment of team members. Documentation (DOCU) and 
reusability (RUSE) depends on the budget and project timelines; however, 
they are not documented in most of the projects. 

2. Platform factors such as execution time (EXEC), storage (STOR), and 
platform volatility (PVOL) might be considered as nominal across all 
projects. 
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3. Personnel factors – there are no records about the team capability (PCAP 
and ACAP factors), experience (APEX, PLEX, and LTEX factors), nor 
about the personnel continuity (PCON factor). 

4. Project factors – usage of software tools (TOOL), multisite development 
(SITE) and schedule (SCED) varies on the project but there are no 
organization-wide standard for assessing impact of these factors. 

5. Scale factors process maturity (PMAT), team cohesion (TEAM) and 
development flexibility (FLEX) are nominal; however, there are no 
information about precedentedness (PREC) and architecture/risk resolution 
(RESL) factors. 
Due to the fact that most of the non-functional parameters are either 

undocumented or depend on the subjective opinion of team members, only 
functional measurements were considered, without using any non-functional 
parameters of the system for adjustments. We are confident in the validity of 
the functional size metrics defined in this section because they are derived 
from the objective sources (e.g. documentation and prototypes). Combining 
these objective metrics with the factors that are either undocumented or 
subjective would affect objectivity of the results due to the high uncertainty of 
the non-functional parameters. 

In this paper, the term “size” is equivalent to the term “unadjusted size” in 
the original measurement techniques. 

3.3. Analysis Model 

This section describes the model used for analysis of the projects in our 
dataset. The analysis model is represented through following components: 
1. Data model that is used in the research where we have defined data 

structure used to store project data, and mathematical models used for 
analysis, 

2. Prediction model where we have defined functional dependency between 
the size and effort, 

3. Validation model where we have described methodology used to validate 
measurement/prediction methods used in the research. 
 
Data Model 
 

We have complete access to project characteristics and documentation for all 
projects in the dataset; however, these characteristics have to be organized 
so that we can easily use them in various measurement methods. Project 
characteristics required for all measurement techniques are collected from 
project documentation and grouped in tuples containing information about 
project name, effort, and all project characteristics required by selected 
measurement techniques. These characteristics are used to establish a 
uniform tuple space that represents a repository for all project measurements, 
and it is used as a base source of information for all selected measurement 
techniques in our research, as shown on the figure 3. 
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Fig. 3. Uniform tuple space with derived vector spaces specific for particular 
measurement techniques. Uniform tuple space contains information about all project 
characteristics. When vector spaces for the specific measurement techniques are 
needed, only attributes required for particular measurement are derived and projected 
into a new vector space that is used in measurement 

In order to apply a particular measurement method to the given data set, 
specific information must be extracted from the uniform tuple space. 
Extraction of required project characteristics is done by restricting attributes 
in the tuple space, which creates a vector derived for a particular 
measurement technique. Example of deriving vector spaces for Mark II, 
NESMA indicative and NESMA estimated measurement techniques from the 
uniform tuple space is shown on the figure 3. 

The uniform tuple space and derived vector spaces described in this 
section represent a flexible structure that can be used for applying a uniform 
measurement approach on various metrics. The model of the data structure 
is shown on the figure 4. 

 

 

Fig. 4. Data model for the structure of the projects and their measured data used in 
the research 
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Each project in the data set has a name, effort, and set of project 
characteristics (e.g. number of use cases, inputs, or files). Each characteristic 
has an associated value in the tuple. Measures use some of the project 
characteristics to calculate the size of the system. Measures are grouped by 
phases of the project (this is described in more details in the section 4). This 
data model can be converted to any data structure for storing data e.g. in 
database relational model, or even in the flat MS Excel spreadsheets. 

All measurement methods used in the research calculate size as a 
weighting sum of project characteristics, as shown in the formula 1. 





N

i

ii xwSize
0

*  (1) 

In the formula 1, N is a number of characteristics that are used for some 
particular measurement, wi are constants, and xi represents tuple values of 
interest for some particular measurement method. For example, NESMA 
indicative method uses two characteristics (N=2) where x0 is a number of 
internal files, and x1 is a number of external files. Values of the weighting 
factors wi are specific for the particular measurement methods – reader can 
find more details about the specific rules and values of weighting factors in 
the section four, which describes ways of applying these measurement 
methods. 

Formally, we are using different form of equation 1, represented as a 
scalar product shown in the formula 2. 

||x|| = x * w . (2) 

In the formula 2, x is a vector that represents the project characteristics, 
and w is a weighting vector with the same number of dimensions as other 
vectors in the vector space. Vector w has constant value for each of the 
measurement technique. Scalar value ||x|| is the norm of the vector, and it 
represents measured size of the project from the formula 1. Applying formula 
2 on the vectors derived from the tuple space, we are defining a normed 
vector space, where a norm represents the actual size of the project. 

