
DOI:10.2298/CSIS110318069B

An Approach to Automated Conceptual Database
Design Based on the UML Activity Diagram

Drazen Brdjanin and Slavko Maric

University of Banja Luka, Faculty of Electrical Engineering
Patre 5, 78000 Banja Luka, Bosnia and Herzegovina

{bdrazen,ms}@etfbl.net

Abstract. This paper presents an approach to the automated design of
the initial conceptual database model. The UML activity diagram, as a fre-
quently used business process modeling notation, is used as the starting
point for the automated generation of the UML class diagram representing
the conceptual database model. Formal rules for automated generation
cover the automatic extraction of business objects and business process
participants, as well as the automatic generation of corresponding classes
and their associations. Based on these rules we have implemented an au-
tomatic generator and evaluated it on a real business model.

Keywords: Activity Diagram, Business Process Model, Class Diagram,
Conceptual Database Model, UML, Topcased, ADBdesign.

1. Introduction

The database design process mainly undergoes the following phases: require-
ments analysis, conceptual design, logical design and physical design. The
main goal of conceptual database design is to provide an overall description
of data on a high level of abstraction in the entire system. The corresponding
model is usually called the conceptual database model (CDM) and represents a
semantic data model. The related literature is more focused on conceptual de-
sign than on other design phases, considering it to be the most important design
phase since the following phases are usually straightforward transformations of
the model from the previous one. Because of that, the automatization of CDM
design has been the subject of research for many years.

Starting with Chen’s eleven heuristic rules [10] for the translation of infor-
mation requirements specified in a natural language (English) into an E-R di-
agram, a lot of research has been done in the field of natural language pro-
cessing (NLP) on extracting knowledge from requirements specifications and
automating CDM design. At present, a natural language is the most frequently
used language for requirements specifications and the majority of approaches
to automated CDM design are NLP-based approaches. However, the effective-
ness and limitations of NLP-based approaches are usually deeply related to the
source language since they depend on the size and complexity of the grammar
used and the scope of lexicon. Consequently, the utilization of linguistics-based



Drazen Brdjanin and Slavko Maric

approaches, which are presently mainly related to the English and German lan-
guages, is questionable for other languages with more complex morphology
and some non-NLP-based alternatives are more desirable.

Currently, there are several non-NLP-based alternatives to the automated
CDM design, such as approaches taking a collection of forms [36, 3, 11, 12, 21]
or diagrammatic requirements models [1] as the basis for automated design in-
stead of requirements specifications expressed in a natural language. There are
also several proposals taking business process models [15, 19, 32, 31, 7] as the
starting basis, but with modest achievements in automated CDM generation. A
more detailed overview of the related work is provided later in the paper.

The fact that business modeling and database design often use different
notations, which usually don’t conform to the same or common metamodel,
poses a particular problem and challenge in the automated CDM design based
on a business model. Business modeling is usually characterized by process-
oriented notations, such as IDEF0 [24], EPC [35], Petri nets [30], BPMN [39],
etc. On the other hand, the E-R notation, introduced by Chen [9], or one of
its modifications such as IE [22], is traditionally used for conceptual database
modeling, while the development of UML has seen an increasing use of the
UML class diagram as well [23]. Different, i.e. non-harmonized notations are
one of the reasons for a fairly small number of papers in the field. One of the
ways to overcome this problem is the use of UML for both business modeling
and database design. In this paper we present an approach to the automated
design of the initial CDM1 using the unified UML-based notation.

Another reason for the fairly small number of papers in the field, besides
different and/or non-harmonized notations, is related to the semantic capacity
of business models which has not been completely explored yet and should be
exploited for the automated CDM design. Inspired by [15] and some subsequent
proposals [4, 31, 37, 7, 6, 5], in this paper we explore the semantic capacity of
the business process model represented by the UML activity diagram (AD), and
define the formal rules for automated design of the initial CDM represented by
the UML class diagram (CD). The proposed approach is based on: (i) automatic
extraction of business entities (participants and objects) from the source AD,
and (ii) automatic generation of corresponding classes and their associations
(participant-object and object-object associations) in the target CD.

This paper is structured as follows. After the introduction, the second section
presents the AD as the source model, while the third section presents the CD
as the target model. The fourth section presents an analysis of the semantic
capacity of the AD, and provides the formal rules for automated generation of
the initial CDM. The experimental results, including qualitative and quantitative
evaluation of the implemented automated CDM generator, are given in the fifth
section. The sixth section presents the related work. Finally, we conclude the
paper and highlight the directions for further research.

1 Since the presented approach is currently focused on the automated generation of
proper structure of the target data model that could be refined manually afterwards,
we use the term initial CDM.

250 ComSIS Vol. 9, No. 1, January 2012.



An Approach to Automated Conceptual Database Design

2. Detailed Activity Diagram

The AD is a widely accepted business process modeling notation [20] and there
are a large number of papers dealing with the formalization of semantics and
the suitability analysis of the AD for business modeling [34]. The very rich se-
mantics of the AD allows modeling business processes at different levels of
abstraction and detail, from the macroactivity diagram, used in developing the
initial business model for the rough specification of a business process, to the
detailed activity diagram, used for the detailed specification of a business pro-
cess in later stages of business modeling.

In this paper we consider a detailed activity diagram (DAD) which represents
activities at least at complete level (related excerpt from the UML superstructure
[28] is shown in Fig. 1), i.e.
• each step in the realization of the given business process is represented by

a corresponding action node (OpaqueAction) and will be shortly referred
to as action in the rest of the paper;
• each action is performed by a particular business process participant that

plays some business role modeled by a corresponding activity partition
(usually called swimlane). In the rest of the paper, a business process par-
ticipant is shortly referred to as participant. It can be external (e.g. buyer,
customer, etc.) or internal (e.g. business worker, working group, organiza-
tion unit, etc.). Since the responsibility of a particular participant (i.e. corre-
sponding business role) is modeled with one swimlane, we have as many
swimlanes as there are different participants involved in the process repre-
sented by the given DAD;
• each action may have a number of inputs and/or outputs represented by

object nodes (CentralBufferNode) that can be in different states in the
given business process. In the rest of the paper they are referred to as input
objects and output objects, respectively;
• objects and actions are connected with object flows (ObjectFlow). An ob-

ject flow is a kind of activity edge which is directed from an input object to-
ward the corresponding action (input object flow) or from an action toward
the corresponding output object (output object flow); and
• each object flow has a weight attribute, whose value is by default one. In

UML semantics, the object flow weight represents the minimum number of
tokens that must traverse the edge at the same time. We assume that the
weight of an object flow represents the total number of objects required for
an action if they are input objects, or the total number of objects created in
an action if they are output objects. An unlimited weight (*) is used if the
number of input/output objects is not a constant.

The fact that an action is performed by some participant is represented in
both corresponding DAD elements, i.e. the inPartition attribute of the corre-
sponding action contains the identifier of the related swimlane, while the node
attribute of the given swimlane contains the identifiers of all actions performed
by the given participant.

ComSIS Vol. 9, No. 1, January 2012. 251



Drazen Brdjanin and Slavko Maric

The fact that an action has an input object is represented in all three corre-
sponding DAD elements, i.e. the source and target attributes of the given in-
put object flow contain the identifiers of the given object and action, respectively,
while the outgoing attribute of the given object and the incoming attribute of
the given action contain the identifier of the given input object flow.

The fact that an action has an output object is similarly represented, i.e. the
source and target attributes of the given output object flow contain the iden-
tifiers of the given action and object, respectively, while the outgoing attribute
of the given action and the incoming attribute of the given object contain the
identifier of the given output object flow.

Based on the previous description of business process representation by
the AD, the DAD can be formally defined as follows.

Definition 1. (Detailed activity diagram) Let P,A,O and F be sets of partici-
pants, actions, objects and object flows in some business process, respectively.
The detailed activity diagram, denoted by DAD(P,A,O,F), is a UML activity
diagram with the following properties:
(1) each action a ∈ A is performed by only one participant p ∈ P, i.e.

∀p ∈ P, ∀a ∈ A | a ∈ node(p) ⇒ inPartition(a) = {p};
(2) each input object flow if ∈ FI ⊆ F is an object flow directed from exactly

one input object io ∈ OI ⊆ O toward exactly one action a ∈ A, i.e.
∀io ∈ OI , ∀a ∈ A, ∀if ∈ FI | if ∈ outgoing(io) ∧ if ∈ incoming(a)

⇒ source(if) = io ∧ target(if) = a;
(3) each output object flow of ∈ FO ⊆ F is an object flow directed from exactly

one action a ∈ A toward exactly one output object oo ∈ OO ⊆ O, i.e.
∀a ∈ A, ∀oo ∈ OO, ∀of ∈ FO | of ∈ outgoing(a) ∧ of ∈ incoming(oo)

⇒ source(of) = a ∧ target(of) = oo.

Fig. 1. UML metamodel [28] excerpt used for DAD representation

252 ComSIS Vol. 9, No. 1, January 2012.



An Approach to Automated Conceptual Database Design

Figure 2 depicts the sample DAD that will be used throughout this paper as
the source business process model. Although it represents a simplified version
of the DAD representing the typical business process of order acquisition fol-
lowed by the delivery of ordered items, it is sufficiently illustrative to cover the
most important concepts and basic rules for automated CDM design.

Although the presented workflow is quite intuitive, we still provide a short
description. The given business process starts with the customer’s request for
a new order delivery. Based on that request, the commercial creates a cor-
responding new order header containing all relevant data and allows the cus-
tomer to specify order details based on catalog items. After that, the commercial
confirms the specified order details and makes the decision. If the order is ac-
ceptable, the order header will be marked as accepted. Otherwise, it will be
canceled. After the order is accepted, the stockman collects stock items for all
confirmed order details. All prepared items will be controlled and packed into a

Fig. 2. Sample DAD used in the paper as the source business process model

ComSIS Vol. 9, No. 1, January 2012. 253



Drazen Brdjanin and Slavko Maric

single delivery and delivered by the driver. Finally, the given business process
ends with the reception of the delivery by the corresponding customer.

