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Abstract. The topic of this paper is the exploration of the various 
characteristics of the wavelet tree data structure, a data structure that 
was initially proposed for text compression applications but has found a 
plethora of other uses in text indexing and retrieval. Issues concerning 
the efficient maintenance of the structure, plus its handling in various 
applications are explored. Our main aim is to provide to computer 
science researchers that would like to explore the specific area, an up-
to-date comprehensive material covering a wide range of applications. 
This kind of up-to-date survey is missing from the current bibliography 
and we hope that it will help young researchers to get familiar with the 
notions of this research area. 
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1. Introduction 

The constant increase in the volume of transmitted and stored data makes 
imperative the design of efficient algorithms and data structures for handling 
them. The field of data and text compression has been traditionally involved 
in providing tools that could face effectively the problems emerging in large 
scale information retrieval applications. Moreover in the time course of the 
previous decade, a challenging and interesting issue has flourished: self-
indexing data structures, that is data structures that do not need the storage 
of the source text to operate, but embed in them both the text, and the 
indexer that operates on it. Self indexed data structures move the 
compression target from the source text to the indexing module and permit 
further functionalities.   

There are a lot of algorithms and compression results that fall under this 
realm of research activity [39], [40], [43], [44], [45], [94] and from this 
emergence of results, a data structure called wavelet tree and having its 
roots in the arena of range searching data structures has emerged. This data 
structure that begun as a main component of compressed suffix arrays [64] 
and as a complement to other indices (such as the FM-index [94]), has been 
fruitfully extended in order to be used in other applications such as image 
compression, posting lists’ handling, spatial searching, XML queries and 
many more.  
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The basic theme in the present paper is to examine the various issues 
involved and the basic characteristics of the specific data structure, dealing 
with a set of selected applications. There exists various works [38], [51], [68] 
exploring different aspects of the wavelet tree data structure however there 
does not exist in the literature an up to date survey covering its plethora of 
applications and referring to the till now space and time complexities bounds 
for them, in order to be provided as a roadmap to young researchers entering 
the area. We aim to cover this gap in the scientific literature by condensing all 
relevant information in one single reference, appropriately putting all the 
pieces together, thus helping young researchers and enter them smoothly in 
the notions of the specific scientific area. 
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Fig. 1. A tree diagram of the paper’s structure 

Before proceeding, it would be interesting for the reader to have as 
motivation, during reading the paper, a practical application. For example, 
consider that the access log to a set of Web sites is stored as a sequence of 
Web pages, ordered by their access time, with each page being mapped to a 
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distinct symbol, and that the length of the sequence is n. That is, the 
produced sequence S, is of the form, S=p1,p2,…, pn where pi ϵ Σ, and Σ 
denotes the alphabet of symbols. Then the wavelet tree can be used to 
support two elementary operations: (1) locate the number of occurrences of a 
given page, in a given position of the sequence (starting counting from the 
beginning of the sequence), and (2) locate the position in the sequence of the 
i-th occurrence of a given page. Using these two elementary operations, it is 
possible to answer interesting queries in the available sequence, such as 
counting how many times a given page was visited in a period of time, find 
the most visited pages, and queries of similar nature that could be a value to 
Web designers and/or Web miners. It would be helpful for the reader to have 
this simple example as a working exercise while reading the paper, and find 
out how wavelet trees efficiently handle the described operations. 

We organize the whole material in the following sections: in section 2 we 
present the main characteristics of the structure, in section 3 we describe its 
connection with rank and select structures, in section 4 we describe various 
of its applications in data compression, and in section 5 we describe its main 
applications in information handling (information retrieval, data retrieval and 
spatial objects retrieval). Finally in section 6 we conclude with discussion and 
open problems. In figure 1 we provide the reader with a tree diagram 
depicting the structure of the paper, in relation with the various application 
areas that are covered and the references used in them.  

Before proceeding and in order to make the paper self contained we 
provide some definitions that will be used continuously in the sequel. 
Consider a sequence S of n symbols from an alphabet Σ={c1,…,cσ} of 
cardinality σ, we call as entropy H the sum1: 
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where pi, is the probability of appearance in S, of the i-th symbol in the 
alphabet. According to the coding theorem of Shannon [107], this notion of 
entropy represents a lower bound to the average numbers of bits needed to 
represent each symbol in S, provided that the symbols appear independently.  
This probabilistic notion of the entropy that takes into account the statistical 
nature of the source, is usually replaced in the scientific literature by the most 
practical notion of empirical entropy.   

In particular the zero-order empirical entropy of S is defined as: 
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where ni is the number of appearances of character ci in S. If we take also 
into account the context of appearances this definition can be extended to 

the so called k-th order empirical entropy. For a string wΣ
k
 let us denote 

with wS the subsequence of characters that follow2 w in S, then the k-th order 
empirical entropy of S, is defined as follows: 

                                                   
1 Throughout the paper, the symbol log, will denote base 2 logarithms. 
2 In some works they refer to the set of characters that precede w, though this seems 

counterintuitive, it helps in the analysis; either way the difference is small [43]. 
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Both zero-order and the k-th order empirical entropy are more practical 
measures when one needs to lower bound the compressibility of a text (the 
first when considering symbols as independent from each other, and the 
second, when taken into account the size k context, where the symbols 
appear), since they do not need to make any assumption concerning the 
probabilistic nature of the source of the text. 

A related notion is the modified empirical entropy, a notion that is helpful 
for highly compressible text [39]. The zero-order modified empirical entropy is 
defined as: 
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A set Sk of substrings of S of length at most k is termed a suffix cover if 
any string in Σ

k
 has a unique suffix in Sk; in this case define: 
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Then, the k-th order empirical entropy of S is defined as: 
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2. Description and Main Issues 

2.1. General characteristics 

The wavelet trees have their roots in a range searching data structure 
described in a paper by Bernard Chazelle [20] and were introduced as a 
distinct structure in [64], as a component of a self-indexed compressor based 
on suffix arrays, and afterwards a set of other papers explored and extended 
their use (the majority of the papers referred to in the bibliography listing). A 
wavelet tree acts basically as a mechanism that permits the efficient 
implementation of specific operations on sets of objects from non-binary 
alphabets, via the use of the respective bit vector operations on sets of 
objects from the binary alphabet, with a logarithmic slowdown in the attained 
performance.  

The main advantage of this transformation, that from a worst case point of 
view and from a query time perspective is inferior to other solutions proposed 
for these operations on non-binary alphabets, is that this transformation can 
embed entropy bounds in the attained space complexity. It thus can be used 
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as a general tool for reducing computationally the compression of a string 
from an arbitrary alphabet to the compression of binary strings.  
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Fig. 2. The wavelet tree for S=abcdabcdefefefghghab, Σ={a,b,c,d,e,f,g,h} 

A wavelet tree can act both as a compression mechanism on its own, and 
as a component of a compression algorithm; that is a wavelet tree can simply 
store a text by itself [38] and provide both an indexing and a compression 
mechanism or it can be used as a data structural component storing auxiliary 
information for a compression algorithm [4], [94].  

More analytically consider a sequence S, of length n where the elements 

belong to an alphabet Σ, of size σ. A wavelet tree T is a static complete 
binary tree whose leaves store the symbols of the alphabet Σ in order from 
left to right (that is the number of leaves of the tree is equal to the size of the 
alphabet) and where each internal node v corresponds to a subsequence Sv 
of S that is stored through a binary vector Bv. The subsequence Sv is formed 
by the symbols of the sequence S that are stored in the subtree with root v, 
while the binary vector Bv has the same length as Sv, and each of its 
positions corresponds to a distinct symbol in the specific subsequence, such 
that Bv[i]=0 if the i-th symbol of Sv is stored in the left subtree of v, and Bv[i]=1 
if the i-th symbol of Sv is stored in the right subtree of v.   

If we state this recursively each subtree Tv of T is itself a wavelet tree for 
Sv. As an example see figure 2 for an exposition of a wavelet tree for the 
sequence S=abcdabcdefefefghghab, with alphabet Σ={a,b,c,d,e,f,g,h} where 
at each node we depict the subsequence with the accompanying bit vectors. 
For example, in the root r since a, d are stored in the left subtree the 
respective bits are set to 0, while the bits for e and g are set to 1, since they 
are stored in the right subtree. In node v the symbol a is stored in the left 
subtree, hence its corresponding bit have value 0, while symbol d being 
stored in the right subtree has its corresponding bits being set to 1. Finally in 
node u the symbol e is stored in the left subtree hence its corresponding bits 
have value 0, while the symbol g being stored in the right subtree has its 
corresponding bits being set to 1.    
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In each node of the wavelet tree, the bitvector Bv is stored in a structure 
suitable for accessing any of its stored elements, and answering efficiently 
rank and select queries [25], [79], [99], [103]. More analytically, rank and 
select queries on bit vector are defined as follows:  

 Bv(i), for returning the i-th bit of the bit vector Bv, 

 rankb(Bv,i),  that returns the number of times bit b appears in the prefix 
of Bv consisting of its i first symbols and  

 selectb(Bv,i),  that returns the position of the i-th appearance of bit b in 
Bv. 

 Attaching these structures to each node we can use the wavelet tree to 
answer rank and select queries for any symbol in the sequence S, with a time 

complexity that is equal to the depth of the tree (that is logσ) multiplied by the 
time to perform a rank and select query in a bit vector of size at most n. Note, 
that the rank and select queries for S are defined similarly to their binary 
counterparts that is:  

 rankc(S,i), return the number of times symbol c appears in the prefix of 
S consisting of its i first symbols, and 

 selectc(S,i), that returns the position of the i-th appearance of symbol c 
in S) 

In order to answer the rank query rankc(S,i), we start from the root r of the 
wavelet tree and if c is stored in the right child we compute as new i the value 
rank1(Br,i) otherwise the new i is the value rank0(Br,i), and the procedure 
continues till reaching a leaf. On the other hand and for the query selectc(S,i) 
we move bottom up, starting from the leaf corresponding to c, and if it is a 
right child the corresponding position to its parent v is select1(Bv, i) otherwise 
it is select0(Bv,i); the procedure moves similarly upwards until reaching the 
root, where the answer is reported.  

We provide a toy example of how these algorithms work by treating 
queries rankd (S,9) and selectd (S,2).  The procedure for rankd (S,9) starts at 
r. Since d is stored in the left subtree, we compute rank0(Br, 9)=8, and we go 
to v. Since d is stored in the right child of v, we compute rank1(Bv, 8)=4, to 
locate the proper position in the right child and move to w, there d is stored 
as a leaf in the right child of w, and hence the answer is rank1(Bw,4)=2. In 
order to answer selectd (S,2), we start from the leaf of the tree corresponding 
to d and we move upwards. Since the leaf storing d is at the right child of w, 
the new position is select1(Bw,2)=4. Moving to v, since we come from the right 
child the new position is select1(Bv,4)=8. Finally, at the root the seeked 
position is select0(Br,8)=8. 