 
Prediction Model 
 

In order to evaluate a correlation between measured size and actual effort, it 
is necessary to hypothesize a functional model that describes the 
dependency between these two values. Such functional model would help us 
to predict an effort using the size, and compare predicted value with actual. 

The most commonly used functional model is a linear dependency 
assuming that an effort needed to complete a project is directly proportional 
to the project size as it is shown in the formula 3.  

Effort = PDR * Size .    (3) 

Effort is a predicted value, Size is measured size for the project calculated 
using formula 1 or 2, and PDR is a Project Delivery Rate expressed as hours 
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per unit of size [3]. Linear models are one of the earliest functional 
dependencies developed in the theory of effort estimation. They were used 
by Albrecht [24], then by Nelson [25], and finally Briand in COBRA [26] 
model. 

The other group of models is a group of nonlinear models (an effort 
required for implementation is not directly proportional to the size). One of 
the first nonlinear models was created by Kemerer [27] who used polynomial 
dependency between the size and effort, and it has better accuracy than 
linear Albrecht’s model [24]. Currently, the most common form of nonlinear 
models is a power function model defined in the formula 4. 

Effort = K Size
E
 .    (4) 

Linear coefficient K and exponent E are either constants or being 
calculated using the project constraints such as product complexity, delivery 
time, or team capability. Currently, the most common power function models 
are Boehm’s COCOMO II and Putnam’s SLIM model [28]. Other nonlinear 
models such as Walston-Felix [29] or Beily-Basily [30] models are not used in 
the practice. In the power models, a logarithm of effort (instead of effort) is 
directly proportional to the size of the system. 

Different methods can be used to build a model for predicting the project 
effort based on the size. The most commonly used method is a regression 
model; however, there are lot of case studies where prediction models are 
significantly improved using the Fuzzy logic [37], Bayesian networks[38], 
Neural networks[39] etc. These methods are very effective when there are a 
large number of different parameters in the model that should be analyzed, or 
when models are too complex to be represented as a regular function. 

In the projects in our dataset, we have only one independent variable – the 
size of the project that should be used to predict an effort. Organization that 
has developed projects in the dataset has CMMI maturity level two, where 
are implemented “Measurement and analysis” and “Project planning” 
practices. Therefore, we are convinced that size of the projects and efforts 
spent on the projects are valid parameters. Non-functional parameters, such 
as product complexity, analyst capability, or data complexity, are either 
undocumented, or we are not convinced that they are valid. Therefore, 
organization and process parameters are not used in the research.  

The method we have chosen to build our prediction model is a linear 
regression technique. Due to the fact that we have only one independent 
value, and that functional dependencies are defined using the formulas 2 and 
3 this is the most appropriate method in our data sets. In the linear regression 
model is the most common regression model, where estimated effort can be 
expressed as a linear dependency of the calibration constants and measured 
size, as shown in the formula 5.  

nSizekSizeEffort  *)(*
.    (5) 
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In the formula, Effort
* 

is a predicted value of the effort, parameter k and 
parameter n are constants. Ideally, k should be close to the PDR value given 
in formula 3. 

As neither linear nor power model is favored in the analysis, the same 
regression formula is applied in both models. During the evaluation of linear 
model, effort was used as a predicted value, while in power models, 
logarithm of project effort is used instead of the effort. 

The linear regression is just a basic model for a prediction. Many other 
techniques such as neural networks or case-based reasoning can be used 
instead of the regression [41]. However, most of these methods are more 
suitable in the cases where we have many different independent values that 
should be analyzed. As described above, we cannot be convinced that 
organizational parameters are valid in the observed project data set. 
Therefore, as we do not have a broad range of available independent 
variables, advanced methods are not applied in our data set. In the paper will 
be shown that companies on the maturity level two are limited to the basic 
prediction methods, and that if they want to use more accurate and advanced 
models, they will need to improve their maturity level to the CMMI level three 
at least. 

 
Validation Model 
 

In order to find metrics that are most suitable for the effort estimation, we 
have evaluated correlation between measured sizes and effort values. 
Pearson’s product-moment correlation factor is used as a criterion for 
evaluation of applicability of measures. If projects in the data set are 
represented as pairs of size and effort such as (Sizei, Efforti), correlation 
between two sets of data is given in the formula 6. 