3. Class Diagram as the Initial CDM

We use the CD to represent the CDM in an attempt to unify notations for both
business modeling and CDM design. The UML metamodel excerpt from the
UML infrastructure [27], required for the representation of the CDM, is shown in
Fig. 3.

Since the target CD is to represent the conceptual model of a relational
database, each generated class will not contain operations, but only a set of
owned attributes (data members). Since the presented approach is currently
focused on automated generation of proper structure of the target model, each
generated class will, if necessary, contain only one attribute named id, which
represents a primary key. Additionally, all generated associations will be binary
associations.

Definition 2. (Conceptual database model) Let E and R be sets of classes
and their associations, respectively. The conceptual database model, denoted
by CDM(E ,R), is a UML class diagram with the following properties:
(1) each entity set is modeled by a corresponding class e∈ E of the same name,

whose each ownedAttribute (Property) corresponds to an attribute of
the given entity set, and

(2) each relationship is modeled by a corresponding binary association r ∈R
of the same name, whose two memberEnd attributes (Property) repre-
sent source and target association ends with the appropriate multiplicity
corresponding to respective relationship cardinalities.

Fig. 3. UML metamodel [27] excerpt for CDM representation

254 ComSIS Vol. 9, No. 1, January 2012.



An Approach to Automated Conceptual Database Design

4. Semantic capacity of DAD and rules for CDM design

This section presents an analysis of the semantic capacity of the DAD for au-
tomated generation of the CDM. Formal rules cover the extraction of business
entities (participants and objects) from the DAD and automated generation of
corresponding classes and their associations. At present, we distinguish two
groups of associations. The first group are participant-object associations gen-
erated based on the actions performed by a particular participant on concrete
object(s). The second group are object-object associations generated for the
actions that have both input and output objects.

4.1. Automated extraction of participants

Each business role in the given business process is represented by a corre-
sponding swimlane in the DAD and there are as many swimlanes as there are
different types of participants involved in the process. For example, in the sam-
ple DAD there are four different roles. The CUSTOMER is an external role, while
the COMMERCIAL, STOCKMAN and DRIVER are internal roles.

Each role is performed by a particular participant. With time, i.e. with multiple
executions of the given business process, the same role may/will be performed
by many different participants. External roles are a typical example. In the sam-
ple DAD, the CUSTOMER is an abstraction of all customers. For example, in
one instance of the business process we have one particular customer, but in
some other subsequent execution, the customer could be some other person
or company. Similarly, the given business system may have many workers/units
performing the same internal role. For example, the given business system may
have many drivers. In each execution of the sample business process, one of
them plays the DRIVER role and delivers items to the particular customer. In
some other case, some other driver will deliver ordered items to the same or
some other customer.

To conclude, each role is an abstraction of a number of entities of the same
type. That implies that each role should be represented by the corresponding
entity type in the target CDM, i.e. each swimlane (participant) from the DAD
is to be mapped into the corresponding class of the same name in the target
CDM, which is formally expressed by the next rule.

Rule 1. (Extraction of participants) Rule TP maps participant p ∈ P into class
eP ∈ EP ⊆ E :
TP : DAD(P,A,O,F) 7→ CDM(E ,R) def⇐⇒ eP = TP

(
p
)

TP
(
p
) def

= eP
∣∣ (name(eP) = name(p)

)
.

Set EP of classes generated for all p ∈ P is as follows:

EP =
{
eP ∈ E

∣∣ eP = TP(p), p ∈ P
}
.

Application of the previous rule to the sample DAD is to result in the creation
of four classes: CUSTOMER, COMMERCIAL, STOCKMAN and DRIVER.

ComSIS Vol. 9, No. 1, January 2012. 255



Drazen Brdjanin and Slavko Maric

4.2. Automated extraction of objects

During the execution of a business process, participants perform actions and
use different objects. We distinguish two categories of objects.

The first category is generated objects, i.e. objects created in the given pro-
cess. For example, the Request object is one of generated objects in the sam-
ple DAD, since it is created by a particular customer. In each subsequent ex-
ecution of the given business process, one new request will be created by the
same or some other customer. Other generated objects in the sample DAD are:
OrderHeader, OrderDetail and Delivery.

After they are created, generated objects may appear to be the input objects
in other actions that may use them to create some other generated objects (e.g.
an order header is created based on the customer’s request) or change their
states (e.g. after the specification, each order detail is to be confirmed by the
commercial).

The second category is existing objects, i.e. objects that are not created in
the given process but in some other process. They exist independently of the
given business process. Such objects can be used for the creation of generated
objects. For example, in the sample DAD, the CatalogItem is one type of ex-
isting objects which are used for the order details specification by the customer
(each order detail is specified based on one catalog item). Existing objects may
also be modified (may change their states) by the execution of some action, like
the StockItem objects which are collected by the stockman and later packed
into the delivery.

Based on the previous considerations we can formally define existing and
generated objects, since that is important for further DAD analysis.

Definition 3. (Existing object) Existing object eo ∈ OX ⊆ O is an object which
is not created in the given process but in some other process, i.e.

∀eo ∈ OX ⇒ 6 ∃of ∈ FO | target(of) = eo,
or alternatively

eo ∈ OX = {o ∈ O | incoming(o) = ∅}.

Definition 4. (Generated object) Generated object go ∈ OG ⊆ O is an object
created in the given process, that is an object which is not ”existing”, i.e.

go ∈ OG = {o ∈ O | o 6∈ OX }.

In each execution of the given business process, participants deal with one
or many (specified by the weight attribute of the corresponding object flow)
instances of the specified objects. Even in case of manipulation with one single
instance, in the course of time, i.e. with multiple executions of the given business
process, many instances of particular object type will be used. To conclude,
each object is an abstraction of many entities of the same type. That implies
that each object should be represented by the corresponding entity type in the
target CDM, i.e. each generated and each existing object from the DAD is to be
mapped into a corresponding class of the same name in the target CDM, which
is formally expressed by the next rule.

256 ComSIS Vol. 9, No. 1, January 2012.



An Approach to Automated Conceptual Database Design

Rule 2. (Extraction of objects) Rule TO maps object o ∈ O into class eO ∈
EO⊆E :
TO : DAD(P,A,O,F) 7→ CDM(E ,R) def⇐⇒ eO = TO

(
o
)

TO
(
o
) def

= eO
∣∣ (name(eO) = name(o)

)
.

Set EO of classes created for all generated and existing objects o ∈ OG ∪OX in
the given business process is as follows:

EO =
{
eO ∈ E

∣∣ eO = TO(o), o ∈ OG ∪ OX
}
.

Application of the previous rule to the sample DAD is to result in the creation
of four classes for generated objects: Request, OrderHeader, OrderDetail
and Delivery, as well as two classes for existing objects: CatalogItem and
StockItem.

4.3. Automated generation of participant-object associations

The first group of associations is participant-object associations which can be
generated based on the actions that participants perform on objects. There are
several typical patterns in the DAD that should be analyzed taking into account
the distinction between generated and existing objects.

Participant-generated object associations. Firstly, we will consider the as-
sociations of classes representing participants and generated objects.

As defined earlier, a generated object is an object which is created in some
action performed by a particular participant. In the given business process,
some action may result in the creation of one or many generated objects of
the same type (Fig. 4a), as specified by the weight attribute of the correspond-
ing output object flow. In the course of time, i.e. with multiple executions of the
given business process, the same or some other participant playing the same
role will create many generated objects of the same type. Each generated ob-
ject depends on exactly one participant that performs the given action and cre-
ates such object(s). This implies that such action is to be mapped from the DAD
into the binary association of classes corresponding to the particular participant
and generated object in the target CDM with the ”1:*” cardinality. For example,
in the sample DAD, some customer requests a new delivery by issuing a new
request. With time, the same customer may have many requests and all these
requests will be related only to this customer.

The first rule for automated generation of associations between classes cor-
responding to participants and generated objects defines the mapping of ac-
tions that create objects into corresponding associations. Consequently, these
associations in the target CDM represent the fact that some objects are created
by a particular participant.2

2 Each of these associations may have their own attributes (i.e. timestamp, etc.). Due to
the ”1:*” cardinality, all these attributes will be attributes of the classes corresponding
to the generated objects. Presently, we are focused on the proper structure of the
target CDM and automated generation of attributes will be part of our future work.

ComSIS Vol. 9, No. 1, January 2012. 257



Drazen Brdjanin and Slavko Maric

Rule 3. (Creation of objects) Let action a ∈ A, performed by participant
p ∈ P, create object o ∈ OG . Rule TPGO maps triplet 〈p, a, o〉 into association
rPGO ∈ RPGO ⊆ R between classes eP and eG corresponding to the given
participant and generated object, respectively:
TPGO : DAD(P,A,O,F) 7→ CDM(E ,R) def⇐⇒ rPGO = TPGO

(
〈p, a, o〉

)
TPGO

(
〈p, a, o〉

) def
= rPGO

∣∣ (name(rPGO) = name(a) ∧(
memberEnd(rPGO) = {source, target} |
type(source) = eP ∧multiplicity(source) = 1 ∧
type(target) = eG ∧multiplicity(target) = ∗

))
.

Let OGO(a)⊆O be the set of all generated objects of action a∈A. Then set
RPGO(a) of all ”participant-generated object” associations, generated for all
o ∈ OGO(a) for the given action a ∈ A, is as follows:

RPGO(a) =
{
rPGO ∈ R

∣∣ rPGO = TPGO(〈p, a, o〉), o ∈ OGO(a)
}
.

Total setRPGO of ”participant-generated object” associations representing facts
of object creation for the entire DAD represents the union of all RPGO(a) sets

RPGO =
⋃
a∈A
RPGO(a).

Application of the previous rule to the sample DAD will result in the creation
of associations for the following triplets: <CUSTOMER,Requesting,Request>,
<COMMERCIAL,HeaderCreation,OrderHeader>, <CUSTOMER,Specifi-
cation,OrderDetail> and <STOCKMAN,Pack&Control,Delivery>.

