
DOI: 10.2298/CSIS101011023K

Data Extraction and Annotation Based on Domain-

specific Ontology Evolution for Deep Web

Kerui Chen1, 2, Wanli Zuo*1, Fengling He1, Yongheng Chen1 and

Ying Wang1

1 College of Computer Science and Technology, Jilin University, Changchun
130012, China

Key Laboratory of Symbol Computation and Knowledge Engineering of the
Ministry of Education

2 College of Computer and Information Engineering,
Henan University of Economics and Law, Zhengzhou 450002, China

*Corresponding Author: Wanli Zuo wanli@jlu.edu.cn

Abstract. Deep web respond to a user query result records encoded in
HTML files. Data extraction and data annotation, which are important
for many applications, extracts and annotates the record from the
HTML pages. We proposed an domain-specific ontology based data
extraction and annotation technique; we first construct mini-ontology
for specific domain according to information of query interface and
query result pages; then, use constructed mini-ontology for identifying
data areas and mapping data annotations in data extraction; in order to
adapt to new sample set, mini-ontology will evolve dynamically based
on data extraction and data annotation. Experimental results
demonstrate that this method has higher precision and recall in data
extraction and data annotation.

Keywords: Deep Web, Data Extraction, Data Annotation, Domain
Ontology, Ontology Evolution.

1. Introduction

Currently, more and more researchers start focusing on how to manage data
information hided in back-end database more effectively. As a result,
according to the distribution of Web and storage depth of information, Web
has been classified as “Surface Web” and “Deep Web” (Hidden Web/Invisible
Web). Surface Web represents internet resources that are linked by
hyperlink, such as picture, file, and static web page, and they usually could
be accessed by using these hyperlinks; on the other side, Deep Web is
constructed by back-end databases, and their contents are stored in relational
databases of back-end web sites; unlike Surface Web, there are no
hyperlinks to these web sites, it rather dynamically produces web sites
contained query result records by back-end server based on query conditions.

Kerui Chen, Wanli Zuo, Fengling He, Yongheng Chen and Ying Wang

ComSIS Vol. 8, No. 3, June 2011 674

(a) Simple of Query interface

(b) Advanced Query interface

(c) Query result display

Fig. 1. The sample of Query interface and Query result

From Figure 1, we could figure out that (a) and (b) represents two query
interfaces. After inputs keyword “c program”, the server will get query result
(c). The main task in this paper is to annotate each data item in (c), and to
integrate results returned by various data sources into one table.

Through automatic data extraction in Deep Web, with data integration by
data annotation, it would be able to provide better service to various
commercial web sites, such as the seller or agency of internet commercial
information; in addition, it also helps portals to provide more professional and
personalized information search service.

Data Extraction and Annotation based on Domain-specific Ontology Evolution for
Deep Web

ComSIS Vol. 8, No. 3, June 2011 675

2. Related work

In recent years, there are more and more web data extraction tools coming
out, and they could be classified by functions and features into categories as
follows: Languages for Wrapper Development [1-3], HTML-aware Tools [4-5],
NLP based(natural language processing)[6-7], wrapper induction based[8-9],
data modeling based[10-11], visual information based[12-13], and ontology
based web extraction method[14].

The research on web data extraction is comparatively mature, and there
are many data extraction methods available from theory to practice; on the
other side, the research on data annotation is still in the infant stage both
domestically and internationally. There are mainly three types of semantic
annotation method targeted at data: mode based system [15-16], machine
learning based [17-18], and ontology based method [19-21]. For data
annotation, ontology based method is the main streaming. There are more
and more researchers start to accept practicability of using ontology in data
annotation, and actually make some achievements.

Multiple annotation tools mentioned above adopts heuristic rules for
annotating. If only a specific Deep Web database needs to be annotated, it
will be possible to use machine learning algorithm to train in sample training
set; once semantic relationship between data was obtained, it would dig out a
series of rule sets and apply them in annotating new web sites. Although this
method is only available in specific Deep Web pages, it does not work for
other Deep Web pages in the same domain; therefore, simply use machine
learning method cannot suit a mass of isomerous Deep Web pages.

While some annotation tools did use ontology, many problems still existed
even they suited for annotation of multiple domains. For example, majority of
annotation tools are targeting at pure text, so their ontology definitions are
relatively complex, less efficient, and not adapting to Deep Web‟s structural
data features. Moreover, as most defined ontology are static, precision and
adaptability needs to be improved.

The organization structure of this paper is listed as below: the third section
discussed construction of mini-ontology; then, the following section detailedly
introduced how to use ontology information to identify data records area;
based on predefined division and alignment rule, data in data records area
would be divided and aligned`; in this way, each data record would be
extracted out; the fifth section mainly focused on using ontology to annotate
extracted data records; finally, in sixth section, we suggested a evolution
frame to examine how mini-ontology evolved with data extraction and
annotation; The last two sections evaluate experiments and provide a future
outlook.

Kerui Chen, Wanli Zuo, Fengling He, Yongheng Chen and Ying Wang

ComSIS Vol. 8, No. 3, June 2011 676

3. Mini-ontology generation

3.1. Definition

PVAs(Programmer Viewpoint Attributes): attributes extracted from query
interface in the view of web programming. These PVAs extracted from HTML
labels were similar to values of following labels: <label>, <input>, <option>,
<select> and so on.

