
DOI: 10.2298/CSIS110505002S

Building XML-Driven Application Generators with

Compiler Construction Tools

Antonio Sarasa-Cabezuelo
1
, Bryan Temprado-Battad

1
, Daniel

Rodríguez-Cerezo
1
, José-Luis Sierra

1

1 Computer Science School,
Complutense University of Madrid

Calle Profesor José García Santesmases, s/n
28040 Madrid, Spain

{asarasa, bryan, drcerezo, jlsierra}@fdi.ucm.es

Abstract. This paper describes how to use conventional compiler
construction tools, and parser generators in particular, to build XML-
driven application generators. In our approach, the document interface
is provided by a standard stream-oriented XML processing framework
(e.g., SAX or StAX). This framework is used to program a generic,
customizable XML scanner that transforms documents into streams of
suitable tokens (opening and closing tags, character data, etc.). The
next step is to characterize the syntactic structure of these streams in
terms of generation-specific context-free grammars. By adding suitable
semantic attributes and semantic actions to these grammars,
developers obtain generation-oriented translation schemes: high-level
specifications of the generation tasks. These specifications are then
turned into working application generators by using standard parser
generation technology. We illustrate the approach with <e-Subway>, an
XML-driven generator of shortest-route search applications in subway
networks.

Keywords: Application Generators, Compiler Construction Tools, XML
Processing, Software Development Approach

1. Introduction

Application generators and generative approaches to software development
are keystone technologies in enhancing productivity and ensuring the quality
of final software artifacts [5][7][9]. In application generators, XML is frequently
chosen as a basic encoding format for input specifications [6]. Thus, having
cost-effective and efficient methods for processing XML documents is
mandatory in these scenarios. For this purpose, architects of application
generators have a wide range of XML-processing technologies available,
ranging from task-specific (e.g., XSLT) to general-purpose ones (e.g., SAX or
DOM). General-purpose XML processing frameworks (i.e., SAX, DOM, StAX,

Antonio Sarasa-Cabezuelo et al.

ComSIS Vol. 9, No. 2, June 2012 486

etc) [15] are particularly relevant for very specific or complex processing
tasks not easily accomplished with pre-existing task-specific technology.

However, general-purpose processing frameworks are largely data-centric:
they see XML documents as chunks of data. By contrast, the intrinsic nature
of descriptive markup and XML is fundamentally language-oriented: to design
an XML format for a particular type of document is equivalent to devising a
suitable domain-specific markup language. It immediately raises an obvious
question: if XML documents are structured with (formal) markup languages,
why not use conventional language-processing techniques to support the
processing of these documents?

The answer to this question depends on the complexity of the markup
language and the processing tasks. For simple XML documents (e.g., a
sequence of logs with a description and a timestamp) and simple processing
tasks (e.g., producing an HTML table with the logs), the effort of designing
and implementing the processing component as if it were a sort of compiler,
using methods and techniques specific to the compiler construction field, may
be excessive. However, for more complex documents (e.g., QTI documents
describing assessments in an e-Learning system [11]) and more complex
processing tasks (e.g., configuring assessment systems with the QTI
documents), this effort can pay off. Actually, the latter constitute the kind of
scenarios faced by developers of application generators.

An attractive feature of the language-oriented approach is that the design
and implementation of language processors (and, in particular, of translators)
is mature enough to support a wide range of tools able to produce reliable
and efficient implementations from high-level specifications. Of those tools,
the most widely known are parser generators (i.e., YACC-like tools) [1].
These tools accept translation schemes, i.e., context-free grammars
annotated with the semantic actions that actually perform the processing, as
input, and produce working translators as output. Thus, by using one of these
tools, it is possible to drastically reduce the development effort compared to a
handcrafted implementation.

This paper shows how it is possible to build sophisticated XML processing
environments by combining parser generators with general-purpose stream-
oriented XML processing frameworks. For this purpose, it develops a general
method that can be used with a great variety of parser generation
environments or underlying XML processing frameworks. The result is a
systematic approach to the language-oriented development of complex
syntax-directed XML processing components, which is especially well-suited
to the development of XML-driven application generators.

The rest of the paper is organized as follows: section 2 introduces
<e-Subway>, the system that will be used for illustrative purposes. Section 3
outlines the approach and illustrates it with <e-Subway>. Section 4 presents
some work related to ours. Finally, section 5 presents some conclusions and
lines of future work.

Building XML-Driven Application Generators with Compiler Construction Tools

ComSIS Vol. 9, No. 2, June 2012 487

2. Case study

The system <e-Subway> is an XML-based system for the construction of
shortest-route search applications in subway networks. This system was
already used as a case study in some of our previous experiences concerning
the generation of applications from structured documents [38][39].
<e-Subway> integrates:

<!ELEMENT Subway

(Network,UserInterface)>

<!ELEMENT Network (Structure,Dynamics)>

<!ELEMENT Structure (Stations,Lines)>

<!ELEMENT Stations (Station)+>

<!ELEMENT Station (#PCDATA)>

<!ATTLIST Station id ID #REQUIRED>

...

<e-Subway>

generator

(a)

(b)

<Subway>

 <Network>

 <Structure>

 <Stations>

 <Station id="CONGOSTO">Congosto

 </Station>

 <Station id="VVALLECAS">Villa de Vallecas

 </Station>

 ...

 </Stations>

 ...

 </Network>

 <UserInterface>

 ...