N

i

i

N

i

i

N

i

ii

EffortEffortSizeSize

EffortEffortSizeSize

R

1

2

1

2

1

)()(

))((

 . 

 

   (6) 

The value of the correlation coefficient R varies from 0 to 1, and values 
closer to 1 indicate that there is a better correlation between the sizes and 
efforts. Sizes that are highly correlated to the effort can be applied as valid 
measures of the system. 

In addition, we have evaluated how well the predicted effort, calculated 
using the formula 5, is close to the actual effort. The actual effort is the sum 
of predicted value and prediction error as shown in formula 7. 

 

                       )()( * SizeEffortSizeEffort  .         (7) 

 
Estimation function Effort

*
(Size) (calculated using the formula 5) is 

determined so that the prediction error ε is minimized. In that case, estimated 
value of the effort is very close to the real values. Instead of the prediction 
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error, we are using a mean relative error (MRE) [43] for evaluating the quality 
of the estimation model. 

Mean relative error, or magnitude of relative error represents the ratio of 
the difference between the estimated and the real value ε, and the actual 
value itself, as shown in the formula 8. 

)(

)()(*

SizeEffort

SizeEffortSizeEffort
MRE

i

ii

i


  . (8) 

In order to evaluate the accuracy of the estimating model, mean and 
maximum values of magnitude of relative error are determined as well. Mean 
magnitude of relative error (MMRE) and maximum magnitude of relative 
error (MREmax) are derived from the individual MRE values using formulas 9 
and 10. 





N

i

iMRE
N

MMRE
1

1
 . 

(9) 

)(max
]..1[

max i
Ni

MREMRE


  . (10) 

MMRE indicates accuracy of the estimating model, while MREmax 
parameter reveals extreme cases. Values within the error range reported by 
Boehm and PMI prove that measurement technique can be successfully 
applied in the practice.  

4. Applying Measurement During Project Lifecycle 

Once the preparation for measurement is finished i.e. data set, measures, 
and model are defined, selected measurement techniques can be applied in 
order to evaluate their accuracy. 

One of the goals of this research was to evaluate whether the 
measurement techniques selected from the literature can be used for 
estimating an effort during the project life cycle. We use the standard phases 
from Unified Process (UP) [31], as a lifecycle model of the software 
development process: 
1. Inception – where a scope of the system is agreed upon, and requirements 

are described at the highest possible level; 
2. Elaboration – where major analysis activities are done, and requirements, 

architecture and a general design are specified; 
3. Construction – where detailed design is completed, code is created and 

tested according to the requirements and design; 
4. Transition – where a solution is transferred to end users. 

This phased model is applicable to all projects in the data set, even if 
some of them were not implemented according to the strict UP model (e.g. 
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waterfall or MFS [32]). UP phase model can be applied even on the iterative 
models such as Extreme Programming [2] or Scrum [33], where iterations 
can be divided into smaller phases mentioned above. 

Documentation available in the projects within the project data set, can be 
categorized by the phase in which they were created. For example, a 
vision/scope document, statement of work, and project brief document, which 
are created at the start of a project, are categorized as inception phase 
documents. List of the available documents and creation phases is shown in 
the table 4. 

Table 4. Documents and models available in various phases of the software 
development process  

Project Phase Available Documents 

Inception Project Brief/Proposal 
Vision/Scope Document 
Conceptual Domain Model 

Elaboration Use Case Model and Scenarios 
User Interface Specification 
Logical Model 
Functional Specification 
Physical Model 

Construction UML Class Diagrams 
System Sequence Diagrams 

Transition Training Material 

4.1. Measurement During Inception Phase 

In the earlier phases of projects such as Inception phase in the UP [31] 
model, or Envisioning phase in the MSF [32] model, only high-level 
requirements are defined. Table 4 shows that vision/scope document, 
statement of work, and project brief document are created during the 
inception phase. These documents contain information about scope of the 
project, users who will use the system, their needs, high-level features of the 
system, and domain models. From the set of available metrics, the following 
ones can be applied in the inception phase: 
1. NESMA indicative metric – domain model which contains business 

concepts and their description is available, metric of the system based on 
the number of internal and external objects can be determined for each 
project; 

2. Number of use cases – use cases can be identified from the vision/scope 
document, and their count can be used as a measure of the system size. 
Farahneh has used the same metric in his research [42]. 
NESMA indicative method approximates the standard NESMA functional 

point method, where size of the system is determined by using just basic 
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functional information. The logical groups of pieces of information (files in the 
functional point measurement terminology) that represent data structures are 
identified in the system. Structure of files (relationships between files and 
information they contain) are not relevant. The only analysis that should be 
done is categorization of files as internal and external, depending on the fact 
whether they are maintained within the system or just referenced from the 
other systems. In this case, NESMA indicative metric uses vectors containing 
the number of internal/external files in the form (ILF, EIF). Size of the system 
is determined by deriving norm of the vector using a scalar product between 
weighting vector (35, 15) and the size vector. 