UVAs (User Viewpoint Attributes): attributes extracted from query interface
in the view of web users. Normally, values of UVAs follow the label closely.

3.2. Attribute recognition

The extraction of query interface‟s attributes took example form Automatic
Attribute Extraction method proposed by YOO JUNG AN et.al [22], there
were two steps for extracting attributes from query interfaces:

(1)To acquire PVAs from source code of query interfaces;
The extraction process of PVAs is executed in the order as follows:
Step 1: to extract all string sets SS from Html document‟s tags, and to

record keysets between label <label> and </label>, as well as label <Select>
and </Select>, in KW; meanwhile, duplicate ones will be removed;

Step 2: to traverse each string in SS for identifying whether special

symbols like “:”、“/”、“{”、“}”、“#”、“$”、“&”、“*”、“>”、“+”、“\”、“=”、“?”、

“<”、“[”、“]”、“@”、“_” were included; if so, the string would be divided into

two sub-strings by using symbols above as dividing line;
Step 3: to traverse each string in SS for identifying whether capitalized

letters were included; and then use capitalized letters as dividing line to
divide string into two sub-strings;

Step 4: to traverse each string in SS for identifying whether key words in
set KW were included; if so, this query key word would be used as boundary
for dividing string into two sub-strings;

Step 5: to record NSS, the number of times that string SSi has been
divided;

Step 6: to recombine sub-string SSi, divided from each string; while only
neighboring sub-strings could be combined, the number starts from 2 until its
value reaches NSSi, and combined strings would be stored in SSi.

Step 7: To recheck string set SS and to delete duplicated strings;

Data Extraction and Annotation based on Domain-specific Ontology Evolution for
Deep Web

ComSIS Vol. 8, No. 3, June 2011 677

SS1={Departure_city,Depart_d
ate,Arrival,Return date,
Adults,infant,child}
SS2={Depart city,
DepartureYearMonth,
Destination, Adults,
Senior,Child，infant}

KW={departure,city,...}

Separation

Se
pa
ra
ti
on

SS1
Departure
City
Departure City
Depart
Date
Depart Date
Arrival
Return date,
Adults
Infant
child

SS2
Depart
city
Depart city
Departure
Year
Month
Departure Year
Year Month
Departure Year Month
Destination
Adults
Senior
Child
Infant

Collection

PVAs
Departure
City
Departure City
Depart city
Depart
Date
Depart Date
Arrival
Return date,
Adults
Infant
Child
Year
Month
Departure Year
Year Month
Departure Year Month
Destination
Senior

Fig. 2. Sample process of acquiring PVAs

Shown as fig.2, there were two original string sets SS1 and SS2 extracted
from query interface‟s HTML labels, and key word set KW extracted between
<label> and </label>, and <Select> and </Select>.

We first divide SS1; since “Departure city” and “Depart date” both contain
special symbol “_”, they should be divided into four strings: “Departure”,
“city”, “Depart” and “date”. Right after the division, the combining process will
start. For instances, “Departure” and “city” could be combined as “Departure
city”, while “Depart” and “date” could be combined as „Depart date”; the final
output set is showing as SS1 in the second circle.

Then, we start dividing SS2. As “Departure city” contains “city” from key
word set KW, it needs to be divided. Similarly, “DepartureYearMonth” would
be divided into “Departure”, “Year”, and “Month” as it contains capitalized
letter “Y” and “M”. After division, combining process will start again.
“Departure”, “Year” and “Month” could be combined as “Departure Year”,
“Year Month” and “DepartureYearMonth”; the final output set is showing as
SS2 in the second circle.

 Finally, we combine SS1 and SS2, and pick out duplicated string once
checked out, such as “Departure”, “Depart”, “city” and so on; after that, PVAs
set would be obtained.

(2)To acquire UVAs from texts of query interfaces;
The steps of extracting UVAs from query interfaces are listed below:
Step 1: to traverse HTML source codes for searching start tag <Option>

and end tag </Option>; then, to remove all free texts between these two tags.
Step 2: to traverse HTML source code again, and to save free texts

between any two labels in set UVAs in the form of strings.
Step 3: to remove duplicated texts in UVAs.
Step 4: to traverse all strings in set UVAs.

Kerui Chen, Wanli Zuo, Fengling He, Yongheng Chen and Ying Wang

ComSIS Vol. 8, No. 3, June 2011 678

When there is a string that contains special symbols, the special symbol
will be used as dividing line to divide that string into two sub-strings, which
will be stored in set UVAs instead of previous string.