</UserInterface>

</Subway>

<e-Subway>
framework

<e-Subway>

application

<e-Subway>

document

Figure 1. (a) Excerpt of the <e-Subway> DTD; (b) The <e-Subway> generation
process

 An XML-compliant markup language for structuring documents that
describe the different aspects of route searching applications (e.g.,
stations, lines, connections and other aspects of the subway network, as
well as selected aspects of the final application’s user interface). In Fig. 1a,
we outline a fragment of the DTD for this language.

 A domain-specific object-oriented framework. Applications in <e-Subway>
are instantiations of this framework.

Antonio Sarasa-Cabezuelo et al.

ComSIS Vol. 9, No. 2, June 2012 488

 A generator. This component processes documents that describe
<e-Subway> applications and produces the documented applications as
instantiations of the <e-Subway> framework (Fig. 1b) (i.e., it does not
actually generate code, but produces in-memory instances –objects– of the
<e-Subway> framework’s classes, and establishes appropriate links
between these instances).

Setting up the

Development

Environment

Writing the

Generation-Oriented

Translation Scheme

Providing the

Generator-Specific

Logic

Producing and

Testing the

Generator

Figure 2. Activities and sequencing of activities in the development approach

3. The development approach

Fig. 2 summarizes the approach to developing XML-driven application
generators with conventional parser generation tools, focusing on the main
activities and on the sequencing of these activities (the backwards transitions
allow an iterative/incremental production process). Notice that this workflow
largely mirrors that which is usually followed by any compiler developer.
Indeed, he/she must provide a suitable grammar for the source language,
add semantic actions to this grammar to yield a translation scheme, generate
the translator either by hand or by using a suitable generation tool, etc. This
parallelism makes the language-oriented nature of the proposal described in
this paper apparent. Nevertheless, it is important to notice that the goal is not

Building XML-Driven Application Generators with Compiler Construction Tools

ComSIS Vol. 9, No. 2, June 2012 489

to provide a full translator from scratch, but instead to put an additional
language processing layer on top of an existing stream-oriented XML
processing framework. In particular, the processor will operate on XML
information elements (e.g., represented in the form of SAX events) instead of
individual characters. As a result, it will lead to the organizing of the
application-specific logic attached to a general processing framework into two
well-differentiated tiers: one that operates as a syntax-directed translator, and
another that provides services to this translator. The following subsections
analyze each activity in this workflow.

3.1. Setting up the development environment

This activity integrates a parser generation tool with a general-purpose XML
processing framework. This activity will be performed only sporadically, since
the same development environment can be used in the development of many
different application generators.

<Stations>

 <Station id="s1">Black</Station>

 <Station id="s2">Blue</Station>

 <Station id="s3">Red</Station>

</Stations>

(a)

[token: _OStations] [token: _OStation id: "s1"] [token: #pcdata text: "Black"]

[token: _CStation] [token: _OStation id: "s2"] [token: #pcdata text: "Blue"]

[token: _CStation] [token: _OStation id: "s3"] [token: #pcdata text: "Red"]

[token: _CStation] [token: _CStations]

(b)

<Stations>  _OStations

<Station>  _OStation

</Stations>  _CStations

</Station>  _CStation

 XML Scanner

Figure 3. (a) Example of tokenization; (b) Customization of an XML Scanner

As previously stated, a parser generation tool produces translators for
formal languages from high-level specifications. These translators are driven
by parsers that operate on streams of tokens provided by lexical analyzers.
Thus, the key idea behind integration is to see XML documents as streams of
tokens. Integration itself is focused on the logical structure: streams of tokens
are produced by remapping the data structures provided by the general-
purposes processing frameworks, instead of by directly operating on the

Antonio Sarasa-Cabezuelo et al.

ComSIS Vol. 9, No. 2, June 2012 490

actual XML files. The integration distinguishes four different lexical
categories, or kinds of tokens:

 Character data tokens, which correspond to fragments of textual content in
the processed documents.

 Opening and closing tags.

 The end of document.
In addition to its lexical category, each token can include additional lexical

information in the form of lexical attributes:

 Character data tokens have the actual textual content associated with
them.

 Opening tags have the element attributes specified in the tag, as well as
namespace information, associated with them.
Fig. 3a shows an example of tokenization.
Based on these considerations, integration provides a generic and

customizable XML Scanner by using the selected XML processing
framework. This component can be generic, since it is only needed to
indicate how to map opening and closing tags into lexical categories (e.g., by
using a table, as suggested in Fig. 3b). Also, this kind of integration can be
successfully carried out by using a stream-oriented framework such as SAX
or StAX. Indeed, the action of the XML Scanner can be conceived of as the
transformation of a stream of documental information items into a stream of
tokens, as expected by the generated translators.

Concerning the technical details, since generated translators are push
components (i.e., they take control, requesting tokens from the scanners
when required), integration is particularly straightforward with a pull XML
processing framework (e.g., StAX), since these frameworks provide each
next information item on demand. On the other hand, integration with a push
framework (e.g., SAX) requires inverting control (e.g., using a producer-
consumer multithreaded solution). In our previous papers [33] and [34], we
give examples of the two kinds of integration.