If the bitvectors are implemented using the structure in [25], then the 
overall space complexity of the construction is nlogσ(1+o(1)) bits,  while the 
time to answer a query is O(logσ). If we use for the implementation of the 
rank and select structure the construction described in [103] then the space 
complexity becomes entropy bounded by nH0(S)+O(nloglogn/logσn) bits, 
while the time complexity remains O(logσ). 

There is a deep connection between the aforementioned structure and a 
construction proposed by Chazelle for range searching in [20], this 
connection will appear more clearly in the following sections, where spatial 
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searching applications are presented.  We explore this connection, that was 
noticed also by various researchers, see e.g. [87], more deeply.  

Therefore, consider a set of points in the xy-plane with the x- and y-
coordinates taking values in {1,…,n}; assume without loss of generality that 
no two points share the same x- and y-coordinates, and that each value in 
{1,…,n} appears as a x- and y- coordinate.  We need a data structure in order 
to count the points that are in a range [lx, rx] × [by, uy] in time O(logn), and 
permits the retrieval of each of these points in O(logn) time. The structure 
proposed in [20] for this problem needs nlogn(1+o(1)) bits, and we will 
describe it as in the version provided in [87], which is simpler, and more 
clearly described; this structure is essentially equivalent to the wavelet tree. 
The structure is a perfect binary tree, according to the x–coordinates of the 
search points, with each node of the tree storing its corresponding set of 
points ordered according to the y-coordinate. In this way the tree mimics the 
distinct phases of a mergesort procedure that sorts the points according to 
the y-coordinate, assuming that the initial order was given by the x-
coordinate. This construction takes O(nlogn) space, that can be reduced to  
nlogn(1+o(1)) bits by the functional approach introduced in [20] that 
principally states that each node of a data structure does not need to store 
the sets of points that correspond to it, but needs only to provide the means 
(functions) for computing them.  Hence each node instead of the real points 
stores a bitmap Bv with Bv[i]=0 iff the i-th point in the subsequence mapped to 
v belongs to the left child, otherwise Bv[i]=1. This bitmap is preprocessed, for 
the computation of rank and select queries in constant time.   

Using this repertoire of structures we can retrieve the identity of any point, 
giving a specific node, and a specified bit of its bit vector, by descending a 
path in the tree to a respective leaf by performing suitable rank queries; the 
time cost is O(logn). In order to count the points that are in the range [lx, rx] × 
[by, uy] we just need to find in the tree by two searches the O(logn) maximal 
tree nodes that cover [lx, rx], and for each of these nodes perform a 
subtraction in the result of two rank queries (for more details see [20] and 
[87]). If we do not want to count but also to retrieve the points we have to 
identify each of these points, paying an extra logarithmic term for each of 
them. The aforementioned construction, that works for distinct sequences 
can also be extended for handling arbitrary sets of points in a continuous 
space, as shown in [19] .  

The connection between wavelet trees and range searching was more 
clearly depicted in [12] and in [37]. In [12] a solution was presented for storing 
n points with x- and y- coordinates from the rank space, using nlogn+o(nlogn) 
bits, supporting range counting in O(logn/loglogn) time and range reporting in 
O(klogn/loglogn) time, where k is the size of the output; a basic ingredient of 
this solution is a multi-ary wavelet tree. In [37] the entropy of the stored two 
dimensional set  came into play. In particular consider a set of m points with 
x- and y- coordinates from the space {1,…n}; the “entropy” H of this set is 

defined as the total number of the different possible grids that is:
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It was proved in [37] that there exists a representation of this set, that 
takes H+O(H) bits of space; the proposed representation employs a block 
partitioning of the points combined with wavelet trees for handling these 
partitions. The solution can answer range counting queries in O(log(n

2
/m)) 

time, range reporting queries in O(log
2
(n

2
/m)) time per reported element, 

while point selection queries require O(log
2
n) time. By taking into account the 

density of the involved rank space it is possible to have the various times 
reduced down to O(1) per reported element. 

Wavelet trees have been mainly exploited as auxiliary structures for self-
indexes based on the Burrows-Wheeler transformation [38], [40], [43], [44], 
[94]. In these algorithms it has been shown that indexing compressed text is 
reduced to performing rank and select operations in the sequence that is 
produced by applying the Burrows-Wheeler transformation on the text.  
Hence, these works have shown that the Burrows-Wheeler transform is not 
only useful for compressing a given sequence but it also allows to support 
search operations, if rank queries are supported over BWT. In these cases 
the binary vectors of the wavelet tree are compressed using run length 
encoded or gap encoding [38]. The application of run length encoding 3  
compresses the sequence  to its k-th order entropy, while the gap encoding 
does not achieve analogous bounds. However it is possible to apply gap 
encoding in combination with the compression boosting technique of [39] and 
have a compression algorithm of size 2.2618|S|H

*
k(S)+log|S|+Θ(|Σ|

k+1
) bits, 

for any positive k, thus improving the  bound achieved in [39] into an almost 
optimal result.  It should be noted that if the wavelet trees store the initial 
sequence (not its Burrows-Wheeler transformation) then they can be 
considered as standalone general purpose compressors.  

Concerning the performance of wavelet trees as standalone compressors, 
it was noted in [38] that their use reduces the problem of compressing a 
string to that of compressing a set of binary strings, with the specification of 
the set being determined by the topology of the underlying tree structure, and 
the coding of the alphabet symbols at the tree leaves. The authors pursue 
their remarks even further by introducing the paradigm of the generalized 
wavelet tree and noting that it is possible by pruning whole subtrees of the 
initial tree, to have a mixed compression strategy where only some strings 
are binary and the others use symbols that are compressed with general 
purpose order zero compressors (for example Huffman or arithmetic coding). 
The authors apply this pruning strategy, by developing a combinatorial 
optimization framework based on the notion of leaf covers and by providing a 
polynomial time algorithm for selecting the optimal tree shape for some 
special cases.   

In [44] it has been shown that run-length compression on the wavelet tree 
is not mandatory, if the wavelet tree is applied not to the whole Burrows-
Wheeler transformed text, but separately to each one of the partitions of the 

                                                   
3 The casual reader should be careful here to note that run-length compressing or 

gap-compressing a wavelet tree, means compressing each bitmap and not the 
whole sequence, before building the wavelet tree. 
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transformed text (provided an optimal partitioning has been found). The 
technique is called compression boosting [39] and permits the formation of k-
order compressors, by using 0-order compressors.  If compression boosting 
is used then the bit vectors in the nodes of the used wavelet trees, can be 
compressed by simply using the structure in [102]. This technique was 
improved in [88] (see also [86]) where it was shown that there is no need to 
apply the wavelet tree approach to every piece produced by the partitioning 
provided by the Burrows-Wheeler transform, but one can simply use the 
wavelet tree (using however [103] for representing the bit vectors) for the 
complete Burrows-Wheeler transformed text. In essence, the technique 
provides a way to do compression boosting implicitly, with a trivial linear time 
algorithm, but using a specific zero order compressor [103].  

There have been proposed also variants of the above compressed 
representations of the wavelet tree, that exploit the observation, that the 
binary skeleton of a wavelet tree, if labeling the left edge of each node with 0 
and the right edge of each node with 1, is basically a trie storing the binary 
string representations corresponding to each distinct symbol of its leaves. 
Henceforth it could be possible to achieve greater compression, by using 
instead of the binary representation for each symbol its code according to a 
prefix free code such as Huffman code (this appeared in [14], [28], [49], [68], 
[88]).  In this case the tree is not balanced, and hence the time complexity of 
the query operations is no longer O(logσ), but can be as bad as O(σ); 
however the average query time is bounded by O(logσ) since it is bounded 
by the entropy plus one, and the space needed to store it is reduced, since 
the average length of the paths to reach each leaf nodes is smaller.  

Extending this approach we can use the wavelet tree by codifying words 
instead of characters and employing multi-ary wavelet trees. An example is 
provided in [14] where the wavelet tree is built over the codes associated to 
each word of the text using End-Tagged Dense Code (ETDC). This code 
produces sequences of bytes, and the constructed wavelet tree is no longer 
binary but multi-ary since the label of each edge equals a byte (the edge from 
the root signifies the first symbol) and each node can have up to 256 
children, moreover each node will contain now a byte vector instead of a 
vector of bits.  In [14] it is mentioned that, when working with natural 
languages, the codes generated by ETDC will never have length greater than 
4, and hence the produced wavelet tree will have at most four levels.  

It should be noted here that wavelet trees can be efficiently externalized 
and used in a set of applications in external memory, see for example [75] 
and [62].  In [75] it has been shown how the wavelet tree can be externalized 
optimally (linear number of blocks in space consumption, and an logB 
speedup in answering queries) by replacing the binary tree skeleton and the 
accompanying bit vectors by a B-ary tree, augmented with vectors of 
characters each with logB bits, while in [62] and in the context of presenting a 
practical self-index for secondary memory based on the FM-index alternative 
secondary memory implementations, were discussed.  
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2.2. Practical Issues 

Concerning practical implementation and experimental outcomes of the 
wavelet tree a set of results have been published in [49], [28], [68]. In 
particular in [49] wavelet trees are implemented using mainly run length 
encoding and γ encoding for codifying the involved bit vectors. Moreover 
Huffman shaped wavelet trees, are involved with the provision of applying 
fractional cascading, in order to access efficiently the various dictionaries. An 
interesting aspect of the [49] construction is that besides using Huffman 
shaped wavelet trees (note that in this case of already compressed bit 
dictionaries variations in the tree shape does not seem to affect the total 
space) a frequency based construction is applied where the wavelet tree is 
built as an optimal Huffman prefix tree not on the frequency of appearance of 
the symbols, but on the a-priory distribution of the queries on them. 

Experiments are performed that depict the usefulness of the frequency 
based heuristics, in search scenarios, though the fractional cascading does 
not seem to lead to considerable improvements.  Moreover the proposed 
scheme was applied to the Burrows-Wheeler streams of various text files 
from the Canterbury and Calgary corpora and besides γ coding the following 
codes (for the run lengths of the bit vectors of the wavelet tree) were used: δ 
code, Golomb code, Maniscalo code,  Bernouli code, or MixBernoulli code. It 
was depicted that run length encoding in combination with γ coding 
constitutes a simple solution capable of providing efficient compression.  

