
DOI:10.2298/CSIS110406047V

Improving Program Comprehension by Automatic
Metamodel Abstraction

Michal Vagač1 and Ján Kollár2

1 Department of Informatics, Faculty of Natural Sciences, Matej Bel University
Tajovského 40, 974 01 Banská Bystrica, Slovakia

michal.vagac@gmail.com
2 Department of Computers and Informatics, Faculty of Electrical Engineering and

Informatics, Technical University of Košice
Letná 9, 042 00 Košice, Slovakia

Jan.Kollar@tuke.sk

Abstract. The maintenance of a software system represents an impor-
tant part in its lifetime. In general, each software system is the subject of
different kinds of changes. Bug fixes and a new functionality extensions
are the most common reasons for a change. Usually, a change is ac-
complished by source code modifications. To make such a modification,
correct understanding the current state of a system is required.
This paper presents the innovative approach to the simplification of pro-
gram comprehension. Based on the presented method, the affected soft-
ware system is analysed and metamodel for the selected feature is cre-
ated. The feature represents functional aspect of a system being the sub-
ject of the analysis and change. The main benefit is that by focusing on
well known (and precisely described) parts of program implementation, it
is possible to create metamodel for implementation parts automatically.
The level of metamodel is at a higher level of abstraction than implemen-
tation.

Keywords: Aspect-oriented programming, feature location, metalevel ar-
chitectures, program comprehension, reverse engineering, software change.

1. Introduction

Software systems help us with many everyday tasks. Since none software sys-
tem is perfect, sooner or later there is demand for a change. Software systems
often model a real world situation. That is why changes in real world result in
state, in which software system (which was satisfactory in the past) is becom-
ing insufficient. To bring such system to the sufficient state again, it has to be
changed. The most common reasons for a change are bug fixes and additions
of a new functionality. It is more common to change the existing system than
to create a new from scratch. Software system maintenance and evolution con-
sumes up to 80 percent of system’s lifetime [16].

To perform a maintenance, it is necessary to understand details related to
the requested change correctly. Without sufficient knowledge, it is possible to



Michal Vagač and Ján Kollár

break functionality of a system. Therefore a program comprehension is the
prerequisite for program maintenance. After understanding the request for a
change, the relevant implementation code fragments have to be identified. Just
after that these fragments can be safely modified. As a software system is grow-
ing, it is more and more difficult to locate code intended for maintenance. This
problem raises also with fluctuation of developers.

In this paper, we propose a new architecture for improving a program com-
prehension, based on utilization of well known classes used in object-oriented
program. We claim that for these classes it is possible to define accurate lo-
calization algorithm. This algorithm, in combination with a predefined feature
knowledge base, maps the selected program feature at a higher level of ab-
straction automatically. Moreover, this mapping is performed in runtime.

The paper is organized as follows. Section 2 describes the proposed method-
ology for automatic abstraction of selected feature. Section 3 presents the ex-
periment developed using Java programming language. Section 4 covers the
related works. Finally, section 5 concludes the paper and presents future work.

2. Feature Metamodel at Higher Level of Abstraction

Existing tools for dynamic analysis and visualization of system execution are
mostly generic solutions. Visualization result is difficult to use, since it is closer
to implementation level than to application domain level. To get application do-
main specific visualization, link between application domain concept and code
implementation must exist. This link between different levels of abstraction is
not explicitly represented in a program code. When reading and understanding
program by a developer, this link is built up using previous developer’s experi-
ences and knowledge (about problem domain, programming techniques, algo-
rithms, data structures, etc.). To reproduce this activity automatically, a kind of
knowledge base describing link between different levels of abstraction must be
established.

In this paper, we will focus on how to abstract systems constructed in object-
oriented manner. A program developed in object-oriented language is typically
defined by group of classes and their instances – objects. Objects communicate
to each other by sending messages. Relationships between classes and objects
are defined by program code. Let’s define V as a set of all existing classes
(1) and P as a set of classes used in object-oriented program (2). Figure 1
represents a program created in object-oriented language.