Fig. 4. Typical DAD patterns for generated objects and mapping into CDM

258 ComSIS Vol. 9, No. 1, January 2012.



An Approach to Automated Conceptual Database Design

Each generated object may appear to be the input object in some other ac-
tion performed by the same participant (Fig. 4b). In the course of time, the given
participant will perform such action many times and each time on a different in-
put object generated in some previous action. This implies that such action is
to be mapped from the DAD into the binary association of classes correspond-
ing to the given participant and given input object in the target CDM with the
”1:*” cardinality. For example, in the sample DAD, the customer receives de-
livery. With time, the same customer may receive many deliveries and all these
deliveries will be related only to this customer.

More generally, each generated object may constitute the input object in
several different actions performed by the same participant (Fig. 4c) or some
other participants (Fig. 4d). For example, in the sample DAD, the order header
is the input object in several subsequent actions: it is used for specification of
order details (performed by the customer), it is the subject of cancelation or
acceptance (performed by the commercial), and it is also used for preparing
delivery (performed by the stockman). Based on the previous considerations,
each of these actions with the same input generated object(s), is to be mapped
into the binary association of classes corresponding to the particular participant
and given input object(s) in the target CDM with the ”1:*” cardinality.

The second rule for the automated generation of associations between clas-
ses corresponding to participants and generated objects defines the mapping of
actions with generated objects as inputs into corresponding associations. Con-
sequently, these associations in the target CDM represent the fact that some
generated objects are used by a particular participant.

Rule 4. (Usage of generated objects) Let action a ∈ A, performed by partici-
pant p ∈ P, have generated input object o ∈ OG . Rule TPGI maps triplet 〈p, a, o〉
into association rPGI ∈ RPGI ⊆ R between classes eP and eG corresponding
to the given participant and input object, respectively:
TPGI : DAD(P,A,O,F) 7→ CDM(E ,R) def⇐⇒ rPGI = TPGI

(
〈p, a, o〉

)
TPGI

(
〈p, a, o〉

) def
= rPGI

∣∣ (name(rPGI) = name(a) ∧(
memberEnd(rPGI) = {source, target} |
type(source) = eP ∧multiplicity(source) = 1 ∧
type(target) = eG ∧multiplicity(target) = ∗

))
.

Let OGI(a) ⊆ O be the set of all generated input objects of action a ∈ A. Then
set RPGI(a) of all ”participant-generated object” associations, generated for all
o ∈ OGI(a) for the given action a ∈ A, is as follows:

RPGI(a) =
{
rPGI ∈ R

∣∣ rPGI = TPGI(〈p, a, o〉), o ∈ OGI(a)
}
.

Total setRPGI of ”participant-generated object” associations representing facts
of generated objects usages for the entire DAD represents the union of all
RPGI(a) sets

RPGI =
⋃
a∈A
RPGI(a).

ComSIS Vol. 9, No. 1, January 2012. 259



Drazen Brdjanin and Slavko Maric

Finally, total setRPG of ”participant-generated object” associations for the entire
DAD represents the union of the RPGO and RPGI sets

RPG = RPGO ∪RPGI .

Some action having a generated object as an input object may change its
state and such object can be used in other subsequent actions. For example,
in the sample DAD, the commercial accepts an order header changing its state
from new to accepted and that accepted order header is later used for prepar-
ing delivery. It is the same generated object, but in different states. Different
states are represented by different attribute values and don’t affect the structure
of the target CDM. That implies that the previous rule is relevant for all gener-
ated input objects regardless of their states3. In this way, application of the pre-
vious rule to the sample DAD will result in the creation of associations for the fol-
lowing triplets: <COMMERCIAL,HeaderCreation,Request>, <CUSTOMER,
Specification,OrderHeader>, <COMMERCIAL,Confirmation,Order-
Detail>, <COMMERCIAL,Cancelation,OrderHeader>, <COMMERCIAL,
Acceptance,OrderHeader>, <STOCKMAN,Collecting,OrderDetail>,
<STOCKMAN,Pack&Control,OrderHeader>, <DRIVER,Delivering,De-
livery> and <CUSTOMER,Reception,Delivery>.

Participant-existing object associations. As earlier defined, existing objects
are objects which are not created in the given business process, but in some
other process. We distinguish three typical usages of existing objects.

Firstly, they may be used as input objects in actions without changing their
state, i.e. actions which result in creating generated objects based on existing
objects. Such existing object in the sample DAD is the CatalogItem used
for the specification of order details. The statement that some participant uses
some existing object for the creation of some generated object contains three
main facts: (i) participant creates some new object, (ii) some new object will
be generated based on some existing object, and (iii) participant uses some
existing object. Each fact can be represented by a corresponding association.
However, these three facts are not mutually independent and just two associ-
ations will suffice. The third association will be redundant (if we know that the
given customer specified the order details based on catalog items, we indirectly
know that (s)he used those catalog items). The first fact has been already cov-
ered by the rule for the automated generation of participant-generated object
associations. The second fact is more significant than the third fact and will be
represented by an object-object association4. Consequently, there is no need
for the automated generation of association of classes corresponding to the
given participant and such existing object.

3 It is possible that the state of some generated object is not specified at all. For exam-
ple, some object is naturally in state new after the creation, but that doesn’t need to
be explicitly specified.

4 Automated generation of object-object associations is the subject of the next section.

260 ComSIS Vol. 9, No. 1, January 2012.



An Approach to Automated Conceptual Database Design

The second typical usage of existing objects is the activation. It represents
the fact that some existing object(s) constitute(s) the input in some action that
changes its/their state. This implies that the given action has the input and out-
put objects of the same name. The input object state (initial state of the given
existing object(s) before the execution of the given action) is typically not de-
picted, while the output object state (state of the given object(s) after the action
execution) is typically depicted, as illustrated in Fig. 5. Collecting stock items is
an example of the existing object activation in the sample DAD. The stockman
collects stock items and prepares them for packing and delivering. (S)he takes
the items from the stock and changes their state into prepared.

The term activation is used for two reasons: (i) such objects exist indepen-
dently of the given business process in some idle state before the activation,
and (ii) typically (but not necessarily), activation represents the initial usage
of such existing objects in the business process, since the activated existing
objects, after the activation, usually constitute the input objects in subsequent
actions.

Definition 5. (Existing object activation) Let OI(a) and OO(a) represent
the sets of input and output objects of action a ∈ A, respectively. Action a,
performed by participant p ∈ P, represents the activation α(p, a, eo) of existing
object eo∈OI(a) if there is an output object oo∈OO(a) such that name(oo) =
name(eo).

By performing an activation, the given participant may activate one or many
existing objects of the given type (specified by the weight attribute of the cor-
responding object flows). With time, the same participant may activate many
existing objects. On the other hand, the same existing object(s) is/are activated
by one participant in the given business process, but with time, it is possible that
the same existing object will be activated many times by many different partic-
ipants (some book in the library may be borrowed many times by many library
members). Consequently, if we consider activation as a relationship between
participants and existing objects, then its cardinality is ”*:*”. Since activation
typically has its own attributes (e.g. state attributes, activation timestamp, etc.),
we will not represent it as an association whose source and target end multi-
plicities equal ”*”, but as a separate class associated with both corresponding
classes (participant and object) by two ”*:1” associations (Fig. 5).

Fig. 5. Existing object activation and corresponding CDM representation

ComSIS Vol. 9, No. 1, January 2012. 261



Drazen Brdjanin and Slavko Maric

Rule 5. (Activation of existing objects) Composite rule TPEA, consisting of
three rules T (1)

PEA, T (2)
PEA and T (3)

PEA, defines the mapping of activation α(p, a, eo)
into a corresponding activation class and its associations.

Rule T (1)
PEA maps activation α(p, a, eo) into activation class eA ∈ EA ⊆ E :

T (1)
PEA : DAD(P,A,O,F) 7→ CDM(E ,R) def⇐⇒ eA = T (1)

PEA
(
α(p, a, eo)

)
T (1)
PEA

(
α(p, a, eo)

) def
= eA

∣∣ (name(eA) = name(eo) + name(a)
)
.

Rule T (2)
PEA maps activation α(p, a, eo) into association rPA∈RPA⊆R between

classes eP and eA corresponding to the given participant and activation, re-
spectively:
T (2)
PEA : DAD(P,A,O,F) 7→ CDM(E ,R) def⇐⇒ rPA = T (2)

PEA
(
α(p, a, eo)

)
T (2)
PEA

(
α(p, a, eo)

) def
= rPA

∣∣ (name(rPA) = name(a) ∧(
memberEnd(rPA) = {source, target} |
type(source) = eP ∧multiplicity(source) = 1 ∧
type(target) = eA ∧multiplicity(target) = ∗

))
.

Rule T (3)
PEA maps activation α(p, a, eo) into association rEA∈REA⊆R between

classes eX and eA corresponding to the given existing object and activation,
respectively:
T (3)
PEA : DAD(P,A,O,F) 7→ CDM(E ,R) def⇐⇒ rEA = T (3)

PEA
(
〈p, α(a, eo)〉

)
T (3)
PEA

(
α(p, a, eo)

) def
= rEA

∣∣ (name(rEA) = name(a) ∧(
memberEnd(rEA) = {source, target} |
type(source) = eX ∧multiplicity(source) = 1 ∧
type(target) = eA ∧multiplicity(target) = ∗

))
.

Let X be the set of all activations α(p, a, eo) in the given DAD(P,A,O,F). The
EA, RPA and REA sets of classes and corresponding associations, created for
all activations α(p, a, eo) ∈ X , are as follows:

EA =
{
eA ∈ E

∣∣ eA = T (1)
PEA

(
α(p, a, eo)

)
, α(p, a, eo)∈X

}
,

RPA =
{
rPA ∈ R

∣∣ rPA = T (2)
PEA

(
α(p, a, eo)

)
, α(p, a, eo)∈X

}
,

REA =
{
rEA ∈ R

∣∣ rEA = T (3)
PEA

(
α(p, a, eo)

)
, α(p, a, eo)∈X

}
.

There is only one activation (<STOCKMAN,Collecting,StockItem>) in
the sample DAD. Application of the TPEA rule will result in the creation of an
activation class (StockItem_Collecting) as well as two associations with
classes corresponding to the given participant (<STOCKMAN,StockItem_Col-
lecting>) and existing object (<StockItem,StockItem_Collecting>).