Finally, it is important to highlight the difference between the XML Scanner
proposed in this section and the scanner of a conventional language
processor. Indeed, the XML Scanner proposed in our approach is built on top
of a full-flagged stream-oriented XML processing framework, able to support
features that are common to any XML-based markup language (e.g., support
for different character sets and encodings, comment recognition, entity and
namespace management, etc.). On the other hand, the scanner of a
conventional language processor usually works on text files or stream of
characters. Therefore, although it could be possible to provide a conventional
scanner for tokenizing a particular type of XML documents, it would have to
deal with the aforementioned features to be fully XML-compliant. The
complexity of exiting XML parsers teaches us that it is not exactly an easy
task. It makes the difference between our proposal and the conventional
development of a language processor apparent: if we develop a language
processor for a particular type of XML documents following the standard
patterns explained in any university-level compiler construction course (see
for instance [1]), we will probably get a program able to process input text

Building XML-Driven Application Generators with Compiler Construction Tools

ComSIS Vol. 9, No. 2, June 2012 491

files with an XML syntax-like, but not a program able to deal with the features
common to all XML applications (e.g., the ability to split a huge XML
document in several files and to assemble these fragments using the XML
entity mechanism, to deal with different character sets, to deal with
namespaces, etc.).

3.2. Writing the Generation-Oriented Translation Scheme

This is the central activity of our development approach. Its purposes are to:

 Write a suitable generation-specific grammar that gives structure to the
stream of tokens provided by the XML Scanner.

 Annotate this grammar with code (semantic actions) to describe the
generation task. The result is the syntax-directed, generation-oriented
translation scheme produced by this activity.
It is important not to confuse the generation-specific grammar with the

document grammar (e.g., a DTD or an XML Schema) used to describe the
markup language. The generation-specific grammar of this activity addresses
a key aspect of the processing: to give a suitable structure to the stream of
tokens in order to facilitate application generation. Indeed, this aspect must
be addressed by any general-purpose XML processing solution. For instance,
it is implicit in the code that deals with the children of an element node in a
DOM-based processing application, in the callback methods and the state
variables of a SAX event handler, or in the set of mutually recursive
procedures of a StAX-based application. The main difference (and
advantage) of our approach is that this structuring aspect is explicitly
described at a very high abstraction level, as a context-free grammar, instead
of being hand-coded in a final implementation. The structure imposed on a
stream of tokens by a generation-specific grammar takes the form of a parse
tree. Fig. 4b shows an example. As this example makes apparent, the parse
tree is finer-grained than the usual document tree, where the element
contents lack any structure outside a uniform sequence of nodes (compare
Fig 4a with Fig 4c).

The conceptual processing model behind a generation-oriented translation
scheme is to perform a traversal of the parse tree, executing semantic
actions at significant points in this traversal. In addition, semantic actions can
store and consult information in the nodes of the parse tree (typically this
information is organized as an assignment of values to semantic attributes),
as well as in global variables.

The exact nature of the traversal is determined by the kind of translators
generated by the parser generation tool:

 Top-down translators, such as those generated by JavaCC and ANTLR,
traverse the parse tree in preorder (i.e., the translator visits each node
before visiting its children). The significant points are, for each node, when:
(i) the translator enters the node, (ii) the translator enters a child, (iii) the
translator has left a child, and (iv) the translator exits the node.

Antonio Sarasa-Cabezuelo et al.

ComSIS Vol. 9, No. 2, June 2012 492

 Bottom-up translators, such as those generated by YACC-like tools (e.g.,
CUP), traverse the parse tree in postorder (i.e., for each node, the
translator first visits the node's children and then the node itself). There is
a significant point each time the translator exits a node.

 (a)

Stations

 Station @id=s1

 Black

 Station @id=s3

 Red

 Station @id=s2

 Blue

StsDesc  _OStations Sts _CStations

Sts  St StLst St | St

StLst  StLst St | 

St  _OStation #pcdata _CStation

(b)

StsDesc

 _OStations

 Sts

 _CStations

 St

_OStation[id=s1]

 #pcdata[text=Black]

_CStation

 St

_OStation[id=s3]

 #pcdata[text=Red]

_CStation

 StLst

 StLst



 St

_OStation[id=s2]

_CStation

#pcdata[text=Blue]

(c)

Figure 4. (a) Document tree for the document in Fig. 3a; (b) (Part of) a generation-
specific grammar; (c) Parse tree for the document in Fig. 3a according to this
grammar.

It is worthwhile to note that, while it is useful to have this model in mind
when writing generation-oriented translation schemes, it is only a conceptual

Building XML-Driven Application Generators with Compiler Construction Tools

ComSIS Vol. 9, No. 2, June 2012 493

model. In practice, the parse tree is never built, the traversal is implicitly
performed during parsing, and the semantic actions are executed in a
suitable order. Also, the semantic attributes are only available as parameters
of recursive procedures (e.g., in recursive descent translators generated by
JavaCC or ANTLR) or stored in the records of a semantic stack (e.g., in
YACC-generated bottom-up translators). This behavior is a fundamental
feature when dealing with huge documents (like those required by the
generation of data-intensive applications) or with documents made available
asynchronously in an XML stream (as required by on-line generators, which
incrementally generate applications as they process their descriptions). It also
constrains the kind of specifications that can be done. For instance, top-down
translators do not work with left-recursive grammars, which are useful for
characterizing left-associative structures. Also, although bottom-up
translators are able to deal with left-recursion in a very efficient way, it is
substantially more difficult to deal with inherited information (i.e., information
that flows from parent to child or from sibling to sibling) than in top-down
translators [1].