V = {v1, v2, . . . , vn} (1)

P = {p1, p2, . . . , pm}, P ⊂ V (2)

To understand object-oriented program, a developer has to read used classes
and understand their relations and meanings. By term understanding we mean
“ability of explaining the program, its structure, its behaviour, its effects on its
operational context, and its relationships to application domain in terms that are

236 ComSIS Vol. 9, No. 1, January 2012.



Improving Program Comprehension by Automatic Metamodel Abstraction

Fig. 1. Object-oriented program using classes pi

qualitatively different from the tokens used to construct the source code of the
program” [2]. It is essential to move implementation level knowledge to a higher
level of abstraction. As mentioned above, to make the translation from one level
to another, extensive knowledge – a knowledge base – is required. Complete
knowledge base should contain information about all classes, all application do-
mains and about their relationship. Since usually new classes are defined, it is
impossible to prepare complete knowledge base.

However, there is a group of software components, which are well known
and their amount is limited – components defined in software libraries. Defining
knowledge base which contains information about software libraries, it is pos-
sible automatically create the transformation between the implementation level
and higher level of abstraction, i.e. such that implements features comprised in
libraries.

Modern object oriented software development platforms provides a compre-
hensive set of its own standard class libraries. Let’s designate K as a set of
known classes, i.e. all classes with known names and meaning. K is a subset
of set V , of all classes. (3). Let’s define K ′ as a set of known classes, which are
used in the program (4).

K = {k1, k2, . . . , kr},K ⊂ V (3)

K ′ = {k′1, k′2, . . . , k′s},K ′ = P ∩K (4)

When using classes from standard library, the program becomes easier
readable and understandable (Fig. 2).

Let’s define aspect of the program as a group of known classes used in the
program, which relates to one logical part (from higher level abstraction point of

ComSIS Vol. 9, No. 1, January 2012. 237



Michal Vagač and Ján Kollár

Fig. 2. Object-oriented program using classes pi and well known classes ki

view). Aspect of the program is a subset of program’s features, since it contains
only features based on known classes. Since the program may contain several
aspects, A is subset of K ′ (5). By defining a knowledge base for known classes
and by analyzing program for the way of using these classes, it is possible to
define a function f , which maps an aspect of the program to model M , which
can be created at a higher level of abstraction than implementation level (Fig.
3, equation 6).

A = {a1, a2, . . . , at}, A ⊂ K ′ (5)

M = f(A) (6)

In implementation, the knowledge base and the function f will be presented
by combination of tracking algorithm and metamodel builder algorithm. Both
algorithms will be specific for each feature.

Proposed system architecture is described in fig. 4. Since there are two
separate systems (base system and tool), where one react about the other, it
is convenient to use a metalevel architecture. Base level is represented by a
legacy software system. This system is a subject to analyse. Metalevel rep-
resents the tool. Base level system is automatically enhanced with code trac-
ing system runtime execution. Based on tracing results and utilizing knowledge
base, the metasystem automatically builds a metamodel of specified feature.
This metamodel describes feature implementation at a higher level of abstrac-
tion.

238 ComSIS Vol. 9, No. 1, January 2012.



Improving Program Comprehension by Automatic Metamodel Abstraction

Fig. 3. Object-oriented program using classes pi and known classes ki and ai. By ex-
amining the way of use of classes ai it is possible to create model M at a higher level of
abstraction

Fig. 4. Metamodel creation using aspect-oriented approach

ComSIS Vol. 9, No. 1, January 2012. 239



Michal Vagač and Ján Kollár

3. Tool for Feature Metamodel Building

To validate usefulness of our proposal, we have constructed experimental tool,
which automatically builds up metamodel for several predefined features. The
experiment is performed using Java programming language. This language was
chosen because of its wide use and its rich standard library (Java Class Li-
brary).

To extend base level application with tracking code, we decided to use
aspect-oriented approach. AOP ability for extending existing code with a new
functionality is very helpful for techniques depending on metadata – it is possi-
ble to extend base system with monitoring code [25]. This new code will create
execution traces used to build metamodel.

Process of extending base level application with monitoring code is defined
in knowledge base in form of AOP aspects. For each feature, the knowledge
base contains information about its implementation – classes and methods
used, as well as the way of using these classes and methods. Aspects de-
fined in the knowledge base trace execution and usage of specified classes
and methods at the base level of application. According to the traced informa-
tion, algorithm (also defined in the knowledge base) builds up corresponding
metamodel. Aspects and algorithm building metamodel are specific for each
modelled feature.