The third typical usage of an existing object appears after activation when
the activated existing object constitutes the input object in some subsequent
actions performed by the same and/or some other participant(s), as illustrated

262 ComSIS Vol. 9, No. 1, January 2012.



An Approach to Automated Conceptual Database Design

Fig. 6. Usage of activated existing object and mapping into CDM

in Fig. 6. For example (sample DAD), after collecting, stock items are prepared
(i.e. activated from the stock) for packing and constitute the input objects in the
subsequent Pack&Control action.

If an activated existing object constitute the input object in some subsequent
action, then the given activated object is related to exactly one participant who
performs that action. With time, the given participant will perform such action
many times. Each time it may be performed on the same existing object, but also
on some other activated existing object of the same type (e.g. the same library
member may borrow the same book many times, as well as many different
books). This implies that the cardinality of the relationship between the given
participant and activated existing object is to be ”1:*”. To be able to define the
formal rule that maps such action into the association of corresponding classes,
the target class that corresponds to the given activated existing object is to
be determined. The given participant performs the action with some concrete
existing input object that was previously activated, i.e. (s)he is not related to any
object of the given type, but to the particular activated object. This implies that
the target class should be the class corresponding to the activation of the given
object, but not the class representing all objects of the given type5.

5 Associated activation class, representing the fact of activation of existing objects of the
given type, is a weak entity type since each activation existentially depends on some
concrete existing object. The primary key of this entity set will consist of the existing
object identifier (i.e. primary key of the existing object) and some discriminator (e.g.
activation timestamp). Each activation also depends on some concrete participant,
but not existentially (if we suppose a slightly different business process metamodel
that enables models containing only actions and objects, but without participants, ac-
tivation will depend only on the existing object, i.e there is no activation without some
existing object). Since the associated activation class contains complete identity in-
formation about the activated objects, as well as a set of other attributes representing
the state of the activated objects, we can conclude that the associated activation class
constitutes the relevant representation of the activated existing objects.

ComSIS Vol. 9, No. 1, January 2012. 263



Drazen Brdjanin and Slavko Maric

Consequently, an action representing the usage of activated existing ob-
ject(s) in the DAD is to be mapped into the binary association of classes corre-
sponding to the particular participant and activation of the given input existing
object(s) in the target CDM with the ”1:*” cardinality (Fig. 6).

Rule 6. (Usage of activated existing objects) Let action a ∈ A, performed by
participant p ∈ P, have activated existing input object o ∈ OX . Rule TPEI maps
triplet 〈p, a, o〉 into association rPEI ∈ RPEI ⊆ R between classes eP and eA
corresponding to the given participant and activation of the existing input object,
respectively:
TPEI : DAD(P,A,O,F) 7→ CDM(E ,R) def⇐⇒ rPEI = TPEI

(
〈p, a, o〉

)
TPEI

(
〈p, a, o〉

) def
= rPEI

∣∣ (name(rPEI) = name(a) ∧(
memberEnd(rPEI) = {source, target} |
type(source) = eP ∧multiplicity(source) = 1 ∧
type(target) = eA ∧multiplicity(target) = ∗

))
.

Let OA(a)⊆O be the set of all activated existing input objects of action a∈A.
Then set RPEI(a) of all ”participant-existing object” associations, generated for
all o ∈ OA(a) for the given action a ∈ A, is as follows:

RPEI(a) =
{
rPEI ∈ R

∣∣ rPEI = TPEI(〈p, a, o〉), o ∈ OA(a)
}
.

Total setRPEI of ”participant-existing object” associations representing facts of
activated existing objects usages, represents the union of all RPEI(a) sets

RPEI =
⋃
a∈A
RPEI(a).

Total set RPE of ”participant-existing object” associations represents the union
of RPEA and RPEI sets. Finally, total set RPO of ”participant-object” asso-
ciations for the entire DAD represents the union of all ”participant-generated
object” and ”participant-existing object” associations, i.e.

RPO = RPG ∪RPE = RPGO ∪RPGI ∪RPEA ∪RPEI .

The previous rule is relevant for the <STOCKMAN,Pack&Control,Stock-
Item> triplet in the sample DAD. Its application will result in the creation of one
association in the target CDM between classes STOCKMAN and StockItem_
Collecting that correspond to the given participant and existing object acti-
vation.

Some action having an activated existing object as the input object may
change its state and such object can be used in other subsequent actions.
This case is not depicted in the sample DAD, but it is possible. By dividing
the Pack&Control action into two separate subsequent actions, Check and
Pack, each prepared stock item will be firstly checked before packing, i.e. ac-
tion Check will change the state of each activated object from prepared to
checked. It is the same activated existing object, but in different states. Since
different states are represented by different attribute values, this case doesn’t
affect the structure of the target CDM and there is no need for additional asso-
ciations (analogy with generated objects usage).

264 ComSIS Vol. 9, No. 1, January 2012.



An Approach to Automated Conceptual Database Design

4.4. Automated generation of object-object associations

The second group of associations is object-object associations, i.e. associa-
tions between classes representing business objects. They can be automati-
cally generated based on actions that have both input and output objects by
direct mapping of these actions into the respective associations.

Actions with input and output objects may be classified based on the num-
ber of different types of input and output objects. There are several possible
situations (Fig. 7) and they are as follows: (i) single input - single output (SISO)
actions, (ii) multi input - single output (MISO) actions, (iii) single input - multi
output (SIMO) actions, and (iv) multi input - multi output (MIMO) actions.

In the sample DAD, an example of SISO actions is the HeaderCreation
action, since it has input object(s) of exactly one type (Request) and output
object(s) of exactly one type (OrderHeader). In the given example, each exe-
cution of this action takes exactly one customer’s request and creates exactly
one order header. However, generally it is possible that some SISO action takes
more than one input object of the same type and/or has more than one output
object of the same type, which is denoted by the weight attribute. Although
the Confirmation, Cancelation, Acceptance and Delivering actions
have the input and output objects of exactly one type, they don’t belong to the
SISO category since each of these actions has input and output objects of the
same type (they only change the objects’ states). Such actions have already
been covered by the previous rules (Rule 4 and Rule 6).

The Specification action represents the first example of MISO actions
in the sample DAD. This action, which has input objects of two different
types (OrderHeader and CatalogItem), results in the creation of one or
many objects of the third type (OrderDetail). The second MISO action is
the Pack&Control action, also having input objects of two different types
(OrderHeader and StockItem) and resulting in the creation of one object
of the third type (Delivery). Although the Collecting action has input ob-
jects of two different types (OrderDetail and StockItem), it doesn’t belong
to the MISO category. It represents the activation of the StockItem objects
(already covered by Rule 5) and actually belongs to the SISO category (one or
many stock items are prepared for the each confirmed order detail).

Fig. 7. Classification of actions: (a) SISO, (b) MISO, (c) SIMO, and (d) MIMO

ComSIS Vol. 9, No. 1, January 2012. 265



Drazen Brdjanin and Slavko Maric

There are no SIMO and MIMO examples in the sample DAD, but they are
possible. For example, in the production unit of the given business system, se-
paration of some mixture into its components constitutes a SIMO action. Such
action has object(s) of exactly one type (mixture) and as many different types
of output objects as there are different types of components in the mixture. If
we add machine(s) required for the separation (machine, as an existing object,
will constitute an additional input object), or some previously prepared contain-
ers for packing separated components (prepared containers, be they generated
and/or activated existing objects, will also constitute additional input objects),
then such SIMO action becomes a MIMO action.

Generally, input objects may be: (i) generated (ioG ∈ OG), (ii) activated exist-
ing (ioA ∈ Oa

X ), i.e. existing objects that have been already activated by some
previous action in the given business process, and (iii) non-activated existing
(ioX ∈ On

X ), i.e. existing objects that have not been activated in the given busi-
ness process. On the other hand, output objects may be: (i) generated (ooG),
and (ii) activated existing (ooA). Classes eG ∈ EG and eX ∈ EX in the target
CDM, corresponding to generated and non-activated existing objects, respec-
tively, are created by Rule 2 (extraction of objects), while classes eA ∈ EA,
corresponding to activated existing objects, are created by Rule 5 (activation of
existing objects). These classes will constitute the source and target classes in
the mapping of SISO, MISO, SIMO and MIMO actions into the corresponding
object-object associations.

SISO actions. Firstly we will consider SISO actions. SISO cases and the cor-
responding transformation rules are illustrated in Fig. 8.

Fig. 8. Illustration of transformation rules for SISO actions

266 ComSIS Vol. 9, No. 1, January 2012.



An Approach to Automated Conceptual Database Design

Each output object (be it generated or activated existing) depends on as
many input objects as is the weight of the given input object flow. Thus, if the
weight of the corresponding input object flow equals "1", then the given output
object depends on exactly one input object and the multiplicity of the respective
source association end (corresponding to the input object) is exactly "1". If the
input weight equals "*", then the given output object depends on many input
objects and the multiplicity of the respective source association end is "*". If the
input weight is a literal n (n >1), then the given output object depends on ex-
actly n input objects (like personal data containing data about two cities, where
the first city represents the place of birth, while the second city represents the
place of residence). In that case we have exactly n associations, where each
association has the source end multiplicity equal to "1".

If the input object(s) is/are non-activated existing object(s), i.e. ioX , then the
target end multiplicity (which corresponds to the output object) of each associ-
ation always equals "*" and doesn’t depend on the weight of the output object
flow, because even in cases when the output weight is exactly "1", with time,
the same existing input object may be used in the creation/activation of many
output objects.

If the input object(s) is/are generated or activated existing object(s), i.e. ioG
or ioA, then the target end multiplicity depends only on the weight of the output
object flow. If the output weight is exactly "1", then exactly one output object
depends on ioG or ioA and the target end multiplicity should be exactly "1". Oth-
erwise, the target end multiplicity should be "*" because more than one output
object depend on given input object(s).