Number of use cases approximates the standard use case point metric, 
since the use cases are just enumerated without any deeper analysis related 
to their complexity. The vision/scope document, which is created during 
inception phase, contains high-level features of the system without their 
detailed descriptions. Hence, use cases can be identified upon these 
features, although detailed scenarios are still not defined. The number of total 
use cases to be implemented in the system can be used as a measure of the 
system functionalities. This number is pure scalar metric; it has only one 
dimension that represents size of the system. 

Table 5. Measurement applied during inception phase with their correlation with effort 
(R), Mean magnitude of relative error, and Maximal magnitude of relative error for 
both linear and nonlinear (power) models 

 Linear model Nonlinear model 

Metric R   MMRE MREmax R   MMRE MREmax 

NESMA 
Indicative 

93%   16% 46% 85%   20% 69% 

Number of 
Use Cases 

58%    46% 126% 59%   40% 94% 

 
These two metrics are applied on the projects in our data set to determine 

the size of each project expressed in NESMA function points and number of 
use cases. Correlation between the size and actual effort was analyzed and 
results of the analysis are shown in the table 5. 

The NESMA indicative method shows significantly better results than a 
number of use cases as a size metric. Number of use cases does not show a 
true nature of the system, since beneath each use case frequently lie several 
hidden functionalities that might significantly increase the effort required for 
implementation of the use case. Hence, there is a significant variation 
between the effort and number of use cases. Farahneh [42] got similar results 
when he applied the number of use cases as a measurement. Accuracy in his 
case study was between 43% and 53%; however, this is still not even close to 
the accuracy of the NESMA indicative method. 

The major issue with counting use cases is the absence of any standard 
that precisely defines what a use case is. Use cases in our dataset differ from 
project to project; they might be either merged or decomposed to several use 
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cases. There is no strict rule defining when a set of user actions should be 
placed within one use case scenario, nor when they should be decomposed 
into set of different use cases (e.g. included or extended sub use cases). 
Granularity of use cases significantly affects a number of use cases, and 
therefore size of the system. We believe that inconsistency in the style 
causes large deviations in the number of use cases as a size metric.  

 

 

Fig. 5. Dependency between the effort and size measured in functional points using 
NESMA indicative method. There is a good linear dependency where most of the real 
effort values are near to the estimated values 

Having in mind an absence of detailed information about the system 
functionalities, NESMA Indicative metric has a good accuracy that is 
acceptable in the practice. The inception phase milestone (Scope/Vision 
completed) is equivalent to the “Concept of Operation” milestone in Boehm’s 
report, or to “Project initiation phase” in the PMI terminology, because in 
these phases we have just a rough description of system features. Comparing 
these results with the results reported by Boehm’s and PMI it might be 
noticed that estimating software size using NESMA indicative method gives 
better results than the ones that can be found in practice. Using Boehm’s 
results, estimating error in Concept of Operation milestone can be up to 
100%, and according to PMI accuracy varies from -25% to +75%. Therefore, 
the mean relative error of 16% is good, and even the maximal error of 46% is 
satisfactory. 

Dependency between sizes of projects measured as NESMA Indicative 
function points and actual effort applied on the data set used in the research 
is shown on the figure 5. 

Applying NESMA indicative functional point method in the inception phase 
of the project enables project team to estimate the effort with accuracy that is 
significantly better than the results found in the practice. Therefore, using 



Jovan Popović and Dragan Bojić 

ComSIS Vol. 9, No. 1, January 2012 472 

measurement method in this phase can increase accuracy of project 
estimate. 

4.2. Measurement During Elaboration Phase 

During the elaboration phase of the project analysis and design are 
performed. Those activities are necessary for translating user requirements 
into the detailed specification. Elaboration phase can be divided into several 
separate iterations. In the earlier iterations, focus is still on the user needs, 
requirements and analysis, while in the later iterations focus is on the detailed 
design, technical solution and full functional specification. 

In earlier iterations of the elaboration phase, detailed user requirements 
are collected; scenarios of usage are documented via use case scenarios; 
and user interface and logical model of data are created.  