 ...
StsDesc  _OStations Sts _CStations {

 $$.stations = $2.stations

}

Sts  St StLst St {

 ops.addFirstStation($2.stations,$1.id,$1.name);

 ops.addLastStation($2.stations,$3.id,$3.name);

 $$.stations = $2.stations;

}

Sts  St {

 $$.stations = ops.makeStList();

 ops.addFirstStation($$.stations,$1.id,$1.name);

 ops.addLastStation($$.stations,$1.id,$1.name);

}

StLst  StLst St {

 $$.stations = addStation($1.stations,$2.id,$2.name);

}

StLst   {
 $$.stations = ops.makeStList();

}

St  _OStation #pcdata _CStation {

 $$.id = $1.id;

 $$.name = $2.text;

}

...

Figure 5. Excerpt of a translation scheme for a fragment of the <e-Subway> markup
language

Knowing the traversal carried out by the translator makes it possible to
place the semantic actions in the syntax rules of the generation-specific
grammar. The specification formalism must also provide a way of referring to
the semantic attributes (e.g., placing them as parameters of the syntax
symbols, as in JavaCC, or using pseudovariables, as in YACC-like tools).
Fig. 5 depicts a fragment of the syntax-directed translation scheme for a

Antonio Sarasa-Cabezuelo et al.

ComSIS Vol. 9, No. 2, June 2012 494

bottom-up translation model of the <e-Subway> generator using a YACC-like
notation (in particular, it uses YACC-like pseudovariables: $$ to refer to the
semantic record of a rule’s head, $i to refer to the semantic record of the i-
esime body’s symbol). The translation scheme builds an in-memory
representation of the stations in a line, following the typical generation pattern
of populating a suitable semantic model [9].

Finally, it is interesting to remark that, for the sake of generalization, we
have kept our approach simple enough to fit in the different parser generation
tools available. For this reason, more advanced capabilities have been
explicitly omitted, although they might facilitate some advanced processing
tasks. For instance, one of these advanced capabilities could be the interplay
between syntax and semantics, supported by tools like ANTLR [30], and
which, for instance, would allow us to make parsing dependent on predicates
concerning certain semantic attributes. Still, some clever behavior can be
achieved without introducing these advanced features by setting the XML
Scanner to produce different tokens for different occurrences of the same
element type, depending of the values of some of their XML attributes.

3.3. Providing Generator-Specific Logic

The semantic actions in the translation scheme will typically use other, more
conventional machinery that must also be provided to produce a fully
functional application generator. This machinery constitutes the so-called
generator-specific logic.

SubwayAppSubwaySemClass

SubwayNetwork
RouteSearcher SubwayGUI

Line Corridor

LinkStation NetworkAsAGraph

Graph
<<interface>> SubwayMap

* *

*

origin

destination

adapts uses

Figure 6. Main components of the <e-Subway> framework

For instance, in <e-Subway>, this generator-specific logic is formed by the
<e-Subway> framework, which constitutes the aforementioned semantic
model in this scenario [9]. Thus, and as indicated in section 2, the resulting
generator does not generate actual code, but instantiates classes in the

Building XML-Driven Application Generators with Compiler Construction Tools

ComSIS Vol. 9, No. 2, June 2012 495

<e-Subway> framework and links the resulting objects in appropriate ways
(using the terminology introduced in [9], it populates the <e-Subway>
framework, as we indicate below). Fig. 6 depicts the main components of the
<e-Subway> framework.

In this way, the approach promotes a clear separation between the
language-oriented processing of the XML documents and the conventional
software that supports this processing. This separation can be further
emphasized by providing a suitable façade for the generator-specific logic,
with operations that will be invoked from the translation scheme (it indeed
follows the embedment helper pattern described in [9]). The ops global

variable in Fig. 5 illustrates this practice (in the actual <e-Subway> generator,
the variable refers to an instance of such a façade, which is represented by
SubwaySemClass in Fig. 6).

Generation-oriented

translation scheme

Parser

generator

Translation scheme
implementation
(source code)

Compiler

Translation scheme
implementation

(binary)

provides

provides

XML Processing

framework
XML Scanner

Main program

customizes

Generator-specific

logic

provides

 uses

Application
generator

developer

Figure 7. The production process of XML-driven application generators in the
development approach

Antonio Sarasa-Cabezuelo et al.

ComSIS Vol. 9, No. 2, June 2012 496

3.4. Producing and Testing the Generator

Once the translation scheme and the application-specific logic are available,
it is possible to get the working generator automatically by using the parser
generation tool. The production process is detailed in Fig. 7. Indeed:

 The translation scheme is used as input to the parser generation tool in
order to obtain the implementation of a translator written in the target
language of the parser generation tool (e.g., Java for JavaCC or CUP).
Notice that this way, the parser generation tool becomes a kind of meta-
generator [6] in our proposal.

 In turn, this implementation can be turned onto a working binary
component by using a compiler for such a target language (e.g., a Java
compiler, assuming JavaCC or CUP was used).

 The customized XML Scanner must also be provided. Usually it can
involve writing the mapping table (see section 3.1) using a customization
file, or directly writing this table in the target programming language (e.g.,
Java).

 Finally, the developer must provide a small main program gluing all this
together. This program will properly connect all the components required to
constitute the generation pipeline. This pipeline will be made of: (i) a
standard XML processing framework able to turn XML documents into
information elements (e.g., represented by SAX events) suitable for the
XML Scanner, (ii) the customized XML Scanner used to turn these
elements into tokens accepted by the translator generated, and (iii) the
translator itself, which makes use of the generator-specific logic.
The resulting generator can be tested in order to resolve possible defects

and/or malfunctions. This activity therefore completes the development
process.