<TR><TD>Passengers:</TD>
 <TD>Cabin Class:</TD></TR>
<TR><TD ><SELECT name=persons>
 <OPTION selected>1<OPTION>2
 <OPTION>3<OPTION>4</SELECT></TD>
 <TD ><SELECT name=air_class>
 <OPTION ...>Coach (lowest avail.)</OPTION>
 <OPTION ...>Restricted Coach
 <OPTION VALUE="...">Coach (Unrestricted)
 <OPTION VALUE="...">Business Class (Int'l)
 <OPTION VALUE="...">First Class (Domestic)
 </SELECT></TD></TR>

E
x
t
r
a
c
t
i
o
n

Passengers:
Cabin Class:
1
2
3
4
Coach (lowest avail.)
Restricted Coach
Coach (Unrestricted)
Business Class (Int'l)
First Class (Domestic)

Passengers:
Cabin Class:
1
2
3
4
Coach
Lowest avail.
Restricted Coach
Coach
Unrestricted
Business Class
Int'l
First Class
Domestic
Coach (lowest avail.)
Restricted Coach
Coach (Unrestricted)
Business Class (Int'l)
First Class (Domestic)

Fig. 3. Sample process of acquiring UVAs

Shown as fig .3, UVAs is the instance extracted from labels, such as the
free texts between <TD> and </TD>: “Passengers:” and “Cabin Class:”, and
free texts between <Option> and </Option>: “1”, “2”, “Coach (lowest avail.)”,
“Restricted Coach” and so on. The instance value needs to be judged
whether it contains special symbols in order to divide. Since “Coach (lowest
avail.)” contains “(“, it will be divided into “Coach” and “lowest avail.”. Then,
the set UVAs will be obtained.

3.3. Mini-ontology generation

Not only does construction information of Mini-ontology include attribute
information of query interface, but it also contains abundant instance
information in query result pages. The extraction of query result data instance
and construction of ontology adopts method in [23].

4. Automatic data extraction

Currently, data extraction is facing challenges as below:
(a) Data have different layouts and patterns in web sites;
(b) It‟s more difficult to dig right relevancy between labels as a label in the

table was constructed by cells with multiple levels;

Data Extraction and Annotation based on Domain-specific Ontology Evolution for
Deep Web

ComSIS Vol. 8, No. 3, June 2011 679

(c) Data items use different expression forms;
(d) There were isolated information and those may cause ambiguity in the

table;
(e) It‟s hard to identify and extract when single data record existed in some

web sites.
In order to solve problems mentioned above, this paper suggests an

ontology based extraction method, which had been confirmed in experiment
for its effectiveness of extracting data in web sites.

In fig .4, the whole process of data extraction has been demonstrated; the
first step is to convert query result pages to DOM trees; then, to identify
interested data areas by using ontology‟s label classifier and instance
classifier; the third step is to divide data records based on the predefined
heuristic rules; finally, to align extracted data records.

Query Result
Pages

DOM Tree
Building

Record Area
Identification

Data Record
Segmentation

Data Value
Alignment

Record Area 1
Record Area 2

Data Record 1 Data Record 2

Ontology
Label Classifier
Instance Classifier

Heuristic Rules

Data Record 1

Data Record 2

Data Record 3

 DOM Tree Node£º
 Node *Parent
 Node * first_child
 Node *left_sibling
 Node *right_sibling
 string tagname
 string innerText
 int top
 int right
 int left
 int bottom

Data Record 1 Data Record 2

...

...

...

...

...

...

...

Fig. 4. Data extraction procedure

Kerui Chen, Wanli Zuo, Fengling He, Yongheng Chen and Ying Wang

ComSIS Vol. 8, No. 3, June 2011 680

4.1. DOM tree building

Usually, a tag contains a pair of switch symbols, such as “<” and “>”, and a
tag also contains a set of tag attributes. This paper designs tags in two types:
start tag and end tag. As these tags are paired, the only difference is the
extra symbol “/” in the beginning of end tag. For example, in figure 3.2,
<table> is the start tag while </table> is the end tag. In the process, there
were two types of tags that will not be considered: the first is the tag begins
with “<!”, while another one is the end tag that has no associated start tag.

For extraction of query result pages instances, we first convert result pages
to DOM trees. The construction method used in this paper is to use tags with
visual aids, which can help deduce structural relationship between tags and
construct stronger DOM tree.

The construction steps were shown as follows:
(1) To use browser‟s rendering engine to find out four boundary values of

each element in HTML;
(2) To check and construct from first tag in the source code of documents.

1 <table>

2 <tr>

3 <td>DATA 1</td>

4 <td>DATA 2</td>

5 <td>DATA 3</td>

6 </tr>

7 <tr>

8 <td>DATA 4</td>

9 <td>DATA 5</td>

10 <td>DATA 6</td>

11 </tr>

12 </table>

left right top bottom

100 400 200 400

100 400 200 300

100 200 200 300

200 300 200 300

300 400 200 300

100 400 300 400

100 200 300 400

200 300 300 400

300 400 300 400

table

tr tr

td td td tdtd td

Fig. 5. HTML encoding sample, boundary coordinate and tag tree structure

Fig.5 demonstrates the construction process of DOM tree; first, the
analysis chart provides source code for a table with 2 rows and 3 columns;
then, it uses browser‟s rendering engine to acquire boundary values of tag
<table>, <tr>, and <td>; for example, the four boundary values of tag
<table> are left: 100, right: 400, top: 200, and bottom: 400; finally, the tree
structure of tag will be constructed according to four boundary values.
Generally, browser‟s rendering engine has a very high fault tolerance
capability, and therefore the encoding mistakes existed in source code could
be identified correctly and those constructed boundary coordinates have
higher accuracy rate.