Rule 7. (Object-object associations for SISO actions) Let a∈A be a SISO
action with input object(s) io ∈ OG ∪ Oa

X ∪ On
X and output object(s) oo ∈ OO,

where if ∈ FI and of ∈ FO represent corresponding input and output object
flows whose weights are denoted by wif and wof , respectively. Rule T siso

OO maps
SISO tuple 〈io, if, a, of, oo〉 into set Rsiso

OO (a) containing exactly n ∈ N associa-
tions between classes eIO and eOO:

T siso
OO : DAD(P,A,O,F) 7→ CM(E ,R) def⇐⇒ Rsiso

OO (a) = T siso
OO

(
〈io, if, a, of, oo〉

)
Rsiso
OO (a) =

{
r
(j)
OO ∈ R

∣∣ r(j)OO = T ∗OO
(
〈io, if, a, of, oo〉

)
, j = 1, ..., n

}
T ∗OO

(
〈io, if, a, of, oo〉

) def
= rOO

∣∣ (name(rOO) = name(a) ∧(
memberEnd(rOO) = {source, target} |

type(source) = eIO ∧multiplicity(source) = ms ∧
type(target) = eOO ∧multiplicity(target) = mt

))
,

where the corresponding source and target classes eIO and eOO are given with:

eIO =

 eG , io ∈ OG
eX , io ∈ On

X
eA, io ∈ Oa

X

eOO =

{
eG , oo ∈ OG
eA, oo ∈ Oa

X
,

while the corresponding source and target association end multiplicities and the
total number of associations are as follows:

ComSIS Vol. 9, No. 1, January 2012. 267



Drazen Brdjanin and Slavko Maric

ms =

{
∗, wif = ∗
1, otherwise

mt =

{
∗, wof 6= 1 ∨ io ∈ On

X
1, otherwise

n =

{
1, wif ∈ {1, ∗}

wif , otherwise
.

Application of the previous rule to the first sample SISO action (Header-
Creation) will result in the creation of a binary association between the classes
corresponding to the input and output objects (Request and OrderHeader)
with the ”1:1” cardinality since both input and output objects are generated and
the weight of corresponding object flows equals ”1”. Application to the de facto
SISO action (Collecting) will result in the creation of a binary association
between the class corresponding to the input object (OrderDetail) and class
corresponding to the activation of the output object (StockItem_Collecting)
with the ”1:*” cardinality, since the input is a generated object and the output is
an activated existing object, while the weights of the corresponding object flows
are ”1” and ”*”, respectively.

MISO actions. Each MISO action has input objects of more than one type
and it creates output objects of exactly one type. Since all input objects are
required for the start of an action, we assume that the output object(s) de-
pend(s) on all these input objects, i.e. output object(s) is/are directly related to
each of the input objects. For example, in the sample DAD (Pack&Control),
each delivery (represented by output object type Delivery) is related to one
order (represented by the first input object type OrderHeader) and contains
many items (represented by the second input object type StockItem). Simi-
larly, for the second sample MISO action (Specification), all order details
(represented by output object type OrderDetail) belong to a particular order
(represented by the first input object type OrderHeader) and each of them is
specified based on a concrete catalog item (represented by the second input
object type CatalogItem). This implies that SISO rule T siso

OO should be inde-
pendently applied to each input object(s) - output object(s) pair of MISO action,
as depicted in Fig. 9 (a).

Fig. 9. Application of SISO transformation rule for MISO (a) and SIMO (b) actions

268 ComSIS Vol. 9, No. 1, January 2012.



An Approach to Automated Conceptual Database Design

Rule 8. (Object-object associations for MISO actions) Let a∈A be a MISO
action withm∈N different types of input objects io1, . . . , iom∈OI and output ob-
ject(s) oo∈OO, where if1, . . . , ifm∈FI and of ∈FO constitute the correspond-
ing input and output object flows, respectively. Let M(a) = {〈iok, ifk, a, of, oo〉,
1 ≤ k ≤ m} be the set of all SISO tuples for the given action a ∈ A. Rule T miso

OO
maps theM(a) set into the Rmiso

OO (a) set of corresponding associations for the
given action:

T miso
OO : DAD(P,A,O,F) 7→ CM(E ,R) def⇐⇒ Rmiso

OO (a) = T miso
OO

(
M(a)

)
Rmiso
OO (a)

def
=

⋃
1≤k≤m

R(k)
OO(a), R(k)

OO(a) = T
siso
OO

(
〈iok, ifk, a, of, oo〉

)
.

The T miso
OO rule is a general rule relevant to all single output actions, since a

SISO action is just a special case of MISO actions (m = 1).
Application of the previous rule to the first MISO action (Pack&Control)

in the sample DAD will result in the creation of two binary associations: (i)
”1:1” association between classes corresponding to the input (OrderHeader)
and output object (Delivery), and (ii) ”*:1” association between the class
corresponding to the activation of input objects (StockItem_Collecting)
and the class corresponding to the output object (Delivery). Similarly, ap-
plication to the second sample SIMO action (Specification) will result in
the creation of the following two binary associations: (i) ”1:*” association be-
tween classes corresponding to the input (OrderHeader) and output object
(OrderDetail), and (ii) ”1:*” association between classes corresponding to
the input (CatalogItem) and output object (OrderDetail).

SIMO actions. A SIMO action has input objects of exactly one type and output
objects of more than one different type. Since the given action is to result in
the creation/activation of all output objects, we assume that each output object
is directly related to the given input object(s). This implies that SISO rule T siso

OO
should also be independently applied to each input object(s) - output object(s)
pair of a SIMO action, as illustrated in Fig. 9 (b).

Rule 9. (Object-object associations for SIMO actions) Let a ∈ A be a
SIMO action with input object(s) io ∈ OI as well as n ∈ N different types
of output objects oo1, . . . , oon ∈ OO, where if ∈ FI and of1, . . . , ofn ∈ FO
represent the corresponding input and output object flows, respectively. Let
M(a) = {〈io, if, a, ofk, ook〉, 1 ≤ k ≤ n} be the set of all SISO tuples for the
given action a ∈ A. Rule T simo

OO maps the M(a) set into the Rsimo
OO (a) set of

corresponding associations for the given action:

T simo
OO : DAD(P,A,O,F) 7→ CM(E ,R) def⇐⇒ Rsimo

OO (a) = T simo
OO

(
M(a)

)
Rsimo
OO (a)

def
=

⋃
1≤k≤n

R(k)
OO(a), R(k)

OO(a) = T
siso
OO

(
〈io, if, a, ofk, ook〉

)
.

ComSIS Vol. 9, No. 1, January 2012. 269



Drazen Brdjanin and Slavko Maric

MIMO actions. A MIMO action has m ∈ N different types of input and n ∈ N
different types of output objects.

Following the same analogy as for MISO actions, we can conclude that each
output object of MIMO action depends on each input object. This implies that
each MIMO action can be considered as a set of n concurrent MISO actions. For
example, a supposed MIMO action (separation of components) can be treated
as a set of several MISO actions such that each MISO action represent ex-
traction of one component from the input mixture. In this way each separated
component depends on the input mixture as well as the separation machine.
Similarly, following the same analogy as for SIMO actions, each MIMO action
can also be considered as a set of m concurrent SIMO actions.

Since each MISO action can be considered as a set ofm SISO actions, each
MIMO action can be considered as a set of m ∗ n SISO actions. Consequently,
the T siso

OO rule should be applied to all these SISO tuples of a MIMO action.

Rule 10. (Object-object associations for MIMO actions) Let a ∈ A be a
MIMO action with m ∈ N different types of input objects io1, ..., iom ∈ OI and
n∈N different types of output objects oo1, ..., oon ∈OO, where if1, ..., ifm ∈FI
and of1, ..., ofn∈FO constitute the corresponding input and output object flows,
respectively. LetM(a) = {〈ioj , ifj , a, ofk, ook〉, 1≤ j≤ m, 1≤ k≤n} be the set
of all SISO tuples for the given action a ∈ A. Rule T mimo

OO maps the M(a) set
into the Rmimo

OO (a) set of corresponding associations for the given action:

T mimo
OO : DAD(P,A,O,F) 7→ CM(E ,R) def⇐⇒ Rmimo

OO (a) = T mimo
OO

(
M(a)

)
Rmimo
OO (a)

def
=

⋃
1≤j≤m
1≤k≤n

R(j,k)
OO (a), R(j,k)

OO (a) = T siso
OO

(
〈ioj , ifj , a, ofk, ook〉

)
.

MISO and SIMO actions represent special cases of MIMO actions (for MISO
actions n = 1, for SIMO actions m = 1). Consequently, the aforementioned
Rule 10 (MIMO actions) and basic Rule 7 (SISO actions) constitute general
rules for mapping actions with both input and output objects into the corre-
sponding object-object associations.

4.5. Order of application of the rules

The process of the automated CDM design, i.e the proper order of application
of the rules, is determined by the mutual dependence of the rules. Generally,
the rules that create classes are to be applied before the rules for automated
generation of associations since the associations cannot be generated if there
are no previously generated classes. However, some rules are mutually inde-
pendent and can be applied in any order.

More concretely, the rules that create classes for the extracted participants
(Rule 1) and objects (Rule 2) are to be applied before the rules for automated
generation of associations (Rules 3-10). These two rules for automated gener-
ation of classes can be applied in any order due to their mutual independence.

270 ComSIS Vol. 9, No. 1, January 2012.



An Approach to Automated Conceptual Database Design

The rules for automated generation of participant-generated object (Rules
3-4) and participant-existing object (Rules 5-6) associations are also mutually
independent and can be applied in any order, too. It is only important that the
rule for mapping activation of existing objects (Rule 5) be applied before the
rule for the usage of activated existing objects (Rule 6).

The rules for automated generation of participant-object associations (par-
ticularly Rule 5) are to be applied before the rules for automated generation of
object-object associations (Rules 7-10) since the rule for mapping activation of
existing objects results in the creation of an activation class that may be used
in automated generation of object-object associations.

Finally, the automated generation of all object-object associations can be
performed by applying the MIMO rule (Rule 10) that uses the basic SISO rule
(Rule 7)6.