One scenario supported by the experiment is modelling the feature for in-
put/output streams. A stream can be defined as a sequence of data. A stream
can represent many different kinds of sources and destinations, including disk
files, devices, other programs, and memory arrays. Basic classes used to work
with streams are abstract classes java.io.InputStream, java.io.OutputStream,
that work with bytes, and java.io.Reader and java.io.Writer, that work on charac-
ters. Different extensions of these classes allow different kinds of stream trans-
formations. Among others, class java.io.ByteArrayInputStream allows reading
bytes from byte array, java.io.FileInputStream allows reading bytes from file,
java.io.FilterInputStream allows stream transformations,
java.util.zip.GZIPInputStream decompresses stream data, etc. In the knowledge
base used in experiment, the description of these classes is defined. One rec-
ognized way of using these classes is chaining their instances (instance of one
class is used as constructor parameter for another one). This is common way for
defining the chain of classes used to process the specific stream. For example,
stream is read from a file, then it is decrypted and finally decompressed.

Described feature of input/output streams is modelled as the chain of filters
used with a stream (Fig. 5).

Fig. 5. Metamodel for input/output streams.

240 ComSIS Vol. 9, No. 1, January 2012.



Improving Program Comprehension by Automatic Metamodel Abstraction

To build such metamodel automatically, all invocations of mentioned classes’
constructors must be traced. Metamodel is created according to traced se-
quence of constructor invocations. Algorithm building metamodel must consider
only related invocations (connected through constructor argument). Finally, the
tool displays graphical representation of created metamodel (Fig. 6).

Fig. 6. Data streams metamodel

4. Related Works

The work presented in this paper addresses the issue for improving program
comprehension by automatic metamodel abstraction.

According to a new design principle of open implementation a software mod-
ule allows its clients to control its implementation strategy [13].

Open implementation contains besides main interface (providing functional-
ity) also meta-interface through which a client tunes the implementation under-
lying the primary interface. The wide use of open implementation principle is
metalevel architecture, see [15].

In general, a metalevel architecture consists of different levels, where one
level is controlled by another one. From viewpoint of program represented as a
set of objects, it is possible to define several terms in the area of metalevel ar-
chitectures. Application describing a problem being solved is located at domain
level. Domain objects are objects of this application. These objects describe
the problem being solved. Domain object protocol defines operations (called
domain operations) provided by domain object.

Except a domain level there exists a metalevel, which provides a space for
metaobjects. Metaobjects describe, control, implement or modify domain ob-
jects. In case of multilevel architecture, metaobject can control another metaob-
jects. A metaobject protocol (MOP) is object-oriented interface allowing com-
munication between objects at domain level and objects at metalevel. It defines
application programming interface which can be used to work with metaobjects.
Finally, metaobject operation is operation from metaobject protocol.

ComSIS Vol. 9, No. 1, January 2012. 241



Michal Vagač and Ján Kollár

The technology of aspect-oriented programming which allows modulariza-
tion of crosscuting concerns [14], ability for adding a new functionality to an
existing program code [25] has been used in our solution as the basic technol-
ogy for our runtime abstraction.

For maintenance tasks, the first step to be done before a change itself is
identifying and understanding program code relevant to the requested change.
Identifying parts of source code, that correspond to functional part of program,
is known as feature or concept location [32]. Feature or concept can be defined
as cohesive set of functionality [31]. Each feature represents a well understood
abstraction of a system’s problem domain [28]. It exists at runtime as a collab-
oration of objects, exchanging messages to achieve a specific goal. The main
difference between concepts and features is, that the user can exercise the lat-
ter (hence the notion of concept is more general than the notion of feature) [18].
In this work, we focused on features. Features are usually described by the re-
quirements of a software system. Typically, users formulate their requirements,
change requests or error reports in terms of features [21].

Finding relations between features and source code takes important part
in our program comprehension. Feature location is the process of identifying
mappings between domain level concepts and their implementations in source
code (it identifies code fragments that implements specific feature) [24]. The
maintenance request, expressed usually in natural language and using the do-
main level terminology is the input of mapping and a set of components that
implement the feature [4] is the output. The input and output of the location
process belong to different levels of abstraction (domain level on one side, im-
plementation level on the other side). To make the transformation from one
level to another, extensive knowledge is required (problem domain, program-
ming techniques, algorithms, data structures, etc.). Since features are not ex-
plicitly represented in source code, the features identification is a difficult task.
It is traditionally an intuitive and informal process, based on past experiences.