Data Extraction and Annotation based on Domain-specific Ontology Evolution for
Deep Web

ComSIS Vol. 8, No. 3, June 2011 681

4.2. Data area identification

Although we can obtain multiple data areas, there were only one or several
data areas we are interested in; hence, we need to further dig out interested
data areas.

In the process of mining interested data areas, this paper synthetically
utilizes methods of ontology and heuristic rules.

Heuristic rules are based on the observations as below:
(a) A group of data records containing similar target sets usually appear in

the neighboring areas of web sites; in addition, they also have similar HTML
tags.

(b) A data area‟s data records list is made up by multiple subtrees of the
same father node. In other words, these data records could be considered as
multiple subtrees while they have the same father node.

(c) Learning through observation, abundant data records areas usually
locate at the centre of web site.

(d) If the depth of leaf node in DOM tree was too low, the node would be
determined to be useless.

(e) If the data volume of node‟s neighboring area was too low, this node
would also be useless.

The ontology used for mining data areas is based on two observations as
below [30]:

(a) Data areas contain plentiful ontology information.
(b) Attributes and instances contained in ontology are usually located

closely in data areas.
(1)Ontology instance relevancy:

For a given ontology O , instance set 1 2{ , ,..., }nD d d d , which comes from

data records; for any original string id , its weight was represented as iw ; if

.i id A N or .i i id A FA , which means id is the name or alias of ontology O ‟s

attribute iA , the value of iw will be the probability that attribute iA appears. If

id is the value of multiple attributes, then the value of iw will equals to the

highest probability for attribute‟s appearance.
In order to calculate relevancy between D and O , the following formula

will be used:

1(,)

n

i

i

w

Corr D O
mn




(1)

In the formula, m represents the number of attributes contained in

ontology O , while n represents the number of data items in the instance set.

Kerui Chen, Wanli Zuo, Fengling He, Yongheng Chen and Ying Wang

ComSIS Vol. 8, No. 3, June 2011 682

(2) Example of data extraction algorithm

SearchDataRegion(R,O)

 { T ←Ri∈R;

 While(T is not leaf node)

 begin Ti←one child node of T has the largest

correlation with O;

 if(Corr(T,O)<Corr(Ti,O)) T←Ti

 else break

 End

 While(1)

 Begin Tl←the left sibling of T

 If(Corr(T,O)<Corr(Tl+T,O)) T←Ti+T

 else break

 End

 While(1)

 Begin Tr←the right sibling of T

 If(Corr(T,O)<Corr(Tr+T,O)) T←Tr+T

 else break

 End

 Return T

}

The algorithm mentioned above is mainly used for searching subtree that
has maximum relevancy with given ontology, and hence concludes that the
subtree actually is the data area we are looking for. DT is the set of data
areas divided by web sites; only one subtree of the set will be picked up each
time; moreover, starts from root node of that subtree, by following the order
of top-down, left to right for nodes in the same level, to identify an subtree
with highest relevancy.

4.3. Data record segmentation

If a data area only contains one data record, it will not be necessary to divide
records; to the contrary, if it contains multiple data records, we will need to
seek for an algorithm for executing division of data records.

By observing structural characteristics and encoding characteristics of data
records in data areas, we propose a comprehensive division algorithm, which
can utilize characteristics of tags effectively.

(1) Statistics the max number label
For candidate tags in the nodes of sub tree that has greatest Fan out of

they would be ranked in an inverted order according to the number of
appearance; as a final product, a annotation serial will be obtained.

(2) Identify division tag

Data Extraction and Annotation based on Domain-specific Ontology Evolution for
Deep Web

ComSIS Vol. 8, No. 3, June 2011 683

For the layout of documents contained multiple data records, we tend to
use few division tags to divide those records, such as tags: <hr>, ,

and so on. Based on this observation, we can track these division tags for
inspecting its frequency of being used.

(3)Standard deviation
We calculate standard deviation between each candidate tag.
(4)Repeat mode of tags
In a data record area T=ABABABA, as A and B represent two different

types of tag structure, we can find two repeat mode: AB and BA. If there is
only one repeat mode, then we will be able to determine the repeat mode of
data record area; otherwise, we need to choose one. At this time, we can use
visual aid as gap between two data records is usually greater than the one
between data items in the same data record; by applying this limit, we can
delete useless repeat modes.

Based on the four heuristic rules discussed above, we can divide data
records in data records areas and align data records.

4.4. Data value alignment

Fig. 6. Query result instance sample

Fig.6 shows a real data record sample, which can be divided into 3 data
records. Table 1 demonstrates result of the three data records‟ alignment;
from observation, we learned that numbers of nodes contained in these three
data records are different. Unless the formwork of Deep Web was produced

Kerui Chen, Wanli Zuo, Fengling He, Yongheng Chen and Ying Wang

ComSIS Vol. 8, No. 3, June 2011 684

strictly, the case mentioned above would often appear. Hence, after the data
division, we still need to align divided data records.

Table 1. Fig. 6 alignment of data records

Corrective
Reading
program

 Undefi
ned

03 Nov
1998

Available
to order….