5. Experimental Results

Automated generator. The target automated generator of the initial CDM is
implemented as a Topcased7 [38] plugin named ADBdesign whose prototype
has already been presented in [7]. This improved release implements all previ-
ously formally specified rules.

The functionality of the Topcased platform and the implemented generator
is based on the standard UML2 Eclipse plugin as the EMF8 - based [8] imple-
mentation of the UML 2.1 specification for the Eclipse platform, which enables
visual UML modeling, as well as the program generation of UML diagrams, and
ensures a satisfactory visualization of automatically generated diagrams. Each
UML diagram in the Topcased model is represented by two files of the same
name, but different extensions. The .uml file contains the XMI9 representation
of the diagram, while the .umldi file describes its visualization.

The implementation is based on the combination of the DOM XML parser for
the source diagram analysis and the UML2 factory [17] for the target diagram
generation. The generator processes the source .uml file containing the DAD
description and generates the target .uml file containing the CDM representa-
tion. The visualization of the automatically generated CDM, i.e. generation of
the corresponding .umldi file, is performed by using the integrated Topcased
functionality for the automatic visualization.

6 As previously mentioned, MISO and SIMO actions are special cases of MIMO actions
and, consequently, all object-object associations can be generated by applying the
MIMO rule.

7 Toolkit in OPen-source for Critical Application & SystEms Development
8 Eclipse Modeling Framework
9 XMI (XML Metadata Interchange) [25] is the OMG standard for platform independent

metadata interchange enabling the serialization of MOF (Meta-Object Facility)-based
models and metamodels into XML and vice versa, the visualization of MOF-based
models and metamodels from XML.

ComSIS Vol. 9, No. 1, January 2012. 271



Drazen Brdjanin and Slavko Maric

Automatically generated sample CDM. The implemented generator has been
applied to the sample DAD (Fig. 2). The visualization result of the automatically
created CDM is depicted in Fig. 10.

Fig. 10. Automatically generated CDM based on sample DAD

The implemented generator has created all 11 classes, as was expected
during the analysis of the sample DAD, and they are as follows: (i) four classes
corresponding to the participants, (ii) four classes corresponding to the gener-
ated objects, (iii) two classes corresponding to the existing objects, and (iv) one
class corresponding to the activation of the existing objects. An overview of all
automatically generated classes is given in Table 1.

The implemented generator has created all 22 associations, as was ex-
pected based on the analysis of the sample DAD. An overview of all automati-
cally generated associations is given in Table 2.

Table 1. Overview of automatically generated classes based on sample DAD

Rule Automatically generated classes

#1: TP (participants) EP = { CUSTOMER, COMMERCIAL, STOCKMAN, DRIVER }

#2: TO (generated objects) EG = { Request, OrderHeader, OrderDetail, Delivery }

#2: TO (existing objects) EX = { CatalogItem, StockItem }

#5: T (1)
PEA (activation of existing objects) EA = { StockItem_Collecting }

272 ComSIS Vol. 9, No. 1, January 2012.



An Approach to Automated Conceptual Database Design

The first group of generated associations is participant-object associations
and they are as follows: (i) four associations corresponding to the creation of
generated objects (Rule 3: TPGO), (ii) nine associations corresponding to the
usage of generated objects (Rule 4: TPGI), (iii) two associations related to the
activation of existing objects (Rule 5: T (2)

PEA and T (3)
PEA), and (iv) one association

corresponding to the usage of activated existing objects (Rule 6: TPEI).
The second group of generated associations is object-object associations

and they are as follows: (i) two associations corresponding to the SISO actions
(Rule 7: T siso

OO ), and (ii) four associations corresponding to the MISO actions
(Rule 8: T miso

OO ).

Table 2. Overview of automatically generated associations based on sample DAD

Automatically generated associations
Rule

source name target cardinality

CUSTOMER Requesting Request 1:*

#3 COMMERCIAL HeaderCreation OrderHeader 1:*

(TPGO) CUSTOMER Specification OrderDetail 1:*

STOCKMAN Pack&Control Delivery 1:*

COMMERCIAL HeaderCreation Request 1:*

CUSTOMER Specification OrderHeader 1:*

COMMERCIAL Confirmation OrderDetail 1:*

#4 COMMERCIAL Cancelation OrderHeader 1:*

(TPGI) COMMERCIAL Acceptance OrderHeader 1:*

STOCKMAN Collecting OrderDetail 1:*

STOCKMAN Pack&Control OrderHeader 1:*

DRIVER Delivering Delivery 1:*

CUSTOMER Reception Delivery 1:*

#5 STOCKMAN Collecting StockItem_Collecting 1:*

(T (2,3)
PEA ) StockItem Collecting StockItem_Collecting 1:*

#6 (TPEI) STOCKMAN Pack&Control StockItem_Collecting 1:*

#7 Request HeaderCreation OrderHeader 1:1

(T siso
OO ) OrderDetail Collecting StockItem_Collecting 1:*

OrderHeader Specification OrderDetail 1:*

#8 CatalogItem Specification OrderDetail 1:*

(T miso
OO ) OrderHeader Pack&Control Delivery 1:1

StockItem_Collecting Pack&Control Delivery *:1

Qualitative evaluation. The fact that the implemented generator has gener-
ated all classes and associations, as was expected during the identification
of semantic capacity of the DAD and application of formal rules to the sam-
ple DAD, proves that the generator has been implemented in accordance with
formal rules, but doesn’t prove that the automatically generated CDM is appro-

ComSIS Vol. 9, No. 1, January 2012. 273



Drazen Brdjanin and Slavko Maric

priate for the given business system, nor does it show the degree of compliance
with some manually designed CDM for the same business system. Hence, an
evaluation of the automatically generated CDM will be more desirable and more
important as well.

Presently there are only few implemented automated CDM generators tak-
ing UML AD as the basis. Besides our recent ADBdesign prototype [7] and
ATL10-based implementations [5, 6] with modest achievements in automated
generation of associations, as far as we know, there is only one (QVT11-based)
implementation [31]. Due to its ability only for automated generation of classes
corresponding to business process participants and business objects, we are
unable to compare our generator with others in automated CDM design based
on the same referent business models.

On the other hand, it is possible to compare an automatically generated
CDM with a manually designed CDM for the same business system. How-
ever, following the well-known Conway’s law [13], independent work of several
database designers will result in the creation of several different CDMs for the
same system, and according to Date [14], the problem of finding the logical de-
sign that is incontestably the right one is still a rather intractable problem. Con-
sequently, the objectivity of comparison of the given automatically generated
CDM with some manually designed CDM for the same system is questionable
since the degree of compliance will differ from one case to another. Thus, in or-
der to obtain some reliable evaluation of the automatically generated CDM, we
will evaluate its usability from the database designer’s point of view, i.e. whether
the automatically generated concepts are suitable and correctly generated to be
retained in the design of the target CDM for the given business system. A sim-
ilar case study-based qualitative evaluation was also used for the evaluation of
NLP-based approach by Chen [10] and later by some other authors.

Evaluation of automatically generated classes. All classes corresponding to the
participants and business objects are suitable and could be retained without
any change (existence of both classes CatalogItem and StockItem is also
acceptable, for example in case of different series of the same product type,
etc.). Even activation class StockItem_Collecting, despite its ”synthetic”
name, is also acceptable to be retained but with a changed name since it actu-
ally represents the delivery details, i.e. delivered items. Hence, all automatically
generated classes could be retained in the target CDM.

The previous considerations and preliminary experimental results of the
generator’s application to several different DADs in different business domains
as well, imply that: (i) implemented generator doesn’t ”overgenerate” classes,
i.e. there are no classes that could be considered as surplus, and (ii) synthetic
naming of activation classes, which usually differs from the naming in manual
CDM design, doesn’t have a substantial importance for some generated classes
to be considered as unacceptable to be retained in the target CDM.

10 ATLAS Transformation Language [18]
11 Query/View/Transformation [26]

274 ComSIS Vol. 9, No. 1, January 2012.



An Approach to Automated Conceptual Database Design

Preliminary experimental results also imply that the identified semantic ca-
pacity of the DAD and formally specified transformation rules cover the auto-
mated generation of the majority of classes of the target CDM. Other classes,
such as subclasses, unions, components and other advanced (EER) concepts,
are the subject of future work.

Evaluation of automatically generated associations. All four associations cor-
responding to the creations of generated objects (Rule 3), as well as both as-
sociations of the activation class with the classes corresponding to the given
participant and existing object (Rule 5), are completely appropriate and could
be retained in the target CDM without any change.

Some of the participant-object associations that correspond to the usage
of generated objects (Rule 4) may be considered as redundant associations in
the automatically generated CDM. For example, the HeaderCreation asso-
ciation between classes COMMERCIAL and Request is redundant, since these
two classes are also associated via the OrderHeader class and correspond-
ing associations that are more significant. Similarly, the Specification as-
sociation between classes CUSTOMER and OrderHeader is redundant since
these classes are also associated via the OrderDetail class, as well as
the Collecting association between classes STOCKMAN and OrderDetail
since they are also associated via the StockItem_Collecting class. These
three redundant associations, although generated with correct cardinalities, may
be considered as overgenerated, i.e. surplus. Although they may constitute a
surplus, it is better that the generator automatically generates them since it is
easier for the designer to remove some surplus concept from the automati-
cally generated model that is not incorrectly generated, than to add some new
concept (database designers sometimes introduce redundant associations to
achieve better performances in data retrieval, etc.).

Two of the six remaining associations corresponding to the usage of gen-
erated objects (Rule 4) are generated with partly incorrect cardinalities. Both
(Cancelation and Acceptance) have the source end multiplicity equal to
”1”. Although that could be corrected by changing the incorrect source end mul-
tiplicities to ”0..1” in both associations (e.g. some order may be canceled, but not
necessarily), it is better to consider one of them as surplus and remove it (both
associations are related to the fact of cancelation/acceptance and only one of
them is sufficient). In this way, the remaining association will be completely ap-
propriate and could be retained in the target CDM without any change. Hence,
one of these two associations is incorrect and constitutes a real surplus in the
target CDM. This flaw is related to some control patterns (e.g. decision/merge
and fork/join) that are presently not covered and will be part of future work.