In [28] a practical implementation of the [103] bit vector dictionary is 
provided, and its use in wavelet trees is experimentally tested.  In particular 
the [103] dictionary is experimentally tested against the dictionaries described 
in [58] and it is shown that for uniformly and independently distributed 
bitmaps the dictionary in [103] is superior for high density data. Moreover by 
using [103] to implement the bit vectors at the nodes of a balanced wavelet 
tree of the Burrows Wheeler transform of natural language english text, it is 
proved that this structure is clearly superior to the [58] implementations; this 
is natural since the [103] structure exploits local regularities in the bit 
sequence. Moreover efficient implementations of the Huffman-shaped 
wavelet trees are provided that use no pointer information (or just logσ 
pointers) while the bitmaps at each level are stored concatenated. 
Experiments performed in various datasets show that the [103] structure in 
combination with a Huffman shaped wavelet tree (with or without pointers) 
provide excellent compression, and helps reaching entropy bounds, even for 
very large alphabets.    

Finally, and extending the findings of [49], [28] a set of alternatives 
concerning the tree topology and the implementation of the accompanied bit 
vectors is explored in [68]. The authors initially prove theoretically that for 
data of low entropy (formally when the 0-th order empirical order is 
asymptotically less than logσ),  the run length δ coding is superior to the run 
length γ encoding, achieving nH0(S) (plus lower order terms) compression 
with leading constant 1, while run length γ encoding has leading constant 2. 
Moreover a software package is presented with a parametric implementation 
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of wavelet trees able to embed a large number of available options both in 
the tree topologies and in the involved bit dictionaries. The various topologies 
explored are: a balanced shape, an alphabetic weight balanced wavelet tree 
[10], and a Huffman shaped wavelet tree; moreover the attached bit vectors 
are implemented as: the structure in [103], run length γ-encoding [112], run 
length δ-encoding [112], pure arithmetic coding [112], selective compression 
at the lower levels of the tree, and compression with t-subset encoding.  

A set of experiments are performed that depict that run-length encoding 
gives the more space efficient implementation especially when compressing 
Burrows Wheeler transformed  text and low entropy data; they show that 
generally run length γ encoding is superior but for very low entropy data run 
length δ encoding becomes better. However the query performance of the 
run length implementation is quite poor, due to the need for handling the run 
length encoding. In these cases the weight balanced implementation using 
[103] or with compression at the lower levels are superior. Moreover 
concerning building times, run length compressed wavelet trees are the 
slowest, the other implementations are competitive to each other, and all 
implementations take advantage of Burrows Wheeler transformed text that is 
amenable to faster compression. Finally, and for applications where a good 
tradeoff is what is needed, Huffman shaped wavelet trees and weight 
balanced wavelet trees in conjunction with the structure in [103], are proved 
to be the best choice, a fact that revalidates the findings of [28].   

In [49] and [31] the issue of efficiently building a wavelet tree was handled. 
In particular in [49] a time efficient algorithm is presented for constructing a 
wavelet tree for the Burrows-Wheeler output of a sequence S of size n in 
O(n+min(n,Hk(S))logσ) time; the bit vector dictionaries are run length γ 
encoded and are concatenated together to heap order. The method is a 
bottom up procedure, that traverses the tree upwards, processes consecutive 
runs of equal symbols and extends appropriately the bitvectors of each node. 
The specific construction depicts that data that are highly compressible can 
be indexed faster.  

 In [31] the focus is on space efficient implementations, and novel 
algorithms are presented for constructing wavelet trees with virtually no 
space. The construction works for both binary and multi-ary wavelet trees, 
however it does work only for uncompressed wavelet trees (the bit vectors 
are not compressed in contrast to [31]), and extending their techniques to 
compressed wavelet trees,  is left as an open problem.  The techniques used 
are based on in place sorting and exploit properties of permutations, that 
permit the execution of the necessary partitioning (moving top down) and 
merging (moving bottom up) steps of the construction algorithms, without 
using extra storage. Two classes of algorithms are presented non-
destructive, that do not alter the initial array of symbols and destructive that 
alter it, and use it for storing the created dictionaries of the tree nodes.  

In particular for a bit vector of size m,  let C(m), E(m), S(m) be the 
construction time, extra bits required for construction and total space 
occupation in bits respectively. It should be noted here that these space and 
time complexities when constructing the bitmap refer to the complexities of 
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the extra data structures for supporting rank and select on the bit dictionaries 
and not on the space of the bitmap itself. The authors initially describe a non-
destructive algorithm for a binary wavelet tree that needs O(nlogσ + 
C(nlogσ)) time and O(lognlogσ)+E(nlogσ) bits beyond the space for the array 
of symbols and the tree nodes.  Then they describe destructive algorithms 
and show that it is possible to store a sequence of n symbols in a binary 
wavelet tree in (i) O(nlognlog

2
σ)+C(nlogσ) time using O(lognlogσ)+E(nlogσ) 

extra bits beyond the space required for the tree, (ii)  O(nlogσ+C(nlogσ)) time 
and n+O(lognlogσ)+Ε(nlogσ) extra bits beyond the space required for the 
tree. Μoreover if incrementally constructed the O(lognlogσ) bits term in the 
space bound can be replaced with O(logn) bits.   

3. Wavelet Trees and their Use as a Rank and Select 
Structure 

3.1. Static Solutions 

Wavelet trees, though having many uses, can be considered mainly as rank 
and select data structures for large alphabets and during their lifetime have 
been used as component substructures in various solutions to the rank and 
select problem. We remind the reader that in that problem we are given a 
sequence S of n symbols from an alphabet Σ of size σ, and we want to 

access the i-th element of the sequence, and answer, for every symbol c in Σ, 
the following queries: rankc(S,i) (that returns the number of times symbol c 
appears in the prefix of S consisting of its i first symbols),  and selectc(S,i) 
(that returns the position of the i-th appearance of symbol c in S).  

In [79] the problem was handled for the case of sequences from a binary 
alphabet and a data structure was presented that needed n+o(n) bits and 
supported both rank and select in O(logn) time. This solution was extended 
and improved in [25] and [92] where using the same space, both rank and 
select operations were handled in O(1) time. We will discuss these solutions 
following the presentation given in [25]. The general idea behind the 
construction is to store in tables, precomputed answers for the query 
arguments, and then at query time, just retrieve in O(1) time, with a simple 
lookup, the appropriate answer. If this idea is applied naively then the space 
complexity will be O(nlogn) bits, but this can be overcome by precomputing 
answers for properly chosen samples in the query ranges and by employing 
multilevel  schemes.  

This multilevel scheme could lead to a non-constant query time, but when 
the size of the treated bit vector falls bellow logn/c, (c designates a constant 
greater than 1) then, all possible subsets, can be treated with a global lookup 
table that needs o(n) space and answers queries in constant time. These 
constructions as simpler for rank than select, and one should build the 
needed tables separately for rank and select queries. As in [94] we will focus 
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on the rank1 and select1 queries, rank0 follows from rank1, while select0 can 
be computed as select1. 

 

 Sequence S

r/r’

r

r’

n/r

c lookup tables
  

Fig. 3. The rank multilevel structure 

In the rank case a multi-level directory scheme (see figure 3) is employed 
where the first level divides the sequence S, into consecutive chunks of size 

r=logn
2
, and stores precomputed answers for arguments that are multiples 

of r. The second level deals separately with each chunk, dividing it in 

consecutive subparts of size r =logn, and storing precomputed answers for 

arguments that are multiples of r. Finally each subpart having size r is 

divided into a constant number c of subsegments of size r /c. These 
segments are handled by a global lookup table that for each possible 

segment (there are 2
r/c=n

1/c
 of these) and for each possible argument stores 

the answer
 
(this technique can be considered [94] as a different application of 

the classical four-Russians technique). 
In order to answer rank queries we first locate, with two table lookups, the 

correct entries in the first and the second level, and the sum of the 

appropriate values gives an r-sized range. There we locate in constant time 
the appropriate subsegment, and using the global lookup table produce the 
rank in the segment (adding at most c values). Overall the query time is 
constant while the space consumption is: O(n/logn) bits for the first level, 
O(nloglogn/logn) bits for the second level, and O(n

1/c
lognloglogn) bits for the 

global lookup table, thus in total o(n) bits.   
Considering now the select1 operation, it is a folklore solution to solve it by 

O(logn) calls to rank1 with each call taking O(1) time. We can solve the 
problem by employing again a multilevel dictionary structure that is a bit more 
complicated than the construction for the rank1 query. The first level records 

the position of every l1=logn loglogn 1 bits. If the size of a range r in the 
initial vector between two of these 1-bits is greater than (l1)

2
 then the answers 

are explicitly stored, otherwise the range is partitioned by storing the relative 

position of each l2=logr loglogn 1-bits. If the size r' of a subrange is 
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greater than logr' logr  loglogn
2
, then we store them explicitly, otherwise 

we note that the size of the range is less than (loglogn)
4
. For these small 

ranges we can again employ a trick similar to the four-Russians technique 
and a lookup table suffices for performing select in constant time. Hence by a 
constant number of table lookups we can compute the answer to the select 
operation. 

This construction was improved in [99] and [103] with a data structure of 
entropy bounded size nH0(S)+o(n) bits that could answer queries in constant 
time. In particular the idea is to replace the original bit sequence 
representation of O(n) bits, with an entropy bounded representation, upon 
which the extra information and techniques needed by the [25] and [92] of 
O(1) query time tank and select, is employed. In particular the original 
sequence is divided into chunks of b=(logn)/2 size. Each of these chunks can 
belong to one of (logn)/2 classes according to its number of 1-bits, and a 

class with identifier j (that is having j bits set), can contain at most 








j

b
 

elements (that is, different chunks). A chunk therefore can be coded with two 
numbers: its class and its position inside its class. It is proved in [25] and [92] 
that the total storage of this representation is nH0(S)+o(n) bits, while the 
constant time query complexities for rank and select remain unaffected, by 
employing the same techniques but on the new representation.  

In [90] it is shown how to implement efficiently the rank and select 
operations on top of sparse bit sequences using the gap encoding technique 
(see also [69]); in particular the gap between consecutive 1’s was encoded 
using arbitrary random access self-delimiting integer codes. The provided 
construction needs constant time for both queries and takes 
lαlog(n/l)+O(l)+o(n) bits of space, where α is a constant depending on the 
coding used and l is the number of 1 bits. In the same paper, a new problem 
is also introduced, the so called position restricted substring searching, and 
based on this, the rank and select operations are extended by taking as input 
not a single symbol but a whole string, while the presented solution entails 
the heavy use of wavelet trees. In particular if the text is of length n, from an 
alphabet of size σ, and the searched substring is p, then the provided 
solution needs O(ntlogσ) bits of space and supports the various rank and 
select operations in O(|p|logσ/loglogn) time; here t is a given construction 
parameter such that |p|<t. 