C# Program
& Progress

by
Shanbedi,
Mathmood

Paperb
ack

15 Aug
2005

Available
to order….

C How to
Program C
Student
Solutions
Manual

By
Deitel,
Harvey M

Mixed
media
product

19 Dec
2003

Not
available

For alignment of data records in this paper, the partial tree alignment

algorithm [24] has been used for aligning multiple data records produced by
same data source. The main idea of this algorithm is to create an incremental
seed tree for aligning multiple trees. If we consider a data record as a seed
tree, a data area will have subtrees same with the number of data records
contained.

5. Automatic data annotation

After the extraction of Deep Web and identification of duplicated records

mentioned above, we can get an instance set 1 2{ , ,..., }nI i i i , mi I  ,

(,)m m mi l d ; among it, ml represents a tag, whose value could be null; while

md represents an instance value, md D . Since md appears in various web

sites, it‟s possible to have different ml ; the annotation of data is to annotate a

unified tag for md , which would help integrate data.

There were two types of treatments for ml : when ml is not null, we will

adopt method suggested in [25]; when it‟s null, which means the attribute
value is original and has no page tags, there will be two methods of

annotating; in addition, the results of annotation will be stored in ml and

mapping relationship between ml and ontology O will also be recorded

eventually.
The first one adopts “Query Reset Strategy” proposed in reference [21],

which was created based on observations as below: the more appropriate
query conditions has been chosen, the more query result information would
be returned by Deep Web background server.

Data Extraction and Annotation based on Domain-specific Ontology Evolution for
Deep Web

ComSIS Vol. 8, No. 3, June 2011 685

The second one is based on the K-beam search algorithm of KBFS. Not
only does this algorithm utilize prediction method of prediction model based
on maximum information entropy models, but it also takes advantage of
KBFS search algorithm‟s ability of seeking for optimal path. The construction
steps are listed as below:

Based on maximum information entropy models, we constructed a

prediction model for annotation prediction of
md in instance set

1 2{ , ,..., }nI i i i ,

mi I  , (,)m m mi l d . The construction of this model used maximum

possibility attribute model [26]

as reference.

For a given instance value
md , h is the characteristic of

md when it

appeared previously, the possibility that each attribute
iA in attribute set A

contained in ontology O will be annotated by
md is determined by prediction

model as follows:

(,)

1

(,) i

k
f h A

i j

j

p h A  


 

(2)

In the formula,  is a constant, (,)if h A is the characteristic function, and

its value is either 0 or 1, which is also the weight j of each characteristic in

characteristic set. The possibility that instance value md will be annotated as

attribute mA is calculated as below:

(,)
(|)

(,)
i

m

m

i

A A

p h A
p A h

p h A





(3)

While (,)
i

i

A A

p h A


 represents the sum of probability for all attributes.

Hence, for an original data record‟s data item set { 1 2, ,..., md d d }, the

conditional probability that annotated attribute tag order is { 1 2, ,..., mA A A } will

be:

1 2 1 2

1

(, ,..., | , ,...,) (|)
m

m m i i

i

p A A A d d d p A h




(4)

By using calculation of prediction models mentioned above, we can get
multiple prediction values; once we construct a tree based on those values,
it‟s time to use KBFS search algorithm[27] to seek for a optimal path in
prediction values‟ constructed tree.

Kerui Chen, Wanli Zuo, Fengling He, Yongheng Chen and Ying Wang

ComSIS Vol. 8, No. 3, June 2011 686

6. Ontology evolution

Ontology evolution could be considered as improving ontology for adjusting
to new sample sets or user requests without violating ontology‟s compatibility
principle.

(1) Frame of ontology evolution
The frame of ontology evolution in this paper was inspired by reference

[28], and it mainly has four stages as below:
(a) Capturing change information
The procedure of ontology evolution starts from capturing change

information, which has two types: change based on structure, and change
based on data; moreover, change based on structure requires modifying the
structure of ontology, while change based on data only needs to modify
associated data.

(b) Expressing change information
In order to handle captured change information, there is a further need to

identify and express them in proper form; in other words, various types of
change information all need related expressing method.

(c) Semantic change
Before the execution of ontology evolution, it‟s necessary to check whether

there is a semantic change existed. The dependency between attributes in
the ontology needs to be checked carefully, as they may cause ambiguous
problems.

(d) Execution of ontology evolution
In this stage, the main work is to send a request of modifying ontology;

once the modification has been executed, it will be recorded in order to
achieve operation‟s reversibility.

Next, there will be detailed explanations for each stage.
(2) Capturing information change stage
Each time, after the extraction and annotation, the system will return some

information to ontology evolution module. This information, including
extracted instances that have not been annotated yet, will be annotated as
one attribute of ontology; however, that ontology does not contain that
instance value, or instances with unsure annotation; in this case, ontology
evolution module needs to classifier the information based on actual
situation, in order to execute expressing change information in next stage.

(3) Expressing change information stage
In this stage, classified change information would be expressed

respectively. If instance that has not been annotated requires to construct a
new attribute model manually for it, or ontology does not contain instance
value which has been annotated as an attribute of ontology, there will be a
need to create an relationship between attributes of instance and annotation;
in case there are instances whose annotation were uncertain, the uncertain
attribute tags should be recorded.