In general, feature location can be static, dynamic or hybrid. The static tech-
niques of feature identification doesn’t need execution of subject program –
these techniques instead focus on searching in source code. The feature (or
concept) location process can be defined as follows [19]:

1. feature formulation (usually in natural language)
2. query formulation and execution based on the intermediary representation
3. investigation of results

First approaches simply utilized pattern matching tools (such as Unix utility
grep). This basic principle was improved in several ways ([4] [7] [20] [33] [29]
[10] [11]). Improvements include extending the search process with usage of
advanced information retrieval methods, or creating different ways of graphical
visualisation of query results.

The dynamic technique of feature identification analyzes execution traces of
subject program. These techniques are important especially for object-oriented
and dynamic languages. With these, it is nearly impossible to obtain a complete

242 ComSIS Vol. 9, No. 1, January 2012.



Improving Program Comprehension by Automatic Metamodel Abstraction

understanding of the system only by inspecting the source code [28]. Object-
oriented characteristics such as inheritance and polymorphism make it difficult
to understand runtime behavior of the system only by inspecting source code.
Finally, hybrid (combined) feature location techniques utilize both - execution
trace and source code information. Usually, static information is used to filter
the execution traces.

Works [23] [30] [17] use Java Debug Interface to collect execution traces.
Using this approach is complicated and leads to performance penalty – so we
decided for the use of AOP to create execution traces. In [8] a set of instru-
mentation aspects is defined that add code to a given Java program to collect
enough tracing information such that the program can be reverse engineered.
In this approach, every method invocation is intercepted and may be recorded.
Since recording each method invocation would yield too much data to be an-
alyzed, the recorder may be customized using a filter expression. However, to
define filter expression, implementation level knowledge is required.

Common approach to handle a big amount of execution trace data is its
visualization. Standards provided by execution trace analysis are sequence di-
agrams and mapping method calls to source files. Sequence diagrams, while
originally devised as a notation used during analysis and design, can be also
very useful in program comprehension – through the visualization of execu-
tion call traces. Reverse-engineered sequence diagrams based on dynamic call
traces are typically very large, therefore several techniques to handle theirs size
were introduced [1].

Works [12] [3] use aspect-oriented programming to instrument executed pro-
gram with a new code, which collects information about program execution.
Collected data are presented as UML sequential diagrams. Paper [22] summa-
rizes experiences with the development of a reverse engineering tool for UML
sequence diagrams. Author states that the development of a tool supporting the
reconstruction of the behavior of a running software system must address the
major areas of data collection, representation of this data in a suitable meta-
model, and finally its graphical representation. Work [1] provides an overview of
sequence diagram tools.

Paper [9] proposes a reverse-engineering tool suite to build precise class
diagrams from Java programs. The tool uses both static and dynamic data to
infer relationships among classes and interfaces. Work [3] describes class di-
agrams used to create metamodels. These metamodels holds collected data
and model resulting diagrams.

Besides UML diagrams, several tools uses own specific way of data visual-
ization. Paper [5] proposes trace visualization techniques based on the massive
sequence and circular bundle view. Paper [6] introduces a novel 3D visualiza-
tion technique that supports animation of feature behavior. The approach ex-
ploits a third dimension to visually represent the dynamic information, namely
object instantiations and message sends. Work [26] describes user views of the
execution that are specific to the program being understood and to the particular
problem.

ComSIS Vol. 9, No. 1, January 2012. 243



Michal Vagač and Ján Kollár

Described ways of dynamic analysis and visualization of system execution
are generic solutions. Such approaches are often difficult to use, since it is im-
possible to have only one simple general visualization suitable for different kinds
of specific behaviours. Therefore to use such tools, user must understand (of-
ten complex) visualization output, which is closer to implementation level than to
application domain level. As stated in [26] and [27], understanding the software
behavior is a unique problem requiring a specialized solution and a visualiza-
tion.

Our approach comes out from the fact introduced above. One of our aims
was to provide feature specific visualization, which will be closer to application
domain level than to implementation level. To create such a visualization, fea-
ture specific model is built up during dynamic analysis of system execution.

5. Conclusions and Future Work

The paper presents a new approach to automatic feature mapping between
different levels of abstraction. The proposed method utilizes knowledge of stan-
dard class libraries. The experimental tool based on this method has been de-
veloped, to prove the ability for automatic feature visualization at a higher level
of abstraction than that of the implementation. Based on the usage of known
classes, the tool is able to automatically track down selected predefined fea-
ture of existing application and create its metamodel. Since the metamodel is
specific for tracked feature, also its visualization can be closer to application do-
main and better describes given problem (in contrary to generic visualizations).
Predefined knowledge base substitutes developer’s knowledge.