Finally, and still remaining in binary alphabets, in [98] several practical 
alternatives were presented, while in [100], [55], [56], [66] a suite of solutions 
with various tradeoffs concerning the space and time complexities were 
presented. In particular, the sparse problem where the number of ones is 
small attracted attention; note that if the sequence contains k 1’s then the 

optimal space consumption is: .log 









k

n
B  
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The best solution was provided in [100] depicting that O(t) query time can 
be attained using 4  B+n/(logn/t)

t
+ Õ(n

3/4
) bits of space, while in [66] a 

parametric construction was provided that for 0δ1/2, 0ε1, (δ, ε are any 
real constants), and positive integer s, has O(sδ

-1
+ε

-1
) query time and uses 

B+O(k
1+δ

+k(n/k
s
)
ε
) bits. 

Moving now to the case of large alphabets, wavelet trees provide a 
solution that needs nH0(S)+o(nlogσ) (or nH0(S)+o(n)logσ) bits of space and 
O(logσ) time for rank and select. This construction was improved in [45] by 
designing efficient structures for alphabets of small size and then moving to 
alphabets of larger size by employing properly defined multi-ary wavelet 
trees. In that paper initially a solution using nH0(S)+O((σnloglogn)/logσn) bits 
was provided answering queries in constant time, when the alphabet size is 
of the order o(logn/loglogn).   

a b c d

klmnopabcdefghijklmabcdbcdabcdefefefghghab

334444111122223333411111111111222222222211

abcdabcdbcdabcdab

12341234234123412

e f g h i j k l m n o p

efghefefefghgh

12341212123434

ijkl

1234

mnop

1234

Fig. 4. The 4-ary wavelet tree 

The construction is inspired by the ideas of [99] and [103], concerning the 
representation used for getting entropy bounds. The original ideas are 
delicately modified in order to handle non-binary alphabets, and are carefully 
tuned in order to attain efficient compression, this is the reason for the upper 
bound on the alphabet size. Let Σ={c1, ..,cσ} be the alphabet. The basic idea, 
as in [99] and [103], is to separate the sequence S into chunks of size  

(logσn)/2, and codify the classes of the chunks according to the participation 
of the symbols in the chunk; a symbol decomposition is defined as an σ-tuple 
(n1, n2, …, nσ), where ni is the frequency of appearance of symbol ci. Hence a 
chunck is codified by its symbol composition, and its unique relative position 
among all the chunks having the same symbol composition. Moreover 
precomputed tables store the answers for all possible combinations of rank 
and select queries, while the rank and select procedures follow the same 
logic as previously described.  

The encoding of the sequence using the block decomposition and the 
relative position of the block in its symbol decomposition gives rise to the 
nH0(S) space complexity, with the various other tables employed needing a 
total of extra O((σnloglogn)/logσn) bits; these extra bits are the reason for the 

                                                   
4 With the Õ notation poly-logarithmic factors are ignored, that is  Õ(f(n))=O(f(n)logO(1)n) 
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constraint on the size of the alphabet, since larger values could make the 
space complexity larger than nlogσ, which is the uncompressed space 
complexity.   

The result is then generalized to alphabets of arbitrary size by employing a 
multi-ary generalization of the binary wavelet tree. In particular an h-ary tree 
is used with height 1+loghσ, with each node of the tree containing instead of 
binary vectors, vectors of integers in the range [1,h]. Let v be a node with 
children v1 . . . vh, then the subsequence Sv is stored in an array Av such that 
Av[j]=i, iff the j-th symbol in the sequence is stored in the i-th subtree of v. All 
the arrays at a specific level are physically stored concatenated, and they are 
handled by using the rank and select structures for the small alphabet case. 
In particular the rank query is implemented as in the binary tree case by 
starting from the root moving to the proper child in O(1) time, and calculating 
as new argument of the rank operation the result of the rank at the root, the 
same procedure is followed until reaching the appropriate leaf. Similarly and 
for the select operation we start from the leaf of the given symbol, and move 
upwards by setting as new argument the result of the select operation at the 
current node; the answer is the value returned at the root of the tree.  Finally 
the value of h is set to be equal to O(logδn) with δ < 1, and since descending 
each level takes constant time, it follows that the whole construction uses 
o(nlogσ) extra space over the nH0(S) term and O(log σ/ log log n) query time. 
In figure 4, a 4-ary wavelet tree is depicted where for reasons of simplicity we 
depict the arrays at each level separately at each node.  

Besides wavelet trees, in [57] two data structures were proposed, one that 
can access an element and handle the rank operation in O(log log σ) time, 
and the select operation in O(1) time, using nlogσ +no(logσ) bits of space, 
and another that supports the operations in the same time, but using space 
nH0(S)+O(n) bits. The main idea is to reduce the problem over one sequence 
to chunks of length σ, handle efficiently each chunk, and represent in a 
unified way all the chunks together.  

As mentioned, in [28] a practical study was presented on the compact 
representation of sequences supporting rank, select, and access queries. 
This paper implements the structures described in [103] and in [57] (the first 
such implementation at the time [28] was written) and offers a well tuned 
implementation of Huffman-shaped wavelet trees showing that this provides 
an excellent solution for representing a sequence within zero-order entropy 
bounded space, even when the alphabet size is very large.  

In [36] different implementation strategies are presented (without however 
providing new complexity bounds), while in [8] (see also [46]) a structure was 
provided using nHk(S)+o(nlogσ) bits supporting access/rank/select operations 

in o((loglogσ)
2
) time, but without using wavelet trees. In particular in [105], 

[46], [61], general techniques are presented for compressing general 
sequences to the k-th entropy bound, without affecting the query 
complexities; these constructions permit the compression of the various 
rank/select structures to nHk(S)+o(n) bits. 

Finally interesting constructions are provided in [6] and a novel technique 
of combining previous results on rank and select data structures was 
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presented in order to handle large alphabets. The specific technique uses the 
frequencies of appearances of the characters, in order to divide the alphabet 
into subalphabets, and produces a new string by replacing each character on 
the original string by identifiers of their subalphabets; this string is stored in a 
multi-ary wavelet tree. Moreover the projections of the original string to the 
characters belonging to each sub-alphabet, are stored using the structure in 
[57] for large alphabets.   

The outcome of this construction is a data structure that stores a string of n 
characters over an alphabet of size σ, in nH0(S) + o(n)(H0(s)+1) bits. This 
structure supports the operators access and rank in time O(loglogσ), and the 
select operator in constant time; while it can be extended and be easily 
implemented. The technique can be improved achieving nHk(S)+o(n)logσ bits 
space complexity and needing poly double logarithmic time, for the query 
time. Moreover the construction has applications to the design of full-text self-
indices, to the representation of compressed permutations, and to efficient 
handling the compressed representation of dynamic collections of disjoint 
sets.  

3.2. Dynamic Solutions 

In the dynamic version of the problem, the rank and select operations are 
extended by the update operations of inserting an arbitrary object (bit/ 
symbol) between two specified objects in the sequence, and by deleting an 
object (bit/symbol) from the sequence. The problem was dealed with in [73] 
for binary sequences with a solution requiring n+o(n) bits of space, O(b) 
amortized update time, and O(logbn) time for rank, select, where 

b=(polylogn).  
In [86] the aforementioned solution was improved producing a construction 

able to handle binary strings in nH0(S)+o(n) bits of space, and O(logn) worst 
case time complexity for all operations. In that paper the dynamic solution 
was generalized to symbols in an arbitrary alphabet by using the wavelet tree 
machinery and preprocessing the bit vectors at each level of the tree 
structure with the dynamic structure for handling bit sequences. The result is 
a structure that uses the same nH0(S)+o(nlogσ) bits of space, and supports 
all the operations in O(lognlogσ) time (that is the use of the wavelet tree, as 
anticipated, incurred a logσ slowdown in the operations time complexity).    

In particular the authors consider firstly the case where the sequence is 
binary, and they sketch a simple solution with O(n) space and O(logn) worst 
case update and query time. They simply divide the sequence into blocks of 
O(logn) bits, attach every block to a leaf of a balanced binary tree, store at 
each internal node the size and number of bits set in the respective subtree  
(see figure 5 for a snapshot of the structure), and they merge/split leaves  
when the capacity of blocks shrinks or expands at (1/2)logn and 2logn 
respectively.  However this simple solution is not (asymptotically) entropy 
bounded and is not even succinct. In order to make the structure succinct the 
authors employ a two level blocking scheme at the lower levels of the tree. 
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Now a leaf is attached to a superblock that is equivalent to a group of simple 
blocks (though it can be considered simply as a block of a larger capacity). 

11101111
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001011000011100011

01001011 11101111101011101010
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Fig. 5. The tree structure 

A superblock is composed of f(n) consecutive blocks (f(n) is a parameter 
judiciously chosen for guaranteeing acceptable time and space bounds) with 
the size of them being equal to (1/2)logn. The superblocks are all full, with the 
exception of some partial leafs; the authors impose the invariant that every 
f(n) full leaves there exists a partial leaf, and implement each leaf as circular 
arrays except the partial leafs that are implemented as simple arrays. It is 
shown that the whole scheme needs O(n/f(n))=o(n) extra bits and permits the 
handling of the various operation in O(logn) time. In particular the space is 
n+O(n/f(n)) bits and the update/query time is at most O(logn + f(n)), hence by 
choosing f(n)=(logn) we get a total construction of n+O(n/logn) bits and 
O(logn) worst case time for all query and update operations.  

Then the authors propose two approaches for making the scheme entropy 
bounded either by applying gap encoding or by applying block identifier 
encoding, in order to compress the original sequence. Note that in both cases 
the dynamic structure follows the same design principles and the time 
bounds remain O(logn) worst case with the difference that in the second case 
the f(n) function should be (logn)

1/2
. Assuming that w designates the 

machine’s word size, then it is proved that: (i) using gap encoding, the 
attained space is n(1+o(1))H0(S)+O(l+n

1/2
polylog(n)+w), where l denotes the 

number of 1’s, and (ii) using block identifier encoding, the attained space is 
n(1+o(1))H0(S)+O(nloglogn/logn + w). 