4. Related Work

In this section we compare our work to conventional XML processing
approaches (subsection 4.1), to other approaches to language-driven XML
processing (subsection 4.2), and to approaches to XML processing based on
attribute grammars (subsection 4.3)

4.1. Conventional XML processing approaches

As indicated in section 1, conventional approaches to XML processing range
from task-specific ones (e.g., XSLT [41] for document transformation or
XQuery [43] for expressing queries to XML structured documents) to general-
purpose frameworks (e.g., tree-oriented ones, like DOM [19], or stream-
oriented ones, like SAX [3][21], StAX [21] or XML-Pull [21]; see also [15] for a

Building XML-Driven Application Generators with Compiler Construction Tools

ComSIS Vol. 9, No. 2, June 2012 497

survey of this kind of general-purpose XML processing frameworks). While
both types of these traditional approaches (task-specific and general purpose
ones) share a data-centric orientation (i.e., these approaches see XML
documents as chunks of data instead of sentences in a formal language),
task-specific approaches tend to be of a higher level and of a more
declarative nature than general-purpose ones. Indeed, task-specific
approaches promote the use of domain-specific languages specifically
tailored to the task at hand (e.g., transformation specifications in XSLT,
FLWOR expressions in XQuery), while general-purpose processing
frameworks are usually expressed in a general-purpose programming
language (e.g., Java) and their use demands programming skills in this kind
of general-purpose programming languages. As a consequence, task-specific
approaches are usually more usable than general-purpose ones. However,
the applicability of task-specific approaches is reduced to concrete
processing tasks; for other tasks, either another task-specific approach or a
general-purpose one will need to be used.

The language-oriented approach presented in this paper tries to bring
together the best of the two aforementioned XML processing worlds (task-
specific and general-purpose ones). Indeed, it clearly splits the processing
task into two well-differentiated layers: (i) a linguistic layer, explicitly
governed by an underlying formal grammar, which deals with the syntax-
directed processing of the stream of basic components in an XML document,
and (ii) an additional specific logic layer, which is understood as a set of
additional services required by the linguistic layer. While the second layer
must be provided by using general-purpose programming languages, the first
layer can rely on domain-specific languages to describe syntax-directed
language processing tasks, like those provided by the parser generation tools
alluded to in this paper. As a consequence, the advantages of the approach
from the development and maintenance perspective become apparent. On
one hand, the linguistic layer can be expressed in domain-specific, high-level
and largely declarative ways, using translation schemes, which can contribute
to facilitating its conception, development and maintenance. On the other
hand, since the approach does not constrain the nature of the specific logic
layer, it is as general as any of the aforementioned general-purpose
approaches. However, as a disadvantage, developers must face an
increment in complexity due to the explicit organization of processing
applications in these two well-differentiated layers. Of course, and as
indicated in section 1, whether this complexity pays out or not will depend on
the nature of the XML-based markup language: the more complex the
language is, the more convenient the adoption of this proposal will be.
Indeed, the non-trivial complexity of the markup languages that can arise in
the domain of application generators makes this approach very convenient
for this domain.

Our proposal can also be compared to traditional approaches from the
point of view of efficiency, although, concerning the domain of application
generators, where the documents involved will usually be small, this factor is
less critical than ease of development and maintenance. Still, since our

Antonio Sarasa-Cabezuelo et al.

ComSIS Vol. 9, No. 2, June 2012 498

approach is intrinsically stream-oriented, it can usually give performances
comparable to pure stream-oriented approaches based, for instance, on SAX
or StAX. Indeed, another advantage to our approach, which is a direct
consequence of using syntax-directed translation specifications built on top of
underlying context-free grammars, arises: when we develop XML processing
applications we can think of trees, but the final applications will be executed
as stream-oriented ones. Therefore, the approach can achieve (and even
beat) the usability of tree-oriented processing solutions, as well as the
efficiency of stream-oriented ones.

Since it promotes a generative strategy to derive the actual
implementation of the linguistic layer from a high-level specification based on
the input language of a parser generation tool, our proposal has some points
in common with XML data binding proposals [20]. A typical data-binding
framework incorporates generators that are able to generate an application-
specific representation by processing the document grammar (i.e., DTD or
XML Schema) for the application’s document type. As with the other
conventional approaches mentioned, this representation is typically data-
centric, as it consists of a set of application-specific classes, which are
instantiated during parsing. Nevertheless, data-binding proposals are not
exempt from disadvantages. Indeed, these proposals are tightly coupled with
the document grammar, which is turned into application-specific classes
using a more or less rigid set of pre-established rules. Although the
proposals usually support binding specifications, which let developers
modulate the classes generated and the bindings for the documents, the
transformational capabilities of these specifications are usually limited to
simple mapping facilities for elements and attributes. While these capabilities
are sufficient for simple data-oriented XML applications, they fail when facing
complex and/or mixed-element content models arising in non-trivial XML-
based markup languages (such as those used in the domain of application
generators). Our proposal, in turn, makes it possible to base the processing
on generation-specific grammars, which are specific, not only to each
language, but also to the processing task at hand.