The other four associations corresponding to the usage of generated objects
are completely appropriate and could be retained in the target CDM without any
change.

Previous considerations related to the associations corresponding to the us-
age of generated objects are also relevant to the associations corresponding to
the usage of activated existing objects (Rule 6). There is only one such associ-

ComSIS Vol. 9, No. 1, January 2012. 275



Drazen Brdjanin and Slavko Maric

ation in the automatically generated sample CDM. Since it is redundant, it may
be also considered as overgenerated.

Both object-object associations corresponding to the SISO actions in the
sample DAD (Rule 7), as well as all four associations corresponding to the
MISO actions (Rule 8), are completely appropriate and could be retained in
the target CDM without any change (even ”1:*” cardinality of the Collecting
association is acceptable, for example in case when many delivered items with
their own serial numbers correspond to the same order detail). Hence, all six
object-object associations are correct and appropriate to be retained in the tar-
get CDM.

The preliminary experimental results of the generator’s application to several
different DADs in different business domains as well, imply that: (i) implemented
generator ”overgenerates” only small number of participant-object associations
corresponding to the usage of generated and activated existing objects (these
associations truly exist, but they are redundant and could be removed manually
or retained for some other reason), and (ii) implemented generator generates
(but not necessarily) some partly incorrect surplus associations in case of some
control patterns (e.g. decision/merge and fork/join).

The preliminary results also imply that the identified semantic capacity of
the DAD and formally specified transformation rules cover the automated gen-
eration of the majority of associations of the target CDM. Some of them (e.g.
generalizations) presently may be considered as the subject of further trans-
formations of the automatically generated initial CDM and they will be part of
future work.

It is possible that some object-object associations cannot be automatically
generated based on one single DAD, but they should exist in the target CDM.
However, bearing in mind that the future generator will process the business
model of the whole business system (business model of an entire business sys-
tem contains several DADs representing several different business processes),
it is possible that some of the missing object-object associations will be au-
tomatically generated based on other DADs. For example, in the target CDM
for the given business system, classes CatalogItem and StockItem should
be associated with ”1:*” cardinality. This association cannot be automatically
generated based on sample DAD, but it will be generated based on the DAD
representing the production in the given business system.

Quantitative evaluation. All previously implemented CDM generators (as al-
ready mentioned, there are only few implementations) are presented without
corresponding quantitative evaluation results.

There are several measures adopted for the evaluation of NLP-based CDM
generators. We have adopted some of them that were introduced by Harmain
& Gaizauskas [16] and Omar et al. [29] to perform the quantitative evaluation of
the implemented generator based on the sample CDM.

Recall represents the percentage of all concepts in the target CDM that
is automatically generated (percentage of all classes that is automatically

276 ComSIS Vol. 9, No. 1, January 2012.



An Approach to Automated Conceptual Database Design

generated and percentage of all associations that is automatically generated).
According to [29], it may be defined as

Recall =
Ncorrect

Ncorrect +Nmissing
· 100%,

where Ncorrect represents the number of correctly generated concepts, while
Nmissing represents the number of concepts in the target model that are not
automatically generated.

Precision represents the percentage of correctly generated concepts in the
automatically generated CDM (percentage of correctly generated classes and
percentage of correctly generated associations). According to [16], it may be
defined as

Precision =
Ncorrect

Ncorrect +Nincorrect
· 100%,

whereNincorrect represents the number of incorrectly generated concepts, while
Ncorrect is the same as previous.

Basic metrics and calculated measures for the sample CDM are given
in Table 3, where Ngenerated represents the total number of automatically
generated concepts, while others are same as previous. Number of correctly
generated associations is given as 17+4, since all 21 associations are evaluated
as correct, but four of them may be considered as surplus. Just one association
is evaluated as incorrect and just one association is missing.

The preliminary quantitative evaluation results, after the application of the
implemented generator to several different DADs in different business domains,
imply that the proposed approach has very high overall recall and precision,
usually 90-100%. An extensive and objectified evaluation of the approach, ba-
sed on statistically reliable number of models and with statistically reliable num-
ber of designers, will be part of future work.

Table 3. Quantitative evaluation based on sample CDM

Metrics & Measures
Concepts

Ngenerated Ncorrect Nincorrect Nmissing Recall [%] Precision [%]

Classes 11 11 0 0 100 100

Associations 22 17+4 1 1 95 95

6. Related Work

Although the idea of CDM design based on the business model is not very new,
there are only few papers presenting the implemented automatic generator and
providing experimental results, while the others just give the method overview.

The target CDM in our approach is represented by the UML CD. However,
the CD is dominantly used for modeling the static structure of software sys-
tems at different levels of abstraction with different degrees of implementation

ComSIS Vol. 9, No. 1, January 2012. 277



Drazen Brdjanin and Slavko Maric

details. In the context of model driven software development, the CD is used
from the analysis level, which is computationally independent, to the platform
specific level. The analysis level CD is usually also called domain model and
corresponds to the initial conceptual model of the relational database that is
the subject of our paper. Consequently, this survey of related work covers more
widely the automated generation of the CD based on business models with-
out restriction only to the UML AD that represents the source model in our
approach.

Garcia Molina et al. were the first to propose an approach to the transition
from AD-based business models to the initial conceptual model [15]. They pro-
posed the direct mapping of all information objects (business objects) from the
AD into the respective classes in the target CD and creation of class associ-
ations based on the business rules informally specified in the supplementary
glossary, which is not a suitable basis for automatic generation.

Besides the mapping of business objects, Rodriguez et al. proposed the
mapping of all business process participants into the corresponding classes in
CDM, and provided the corresponding QVT-based implementation [31]. That
was the first automatic CD generator based on AD, although it had the ability
only to generate classes. They also proposed some refinement rules for fur-
ther transformations and creation of composite aggregations of automatically
generated classes corresponding to partitions and superpartitions.

Following the previous two approaches, Suarez et al. proposed an improve-
ment in creating class associations [37]. They proposed creating associations
for actions that have input and output objects by the direct mapping of these ac-
tions into respective associations between the classes corresponding to input
and output objects. This proposal can be used for the automated generation of
associations, but has limitations related to the automated generation of associ-
ation multiplicity since they didn’t propose any explicit rule.

Yet another paper [2] takes the UML AD as the basis for the creation of
the CD. Proposing the mapping of the whole AD into the one single class, this
paper doesn’t belong to the group of all previous papers since such mapping
isn’t suitable if the AD is used for business process modeling.

The majority of related papers take the AD as the basis for CD design.
However, there are also some other papers taking BPMN-based business pro-
cess models as the basis, but presently they only provide guidelines [32] and
ontology-based tool assistance [33] for the extraction of classes only.

The paper by Kamimura et al. [19] presents an approach to CDM design
based on business model, but with source and target notations that differ from
the approach presented in this paper. They propose a detailed algorithm for
generating the E-R diagram using the well-disciplined IDEF0-based business
model, but without an actual implementation.

In our previous papers, we firstly presented an example of the manual use-
case-driven approach to CDM design based on the creation of classes corre-
sponding to the extracted participants and business objects from the DAD and
the creation of some participant-object associations [4]. This approach was the

278 ComSIS Vol. 9, No. 1, January 2012.



An Approach to Automated Conceptual Database Design

basis for the ADBdesign prototype [7] and its equivalent ATL-based implemen-
tation [6]. However, these attempts had flaws regarding the cardinality of the
generated associations since all business objects were treated without mak-
ing a distinction between existing and generated objects. Additionally, in these
papers the semantic capacity of UML AD was not sufficiently identified to en-
able definition of the transformation rules for automated generation of object-
object associations. Recently, we have been considering the semantic capacity
of object flows and actions for automated generation of associations and have
performed an analysis related to: (i) the nature of action nodes based on the
number of different types of input and output objects, and (ii) the weight of ob-
ject flows. By introducing the classification of actions into SISO, MISO, SIMO
and MIMO actions and making a distinction between existing and generated
input objects, we have defined the formal rules for generation of object-object
associations [5]. However, in that paper we did not consider the activation of
existing objects and the subsequent usage of activated existing objects.

This paper includes the results from our previous papers in the field and
further develops and more completely and thoroughly presents the entire ap-
proach to automated design of the initial CDM based on the business process
model represented by the DAD, by covering: (i) the extraction of business pro-
cess participants and business objects, followed by the automated generation
of corresponding classes, (ii) the extraction of action nodes and object flows,
followed by the automated generation of participant-object and object-object
associations with respect to the distinction between generated business ob-
jects (business objects that are generated in the given business process) and
existing business objects (business objects that are not generated in the given
business process and exist independently of the given business process), as
well as the activation of existing objects and the subsequent usage of activated
existing objects in the given business process.

7. Conclusion and Future Work

Inspired by some previous papers presenting approaches to CDM design based
on business process models, that have mainly resulted in the automated gen-
eration of classes and limited set of their associations in the CD representing
the CDM, the main objective of our research is the identification of the semantic
capacity of the AD and the definition of rules for automated CDM design.

We have identified the part of the UML metamodel that is commonly used
for AD-based business process modeling (we use the DAD term), as well as the
part commonly used for the CD-based CDM. Based on formal definitions of the
source DAD and target CD and some previous proposals, we have firstly de-
fined two formal rules for the automated extraction of participants and business
objects and creation of corresponding classes.

By following the recently made distinction between existing and generated
business objects, we have considered their typical occurrences in business pro-
cesses and defined four rules for automated generation of participant-object

ComSIS Vol. 9, No. 1, January 2012. 279



Drazen Brdjanin and Slavko Maric

associations. Two of them cover typical manipulations with generated objects
(creation and subsequent usage of created objects), while the other two formal
rules cover typical manipulations with existing objects (activation and subse-
quent usage of activated objects).

Introduction of the activation concept enables a similar treatment of acti-
vated existing objects and generated objects and enables the application of
rules for automated generation of object-object associations as well. We have
defined four formal rules for automated generation of object-object associations
covering four possible cases (SISO, MISO, SIMO, MIMO) of actions having in-
put and output objects. Since MISO and SIMO actions represent special cases
of MIMO actions, each action with input and output objects is considered as a
MIMO action and treated as a set of concurrent SISO actions. Such assumption
enables the SISO rule to constitute the basic rule that can be applied to each
action with input and output objects.