The construction is then extended to small alphabets of size σ (with the 
limitation that σ=o((logn)

1/2
) by using the same techniques (superblocks 

contain 2f(n) blocks, while blocks are (1/2)logn bits long that is (1/2)logσn 
symbols long), and by employing a similar representation scheme as that 
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used in [45] (that is exploiting the symbol decomposition and encoding a 
block by its position in its specific class). By carefully handling the various 
technical details arising from this new representation and by using again (as 
in the block identifier scheme mentioned before) f(n)=(logn)

1/2
 the attained 

complexity is nH0(S)+o(nlogσ) +O(w) bits of space, O(logn) worst case time 
for rank and select, and O(σlogn) worst case time for insert/delete.  The 
careful reader would notice here the difference between query and update 
time, a difference that has focused the attention of several authors for 
possible improvement. Finally, the construction (as [45]), employs a multilevel 
wavelet tree in order to extend the solution to larger alphabets. In particular a 
q-ary wavelet tree is employed with q=o(logn) and the resulted construction 
needs nH0(S)+o(nlogσ)+O(w) bits of space, handles query operations in 
O(lognlogqσ) worst-case time, and update operations in O(qlognlogqσ) worst 
case time; for q=2 the worst case query and update time are asymptotically 
the same: O(lognlogσ). 

The above structures achieve entropy bounds in the space complexity, but 
are not so fast; this was tried to be handled in subsequent efforts that 
removed the entropy from the space complexity, in order to become faster in 
the time complexity. In particular in [70], a construction was provided without 
using wavelet trees that used nlogσ+o(nlogσ) bits in the space complexity, 
providing O((1/δ)loglogn) time for rank and select queries, and O((1/δ)n

δ
) 

time for updates.  
In another attempt, in [84] an improvement to the [86] data structure was 

presented in the context of a general dynamic rank and select framework that 
was later explored in other works too. In particular the authors presented 
initially a solution for a small alphabet with size σ less than logn, and then 
they extended this solution for an alphabet of arbitrary size. Their small 
alphabet solution follows the [86] solution with the difference that it separated 
their construction into two schemes a counting and a storing scheme, thus 
having the opportunity to optimize both of them simultaneously; the proposed 
construction supports rank and select queries in O(logn) worst case time, and 
update operations in O(logn) amortized time, moreover the space required is 
nlogσ+o(nlogσ) bits. In order to handle alphabets of arbitrary size the authors 
employ once more multi-ary wavelet trees, for a carefully chosen branching 
factor. In particular for an alphabet of size σ they regard each symbol of logσ 
bits as logσ/loglogn digits from a logn-size alphabet. Hence the built h-ary 
wavelet tree is an logn-ary tree. As usual the sequence vectors at each node 
are represented by the dynamic rank and select structures employed 
previously for the small dictionaries, and it is proved that the provided 
structure can handle sequences of alphabets of arbitrary size using 
nlogσ+o(nlogσ) bits, supporting updates in O(logn(1+logσ/loglogn)) amortized 
time, and needing O(logn(1+logσ/loglogn)) worst case rank and select query 
time.   

As it can be noted the above two solutions [84] and [86] are 
complementary to each other, that is while [84] is fast and uncompressed, the 
solution in [86] is slower but compressed. In [59] an effort was made to 
provide a solution that could combine the best features of these two 
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constructions. Besides combining ideas, the authors in [59] imported also 
new ideas such as embedding a substructure for handling dynamic partial 
sums and novel deamortization approaches. The proposed construction 
initially provides a solution for alphabets of small size (σ=o(logn/loglogn)) that 
needs nH0(S)+O(nlogσ/ (logn)

1/2
) bits of space, and supports all operations in 

O(logn) worst case time. This solution is then extended for alphabets of 

larger size by using a generalized h-ary wavelet tree where h=(logn), and 
thus obtaining a solution with nH0(S)+O(nlogσ/(logn)

1/2
) bits of space and 

supporting all operations in O( (1+logσ/loglogn) logn) worst case time.  
In [85] an alternative to the [59] structure is presented that is a 

compressed version of their construction in [84]. In particular while [59] uses 
a block identifier encoding to compress and a theoretical counting argument 
to guarantee worst case time, the authors in [85] employ gap encoding in 
order to achieve compression plus a simple counting structure to have 
amortized updated time. The proposed solution needs nH0(S)+o(nlogσ)+Ο(n) 
bits, the rank/select queries take worst-case time O(logn) and the update 
operations are handled in amortized O(logn) time for a logn-sized alphabet. 
This can be extended to arbitrary alphabets by using logn-ary wavelet trees 
that need the same space, rank/select queries are handled in 
O((1+logσ/loglogn)logn) time, while update operations are handled in 
O((1+logσ/loglogn)logn) amortized time.  

Finally in [97], [71] an improvement to the above time complexities was 
attained.  

In particular in [97] a data structure for manipulating efficiently bit vector 
operations the range min max tree was presented, in the context of dealing 
effectively with various operations on static and dynamic succinct trees. By 
using this structure and exploiting techniques presented in [21], [45], [86], the 
authors were able to show that: (i) a sequence S of n bits can be maintained 
in nH0(S)+O(nloglogn/logn) bits such that query and update operations can 
be handled in O(logn/loglogn) time, (ii) a sequence S of n symbols of an 
alphabet σ=O(log

1-ε
n/loglogn) can be handled in nH0(S)+O(nσloglogn/logn) 

bits of space, so that all the operations can be handled in O(logn/loglogn) 
time. The result for alphabets of small size, can be extended by using a multi-
ary wavelet tree with branching factor O(1+logσ/((1-ε)loglogn). The resultant 
structure needs space nH0(S)+O(nlogσ/log

ε
n + σlog

ε
n) bits and supports the 

query and update operations in O(logn/loglogn(1+logσ/loglogn)) time.   
On the other hand in [71], a construction was proposed that follows (and 

improves) the construction of [59], and employs generalized wavelet trees in 
order to support rank, select, insert and delete in 
O(logn/loglogn(logσ/loglogn+1)) time using nH0(S)+o(n)logσ+O(w) bits. It 
should be noted that the construction of [71] for small alphabets (of size 
σ=Ο(polylog(n)) support all the operations in O(logn/loglogn) time. 
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4. Applications in Compression 

4.1 In [15] a novel application of wavelet trees, in order to effectively 
compress natural language text is proposed. In particular it is shown that 
wavelet trees can be used as a means of reorganizing natural text that has 
been word-compressed in order to guarantee self-synchronization, even for 
compression algorithms that are not self-synchronized.  

Table 1. codewords 

Symbol Codeword  

you   b4  
can   
compute                                               
the                 
complexity 
in 
a 
data 
structure 

  b3 
  b5b0   
  b5b1 
  b5b2 
  b5b3b0 
  b5b3b1 
  b5b3b2 
  b5b3b3 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. The wavelet tree for reorganizing text P 

Note here that self-synchronization for compressed text is a property that 
permits fast search and random access, while its lack means that  locating a 
word in the compressed text needs to sequentially traverse it from the 
beginning. For example Huffman and Restricted Prefix Byte Codes are not 
self-synchronized while Tagged Huffman, End-Tagged Dense Code and 
(s,c)-Dense Code are; however their self-synchronization comes with a loss 
in efficiency. 

The technique proposed by the authors of the paper can be applied to any 
word-based, byte-oriented semistatic statistical prefix-free compression 

b4 b3 b5 b5 b5 b5 b5 b5 b5  

    you     can  

b0 b1 b2 b3 b3 b3 b3 

b5    

b3    

b0 b1 b2 b3 
    compute   the 

    in     a data structure 

   complexity 
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algorithm, and it is shown that with this reorganization the compressed text is 
synchronized even for codes that by nature are not self synchronized and 
hence all the required advantages (good compression, fast search and 
random access ability) can be gained simultaneously. 

In particular the main idea is to firstly compress the text and then 
reorganize the different bytes of each codeword laying them out as they 
appear in the different nodes of a tree structure resembling closely that of a 
wavelet tree. In this reorganization the first byte of each codeword appears in 
the root of the wavelet tree, in the same order as it appears in the text, while 
the root has so many children as are the different first bytes that a codeword 
can have; inductively at the i-th level, at node v, will be stored the i-th bytes of 
all codewords that start with the byte sequence from the root to v. It is clear 
that the produced tree will have depth equal to the maximum length that a 
codeword can have.   

For example let us assume that the text is P=“you can compute the 
complexity in a data structure” and assume that the codewords are as that 
provided in table 1. In figure 6 it is depicted how the respective wavelet tree is 
constructed and the bytes of the words of the text reorganized. 

In [15] it is proved that by using little extra space, the compressed text can 
be indexed so that the resultant structure can compete block-addressing 
inverted indices (the natural choice for indexing natural language texts) and 
appear as a viable alternative to them; experiments are performed by the 
authors of the paper to validate such claims.  

4.2. In [91], [108] the problem of compressing and indexing highly 
repetitive sequence collections is considered. Such collections appear in 
various applications of practice, such as version control systems, and in 
computational molecular biology for the storage of biological data. In such 
highly repetitive collections the classical self indexes do not work effectively 
since the notion of k-th order entropy around which these indices are built, 
fails to capture the notion of repetitiveness. In order to face this fact the 
authors present a variant of the wavelet tree data structure that embeds in it 
run length encoding; the compression method of choice when someone 
compresses repetitive collections. The result is the so called run length 
encoded wavelet tree and is described as follows: let R be the number of 
runs (that is sequences of identical symbols) in the sequence of n characters 
to be stored (either the initial text or its Burrows-Wheeler transformation). Let 
B

all
 be the concatenation of all the bit vectors, in a level of the wavelet tree. 

The bit vector B
all

 is encoded into two separate vectors B
1
 and B

rl
, with B

1
 

storing the starting positions of 1-bit runs, and B
rl
 encoding the run lengths of 

these runs in unary coding. The value rank1(B
all

, i) can be computed, in this 
modified wavelet tree, by noting that the required answer is the number of 1-
bits in [1, j −1] and [j, i], where j is the first place in the 1-bit run that precedes 
i; these quantities can be computed by appropriate rank and select queries to 
B

1
 and B

rl
 (see [91], [108]). 

By representing succinctly, using the structures of [69] these bit vectors,  
then the wavelet tree takes a total of Rlogσlog(2n/R)(1+o(1))+ 
O(Rlogσloglog(2n/R))+O(σlogn) bits of space, while the various queries take 
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time O(tBSDlogσ), where tBSD is the query time in [69] (u is the length of the 
handled bit vector and b is its number of 1’s) : 

))
loglog

log
loglog,

logloglog

loglogloglog

loglog

log
(min(),(

u

b
b

u

bu

b

b
OubtBSD   

 

Moreover the structure, similarly to the various structures mentioned 
previously for dynamic rank and select, can be made dynamic, by using 
various available dynamic bit vector representations for B

1
 and B

all
. 