4.2. Language-driven processing of XML documents

The conception of applications that process XML (or, more generally
speaking, structured) documents as a sort of compiler or translator for a
computer language has a long tradition in the document engineering context,
such that it is highlighted, for instance, in [16]. Indeed, as it made apparent in
[15], the internals of general-purpose XML processing frameworks can be
explained from the point of view of conventional computer language
processing workflows. However, as discussed in section 1, the application-
specific processing of the documents usually operates on the data structures
representing the documents provided by these frameworks. As a
consequence, this application-specific processing is usually viewed as the

Building XML-Driven Application Generators with Compiler Construction Tools

ComSIS Vol. 9, No. 2, June 2012 499

processing of conventional data structures (e.g., traversing DOM trees,
responding to SAX events, …) and the connection with language processing
methods, techniques and tools is definitively missed. In order to restage this
connection, some proposals (which are typically used for educational
purposes) suggest undertaking the development of XML-based applications
by building a parser for each particular XML-based markup language with the
help of a parse-generation tool (see, for instance, [29], pages 351-352). As
we indicated in section 3.1, this straightforward approach, however, supposes
that we ignore general features common to any XML processing application
(e.g., entity processing, comment recognition, namespace support, etc.). In
this paper, we have shown how it is possible to use conventional parse
generation tools in combination with standard XML processing frameworks to
achieve the benefits of both approaches: on one hand, using standard and
well-proven general-purpose XML processing frameworks to take advantage
of general-purpose features common to any XML application, and, on the
other hand, being able to organize application-specific processing in linguistic
terms, as promoted by parse-generation tools.

The idea of parser generators have inspired several proposals for the
construction of XML processing applications (e.g., ANTXR [40], which is built
on top of the ANTLR parser generator tool, and RelaxNGCC [27], an
extension of the RelaxNG [42] schema language for the specification of
translation schemes). While these proposals usually rely on specialized tools
supporting dedicated specification languages, in this paper we have shown
how it is possible (and reasonable) to use conventional and well-proven
parser generation tools without requiring dedicated languages for the
description of the translation schemes. As indicated above, this fact is
confirmed in our previous works [33][34], where we have shown how it is
possible to build sophisticated XML processing environments by combining
parser generators (JavaCC [14] and CUP [2]) with general-purpose stream-
oriented XML processing frameworks (SAX and StAX).

4.3. XML Processing and Attribute Grammars

Although the tendency in formal models for processing XML documents is to
emphasize tree automata and related formalisms [36], there are several
works on using attribute grammars, a well-known formalism for describing the
syntax and semantics of context-free languages [12][28], for the language-
oriented implementation of XML processing tasks. Many of these works are
typically focused on amalgamating attribute grammar concepts with the
EBNF syntax that usually underlies an XML DTD, and which is reflected in
unranked tree representations for the XML documents. The approach
adopted in [31] to cope with EBNF is to decouple semantic rules and
productions. Indeed, their semantic rules are associated in terms of parent-
child relationships, instead of being associated with productions. This
problem was addressed early by the work reported in [8] regarding a
transformation system for structured documents supporting different

Antonio Sarasa-Cabezuelo et al.

ComSIS Vol. 9, No. 2, June 2012 500

document models (e.g., SGML, LaTEX, etc.). In [24][25], this kind of
extended attribute grammar is used for querying structured documents, and it
constrains the type of semantic expressions allowed to regular expressions in
the alphabets of attribute occurrences. In the work described in [17][18],
which reports on an application in the domain of information retrieval,
documents are represented using abstract attribute grammars, where each
non-terminal corresponds to an element type. In this work, a set of pre-
established rules is used to derive such grammars from the DTDs, using a
similar approach to that described in [16] (see [18] for an explicit enumeration
of these rules). In [13], l-attributed grammars defined from EBNF syntaxes
are used to support the efficient processing of XML streams. Similarly, in the
works reported in [23][26] the unranked nature of the XML document trees is
managed by promoting binary encodings of these document trees. Finally, in
[32][35] we describe XLOP (XML Language-oriented Processing), an attribute
grammar–based front-end to the proposal described in this paper. Indeed, by
using encoding patterns similar to those described in [4] to implement
attribute grammars by using conventional compiler construction tools, XLOP
is able to turn the attribute grammar-based specifications of XML processing
tasks into translation schemes for the CUP parser generation tool.

Our work in XLOP makes the relationships between the proposal described
in this paper and attribute grammar-based approaches to XML processing
apparent. Indeed, since the designer who writes an attribute grammar does
not need to specify the evaluation order for the semantic equations, attribute
grammars are of a higher level than translation schemes, where designers
must make the execution order of the semantic actions explicit. However,
many times it can burden the applicability of the approach, since average
developers, who do not necessarily have deep knowledge of specialized
formal semantic specification techniques, usually find it hard to work with
non-standard computation models [9], like the dependency-driven one that
underlies attribute grammars. For this purpose, the plain use of parser
generation tools presented in this paper can provide an intermediate
approach that can be more easily accepted by developers of XML processing
applications. Also, sometimes parser generation tools can lead to more
efficient / more straightforward implementations than those directly generated
from attribute grammars. In addition, the use of patterns like the one
described in [4] can enable hybrid approaches: indeed, it is possible to start
with an attribute grammar-based specification, to encode it as a translation
scheme using the patterns given in [4], and then to evolve it into a more
efficient / more conventional implementation. These ideas have been
partially applied in [34] by including dependency-driven translation
capabilities in the application of the approach to the CUP + STaX marriage.
Finally, based on our experiences, we have realized that one of the key
aspects of the approach described in this paper is to perform the explicit
provision of (plain BNF) context-free grammars (e.g., the generation-specific
grammar) instead of relying on direct EBNF counterparts to the DTDs /
document schemas as in [13][24][25], on pre-established rules to convert
(EBNF-based) document grammars into BNF grammars as in [17][18], on the

Building XML-Driven Application Generators with Compiler Construction Tools

ComSIS Vol. 9, No. 2, June 2012 501

explicit decoupling of syntax and semantics as in [31], or on pre-established
encodings of the document trees as in [23][26].