(4) Checking semantic change stage
Before execution of ontology evolution, there will be a semantic check for

ontology operation that will be executed; for example, to check whether new

Data Extraction and Annotation based on Domain-specific Ontology Evolution for
Deep Web

ComSIS Vol. 8, No. 3, June 2011 687

attribute model has synonymous or dependence with current attributes of
ontology.

(5) Ontology evolution execution stage
Based on the special tags made by ontology during annotation, ontology

evolution needs to follow rules as below:

Rule 1: when deals with data of mapping relationship between
mN and

ml ,

the location of ontology attribute
mA will be searched, and

md , in the

instance (,)m m mi l d , will be added to
mV .

Rule 2: when deals with data of mapping relationship between
mA and

ml ,

the location of ontology attribute
mA will be searched, and

ml , in the

instance (,)m m mi l d , will be added to
mFA .

Rule 3: when deals with data of mapping relationship between
ml and

ontology O , then a new attribute xA will be created according to the

instance (,)m m mi l d , and
ml will be the value of name entry N in attribute

xA tuple while
md will be the value of attribute entry V .

As new ontology will be created after the evolution each time, multiple
ontology versions will be created with the multiple evolution; hence, it‟s
necessary to manage versions in order to prohibit losing data and to maintain
ontology‟s consistence effectively.

7. Empirical evaluations

Test sample selected three domains from UIUC concentrating
storehouse[29]: Automobile, Airfares, and Books; in each domain, 10 query
interfaces has been chosen, and been provide query conditions randomly
typed; then, those returned query result pages would be collected manually;
in case that one query condition returned multiple query results, only first
page would be selected while others would be ignored.

We manually classify collected web sites in accordance with three
categories listed as below:

(a) Web site contained multiple data records (MRP)
(b) Web site contained one data records (SRP)
(c) Web site did not contain data records (ERP)

7.1. DataSet

There were totally 60 web sites collected from three domains: Automobile,
Airfares, and Books, and the statistics of data records distribution in these
web sites were shown as table 2. Since the typed query conditions were
comparatively appropriate, there were less SRP and ERP in the collection.
Moreover, there were more data records returned from Airfares domain, while

Kerui Chen, Wanli Zuo, Fengling He, Yongheng Chen and Ying Wang

ComSIS Vol. 8, No. 3, June 2011 688

less from Automobile domain; this phenomenon was actually determined by
features of domain.

Table 2. Statistics of data set

Domain Num(Web

pages)

Num(MRP) Num(SRP) Num(ERP)

Automobile 20 120 37 43

Airfares 20 175 9 16

Books 20 162 11 27

Total 60 457 57 86

7.2. Performance of ontology based data area identification

algorithm

The performance of ontology based data area identification was shown as
table 3, Airfares domain reached 100% for identifying MRP, while Books
domain has lowest score, which was only 89.4%. From this, we can conclude
that ontology has highest identification efficiency in Airfares domain. Books
domain had lowest scores for MRP, SRP, and ERP, which could be explained
by the relatively complex query interfaces in this domain.

Table 3. Performance of ontology based data area identification algorithm

Domain MRP SRP ERP
Automobile 91.2% 89.7% 85.9%

Airfares 100% 96.5% 94.2%

Books 89.4% 84.4% 83.1%

Average 93.5% 90.2% 87.7%

The main idea of ontology based data area extraction method is that areas

contained massive ontology information is more likely where query results
located. As Books domain contained a lot of books recommendation
information, which usually have complete description, they could disturb real
query result records very easily, and this disturbance would be more severe
when there were only a few query result records; therefore, we can find that
the precision of Books domain for ERP was only 83.1% in the table.

7.3. Performance of data extraction and annotation after ontology

evolution

In newly collected test sample set, the comparison for performance of
ontology evolution based data extraction was shown as Table 4. We can
easily find that newly evolved ontology performed better than original
ontology in each domain, especially for Books domain, whose recall has been

Data Extraction and Annotation based on Domain-specific Ontology Evolution for
Deep Web

ComSIS Vol. 8, No. 3, June 2011 689

increased by 0.9%, although Automatic domain did not increase drastically.
These three domains increased 0.17% for their precisions, and 0.7% for
recall. In this way, experimental results proved that improved ontology
performed better in data extraction.

Table 4. performance comparison of data extraction in new training set

 Mini-ontology Ontology after

evolution

Domain Precision Recall Precision Recall

Automobile 80.2% 78.1% 80.3% 78.5%

Airfares 92.9% 92.8% 93.0% 93.6%

Books 86.8% 83.9% 87.1% 84.8%

Average 86.63% 84.93% 86.80% 85.63%

Table 5. performance comparison of data annotation in new training set

 Mini-ontology Ontology after

evolution

Domain Precision Recall Precision Recall

Automobile 85.0% 84.7% 85.2% 85.3%

Airfares 97.1% 95.6% 97.1% 95.7%

Books 86.3% 84.9% 86.7% 85.7%

Average 89.47% 88.40% 89.67% 88.90%

In newly collected test sample set, the comparison for performance of

ontology evolution based data annotation was shown as Table 5. Just as
expected, newly evolved ontology performed better than original ontology
and there were increase in each domain with varying degrees. The increase
in Airfares domain was not drastic as there were few attributes in this domain
and relationships between attributes were also quite simple. Hence, the
evolution degree of ontology in Airfares domain was not obvious, and this
had little effect on annotation. In Books domain, the increase is relatively
high; actually, precision and recall was increased by 0.4% and 0.8%,
respectively. Experimental results demonstrated that newly evolved ontology
performed better in annotating data, compared to original ontology.

