
DOI: 10.2298/CSIS100407025J 

Indexing Temporal Information for Web Pages 

Peiquan Jin, Hong Chen, Xujian Zhao, Xiaowen Li, and Lihua Yue 

School of Computer Science and Technology,  
University of Science and Technology of China, 230027, Hefei, China 

jpq@ustc.edu.cn 

Abstract. Temporal information plays important roles in Web search, as 
Web pages intrinsically involve crawled time and most Web pages 
contain time keywords in their content. How to integrate temporal 
information in Web search engines has been a research focus in recent 
years, among which some key issues such as temporal-textual indexing 
and temporal information extraction have to be first studied. In this paper, 
we first present a framework of temporal-textual Web search engine. 
And then, we concentrate on designing a new hybrid index structure for 
temporal and textual information of Web pages. In particular, we 
propose to integrate B+-tree, inverted file and a typical temporal index 
called MAP21-Tree, to handle temporal-textual queries. We study five 
mechanisms to implement a hybrid index structure for temporal-textual 
queries, which use different ways to organize the inverted file, B+-tree 
and MAP-21 tree. After a theoretic analysis on the performance of those 
five index structures, we conduct experiments on both simulated and 
real data sets to make performance comparison. The experimental 
results show that among all the index schemes the first-inverted-file-
then-MAP21-tree index structure has the best query performance and 
thus is an acceptable choice to be the temporal-textual index for future 
time-aware search engines. 

Keywords: Web search, temporal-textual query, temporal information, 
index structure. 

1. Introduction 

Web search engines such as Google and Bing have been an important part in 
people‟s life. Most people rely on Google to find useful information. The major 
goal of search engine is to deliver right information to right users quickly, 
which is generally implemented by a query processing system. In order to 
achieve this goal, search engines provide many effective ways for users to 
express their queries precisely, and also develop some efficient algorithms in 
ranking and indexing. However, previous research on Web search does not 
pay enough attention to the temporal information in Web pages. For example, 
it is difficult to express queries like “to find the discount information about Nike 
in the next week” in Google. On the other side, time is one of essential 
characteristics of information [1], and most Web pages are related with 
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temporal information, e.g., business news, discount information and so on.  
Recently, time has been a focus in the area of Web information extraction [2]. 
Therefore, it is useful and meaningful to utilize temporal information in Web 
search to enhance traditional search engines, that is, to develop a temporal-
textual Web search engine. 

In this paper, we focus on the index structures for temporal-textual Web 
search. Our basic idea is to develop an efficient hybrid index structure to cope 
with temporal-textual queries, which makes an integration of traditional 
temporal index and textual index. The most famous textual index is the 
inverted file structure, so in this paper we use this structure as the basic 
textual index structure. For temporal index, we adopt the MAP21-Tree [3], 
which is an efficient temporal index structure in temporal database area. 
However, there are many choices when integrating inverted file with MAP21-
Tree, and in some case we need to introduce B+-Tree as the index structure 
for update time. Hence, we aims at making a comparison study on those 
different integration mechanisms, and finally get the best hybrid index 
structure which has the best performance for temporal-textual queries. 

A previous short version of this paper has been published in APWeb 2011 
[32]. The major differences between this paper and the previous one are that 
in this paper we extend the design consideration of temporal-textual Web 
search engine as well as a time ontology for Web pages. Moreover, we 
conduct theoretical analysis and further experiments based on a synthetic and 
a real data set and use more metrics to make performance comparison on the 
index structures concerned. The main contributions of the paper can be 
summarized as follows: 

 
(a) We classified the temporal information of Web pages into update time 

and content time, and introduced the new concept, primary time, into the 
index process; 

 
(b) We studied and compared five hybrid index structures based on B+-

tree, inverted file and MAP21-tree; 
 
(c) We carried out large-scale experiments based on both simulation 

dataset and real dataset to evaluate the performance of our index structures. 
 
The remainder of this paper is organized as follows. Section 2 introduces 

the framework of our temporal-textual Web search engine and its main 
components. Section 3 discusses the five hybrid index structures. Section 4 
provides the experimental results. Section 5 describes related work. Finally, 
we conclude the paper and discuss our future work in Section 6.  



Indexing Temporal Information for Web Pages 

ComSIS Vol. 8, No. 3, June 2011 713 

2. A Temporal-Textual Web Search Engine 

2.1. Time Ontology for Web Pages 

Our temporal-textual Web search engine is based on a temporal ontology for 
Web, which supports different types of Web temporal information (as shown in 
Fig.1). 