As elaboration phase continues, more documentation and design with 
details and technical requirements are created. Detailed design allows project 
team to apply more detailed and more accurate metrics. In later iterations of 
elaboration phase, detailed functional requirements with a description of all 
fields, data structures, rules, and processes that should be implemented in 
the system are created. These iterations may include creation of detailed 
database models with all necessary fields and relationships so that the project 
team can start with development. Several metrics can be used in elaboration 
phase: 
1. Use case points – a method that is used to measure size of the system by 

analyzing a complexity of use case scenarios; 
2. NESMA Estimated method – an approximation of the standard 

measurement technique based on functionalities of the system; 
3. Mark II method – a method used to measure a functional size of the 

system, mostly applied in United Kingdom; 
4. Functional point analysis (FPA) method – a method where detailed 

functionalities of the system are measured. 
First three metrics can be applied in earlier iterations, while the fourth 

metric can be used when elaboration is near to end. In the rest of this section, 
we will separately discuss metrics that can be applied in earlier and later 
iterations of the elaboration phase, as well as the accuracy of these methods. 

 
Metrics Used in the Earlier Iterations of Elaboration Phase 
 

Detailed use case scenarios are described in earlier iterations of elaboration; 
hence, there is enough data to determine the exact measure of use case 
complexity expressed in use case points. The use cases are categorized as 
low, average, and high, depending on the number of transactions within the 
use case scenarios. They are combined with three classes of user complexity 
(low, average, high) forming six-dimensional vector (UCH, UCA, UCL, AH, AA, 
AL) that is used to measure size of the system. The norm of the vector is 
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determined using a scalar product between the use case point size vector 
and the weighting vector (15, 10, 5, 3, 2, 1). 

Functionalities and basic concepts of the system are also defined. Hence, 
some estimated metrics based on functionalities such as NESMA Estimated 
and Mark II method can be applied. 

NESMA Estimated method approximates the standard NESMA method for 
measuring the functional size. Size of the system is determined by identifying 
objects and processes in the documentation. Objects in the system are 
classified as internal or external files, depending on the fact whether they are 
maintained within the system or just referenced from other systems. 
Functional processes are classified as inputs, outputs, and queries. Total 
number of internal files, external files, inputs, outputs, and queries forms a 
five dimensional vector (ILF, EIF, EI, EO, EQ), which is used to determine 
size of the system. The norm of the vector is determined as a scalar product 
of the size vector and the weighting vector (7, 5, 4, 5, 4). 

Mark II method is a modification of standard functional point method where 
information about the number of input processes, output processes and 
objects within the system are taken into consideration. In the Mark II method, 
a three-dimensional vector of inputs, outputs (exists), and objects (Ni, Ne, No) 
is used for determining size of the system. The norm of the vector is 
determined by using a scalar product between the weighting vector (0.58, 
1.66, 0.29) and the vector itself. 

 
Metrics Used in the Later Iterations of Elaboration Phase 
 

Detailed functional point metric (either standard IFPUG or very similar 
detailed NESMA method) can be applied in the later iterations of elaboration 
phase. Functional point analysis is done using detailed description of user 
interface such as UI design or process flows, and informational models such 
as Entity-Relationship diagrams or class diagrams.  

In the functional point analysis five system parameters are analyzed – 
internal logical files (ILF), external interface files (EIF), inputs in the system 
(EI), outputs from the system (EO), and queries (EQ). However, these 
elements are not simply counted – they are also categorized as low, average, 
and high, depending on their complexity. Rules for classification depend on 
the number of data elements and files that are affected by the transaction for 
the inputs, outputs, and queries; and number of data and composite 
structures for files [10]. The number of elements in each class represents a 
separate dimension of the system, forming a vector with fifteen dimensions. 
The norm of the vector is computed using a scalar product between the 
vector that represents system and the weighting vector. 

 
Accuracy of Measurements Used in the Elaboration Phase 
 

Results of applying the measurement methods described in the previous 
sections on the project data set are shown in the table 6. 
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Early iterations in the elaboration phase are equivalent to the 
“Requirement specification” phase in the Boehm’s cone of uncertainty, or 
“Budgetary estimate” point in the PMI model, since in this phase there is 
enough information to create a valid budget of the project. Estimating error is 
up to 50% in the requirement specification phase by Boehm, and between -
10% and +25% by PMI results. Therefore, mean error of 10-13%, achieved 
using NESMA estimated or Mark II methods is more than acceptable. Even 
the maximal error of 30-65% is within the acceptable range according to the 
Boehm’s results. 