Based on these formal rules we have implemented an automated CDM gen-
erator as a Topcased plug-in named ADBdesign. The implemented generator
has been applied to the sample business process model. The results of the
qualitative and quantitative analysis of the generator’s application to the sample
model, as well as the preliminary results of application to some other business
process models in different business domains, show that the generator is able
to generate a very high percentage of the target CDM (recall usually exceeds
90%) and has a very high precision (over 90% of all automatically generated
concepts are usually correct). The performed analysis proves that the UML AD
has the semantic capacity for automated generation of the proper structure of
the target CDM.

All formal rules for automated CDM design have been defined for UML AD-
based business process models. Since all these rules have been derived based
on typical business process patterns and typical usages of business objects in
business processes, they can also be easily adopted for application to some
other business process modeling notations.

The future work will be focused on the extension of the covered UML meta-
model for business model representation and further identification of its seman-
tic capacity for automated CDM design. The influence of control patterns, such
as alternative (decision/merge) and concurrent control flows (fork/join), which
are presently not considered, will also be part of future work.

Presently, the implemented generator is able to process only one single DAD
representing the business model of one business process in the business sys-
tem. The future work will be also focused on extending formal rules to the whole
business model (business system typically has more than one business process
and the corresponding business model usually contains more than one DAD)
and implementing the automated CDM generator that will be able to process
whole business model and automatically generate the CDM for the whole busi-
ness system.

280 ComSIS Vol. 9, No. 1, January 2012.



An Approach to Automated Conceptual Database Design

References

1. Alencar, F., Marín, B., Giachetti, G., Pastor, O., Castro, J., Pimentel, J.: From i*
requirements models to conceptual models of a model driven development process.
In: Proceedings of the PoEM 2009. pp. 99–114. Springer (2009)

2. Barros, J., Gomes, L.: From activity diagrams to class diagrams. In: Workshop Dy-
namic Behaviour in UML Models: Semantic Questions, In conjunction with Third Int.
Conf. on UML. York, UK (2000)

3. Batini, C., Demo, B., Di Leva, A.: A methodology for conceptual schema design of
office databases. Information Systems 9(3-4), 251–263 (1984)

4. Brdjanin, D., Maric, S.: An example of use-case-driven conceptual design of rela-
tional database. In: Proceedings of the EUROCON 2007. pp. 538–545. IEEE (2007)

5. Brdjanin, D., Maric, S.: On automated generation of associations in conceptual
database model. In: De Troyer, O., et al. (eds.) ER Workshops 2011, LNCS, vol.
6999, pp. 292–301. Springer-Verlag, Berlin Heidelberg (2011)

6. Brdjanin, D., Maric, S.: Towards the initial conceptual database model through the
UML metamodel transformations. In: Proceedings of the EUROCON 2011. pp. 1–4.
IEEE (2011)

7. Brdjanin, D., Maric, S., Gunjic, D.: ADBdesign: An approach to automated initial
conceptual database design based on business activity diagrams. In: Catania, B.,
Ivanovic, M., Thalheim, B. (eds.) ADBIS 2010, LNCS, vol. 6295, pp. 117–131.
Springer-Verlag, Berlin Heidelberg (2010)

8. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.: Eclipse Modeling
Framework. Pearson Education, Boston, USA (2003)

9. Chen, P.: The entity-relationship model: Toward a unified view of data. ACM ToDS
1(1), 9–36 (1976)

10. Chen, P.: English sentence structure and entity-relationship diagrams. Information
Sciences 29(2-3), 127–149 (1983)

11. Choobineh, J., Mannino, M., Nunamaker, J., Konsynsky, B.: An expert database de-
sign system based on analysis of forms. IEEE Transaction on Software Engineering
14(2), 242–253 (1988)

12. Choobineh, J., Mannino, M., Tseng, V.: A form-based approach for database analy-
sis and design. Communications of the ACM 35(2), 108–120 (1992)

13. Conway, M.: How do committees invent? Datamation (1968)
14. Date, C.: An Introduction to Database Systems, 8th edn. Addison-Wesley, Reading,

USA (2003)
15. Garcia Molina, J., Jose Ortin, M., Moros, B., Nicolas, J., Troval, A.: Towards use

case and conceptual models through business modeling. In: Laender, A., Liddle, S.,
Storey, V. (eds.) ER 2000, LNCS, vol. 1920, pp. 281–294. Springer-Verlag, Berlin
Heidelberg (2000)

16. Harmain, H., Gaizauskas, R.: CM-Builder: A Natural Language-Based CASE Tool
for Object-Oriented Analysis. Automated Software Engineering 10(2), 157–181
(2003)

17. Hussey, K.: Getting Started with UML2. IBM Corp, New York, USA (2006)
18. Jouault, F., Allilaire, F., Bezivin, J., Kurtev, I.: ATL: A model transformation tool. Sci-

ence of Computer Programming 72(1-2), 31–39 (2008)
19. Kamimura, M., Inoue, K., Hasegawa, A., Kawabata, R., Kumagai, S., Itoh, K.: In-

tegrated diagrammatic representations for data design in collaborative processes.
Journal of Integrated Design & Process Science 7(4), 35–49 (2003)

ComSIS Vol. 9, No. 1, January 2012. 281



Drazen Brdjanin and Slavko Maric

20. Ko, R., Lee, S., Lee, E.: Business process management (BPM) standards: A survey.
Business Process Management Journal 15(5), 744–791 (2009)

21. Lukovic, I., Mogin, P., Pavicevic, J., Ristic, S.: An approach to developing com-
plex database schemas using form types. Software: Practice & Experience 37(15),
1621–1656 (2007)

22. Martin, J.: Information Engineering. Prentice Hall, Englewood Cliffs, USA (1990)
23. Naiburg, E., Maksimchuk, R.: UML for Database Design. Addison-Wesley, Reading,

USA (2001)
24. National Institute of Standards and Technology (NIST): FIPSP 183 - Integration Def-

inition for Function Modeling (IDEF0). NIST, Gaithersburg (1993)
25. Object Management Group (OMG): MOF 2 XMI Mapping Specification, v2.4.1.

OMG (2011)
26. Object Management Group (OMG): MOF 2.0 Query/View/Transformation Specifica-

tion, v1.1. OMG (2011)
27. Object Management Group (OMG): Unified Modeling Language: Infrastructure,

v2.4.1. OMG (2011)
28. Object Management Group (OMG): Unified Modeling Language: Superstructure,

v2.4.1. OMG (2011)
29. Omar, N., Hanna, P., McKevitt, P.: Heuristics-based entity-relationship modelling

through natural language processing. In: Proceedings of the Fifteenth Irish Confer-
ence on Artificial Intelligence and Cognitive Science (AICS-04). pp. 302–313 (2004)

30. Reising, W., Muchnick, S., Schnupp, P.: A Primer in Petri Net Design. Springer-
Verlag, New York, USA (1992)

31. Rodriguez, A., Fernandez-Medina, E., Piattini, M.: Towards obtaining analysis-level
class and use case diagrams from business process models. In: Song, I.Y., et al.
(eds.) ER Workshops 2008, LNCS, vol. 5232, pp. 103–112. Springer-Verlag, Berlin
Heidelberg (2008)

32. Rungworawut, W., Senivongse, T.: From business world to software world: Deriving
class diagrams from business process models. In: Proceedings of the 5th WSEAS
Int. Conf. on Aplied Informatics and Communications. pp. 233–238. WSEAS (2005)

33. Rungworawut, W., Senivongse, T.: Using ontology search in the design of class
diagram from business process model. PWASET 12, 165–170 (2006)

34. Russell, N., van der Aalst, W., ter Hofstede, A., Wohed, P.: On the Suitability of UML
2.0 Activity Diagrams for Business Process Modeling. In: Proceedings of the 3rd
Asia-Pacific conference on Conceptual modeling. pp. 95–104. Australian Computer
Society, Darlinghurst (2006)

35. Scheer, A.: Business Process Engineering: Reference Models for Industrial Enter-
prises, 2nd edn. Springer-Verlag, New York, USA (1994)

36. Shu, N., Wong, H., Lum, V.: Forms approach to requirements specification for
database design. ACM SIGMOD Record 13(4), 161–172 (1983)

37. Suarez, E., Delgado, M., Vidal, E.: Transformation of a process business model to
domain model. In: Proceedings of the WCE 2008 - World Congress on Engineering.
pp. 165–169. IAENG (2008)

38. TOPCASED Project: Toolkit in OPen-source for Critical Application & SystEms De-
velopment, v5.1.0. http://www.topcased.org

39. White, S., Miers, D.: BPMN Modeling and Reference Guide. Future Strategies, Light-
house Point, USA (2008)

282 ComSIS Vol. 9, No. 1, January 2012.



An Approach to Automated Conceptual Database Design

Drazen Brdjanin is currently a senior teaching assistant and PhD student at
University of Banja Luka, Bosnia and Herzegovina. He received his Diploma
degree (2000) in Computing and Automatic Control and MSc degree (2006) in
Computing and Informatics, all from the Faculty of Electrical Engineering, Uni-
versity of Banja Luka. He was participating in several R&D projects at national
and international level, and authoring several papers in the field of business
modeling and automated conceptual design based on business model.

Slavko Maric is currently an associate professor at the Faculty of Electrical
Engineering, University of Banja Luka, Bosnia and Herzegovina. He received
his Diploma degree (1974) in Electrical Engineering from the Faculty of Elec-
trical Engineering, University of Banja Luka; MSc degree (1979) in Computing
and Informatics, from the Faculty of Electrical Engineering at University of Za-
greb, Croatia; and PhD degree (2000) in Computer Science from the Faculty
of Electrical Engineering, University of Banja Luka. His current fields of inter-
est are: databases, information systems design, eGovernment systems, service
oriented architecture, parallel processing and information technology standard-
ization.

Received: March 18, 2011; Accepted: December 19, 2011.

ComSIS Vol. 9, No. 1, January 2012. 283