8. Conclusion and future work

This paper takes full advantage of ontology‟s semantic information; in the
process of identifying query result data areas, with the guidance of ontology,
the identification will be accurate; in addition, it also solved dependence
problems on web site structures existed in traditional template based method.
This paper also systemically and deeply investigates design of ontology
module adjusting to structural web sites, automatic construction of domain

Kerui Chen, Wanli Zuo, Fengling He, Yongheng Chen and Ying Wang

ComSIS Vol. 8, No. 3, June 2011 690

ontology, extraction of data records in query result pages, annotation of data
records, as well as the evolution mechanism of ontology.

Regarding research works discussed in this paper, there are still a lot of
things need to be improved. For example, the construction process of
ontology could be improved, in order to solve some ambiguous problems
caused by attributes matching; furthermore, an ontology evolution evaluation
mechanism also needs to be set up for controlling the increasing ontology
data volume, and thereby seek for a balance point between efficiency and
accuracy.

Acknowledgment. This work is supported by the National Natural Science
Foundation of China under Grant No.60973040; the National Natural Science
Foundation of China under Grant No.60903098; the Science and Technology
Development Program of Jilin Province of China under Grant No. 20070533; the
Specialized Research Foundation for the Doctoral Program of Higher Education of
China under Grant No.200801830021; the Basic Scientific Research Foundation for
the Interdisciplinary Research and Innovation Project of Jilin University under Grant
No.450060445161;.the Basic Scientific Research Foundation for Young Teachers
Innovation Project of Jilin University under Grant No.450060441075.

References

1. Crescenzi V, Mecca G.: Grammars have exceptions. Information Systems, Vol.
23, No. 8, 539-565. (1998)

2. Hammer J, Mchugh J, Garcia-Molina H.: Semistructured data: The TSIMMIS
experience. In proceedings of the first east-european symposium on advances in
databases and information systems, 1-8. (1997)

3. Arocena G.O, Mendelzon A.O.: WebOQL: Restructuring documents, databases
and webs. In proceedings of the 14th international conference on data
engineering, 24-33. (1998)

4. Crescenzi V, Mecca G, Merialdo P.: Roadrunner: Towards automatic data
extraction from large Web sites. In proceedings of the 26th International
Conference on Very Large Databases, 109-118. (2001)

5. Baumgartner R, Flesca S, Gottlob G.: Visual Web information extraction with
Lixto. In proceedings of the 26th International Conference on Very Large
Databases, 119-128. (2001)

6. Califf M.E, Mooney R.J.: Relational Learning of Pattern-Match Rules for
Information Extraction. In proceedings of the Sixteenth National Conference on
Artificial Intelligence and Eleventh Conference on Innovative Applications of
Artificial Intelligence, 328-334. (1999)

7. Freitag D.: Machine Learning for Information Extraction in Informal Domains.
Machine Learning, Vol. 39, No.2-3, 169-202. (2000)

8. Kushmerick N.: Wrapper induction: Efficiency and expressiveness. Artificial
Intelligence Journal, Vol. 118, No. 1-2, 15-68. (2000)

Data Extraction and Annotation based on Domain-specific Ontology Evolution for
Deep Web

ComSIS Vol. 8, No. 3, June 2011 691

9. Muslea I, Minton S, Knoblock C.: Hierarchical wrapper induction for
semistructured information sources. Autonomous Agents and Multi-Agent
Systems, Vol. 4, No. 1-2, 93-114. (2001)

10. Adelberg B.: NoDoSE-A tool for semi-automatically extracting structured and
semistructured data from text documents. In proceeding of the ACM SIGMOD
international Conference on Management of Data, 283-294. (1998)

11. Laender A H F, Ribeiro-Neto B, Da Silva A S.: DEByE-Data Extraction By
Example. Data and Knowledge Engineering, Vol. 40, No. 2, 121-154. (2002)

12. Deng Cai, Yu Shipeng, Wen Jinrong, et al.: VIPS: A Vision-Based
PageSegmentation Algorithm. Microsoft Technical Report, MSR-TR-203-79.
(2003)

13. Liu W, Meng X, Meng W.: ViDE: A Vision-Based Approach for Deep Web Data
Extraction. Knowledge and Data Engineering, Vol. 22, No. 3, 447-460. (2010)

14. Data Extraction Research Group. http://www.deg.byu.edu/.
15. S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo, K.S.