Table 6. Accuracy of measurements applied during elaboration phase  

 Linear model Nonlinear model 

Metric R MMRE MREmax R MMRE MREmax 

Use Case 
Points 

80% 31% 94% 74%   29% 74% 

NESMA 
estimated 

92% 13% 65% 93%   16% 34% 

Mark II 92% 10% 30% 93%   15% 35% 

FPA 92% 10% 22% 96%   12% 29% 

 
Correlation between the project effort and a use case point size is 

significantly lower, and mean relative error of 31% is outside of the 
acceptable range of errors. The accuracy of the UCP method varies in the 
literature. In three case studies [45, 46, 47] Anda has reported that MMRE is 
between 17% and 30%, and Lavazza [49] got MMRE of 29.5%. Hence, this 
metric is not good enough, at least not in the data set used in the research. In 
the projects from our data set, we have found a variety of different styles of 
use cases, which might cause a high prediction error. Two major issues we 
have noticed in documentation (that affect use case point metric accuracy) 
are: 
1. Decomposition of use cases – there is no strict rule that defines when a set 

of user actions should be placed within one use case scenario, and when 
they should be decomposed into set of different use cases (e.g. included or 
extended sub use cases). Granularity of use cases significantly affects a 
number of use cases, and therefore a measured size;  

2. Level of details – some use cases contain just an essential functional 
description, while the other have many details. Number of details placed in 
the use case scenario affects a number of transactions and measured 
complexity of the particular use cases. Hence, size expressed in the use 
case points varies although functionality is the same. 
We believe that these issues cause a low accuracy of the UCP method in 

our data set. Different data sets/studies might give better results if use cases 
styles are standardized. However, we have decided not to alter, standardize 
or “improve” quality of documentation in order to get real values of accuracy. 

Later iterations of the elaboration phase in the Unified Process are 
equivalent to the Boehm’s “Product design” phase where estimating error is 
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around 25%, or final estimate in the PMI model where the error is from -5% 
to +10%. Complete functional point analysis metric with mean error of 10% 
and maximal error of 22% is within the Boehm’s range, but not better than the 
error ranges reported by PMI, especially if a maximal error is considered. 
However, the FPA method cannot be held responsible for a lack of accuracy 
when it is compared with PMI results. This research analyzes dependency 
between the functional sizes and efforts without considering nontechnical 
factors. Therefore, it is reasonable to assume that adjusting the size 
examined in this research using the same nontechnical factors would 
increase the accuracy of estimate and align it with the results found in the 
practice. A result of applying FPA metric on the projects in the dataset is 
shown on the figure 6. 

 

 

Fig. 6. Project sizes (expressed in FPA functional points) versus actual project effort. 
Most of the projects are placed around the regression line and within the MRE area 
bounded with the two thin lines 

4.3. Measurement During Construction Phase 

Focus of the measurement and analysis in the construction phase is not on 
the estimating size of the system. The main objective of the project 
management activities in the construction phase is project monitoring and 
control. Therefore, the focus of the measurement process is moved from the 
system as a whole to the individual pieces of the system (project tasks). Size 
of the entire system is measured in the previous phases; effort required to 
implement the software system is already determined; and budgets/plans for 
construction are developed according to the estimates. Development team 
needs to control a development process, compare a progress with the plan, 
and take the corrective actions if there are any significant deviations between 
the actual work and planned work. Even in the agile project approaches 
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(where planning is done in the iterative manner) the most important task is to 
control performances of a software team. Therefore, a main goal of the 
measurement is estimating a size of the tasks that were planned in the 
iterations. In order to determine size of the particular functionalities we can 
apply two measurement methods in the construction phase: 
1. Functional point analysis method – same technique used to determine size 

of the system method can be applied on the particular tasks as well; 
2. COSMIC Full Functional Point method – latest method in functional metric 

family can be applied on all functionalities that have defined 
communication protocols. 
The other methods presented in the paper are not suitable for measuring 

particular tasks. NESMA indicative and estimated methods are just 
approximations of the standard functional point method. Hence, standard 
NESMA or IFPUG methods have better results. Mark II measure is too robust 
because it only counts functional elements. Use case point method might be 
applied on the particular tasks under the assumption that use cases match 
project tasks. However, for projects in our data set, most of the project tasks 
represent parts of the use cases. Hence, use case point method cannot be 
applied on most of the projects in the dataset.  

Standard functional point analysis can be applied on the particular tasks in 
the same way as on the entire system. The only difference is that functional 
sizes are not summed up in order to determine the size of the system. 
Measured sizes are associated to the particular tasks that are classified as 
inputs, outputs or enquiries and rated as low, average or high complexity 
tasks (based on the specification). The size is expressed as a scalar measure 
representing complexity of the particular functionalities. 

Functional dependency between the effort required to complete tasks and 
corresponding sizes is shown in figure 7. 