5. Conclusions and future work

In this paper, we have proposed a metalinguistic conception of the
development of XML-driven application generators. According to this
approach, these generators are treated as a sort of language processor. This
treatment allows us to use compiler construction tools, and in particular
parser generators, as adequate tools to orchestrate the development. It
enables the automatic production of application generators from high-level
specifications based on generation-oriented translation schemes. In addition,
these application generators can be smoothly integrated with general-purpose
standard XML-processing frameworks by using a generic and customizable
XML Scanner. The approach facilitates the development and maintenance of
application generators driven by complex XML-based markup languages, as
well as by huge data-intensive XML documents and/or by documents that are
provided asynchronously in an XML data stream.

Currently we are working on more flexible configuration mechanisms for
the XML Scanner. We are also investigating mechanisms to improve the
efficiency of the final generators. We are also planning to test the approach
on the development of other application generators in the e-Learning domain,
such as was reported in [22][37], as well as in the domain of multi-agent
systems [10].

Acknowledgements. Thanks are due to project grants TIN2010-21288-C02-01 and
Santander-UCM GR 42/10, group reference 962022. Also, Daniel Rodriguez-Cerezo
was supported by the Spanish University Teacher Training Program
(EDU/3445/2011).

References

1. Aho A.V., Lam M.S., Sethi R., Ullman J.D.; Compilers: principles, techniques
and tools (2nd edition). Addison-Wesley. (2006)

2. Appel, A.W.: Modern Compiler Implementation in Java. Cambridge University
Press. (1997)

3. Brownell, D. SAX2. O’Reilly. (2002)
4. Cerezo, D., Sarasa, A., Sierra, J.L. Implementing Attribute Grammars Using

Conventional Compiler Construction Tools. 3rd Workshop on Advances in
Programming Languages (WAPL'11), Szczezin, Poland. (2011)

5. Cleaveland, J.C.: Building Application Generators. IEEE Software, Vol. 5, No. 4,
25-33. (1988)

6. Cleaveland, J.C.: Program Generators with XML and Java. Prentice Hall. (2001)
7. Czarnecki, K.: Generative Programming: Methods, tools and Applications.

Addison-Wesley. (2000)

Antonio Sarasa-Cabezuelo et al.

ComSIS Vol. 9, No. 2, June 2012 502

8. Feng, A., Wakayama, T.: SIMON: A Grammar-based Transformation System
for Structured Documents. Electronic Publishing, Vol. 6, No. 4, 361-372. (1993)

9. Fowler, M.: Domain Specific Languages. Addison-Wesley. (2010)
10. Fuentes-Fernández R., Gómez-Sanz J., Pavón J.: Requirements Elicitation and

Analysis of Multiagent Systems Using Activity Theory. IEEE Transactions on
Systems, Man, and Cybernetics, Part A, Vol. 39, No. 2, 282-298. (2009)

11. IMS. IMS Question and Test Interoperability 2.1. www.imsglobal.org/question/
12. Knuth, D.E: Semantics of Context-free Languages. Mathematical System Theory

Vol. 2, No. 2, 127-145. (1968)
13. Koch, C., Scherzinger, S.: Attribute Grammars for Scalable Query Processing on

XML Streams. The VLDB Journal, Vol. 16, No. 3, 317-342. (2007)
14. Kodaganallur, V.: Incorporating Language Processing into Java Applications: A

JavaCC Tutorial. IEEE Software, Vol. 21, No. 4, 70-77. (2004)
15. Lam, T.C., Ding, J.J., Liu, J.C.: XML Document Parsing: Operational and

Performance Characteristics. IEEE Computer, Vol. 41, No. 9, 30-37. (2008)
16. Leite-Ramalho, J.C.: Anotação Estrutural de Documentos e sua Semântica --

Especificação da Sintaxe, Semântica e Estilo para Documentos. Ph.D. Thesis.
Braga, Portugal. (2000)

17. Lopes-Gançarski, A. L., Doucet, A., Rangel-Henriques, P.: Grammar-based
Interactive System to Retrieve Information from XML Documents. IEE
Proceedings-Software, Vol. 153, No. 2, 51-60. (2006)

18. Lopes-Gançarski, A., Rangel-Henriques, P.: Information Retrieval from
Structured Documents Represented by Attribute Grammars. International
Conference on Information Systems Modeling, Rep. Cheque. (2002)

19. Marini, J.: Document Object Model: Processing Structured Documents. McGraw-
Hill. (2002)

20. McLaughlin, B. Java & XML Data Binding. O’Reilly. (2002)
21. McLaughlin, B. Java & XML. O’Reilly. (2006)
22. Moreno-Ger P, Sierra J.L., Martínez-Ortiz I., Fernández-Manjón B.: A

Documental Approach to Adventure Game Development. Science of Computer
Programming, Vol. 67, No. 1, 3-31. (2007)

23. Nakano, K.: An Implementation Scheme for XML Transformation Languages
Through Derivation of Stream Processors. Second Asian Symposium of
Programming Languages and Systems (APLAS'04), Taipei, Taiwan. (2004).