4.3 In [10] various techniques are examined to compress a permutation π 
over n integers, taking advantage of ordered subsequences in π, while 
supporting the application of π(i) and the application of its inverse π

−1
(i) 

efficiently. The problem is interesting since the techniques presented can be 
used for various applications and its byproducts improve previous results; it 
should be remembered that the main idea behind the wavelet tree 
construction, the range search structure in [20] emerged as an application of 
mergesort, that can be defined as a series of element permutations. Before 
proceeding we should note that a run in a permutation is defined as the 
maximal range of consecutive positions that do not contain two consecutive 
elements in the wrong order. It is shown in [10] that there exists an encoding 
scheme with space complexity n(2+H(Runs))(1+o(1))+O(ρlogn)) bits that can 
encode a permutation over the n first integer numbers, that is covered by ρ 

runs of length Runs=<n1, n2,..,n ρ>; here 
i

i

n

n

n

n
RunsH log)(  is the entropy of 

the runs. The construction supports π(i) and π
−1

(i) in O(1+logρ) time for any 
value i in {1,…,n}; if i is chosen uniformly at random then the average time is 
O(1+H(Runs)).  

The specific construction uses a wavelet tree that is built as follows: 
proceed from the root, and handle recursively each child; when at leaves do 
nothing and when coming from two siblings of a node, merge their 
permutations in order to produce the permutation at the father and append a 
1 bit, when an element is taken from the right child and a 0 bit when an 
element is taken from the left child. When the construction is finished the 
permutation has been sorted in O(n + ρlogρ) time, plus the total number of 
bits appended to all bitmaps, and if the wavelet tree is Hu-Tucker shaped 
then the total number of bits is at most n(2+H(Runs)). Using the wavelet tree 
and the attached bit maps, π() and π

-1
() can be computed in time O(1+logρ).  

The construction was improved in [6] where they used their rank and select 

data structure, and solved the problem in 2nH(Runs)+o(n)(H(Runs)+1) bits 
supporting the queries π() and π−1

() in O(1+loglogρ) time. 

4.4. Concerning other applications of the wavelet tree in data compression, 
in [89] it is shown how to use the wavelet tree in order to index efficiently 
images. Two such techniques are presented one that is based on 
transforming the problem to that of efficiently handling one dimensional suffix 
arrays and the other that is based on 2-dimensional suffix arrays and an 
application of well-known techniques to index images based on so called L-
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suffixes. Experimental results in that paper validate the usefulness of the 
proposed approaches. In particular it is verified experimentally that wavelet 
trees can be seen as an improvement over the classical bit-plane encoding, 
and be used to obtain both lossless and lossy compression. 

Use of the wavelet tree structure also appears in [4], [104] where it is 
applied as a range structure, for their compressed self-index on texts 
compressed with the LZ78 data compression, and in [82] as a component of 
various substructures, in their implementation of a self-index handling texts 
compressed with the LZ77 data compression algorithm. The last application 
is very interesting since LZ77 can benefit from the existence of frequent 
repetitions in a text, and as discussed previously these repetitions, appear in 
various applications. It is mentioned that the proposed self-index is smaller 
(up to one half) than the best current self-index for repetitive collections, and 
in many cases it is also faster.   

Finally, in [30] it is depicted how the use of wavelet trees can support 
efficient representation and navigational operations in a compressed 
representation of the Web graph (for other approaches see [29], [17]). In 
particular the paper represents the adjacency list of each node of the graph 
as a sequence that is compressed using the re-pair [83] compression 
technique, and then it is handled by two alternative representations for rank 
and select, the structure in [57] and a wavelet tree, in order to support the 
operations of retrieving direct and reverse neighbors. Experiments with these 
two approaches and with various alternatives, depict that the wavelet tree 
representation though slower (sometimes by an order of magnitude) from its 
alternatives achieves the smaller space reported in the scientific literature (in 
comparison with similar techniques to represent the web graph), and can be 
considered to be the practically better choice. 

5. Applications in Information Handling  

5.1 In [18] the relationship between wavelet trees and range searching data 
structures, that in plain words makes the wavelet tree equivalent to an 
orthogonal range searching data structure suitable for handling points with 
discrete coordinates, was pushed a bit further by placing them as a viable 
alternative to spatial data structures that use and store minimum bounding 
rectangles in order to handle various spatial queries as they appear in 
geographical information system. In that paper experiments were performed 
comparing the proposed structure with variants of the R-tree family (the R*-
tree and the STR R-tree) both in space and in time performance in synthetic 
and real datasets. Concerning the space complexity the structure needs less 
space than the R*-tree in both datasets, while it needs less space than the 
STR R-tree in real datasets, and a comparable space in synthetic. 
Concerning the time complexity if the dataset is uniform then the wavelet tree 
outperforms both variants of the R-tree while in the case that it is not it 
outperforms them for very selective queries.   
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In particular consider a set of N objects that are represented by their 
Minimum Bounding Rectangles (MBR) as defined by their lower left and their 
upper right corners (each corner is a pair of coordinates in x- and y- axis).  
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Fig. 7. The wavelet tree for representing a set of maximal Minimum Bounding 
Rectangles {A, B, C, D, E, F, G} 

The proposed structure handles intersection queries by initially splitting the 
set of MBRs into k maximal sets and then building a wavelet tree separately 
for each maximal set. A set of MBRs is termed maximal if it is not possible for 
a projection over the x-axis of a rectangle in this set to contain the projection 
of another rectangle in the same set. Given a set of N rectangles the optimal 
partitioning to maximal sets can be performed in O(NlogN) time, by a 
procedure that is related to the longest increasing subsequence problem, and 
to the problem of decomposing permutations.  
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So let us suppose that the set at hand is maximal, this set can be 
represented in a square grid of 2N rows and columns, with each corner point 
in each row and column. This grid can be represented simply in rank space, 
by storing the real coordinates of the MBRs in suitable structures, in order to 
translate a given query rectangle to the discrete coordinates in the rank 
space. Because the handled set is maximal, the order in the x-coordinate of 
the left and right sides is the same, hence two sorted arrays for the x-
coordinates and one sorted array for the y-coordinates, plus arrays storing 
the identifiers of the MBRs in the same order suffice for the translation from 
the geographic space to rank space.  

The constructed wavelet tree is built according to the y-coordinates, and 
each node of the tree stores the respective MBRs according to the x-order, 
with the novelty that instead of one, two bit vectors are used. The first bit 
vector projects onto the left child and has the value 1, if the respective MBR 
is processed in the left child, and the second bit vector projects onto the right 
child and has the value 1, if the respective MBR is processed in the right 
child.  

An MBR is processed in a node if it intersects the y-range corresponding 
to the node, and hence an MBR can be processed in both the left and the 
right child of a node. In order to avoid the quadratic space explosion due to 
the fact, that an MBR could be stored in a linear number of nodes at a level, a 
modification in the structure is presented that resembles that of a segment 
tree, by demanding that when an MBR covers the whole range of a node, 
then it is not stored in any of its descendants.  

Figure 7 depicts the construction for a set of maximal MBRs. In the upper 
part of the figure the set of rectangles is depicted plus the corresponding rank 
space for the y-coordinates, while in the constructed wavelet tree the bit 
vector for the left child of a node is depicted above the bit vector for the right 
child, In node u for example rectangle D intersects only the left and not the 
right child’s range, hence it stores 1 in the first bit vector and 0 in the second, 
while concerning the space saving heuristic, in node u rectangles A, E and in 
node v rectangle B, contain the whole range of the respective nodes, hence 
the bits for both bit vectors are equal to 0.    

The above structure and assuming that it stores a maximal set of MBRs 
can answer range queries by appropriately descending paths of the tree 
according to the provided query range, thus giving a time complexity of 
O(logN) for each path traversed. In particular the authors provide a recursive 
algorithm that projects the initial query range at a node to suitable query 
ranges in the first and right child by applying rank operations in the two 
bitmaps. 

In the general case and since we have at our disposal k maximal sets, we 
need to query k wavelet trees, and hence the total time complexity of the tree 
paths traversed is bounded by O(klogN).  

5.2. In [106] the wavelet tree is proposed as an index in order to implement 
bidirectional search in a string. The motivation for this application comes from 
the area of Bioinformatics and in particular genome encoding where after 
finding suitable matches, both ends of the string need to be extended by 
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exploiting the complementarily in the bases. This kind of search can be 
implemented by using bidirectional search. Indices performing this kind of 
search have been proposed in the bibliography in the form of affix trees and 
affix arrays [109], [110]. The affix tree of a string is comprised by its suffix 
tree and the suffix tree of its reverse, while the affix array combines the suffix 
arrays of the string and the suffix array of its reverse. Generally, when 
answering queries, it is difficult to implement the interplay of these structures 
while the space complexity is usually large. In order to face these 
shortcomings the authors in [106] present the bidirectional wavelet index of a 
string which consists of two wavelet trees, the wavelet tree of the Burrows-
Wheeler transformation of the string, and the wavelet tree of the Burrows- 
Wheeler transformation of its inverse. The difficult part in using these 
structures is how to synchronize the search on both indices, but the authors 
in [106] depict, that by a carefully designed search procedure it is possible to 
perform bidirectional search. Performed experiments depict that the proposed 
index decreases the space requirement by a large constant factor of 21 (in 
comparison to affix arrays) making it possible to apply their algorithm in very 
large strings.  

5.3. In [5] the wavelet tree is extended in order to support binary relations 
[7]. Binary relations are an important abstraction that is inherent in many 
combinatorial objects such as trees, graphs, inverted lists, and web graphs. 
In particular a binary relation B between a set of objects with identifiers in 
[1,n] and a set of labels with identifiers in [1,σ] can be considered as a set of t 
pairs from a total universe of nσ possible pairs; it can also be represented as 
a matrix with σ rows (the labels) and n columns (the objects). The notion of 
entropy can be extended to handle these combinatorial objects by defining it 
as: 

).(loglog)( tO
t

n
t

t

n
BH 











 

In the specific paper besides listing operations of potential interest and 
giving reductions between operators, two data structures are presented. The 
first data structure uses the reduction of binary relation operators to string 
operators by representing a binary relation with a bitmap B[1,n+t] 
concatenating the cardinalities of the columns of the relation in unary, and 
with a string S[1,t] over the alphabet [1,σ] containing the labels of the pairs in 
column major order. Using this representation it is possible to get an efficient 
implementation of a binary relation that supports the various operations in 
O(logσ) time, and needs tlogσ+o(t)logσ+O(min(n,t)log((n+t)/min(n,t)) bits of 
space. 