Mccurley, S. Rajagopalan, A. Tomkins.: A case for automated large-scale
semantic annotation. Journal of Web Semantics: Science, Services and Agents
on the World Wide Web, Vol. 1, No. 1, 115-132. (2003)

16. B. Popov, A. Kiryakov, D. Ognyanoff, D. Manov, A. Kirilov.: KIM - a semantic
platform for information extraction and retrieval. Natural Language Engineering,
Vol. 10, No. 3-4, 375-392. (2004)

17. L. Arlotta, V. Crescenzi, G. Mecca, P. Merialdo.: Automatic Annotation of Data
Extracted from Large Web Sites. In proceedings of Sixth International Workshop
on the Web and Databases (WebDB 2003), 7-12. (2003)

18. J. Wang F.H. Lochovsky.: Data Extraction and Label Assignment for Web
Databases. In proceedings of the 12th international conference on World Wide
Web, New York, USA, 187-196. (2003)

19. Ciravegna F, Dingli A.: User-System Cooperation in document Annotation based
on Information Extraction. In proceedings of the 13th International Conference on
Knowledge Engineering and Knowledge Management, Siguenza, Spain, 65-80.
(2002)

20. Yihong Ding, David W. Embley.: Using Data-Extraction Ontologies to Foster
Automating Semantic Annotation. In proceedings of the 22nd International
Conference on Data Engineering Workshops. (2006)

21. Liu Yuan, Zhanhuai Li, Shiliang Chen.: Ontology-Based Annotation for Deep
Web Data. Journal of software, Vol. 19, No. 2, 237-245. (2008)

22. Yoo Jung An, James Geller, Yi-Ta Wu, Soon Ae Chun.: Semantic deep web:
automatic attribute extraction from the deep web data sources. Symposium on
Applied Computing, 1667-1672. (2007)

23. Chen Kerui, Zuo Wanli, Zhang Fan, He Fengling, Peng Tao.: Automatic
generation of domain-specific ontology from deep web. Journal of Information
and Computational Science, Vol. 7, No. 2, 519-525. (2010)

24. Yanghong Zhai, Bing Liu.: Web Data Extraction Based on Partial Tree Alignment.
In proceedings of World Wide Web Conference 2005, 76-85. (2005)

25. Kerui Chen, Wanli Zuo, Fan Zhang, Fengling He, Yongheng Chen.: Robust and
Efficient Annotation based on Ontology Evolution for Deep Web Data. Journal of
Computers, unpublished. (2011)

26. Adwait Ratnaparkhi.: A maximum entropy model for part-of-speech tagging. In
proceedings of the 1st Empirical Methods in Natural Language Processing
Conference, 133–141. (1996)

http://www.deg.byu.edu/
http://portal.acm.org/author_page.cfm?id=81100136126&coll=DL&dl=ACM&trk=0&cfid=10419026&cftoken=33341645
http://portal.acm.org/author_page.cfm?id=81452616755&coll=DL&dl=ACM&trk=0&cfid=10419026&cftoken=33341645

Kerui Chen, Wanli Zuo, Fengling He, Yongheng Chen and Ying Wang

ComSIS Vol. 8, No. 3, June 2011 692

27. Ariel Felner, Sarit Kraus Richard E. Korf.: KBFS: K-best-first search. Annals of
Mathematics and Artificial Intelligence, Vol. 39, No. 1-2, 19-39. (2003)

28. Giorgos Flouris, Dimitris Plexousakis.: Bridging Ontology Evolution and Belief
Change. Lecture Notes in Computer Science, Vol. 3955, 486-489. (2006)

29. W. Yang.: Identifying syntactic differences between two programs. Software
Practice and Experience, Vol. 21, No. 7, 739-755. (1991)

30. WEIFENG SU, JIYING WANG, FREDERICK H. LOCHOVSKY.: ODE: Ontology-
Assisted Data Extraction. ACM Transactions on Database Systems, Vol. 34, No.
2, 12-35. (2009)

Kerui Chen was born in 1983. She is a Ph.D. in the college of Computer
Science and Technology at Jilin University. She current research interests
include Web Intelligence, Ontology Engineering and Information integration.

Wanli Zuo was born in 1957. He is a professor and doctoral supervisor at
Department of Computer Science and technology, Jilin University. Main
research area covers Database Theory, Machine Learning, Data Mining and
Web Mining, Web Search Engines, Web Intelligence. He was as a senior
visiting scholar, engaged in collaborative research in Louisiana State
University (USA) from 1996-1997. He was principle responsible member of 3
national NSFC programs. More than 130 papers of him were published in key
Chinese journals or international conferences, 65 of which are cited by
SCI/EI. He has five books published by the Higher Education Press of China.
And he obtained 5 national and departmental awards. He is a member of
System Software Committee of China's Computer Federation, prominent
young and middle-aged specialist of Jilin Province.

Fengling He was born in 1962. He is a professor at the Jilin University and a
CCF senior member. His research areas are database, data mining and Web
search engine.

Yongheng Chen was born in 1979. He is a Ph.D. candidate in the college of
Computer Science and Technology at Jilin University. He current research
interests include Multi-Core, Database.

Ying Wang was born in 1981. She is a lecturer at the Jilin University and a
CCF member. She received her Ph.D. degree from Jilin University. Her
research area is Web Information Mining, Ontology and Web search engine.

Received: October 11, 2010; Accepted: January 19, 2011.