The development of such automatic tool is not so simple. The main difficulty
is associated with knowledge base construction – for each recognized feature
there must be aspects defined to trace feature implementation and algorithms
to model traced implementation details in metamodel. The level of difficulty of
aspects and algorithms depends on the specific feature. On the other side, once
the tool is developed, it can be used to locate predefined features from any exis-
ting application using compatible version of libraries. It is even possible to use
the tool with application with no source code available (in case of using load-
time weaving of aspects). The prerequisite is just the compatibility of application
programming interface.

Acknowledgments. This work was supported by VEGA Grant No. 1/0015/10 Principles
and methods of semantic enrichment and adaptation of knowledge-based languages for
automatic software development.

References

1. Bennett, C., Myers, D., Storey, M.A., German, D.M., Ouellet, D., Salois, M., Char-
land, P.: A survey and evaluation of tool features for understanding reverse-
engineered sequence diagrams. J. Softw. Maint. Evol. 20, 291–315 (July 2008),
http://portal.acm.org/citation.cfm?id=1400155.1400156

244 ComSIS Vol. 9, No. 1, January 2012.



Improving Program Comprehension by Automatic Metamodel Abstraction

2. Biggerstaff, T.J., Mitbander, B.G., Webster, D.E.: Program understanding and
the concept assignment problem. Commun. ACM 37, 72–82 (May 1994),
http://doi.acm.org/10.1145/175290.175300

3. Briand, L.C., Labiche, Y., Leduc, J.: Toward the reverse engineering of uml se-
quence diagrams for distributed java software. IEEE Trans. Softw. Eng. 32, 642–663
(September 2006), http://portal.acm.org/citation.cfm?id=1248725.1248762

4. Chen, K., Rajlich, V.: Case study of feature location using dependence graph.
In: Proceedings of the 8th International Workshop on Program Comprehension.
pp. 241–. IWPC ’00, IEEE Computer Society, Washington, DC, USA (2000),
http://portal.acm.org/citation.cfm?id=518049.856972

5. Cornelissen, B., Zaidman, A., Holten, D., Moonen, L., van Deursen, A.,
van Wijk, J.J.: Execution trace analysis through massive sequence and
circular bundle views. J. Syst. Softw. 81, 2252–2268 (December 2008),
http://portal.acm.org/citation.cfm?id=1454787.1454981

6. Greevy, O., Lanza, M., Wysseier, C.: Visualizing live software systems in 3d. In: Pro-
ceedings of the 2006 ACM symposium on Software visualization. pp. 47–56. SoftVis
’06, ACM, New York, NY, USA (2006), http://doi.acm.org/10.1145/1148493.1148501

7. Griswold, W.G., Yuan, J.J., Kato, Y.: Exploiting the map metaphor in a tool for soft-
ware evolution. In: Proceedings of the 23rd International Conference on Software
Engineering. pp. 265–274. ICSE ’01, IEEE Computer Society, Washington, DC, USA
(2001), http://portal.acm.org/citation.cfm?id=381473.381501

8. Gschwind, T., Oberleitner, J.: Improving dynamic data analysis with aspect-oriented
programming. In: Proceedings of the Seventh European Conference on Software
Maintenance and Reengineering. pp. 259–. IEEE Computer Society, Washington,
DC, USA (2003), http://portal.acm.org/citation.cfm?id=872754.873577

9. Guéhéneuc, Y.G.: A reverse engineering tool for precise class diagrams.
In: Proceedings of the 2004 conference of the Centre for Advanced Stud-
ies on Collaborative research. pp. 28–41. CASCON ’04, IBM Press (2004),
http://portal.acm.org/citation.cfm?id=1034914.1034917

10. Hill, E.: Developing natural language-based program analyses and tools to expedite
software maintenance. In: Companion of the 30th international conference on Soft-
ware engineering. pp. 1015–1018. ICSE Companion ’08, ACM, New York, NY, USA
(2008), http://doi.acm.org/10.1145/1370175.1370226