The second structure is the so called Binary Relation Wavelet Tree. This 
tree is a wavelet tree like construction with the leaves corresponding to 
individual rows of the relation, and with each node containing two bitmaps per 
level. The first bitmap corresponds to objects in the left child, and has its i-th 
bit equal to 1, if there exists an object in the left child with label having 
identifier i, while the second bitmap corresponds to objects in the right child 
and has its i-th bit equal to 1, if there exists an object in the right child with 
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label having identifier i. Note the similarity of the construction, with that in the 
extension of the wavelet tree in order to handle spatial objects; here also it is 
possible for an object x to propagate both left and right and this means that 
the sizes of the bitmaps at a level may add up to more than n bits. The 
authors prove that the specific construction use 

log(1+2)tH(B)+O(tH(B))+O(t+n+σ) bits of space, and can support the 
various operations in O(logσ) time.   

5.4 In [53] (see also [51]) it is described how to use wavelet trees in order 
to support efficient range quantile queries in a list S of n numbers. Α range 
quantile query takes a rank and the endpoints of a sublist and returns the 
number with that rank in that sublist. More analytically the wavelet tree is built 
for the list of numbers together with the appropriate rank and select data 
structures at the bit vectors of its nodes. Suppose that we are given the 
endpoints l and r of a sublist, and a rank k, and we want to report the element 
with rank k in the sublist between l and r.  

Starting from the root, and accessing its binary vector B, we apply two rank 
queries with arguments l-1 and r, in order to find the number of 0s and 1s in 
B[1,l-1] and B[l,r]. If there are more than k zeroes in B[l,r] then we have to 
move to the left subtree, and we set l to be one more than the number of 0s 
in B[1,l-1], r to be the number of 0’s in B[1,r] and we recurse on the left 
subtree, otherwise we have to move to the right subtree of T, hence the new 
k is the old k minus the number of 0s in B[l,r], the new l is one more than the 
number of 1’s in B[1,l-1], we set r to be equal to the number of 1s in B[l,r] and 
we recurse to the right subtree; when a leaf is reached its label is returned. If 
σ is the total number of distinct elements (note that this number is smaller 
than both n, and the size of the universe from which the elements take value) 
then the tree has height O(logσ), and since accessing each node’s binary 
vector costs O(1), it follows that the time complexity is O(logσ). Concerning 
space, the cost is equal to the space complexity of the wavelet tree, hence 
depending on the constant time dictionaries that are used for the bit vectors, 
it can have different values from O(nlogσ) to nH0(S)+O(nloglogn/logσn) bits. 

As a working example consider figure 8, depicting a wavelet tree for the 
sequence S=15,14,1,5,6,4,11,12,13,8,9,7,16,2,3,10 and assume that we 
would like to locate the 4-th element in S[3..11] . We start from the root r, and 
compute rank0(Br, 2)=0, και rank0(Br, 11)=5, hence the number of 0s and 1s 
in S[3,11] is 5 and 4 respectively; since the number of 0s is larger than 4, we 
go to v, looking for the 4

th
 element in [1,5]. There we have rank0(Bv,0)=0 and 

rank0(Bv,5)=2, hence the number of 0s and 1s in [1,5] is 2 and 3 respectively; 
since the number of 0s is less than 2, then we have to move to w, looking for 
the 4-2=2

th
 element in [1,3]. In w we have rank0(Bw,0)=0 and rank0(Bw,3)=2, 

hence the number of 0s and 1s in [1,3] is 2 and 1 respectively; since the 
number of 0’s is equal to 2 we move to the left child u of w looking for the 2

th
 

element in [1,2]. We have rank0(Bu,0)=0 and rank0(Bu,2)=1 hence the number 
of 0,s and 1s in [1,2] is 1 and 1 respectively; since the number of 0’s is less 
than 2 we move to the right and the answer is affirmatively the number 6.  
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Fig. 8. Α wavelet tree for the sequence S=15,14,1,5,6,4,11,12,13,8,9,7,16,2,3,10 

The aforementioned structure can be generalized to any constant number 
of dimensions, by using the same base tree structure on the distinct 
elements, and by employing a multidimensional range counting structure in 
the internal nodes. If the structure is the one in [80] then it is proved in [53] (in 
the full version of the paper appearing as technical report) that for any 
positive constants d and t there exists a structure of size O(n

1+t
logσ) bits, that 

can answer d-dimensional range quantile queries in O(logσ) time.  
As another application of the solution to the 1-dimensional range quantile 

query, the above algorithm can be extended in order to enumerate the f 
distinct items in a given sublist in O(flogσ) time. The reporting algorithm, can 
find the first element in a given range, in O(logσ) time with a range quantile 
query, and then exploiting the fact that in O(logσ) time a wavelet tree can 
compute the number of occurrences of a symbol in the prefix of a sequence, 
it can transform the search of successive elements by a suitable range 
quantile query costing O(logσ) time. This operation is important since it can 
be used in the document listing problem [93].  

In the document listing problem we are given a set of n documents of total 
size N characters from an alphabet Σ of size σ (without word separation) and 
we want to locate the documents that contain a pattern. In [93] a solution was 
provided using a suffix tree and a document array, being accompanied by a 
compressed array, using space O(Nlogn) bits and O(m+t) query time, where 
m is the size of the seeked pattern and t denotes the output size.  The space 
was reduced in [111] by employing a compressed suffix array and a wavelet 
tree to represent the document array plus a range minimum query structure 
and the query time was worsened to O(mlogσ+tlogn), where t denotes the 
size of the output. In particular the space complexity was improved to 
|CSA|+2N+Nlogn(1+o(1)) bits, where |CSA| is the size of a suitable 
compressed array and is less than Nlogσ(1+ο(1)) bits. The aforementioned 
extention of the range quantile query permits the use of only the wavelet tree 
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structure without the accompanying machinery (the range minimum data 
structure) thus reducing even further the space of the solution in [111] (by 
N+o(N) bits), while keeping the same time complexity. It should also be noted 
that in [111] a remark concerning autocompletion search [11], was also 
made. In particular it was noted that the structure presented in [11] can also 
be used for the document listing problem with the same space but worse time 
complexity. It is worth to be mentioned that the autocompletion search 
structure provided in [11] is similar to the wavelet tree construction, though 
different in its functionality and use of accompanying bit vectors.  

A problem closely related to the document listing problem is the top-k 
query problem [33], [76], [81], in which we want to locate the top k documents 
where a pattern appears more often (top-k retrieval). Wavelet trees fit nicely 
in this extension of the problem since they can be used to compute pattern 
frequencies and report rankings. In particular in [33] the range quantile query 
approach in [53] was extended with two heuristics, that permitted the 
effective calculation of frequencies and top-k results reporting; the greedy 
traversal heuristic and the quantile probing heuristic. Both were tested 
experimentally and the greedy heuristic stood satisfactory as a competitor to 
inverted files, for natural language query processing. The above two 
heuristics do not come with bounded time estimations; this does not hold for 
the solution in [76], where it is shown that O(m+klog

3+ε 
N) query time can be 

attained using |CSA|+o(N)+nlog(N/n) bits; as noted in [96] wavelet trees can 
be used in this solution as a substructure to count frequencies. 

Finally, in [96] a further development was achieved by reducing the space 
complexity of the wavelet tree involved in the above constructions (see also 
for a similar attempt in [52]). This space compaction was achieved by 
applying grammar compression (re-pair compression [83]) to the bitmap 
dictionaries and then employing these compressed representation for storing 
the subsequences at each node of the wavelet tree. The proposed structure 
is shown experimentally that it achieves great space savings at the cost of a 
somehow inferior query time; moreover combinations of this structure with 
the approaches in [33], [76] are tested. 

Concluding in [81] wavelet trees were engaged providing an asymptotically 
optimal solution for the top-k color problem. That is, consider an array with N 
elements each with a color and a priority, then there exists an O(Nlogc) bits 
data structure that reports k colors with the highest priority in a query interval  
in O(k) time; here c denote the number of different colors. This solution can 
be exploited for the top-k document retrieval problem leading to an algorithm 
with O(NlogN) bits and O(m+k) query time.  

Before closing, it should be noted that a further extension to the above 
problems was presented in [74] where it was shown how wavelet trees can 
be effectively applied in conjunction with the multiway search paradigm 
introduced in [32] in order to solve the document listing problem in the case 
when the query consists of m>1 patterns {P1, P2, .., Pm}. The proposed 
solution needs linear space and can answer these queries in time O(p)+ Õ(t1/m 

n1-1/m), where p is the total length of the patterns and t is the size of the output. 

Moreover in the case of two patterns the achieved bound is 
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)log|||(| 2

21 nntPPO   . It is also shown how other problems dealed with in 

[93] can be efficiently handled. A basic ingredient of the aforementioned 
construction is a variant of the wavelet tree, the so called weight balanced 
wavelet tree, that is interesting ιn its own right, since it is different from other 
wavelet tree implementations. In this variation it is explicitly settled during 
construction that the number of 0’s and 1’s at the bit vector at each node is 
almost equal and hence the total number of symbols (and not the number of 
distinct symbols as usual) stored at each child of a node is almost equal. In 
particular the construction is performed top down, and at each node the 
symbols are processed in decreasing frequency order, and a symbol is going 
left or right depending on where the total number of symbols is bigger (right 
or left respectively). The weight balanced wavelet tree has the property that 
for every node at depth d, the corresponding bit vector has size at most 
4n/2

d
, moreover its space consumption is bounded by the zero entropy of the 

stored sequence, without even needed to compress the bit vectors.   
5.5 Using similar techniques on the wavelet tree [51] as in the range 

quantile query, it is possible to solve the range next value problem and the 
range intersect problem.  

Let us first consider the range next value query on a wavelet tree T. In this 
problem we are given two endpoints l, r of a query interval plus a value x, and 
we want to compute the smallest value greater or equal to x. Initially we start 
from the root, if x is at a leaf at the right subtree of the root, we move to the 
right child by setting as new left value rank1(Broot, l-1)+1, and as new right 
value rank1(Broot,r); otherwise the search continues with the left child by 
setting as new left value rank0(Broot,l-1)+1, and as new right value 
rank0(Broot,r). If at some point the interval becomes empty the recursion stops 
returning no value. If the recursion returns from the right child of the root, the 
answer is that no value exists, otherwise it could be possible that a number 
exists in the Tr, hence a final attempt is made to Tr, but in this time with a 
query that demands the minimum value in the sublist between l and r. This 
query is a special case of the range quantile query and hence can be 
handled as described previously. The whole approach overall needs to follow 
a path in the wavelet tree, performing constant time queries in each visited 
node, and thus the search time is O(logσ), with σ being the number of distinct 
values in the list. The space complexity is nlogσ+Ο(n) bits. 