24. Neven, F.: Attribute Grammars for Unranked Trees as a Query Language for
Structured Documents. Journal of Computer and System Sciences, Vol. 70, No.
2, 221-257. (2005)

25. Neven, F.: Extensions of Attribute Grammars for Structured Document Queries.
7

th
 International Workshop on Database Programming Languages (DBLP'99),

Kinloch Rannoch, Scotland, UK. (1999)
26. Nishimura, S., Nakano, K.: XML Stream Transformer Generation through

Program Composition and Dependency Analysis. Science of Computer
Programming, Vol. 54, No. 2-3, 257-290. (2005)

27. Okajima,D.: RelaxNGCC -- Bridging the Gap Between Schemas and Programs.
XML.com, 8. (2002)

28. Paakki, J.: Attribute Grammar Paradigms - A High-Level Methodology in
Language Implementation. ACM Computer Surveys, Vol. 27, No. 2, 196-255.
(1995)

29. Parr, T.: Language Implementation Patterns. Pragmatic Bookshelf. (2010)
30. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages.

Pragmatic Bookshelf. (2007).

Building XML-Driven Application Generators with Compiler Construction Tools

ComSIS Vol. 9, No. 2, June 2012 503

31. Psaila, G., Crespi-Reghizzi, S.: Adding Semantics to XML. 2nd International
Workshop on Attribute Grammars and their Applications (WAGA'99),
Amsterdam, The Netherlands. (1999)

32. Sarasa, A., Martinez-Aviles, A., Sierra, J.L., Fernández-Valmayor, A.: A
Generative Approach to the Construction of Application-Specific XML Processing
Components. 35th Euromicro Conference on Software Engineering and
Advanced Applications, Patras, Greece. (2009)

33. Sarasa, A., Navarro, I., Sierra, J.L, Fernández-Valmayor, A.: Building a Syntax
Directed Processing Environment for XML Documents by Combining SAX and
JavaCC. 3rd Int. Workshop on XML Data Management Tools & Techniques.
DEXA’08. September 1-5, Turin, Italy. (2008)

34. Sarasa, A., Temprado, B., Martínez, A., Sierra, J.L., Fernández-Valmayor, A.:
Building an Enhanced Syntax-Directed Processing Environment for XML
Documents by Combining StAX and CUP. Fourth Int. Workshop on Flexible
Database and Information Systems. DEXA’09. August 31 – September 4, Linz,
Austria. (2009)

35. Sarasa, A., Temprado-Battad, B., Sierra, J.L, Fernández-Valmayor, A.: XML
Language-Oriented Processing with XLOP. 5th International Symposium on Web
and Mobile Information Services, Bradford, UK. (2009)

36. Schwentick, T.: Automata for XML - A Survey. Journal of Computer and System
Sciences, Vol. 73, No. 3, 289-315. (2007)

37. Sierra, J.L, Fernández-Valmayor, A., Fernández-Manjón, B.: From Documents to
Applications Using Markup Languages, IEEE Software, Vol. 25, No. 2, 68-76.
(2008)

38. Sierra, J.L., Fernández-Valmayor, A., Fernández-Manjón, B., Navarro, A.:
ADDS--A Document-Oriented Approach for Application Development, Journal of
Universal Computer Science, Vol. 10, No. 9, 1302-1324. (2004)

39. Sierra, J.L., Fernández-Valmayor, A., Fernández-Manjón, B.: A Document-
Oriented Paradigm for the Construction of Content-Intensive Applications. The
Computer Journal, Vol. 49, No. 5, 562-584. (2006)

40. Stanchfield, S. ANTXR: Easy XML Parsing, based on The ANLR Parser
Generator. javadude.com/tools/antxr/index.html (current October 2011)

41. Tidwell, D.: XSLT, 2
nd

 Edition. O'Reilly. (2008)
42. Vlist, E. Relax NG. O’Relly. (2003)
43. Wallmsley, P. XQuery, O’Reilly. (2007)

Antonio Sarasa-Cabezuelo is a full-time Lecturer in the Computer Science
School at Complutense University of Madrid, Spain (UCM). His research is
focused on the language-oriented development of XML-processing
applications, and on the development of applications in the fields of digital
humanities and e-Learning. He was one of the developers of the Agrega
project on digital repositories (a pioneer project in this field in Spain). He is a
member of the research group ILSA (Implementation of Language-Driven
Software and Applications: http://ilsa.fdi.ucm.es). He has participated in
several research projects in the fields of software language engineering,
digital humanities and e-learning, and he has published over 50 research
papers in national and international conferences.

Antonio Sarasa-Cabezuelo et al.

ComSIS Vol. 9, No. 2, June 2012 504

Bryan Temprado-Battad is a PhD. Student in the Computer Science School
at UCM and a member of the ILSA Research Group. His research is focused
on language oriented development and on attribute grammars applications,
being one of the principal contributors to the development of the XLOP
System. The results of his works have been published in several research
papers in international journals and conferences.

Daniel Rodríguez-Cerezo is a PhD student in the Computer Science School
at UCM, and a member of ILSA. His research is focused on the use of
several e-Learning techniques (simulations, interactive prototyping tools,
recommendation systems for learning object repositories, etc.) to improve
teaching and learning of the Software Language Engineering discipline.
Besides, he is interested in the development and improvement of software
language engineering techniques.

José-Luis Sierra is an Associate Professor at the UCM's Computer Science
School, where he leads the ILSA Research Group. His research is focused on
the development and practical uses of computer language description tools
and on the language-oriented development of interactive and web
applications in the fields of digital humanities and e-Learning. Prof. Sierra has
leaded and participated in several research projects in the fields of digital
humanities, e-learning and software language engineering, the results of
which have been published in over 100 research papers in international
journals, conferences and book chapters. He serves regularly as reviewer /
PC Member for several international reputed journals and conferences.

Received: May 05, 2011; Accepted: March 21, 2012.