11. Hill, E., Pollock, L., Vijay-Shanker, K.: Automatically capturing source code
context of nl-queries for software maintenance and reuse. In: Proceedings
of the 31st International Conference on Software Engineering. pp. 232–
242. ICSE ’09, IEEE Computer Society, Washington, DC, USA (2009),
http://dx.doi.org/10.1109/ICSE.2009.5070524

12. Khaled, R., Noble, J., Biddle, R.: Inspectj: program monitoring for visualisation using
aspectj. In: Proceedings of the 26th Australasian computer science conference -
Volume 16. pp. 359–368. ACSC ’03, Australian Computer Society, Inc., Darlinghurst,
Australia, Australia (2003), http://portal.acm.org/citation.cfm?id=783106.783147

13. Kiczales, G.: Beyond the black box: Open implementation. IEEE Softw. 13, 8–11
(January 1996), http://portal.acm.org/citation.cfm?id=624611.625543

14. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: ECOOP. pp. 220–242 (1997)

15. Kočı́, R.: Methods and Tools for Implementation of Open Simulation Systems.
Ph.D. thesis, Brno University of Technology, Brno, Czech Republic (2004),
http://www.fit.vutbr.cz/research/view pub.php?id=7613

ComSIS Vol. 9, No. 1, January 2012. 245



Michal Vagač and Ján Kollár

16. Lehman, M.M., Ramil, J.F., Kahen, G.: A paradigm for the behavioural modelling
of software processes using system dynamics. Technical report 2001/8, Imperial
College, Department of Computing, London, United Kingdom (September 2001)

17. Leroux, H., Réquilé-Romanczuk, A., Mingins, C.: Jacot: a tool to dynamically vi-
sualise the execution of concurrent java programs. In: Proceedings of the 2nd
international conference on Principles and practice of programming in Java. pp.
201–206. PPPJ ’03, Computer Science Press, Inc., New York, NY, USA (2003),
http://portal.acm.org/citation.cfm?id=957289.957349

18. Liu, D., Marcus, A., Poshyvanyk, D., Rajlich, V.: Feature location via informa-
tion retrieval based filtering of a single scenario execution trace. In: Proceed-
ings of the twenty-second IEEE/ACM international conference on Automated soft-
ware engineering. pp. 234–243. ASE ’07, ACM, New York, NY, USA (2007),
http://doi.acm.org/10.1145/1321631.1321667

19. Marcus, A., Rajlich, V., Buchta, J., Petrenko, M., Sergeyev, A.: Static techniques for
concept location in object-oriented code. In: Proceedings of the 13th International
Workshop on Program Comprehension. pp. 33–42. IEEE Computer Society, Wash-
ington, DC, USA (2005), http://portal.acm.org/citation.cfm?id=1058432.1059343

20. Marcus, A., Sergeyev, A., Rajlich, V., Maletic, J.I.: An information retrieval approach
to concept location in source code. In: Proceedings of the 11th Working Conference
on Reverse Engineering. pp. 214–223. IEEE Computer Society, Washington, DC,
USA (2004), http://portal.acm.org/citation.cfm?id=1038267.1039053

21. Mehta, A., Heineman, G.T.: Evolving legacy systems features using regression test
cases and components. In: Proceedings of the 4th International Workshop on Prin-
ciples of Software Evolution. pp. 190–193. IWPSE ’01, ACM, New York, NY, USA
(2001), http://doi.acm.org/10.1145/602461.602507

22. Merdes, M., Dorsch, D.: Experiences with the development of a reverse engineer-
ing tool for uml sequence diagrams: a case study in modern java development.
In: Proceedings of the 4th international symposium on Principles and practice of
programming in Java. pp. 125–134. PPPJ ’06, ACM, New York, NY, USA (2006),
http://doi.acm.org/10.1145/1168054.1168072

23. Oechsle, R., Schmitt, T.: Javavis: Automatic program visualization with object and
sequence diagrams using the java debug interface (jdi). In: Revised Lectures on
Software Visualization, International Seminar. pp. 176–190. Springer-Verlag, Lon-
don, UK (2002), http://portal.acm.org/citation.cfm?id=647382.724668

24. Olszak, A., Jørgensen, B.N.: Remodularizing java programs for comprehension of
features. In: Proceedings of the First International Workshop on Feature-Oriented
Software Development. pp. 19–26. FOSD ’09, ACM, New York, NY, USA (2009),
http://doi.acm.org/10.1145/1629716.1629722