Size of transactions is between three and seven functional points (FP), 
depending on the type and complexity of the functionality. In our dataset, 
efforts of particular tasks are in the range from one hour to 2.5 days. 

For medium sized tasks, one can establish some dependency between 
size and time. However, this method is not applicable on the tasks that are 
either too small or extremely long. Projects in our data set contain tasks in 
broad ranges of tasks from 1-2 hours, including minor queries or service 
calls, to the extremely complex reports that fell out of the medium range of 
tasks. 

COSMIC method is the latest method from the functional point family, 
which should overcome drawbacks of the existing functional point methods. 
While using this method, we measured all communication messages that are 
exchanged between user of the system and system components. 

The prerequisite for applying COSMIC method is an existence of detailed 
communication specification or sequence diagrams that define how 
messages between users, system components, and data modules are 
exchanged. In the COSMIC method, there are four types of messages that 
are identified – entry messages (E) where information is entered in the 
system, exit messages (X) where information is taken from system 
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components, write messages (W) used to store information in the persistent 
storage, and read messages (R) used for taking information back from the 
persistent storage. Size of the functionality is calculated as a total amount of 
all messages exchanged between user and system components within that 
functionality. Maximum size of functionalities is not limited, since there is no 
upper boundary regarding the number of messages that can be exchanged 
within the functionality. Dependency between the task sizes and efforts is 
shown in the figure 8. 

 

 

Fig. 7. Relationship between efforts required to implement particular tasks and task 
size expressed in functional points. For tasks that need between 7 and 17 hours to 
complete, a dependency is monotone; however, for tasks outside this range there are 
two saturation areas 

 

Fig. 8. Relationship between size of functionalities expressed in COSMIC points 
(CFP) and required effort recorded in hours. Applied linear regression returns good 
estimating function where actual values are close to the real ones 
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COSMIC metric does not have the same kind of constraints as FPA, since 
the number of messages that are exchanged between user and system 
components can vary from one to infinity. Hence, there is no saturation area 
in the figure 8. Deviation between the real task effort and the estimated one 
is less than a half of an hour, representing a very good accuracy with a mean 
error of 8%. Applying linear regression on the data set, it can be determined 
that there is a good functional dependency between the mean development 
time for tasks and size expressed in COSMIC functional points (CFP). 
Knowing that Boehm’s results during the “detailed specification definition” 
milestone give error equal to 10%, this result is also acceptable. 

Accuracies of the FPA and COSMIC methods are shown in the table 7. 
Correlation and error of the FPA method are determined only in the linear 
area. 

Table 7. Compared accuracies of the FPA and COSMIC methods 

 R MMRE MREmax 

FPA 95% 10% 14% 

COSMIC 97% 8% 11% 

 
COSMIC method is highly correlated with the actual effort of the tasks with 

a very good accuracy. FPA method also has a good correlation if it is applied 
on medium sized tasks. However, this method cannot be successfully applied 
on the tasks outside the linear area. 

5. Conclusion 

Results presented in the paper are empirical evidence that measurement and 
analysis can be successfully applied in the practice. Our evaluation of 
measurement methods on the real projects shows that there is no objective 
reason for using a subjective judgment in the process of project effort 
estimation, because the measurement based methods are accurate enough. 
These results are explained in more details in the following section. 

5.1. Results 

We have evaluated the most common measurement techniques and applied 
them on the real projects to estimate the effort required for the project. 
Estimated values of efforts are determined using regression techniques 
based on the measured sizes. We have compared estimated effort with the 
real effort and determined the prediction error. Furthermore, correlation 
between the measured size and the actual effort are determined in order to 
evaluate whether the measures can be applied in the effort estimation.  
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We have determined a mean and maximum magnitude of relative 
prediction error for all measurement methods used in this research. These 
criteria are used to compare and evaluate accuracies of the estimating 
models. Evaluation methods that use the pure MMRE criterion were criticized 
in [44]. Therefore, we have determined distribution of the mean error for all 
methods including minimum value, median value, and the range where are 
placed 50% of the errors. Figure 9 shows compared distributions of the 
method accuracies applied in the UP project phases.  

 

 

Fig. 9. Compared accuracies of the measurement methods applied in the research. 
Methods are grouped by UP project phases 

The half of the errors displayed in the boxes surrounding median value of 
the error is in the acceptable ranges below 60%. The functional methods in 
most cases have good accuracy, although there are potential outliers with 
more than 60% for NESMA estimated method. Measurement methods based 
on the use cases are not accurate as the functional methods. We believe that 
cause of this inaccuracy is lack of the specification standards for definition of 
use cases. 