A similar problem, termed range successor problem was handled in [113], 
[114]. In this problem we are given a set of n points in a grid of distinct 
coordinates, and we would like to preprocess them so that for any given 
orthogonal range, we can report the point with the smallest y-coordinate. One 
of the solutions presented in [113], [114] takes O(logn/loglogn) time to 
answer the query, needs O(n) words space and makes heavy use of wavelet 
trees, improving a previous O(logn) query time construction presented in [90].   
The construction is basically a multiway wavelet tree with branching factor  
(logn)

1/2
. In each node a substructure is attached that is also proposed by the 

authors that can handle m<=n integers with range r=O(logn/loglogn), in 
O(mlogr) bits, so that together with an o(n) bit table can handle range 
successor queries in O(1) time. By effectively embedding the structure in the 
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multiway wavelet tree, they show how to achieve the aforementioned time 
and space bounds.  

In the range intersect problem, given k ranges in a list, we want to find the 
distinct common values in these ranges. In order to handle this problem we 
will first consider the case that we have two ranges; the case of multiple 
ranges can be handled easily by reducing it to multiple applications of the 
problem of intersecting two lists or it can be handled by an immediate 
extension of the basic procedure. The problem is extremely interesting since 
it has various applications and resembles the problem of intersecting the 
posting lists in an inverted file. In this kind of problems the inherent 
complexity is captured through a measure termed alternation α, which can be 
defined as the number of switches from one list to the other in the sorted 
union of the two ranges.  

Hence assume that the two ranges are [l1,r1] and [l2, r2]. The procedure 
starts from the root of the tree and tests if either of the ranges is empty, if 
they are the procedure stops, otherwise, by using the bit vectors at the root 
the algorithm descends to the left and to the right child, and continues 
recursively to the nodes where both ranges are non empty. When a leaf is 
reached then the corresponding element is in the intersection and we report 
its respective number of occurrences in the first and in the second list. The 
same procedure can be applied for multiple lists, and descending a path is 
stopped when one of the ranges becomes empty.  

It is proved in [51] that the specific algorithm can compute the intersection 
of k ranges in time O(αklog(σ/α)) where k is the number of ranges, α is the 
alternation complexity of the problem and σ denotes the number of distinct 
values in the sequence.  

Another algorithm given in [51] for the same problem, uses two variables 
x1 and x2, that scan the two lists simultaneously, and move through calls of 
the range next value procedure, thus simulating the well known merge 
procedure of two sorted lists, with the difference that the movement is 
achieved via calls of the range next value procedure; if at any time x1=x2, 
then an intersection is reported and the procedure continues by setting as x1 
the range next value in the first list of x2+1. The specific procedure makes a 
switch each time an alternation is met and therefore the time complexity is 
O(αlogσ). This can be improved to O(αlog(σ/α)) by implementing the range 
next value procedure, so that it remembers the path that was traversed the 
last time, in a form of fingered search and thus getting a time complexity of 
O(αlog(σ/α)). 

5.6. In [51] and [95] it is shown how to use the wavelet tree in order to 
implement the search procedure that is needed when processing the posting 
lists of an inverted file. Inverted files are the method of choice when creating 
indices for both ranked and boolean retrieval. 

In order to have both modes of inverted files operations operated in 
minimum space, it is needed to efficiently retrieve the documents both by 
decreasing weights (permits effective handling of queries) and by increasing 
document number (permits effective compression). In [95] and [51] it is 
depicted how to use the wavelet trees in order to implement efficiently, in the 
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space required for a single compressed inverted index, the operations of 
retrieving efficiently the documents either in decreasing weight, or in 
increasing identifier order.  

The construction basically concatenates and sorts all the posting lists of 
the terms (these should contain the document identifiers where a term 
appears in descending order of the term frequency of the specific term), thus 
creating a sequence list of document identifiers, and this sequence is stored 
in a wavelet tree. In parallel for each term in the collection, it is stored the 
starting position of its list in the sequence of identifiers, and the term 
frequencies are stored in differential and run-length compressed form in a 
separate sequence. Finally the starting positions of the list of each term in the 
concatenated sequence are stored in separate bitmap preprocessed for rank 
and select queries.  

Let D be the total number of documents in the collection, let L be the 
length of the list with all document identifiers and let N be the total length in 
words of the text collection. Then, it is shown that the proposed construction 
takes space NH0(L)+o(NlogD) bits plus the cost for storing the various term 
frequency values in differential and run length compressed form. It is proved 
that with this construction the various operation of interest in both boolean 
retrieval and ranked retrieval can be efficiently supported. 

Another construction was also employed in [3] for handling the posting lists 
retrieval problem, that needs NH0(L)+o(N)(H0(L)+1) bits of space, such that a 
conjunctive query of k terms can be performed in O(kαloglogσ) time. This 
construction is mainly focused on the conjunctive query problem and 
represents the set of documents as a concatenated sequence, but this time 
with alphabet the distinct terms and employs a rank and select structure for 
arbitrary alphabets in order to handle it. The aforementioned bounds are valid 
if the fast rank and select structure proposed in [6] is used, however a valid 
alternative (especially in a practical implementation) is that of Huffman 
shaped wavelet tree.  In general, using the wavelet tree structure one is able 
to retrieve the frequency information of a term, its positional information, the 
respective posting list, and answer conjunctive queries. Moreover the authors 
show how to retrieve effectively snippets enclosing the appearances of a 
given term. In comparison to the inverted files approach the wavelet tree 
though needing more time, need less space, and can providing more 
functionalities.  

In [2] the approach of [3] is extended in order to handle the situation where 
the documents are stored in an P x D array of search node processors (P 
denotes the number of text partitions, and D denotes the replication level 
inside each partition). It is depicted both theoretically and experimentally that 
wavelet trees can efficiently work in this setting, while they can be used to 
dynamically maintain a cache with the most recently used posting lists.  In 
particular it is shown that all processing phases (index decompression, 
ranking and snippet extraction) can be performed by a simple unifying 
structure thus permitting the use of less processors for the same 
performance or putting out it differently permits with the same number of 
processors better performance. The above is achieved by unifying into a 
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single unit the pair of search nodes and document servers.  Moreover 
besides employing the wavelet tree’s ability to generate efficiently snippets 
the authors exploit its capability to produce posting lists and compute 
intersections in combination with caching strategies. In this case it is 
assumed that a term partitioning approach is applied in the replicas, and the 
employed wavelet trees are used to support various functionalities on a 
dynamically maintainable cash. 

5.7 The wavelet tree has also found various applications in the retrieval of 
XML documents; see for example [1], [13], [41], [42], [51].  From these 
papers the most interesting are the constructions provided in [13] and [51].  

 In [13] the hypothesis is made that the XML tree can be modeled as a tree 
with document identifiers (that is passages of text) appearing only to the 
leaves of the tree, and with internal nodes being mapped to structural 
separators. The structure used for indexing is a parenthesis representation of 
the tree modeled as a sequence that is obtained through a preorder traversal. 
To each parenthesis a tag name is mapped and the sequence of tag names 
is represented using a wavelet tree; moreover for each distinct tag name a 
parenthesis representation of the nodes of the XML tree that are tagged by it, 
is stored. The total space for all these structures is 2nlogτ+O(n) bits where n 
is the number of leaves of the tree (the basic text structures) and τ, is the 
number of distinct tags in the collection.  

In [13] it is proved, that this representation can answer effectively various 
operations on the XML structure such as: locating the lowest ancestor of a 
text passage (leaf) where an occurrence appears, and return the range of 
text passages corresponding to this ancestor, listing text passages restricted 
to structural unit tagged with a specific name, counting number of 
occurrences of a query in a retrievable node, and computing intersections on 
retrievable units.   

 Finally, an interesting combination of the XML machinery and the wavelet 
tree literature appears in [51] where a novel structure the XML wavelet tree, 
is proposed as a self index for XML documents; this structure can handle 
XPath queries more efficiently than using the uncompressed counterparts, 
and also appears to be more competitive than inverted indices of the same 
space consumption. The idea is based in a combination of the (s,c)-DC 
compressor [16] with the wavelet tree.  In particular the (s,c)-DC compressor 
is initially used in order to compress the XML document, and then the idea of 
[15] that reorganizes the compressed codewords in a structure resembling a 
wavelet tree is applied, in order to facilitate immediate access and retrieval of 
the appropriate codeword. Experiments performed in [51] validate the 
practical benefits of the proposed approach. 

6. Conclusions and open problems 

Wavelet trees represent a clear example where a data structure designed for 
a theoretical construction (Chazelle’s work [20]) benefits the practitioners 
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(designers of data compression algorithms) providing them with tools for 
efficiently handling several practical problems. Besides improving the bounds 
in the aforementioned uses of the wavelet tree (the majority of them 
constitutes in these days hot research topics and are the target of active 
research in the area of algorithms and information retrieval), it would be 
interesting to find out other applications of the specific technique and explore 
issues of extending the structure itself. Possible areas of future extensions 
could employ: self adjusting heuristics, embedding machinery of persistent 
data structures, compressing in various ways the structure itself (see 
examples for such approaches in [96], [81]) and cache oblivious extensions. 

In particular weight balanced wavelet trees and frequency based wavelet 
tree have been proposed in [74], [49] for various applications, it would be 
interesting to see how these approaches combine together, and explore the 
suitability of splay heuristics if being applied to these structures (the 
frequency based heuristics of [49] provide such a clue, while it should be 
noted that splay trees are a natural data structural choice in various 
compression settings). Moreover compression algorithms of the self-indexed 
family generally fail to deal with repetitions in the text [91], [108] a 
phenomenon that could probably be dealt effectively by applying techniques 
from the persistent machinery [35]. Therefore it would be worthwhile to study 
the way that persistent techniques, in all of its various manifestations (partial, 
full, confluent) could be applied in wavelet trees. Moreover in [81] it has been 
shown (and it is trick that is used main times) how to jump levels of the 
structure in order to speed up it the descend of its levels; it would be nice to 
have this as a general technique that could be applied as a general 
framework in the various of the structure’s applications. Finally since the 
structure itself is easy to be implemented in secondary memory [62], [75], it 
would be interesting to have a study of its various applications in the more 
advanced cache oblivious model.  

Concluding, it would be also worthwhile to find out if achievements and 
research progress in the area of geometric search algorithms could possibly 
embed new tactics and methodologies, in the efficient maintenance of 
wavelet trees, since the roots of the structure are from this computer science 
research field. Especially in the last years, in the computer science literature, 
there are a lot of algorithms and variants of techniques dealing with the range 
searching problem, and it should be explored how these achievements reflect 
on the wavelet tree. 
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