25. Oriol, M., Cazzola, W., Chiba, S., Saake, G.: Object-oriented technology. ecoop
2008 workshop reader. chap. Getting Farther on Software Evolution via AOP and
Reflection, pp. 63–69. RAM-SE’08, Springer-Verlag, Berlin, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-02047-6 7

26. Reiss, S.P.: Visualizing program execution using user abstractions. In: Proceedings
of the 2006 ACM symposium on Software visualization. pp. 125–134. SoftVis ’06,
ACM, New York, NY, USA (2006), http://doi.acm.org/10.1145/1148493.1148512

27. Reiss, S.P.: Visual representations of executing programs. J. Vis. Lang. Comput. 18,
126–148 (April 2007), http://portal.acm.org/citation.cfm?id=1230158.1230422

28. Röthlisberger, D., Greevy, O., Nierstrasz, O.: Feature driven browsing. In: Proceed-
ings of the 2007 international conference on Dynamic languages: in conjunction
with the 15th International Smalltalk Joint Conference 2007. pp. 79–100. ICDL ’07,
ACM, New York, NY, USA (2007), http://doi.acm.org/10.1145/1352678.1352684

246 ComSIS Vol. 9, No. 1, January 2012.



Improving Program Comprehension by Automatic Metamodel Abstraction

29. Shepherd, D., Fry, Z.P., Hill, E., Pollock, L., Vijay-Shanker, K.: Using natural
language program analysis to locate and understand action-oriented concerns.
In: Proceedings of the 6th international conference on Aspect-oriented soft-
ware development. pp. 212–224. AOSD ’07, ACM, New York, NY, USA (2007),
http://doi.acm.org/10.1145/1218563.1218587

30. Sundararaman, J., Back, G.: Hdpv: interactive, faithful, in-vivo runtime state vi-
sualization for c/c++ and java. In: Proceedings of the 4th ACM symposium on
Software visualization. pp. 47–56. SoftVis ’08, ACM, New York, NY, USA (2008),
http://doi.acm.org/10.1145/1409720.1409729

31. Turner, C.R., Fuggetta, A., Lavazza, L., Wolf, A.L.: A conceptual ba-
sis for feature engineering. J. Syst. Softw. 49, 3–15 (December 1999),
http://portal.acm.org/citation.cfm?id=340287.351492

32. Wilde, N., Scully, M.C.: Software reconnaissance: mapping program fea-
tures to code. Journal of Software Maintenance 7, 49–62 (January 1995),
http://portal.acm.org/citation.cfm?id=249936.249939

33. Zhao, W., Zhang, L., Liu, Y., Sun, J., Yang, F.: Sniafl: Towards a static noninteractive
approach to feature location. ACM Trans. Softw. Eng. Methodol. 15, 195–226 (April
2006), http://doi.acm.org/10.1145/1131421.1131424

Michal Vagač is Assistant Professor at Department of Informatics, Faculty of
Natural Sciences, Matej Bel University, and PhD student at Department of Com-
puters and Informatics, Technical university of Košice, Slovakia. He received
his MSc. in Computer Science, in 2001. The subject of his research is meta-
modeling, metaprogramming, programming paradigms, and dynamic software
systems adaptation.

Ján Kollár is Full Professor of Informatics at Department of Computers and
Informatics, Technical university of Košice, Slovakia. He received his M.Sc.
summa cum laude in 1978 and his Ph.D. in Computer Science in 1991. In 1978-
1981 he was with the Institute of Electrical Machines in Košice. In 1982-1991 he
was with Institute of Computer Science at the P.J. Šafárik University in Košice.
Since 1992 he is with the Department of Computer and Informatics at the Tech-
nical University of Košice. In 1985 he spent 3 months in the Joint Institute of
Nuclear Research in Dubna, USSR. In 1990 he spent 2 months at the De-
partment of Computer Science at Reading University, UK. He was involved in
research projects dealing with real-time systems, the design of microprogram-
ming languages, image processing and remote sensing, dataflow systems, im-
plementation of programming languages, and high performance computing. He
is the author of process functional programming paradigm. Currently his re-
search area covers formal languages and automata, programming paradigms,
implementation of programming languages, functional programming, and adap-
tive software and language evolution.

Received: April 6, 2011; Accepted: August 17, 2011.

ComSIS Vol. 9, No. 1, January 2012. 247