Diagram shows the best practice methods that can be applied during the 
project lifecycle: 
1. NESMA indicative method that has the best accuracy at the beginning of 

the project; 
2. NESMA estimated and Mark II that have the best accuracy in the early 

iterations of the elaboration phase. Standard FPA method that has even 
better accuracy; however, it can be applied only in the later iterations of 
the elaboration phase;  

3. COSMIC method has the best correlation with the effort at the beginning of 
the construction phase. 
Accuracy of the best practice measurement techniques that are applied on 

the project in our data set is shown in figure 10. Results are divided per 
project phases and compared with Boehm’s and PMI results. 
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Fig. 10. Results of the estimate accuracy based on measurement compared with the 
Boehm’s and PMI results 

Results of the estimation using the measurement techniques and applying 
linear regression have better results than the results found in practice. 
Estimating errors applied on the data set are within Boehm’s and PMI 
boundaries (except the lower boundary of the PMI where we have minor 
difference). In the earlier phases of the project, measurement methods have 
significantly better results than any results reported in the practice.  

This is a concrete proof that there is no reason for assuming that the 
algorithmic models based on the measurement and analysis would not give 
good results. If applied correctly, estimating methods based on the metric can 
be used as quick and accurate methods for estimating the project effort.  

Research shows that for small and medium projects, there is no significant 
difference between linear estimating models such as COBRA and nonlinear 
models such as COCOMO II or SLIM. Although it is reasonable to assume 
that many factors include nonlinear dependency between the size and the 
effort, it is shown that the effects of nonlinear behavior can be found only on 
the larger projects. A current trend in the software development is dividing 
large projects in smaller subprojects where a system is implemented in the 
iterative manner. Hence, this is a valuable conclusion. According to the 
results in the research, the linear models are applicable on the smaller 
projects; hence, project teams that practice an agile or iterative development 
can use simpler linear methods for determining functionalities between the 
size and the effort.  

The fact that linear models can be applied is important because beside the 
simplicity, linear models enable project teams to track comprehensible 
performance indicators such as productivity. Measuring and tracking 
productivity is important in the software organizations, since one of the most 
important tasks is optimizing process performances. 
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A very important result in the paper is the fact that good accuracy of the 
estimating model is achieved although non-technical characteristics of the 
system are not used. Expert judgment methods consider both features that 
should be implemented and non-functional factors such as 
programmer/analyst capability or platform/technology complexity. Accuracy 
of estimates based on the bare functional size evaluated in this paper is close 
or even better than accuracies found in the practice, even if the non-
functional parameters are not included in the research. This emphasis the 
great potential of the functional measurement presented in the paper. If the 
non-functional parameters that are used in the expert judgment methods are 
applied on metric presented in this paper, accuracy will be significantly 
improved and probably give far better results than those reported by Boehm 
and PMI.  

5.2. Future Work 

Our study shows that there is a good correlation between the pure functional 
size and the actual project effort; however, the influence of the nontechnical 
factors on the effort is not evaluated. Current estimation models, such as 
COCOMO II or SLIM, use several nontechnical parameters to adjust the 
functional size and improve accuracy of the predicted estimates. The 
inclusion of these parameters in the measurement model presented in this 
paper would significantly improve the accuracy of estimates. Note that our 
study shows that the accuracy of estimates in currently analyzed bare 
functional models is, in most of the cases, better than accuracy expected in 
the practice.  

In the present data set, information about the nonfunctional parameters of 
the system is either incomplete, or it is arguable whether they are objective. 
The organization used as a source of information does not have implemented 
some crucial processes on the CMMI maturity level 3, such as organizational 
process definition (OPD) or decision analysis and resolution (DAR). 
Therefore, no organizational standards exist to assess the ability of workers 
who worked on the project. Lack of the objective organizational standards 
might cause significant variation in a team capability or product complexity 
assessment as it will rely on the subjective evaluation of the particular team 
members. As data about the nontechnical characteristics are too subjective, 
they have been discarded from the research. Next step in the research will be 
a creation of an organization-wide model for evaluation of nonfunctional 
parameters and including these values as parameters in the uniform tuple 
space. Once the nonfunctional parameters are collected, estimating models 
such as COCOMO II, SLIM, or COBRA can be directly applied, and we would 
be able to evaluate which of them corresponds to the project data. 

In addition, current maturity level does not guarantee that processes are 
optimal; only that their cost can be consistently predicted using the 
measurement data. One of our future goals is to evaluate how measurement 
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and analysis can be applied on the higher maturity levels where 
measurement is used both for prediction and process optimization.  
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