 

Fig. 1. The Time ontology for Web pages 

(a) Update time: the update time of a Web page is defined as the crawled 
date of the Web page.  

(b) Content time: the content time of a Web page is defined as the 
temporal information embedded in the main text of the Web page. We use a 
set of intervals to represent the content time. 

(c) Explicit time: explicit time can directly be laid in the timeline. Basically, 
explicit time is a direct entry in the timeline and need not to be transformed. 

(d) Implicit time: implicit time is a type of fuzzy time which can be mapped 
as an entry in the timeline with help of some predefined knowledge. Typical 
implicit time is holiday name or specific event. For example, the “911” event 
implies an implicit date, which is 2001/09/11. 

(e) Relative time: relative time is one type of content time of a Web page. It 
must rely on another time of the Web page to resolve itself as an entry in the 
timeline. For example, the words “in three days” implies a relative time, since 
it must rely another date in the text to get the exact date.  

(f) Primary time: primary time is one type of content time of a Web page. In 
detail, since there are several content times in one Web page, we will find the 
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most appropriate time that describes the events of the Web page from the set 
of content times. The most appropriate time is defined as primary time. 
Generally, when users search in Web through some temporal predicates, they 
want to get those pages whose primary time of contents is most close to the 
given temporal information.  

(g) Secondary time: all the content time of a Web page can be regarded as 
secondary time, except the primary time. 

These different types of time form a relatively complete framework for the 
representation of temporal information in Web pages. Among those types of 
time, the update time is always explicit time, since the crawled date of a Web 
page is definite. The content time can be explicit, implicit or relative. The 
content time usually contains a set of time period, one of which is chosen as 
the primary time and the others are secondary time. In our temporal-textual 
search engine, we only consider the update time and primary time. The 
reason is that when users search in Web through some temporal predicates, 
they usually want to get those pages whose primary time is most close to the 
given temporal information. Otherwise, the temporal predicates in queries will 
have little influence on the filtering of results, because the contents of most 
Web pages may contain a lot of and a large range of temporal information. 

2.2. The Framework for Temporal-Textual Web Search Engine 

Fig.2 shows the system architecture of the temporal-textual search engine. 
The search engine contains five modules. 

 

 

Fig. 2. The system architecture of the temporal-textual search engine 
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2.2.1  Web Crawler 

The Web Crawler periodically crawl the Web to gather Web pages for further 
information extraction and retrieval. This module is similar with other spiders, 
except that it stores the crawled pages according to their crawled dates. For 
example, all the pages obtained in 2008/06/26 will be stored in the directory 
named “2008-06-26”. In the next extraction step, we will resolve the directory 
name to get the update time of a Web page. 

2.2.2  Time and Keywords Extractor 

In this module, the update time, content time, and the keywords of crawled 
Web pages will be extracted. For update time extraction, this module resolves 
the directory name and transforms it into standard date format. Since we use 
the crawled date as directory name, it is easy to get the update time of each 
Web page. For content time, we use temporal constraints to recognize content 
time and finally detect the primary time. We first analyze the Web page into a 
DOM tree. For each leaf node of the DOM tree, we use the TIMEX2 [13] to 
get the temporal information. After this procedure, we use some temporal 
constraints to detect the primary time among the whole set of content time. 
Temporal constraints are rules for primary time. For example, a temporal 
constraint may be “if a date appears in title, then this date is treated as 
primary time”. In this module, a set of keywords are also be extracted, which 
is based on traditional national language processing tools.  

2.2.3  Index Constructor 

When primary time and keywords are extracted from Web pages, the Index 
Constructor will create a hybrid temporal-textual index for those crawled Web 
pages. The hybrid index is based on three basic structures, namely B+-tree, 
inverted file, and MAP21-tree. We will discuss indexing techniques in detail in 
Section 4. 

2.2.4  Query Processing 

The Query Processing module processes user queries and returns ranked 
results. The main difference between this module and other search engines is 
that it supports temporal topological queries and uses new rank algorithm. It 
supports absolute temporal relation and relative temporal relation [30]. For 
example, it can process such as a user query as “find NBA news after 2008-
06-30”, where an absolute temporal relation BEGIN(2008-06-30) is detected 
and processed. We also design a new ranking algorithm to sort the returned 
pages. The new ranking algorithm takes into account three factors: temporal 
information, text similarity, and page importance. 
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2.2.5  User Interface 

The User Interface provides input ways for both temporal queries and textual 
queries. The textual queries are inputted by a single text box, which is similar 
with Google. The temporal queries are inputted by a time period box 
consisting of a start date and an end date. The returned results are shown 
based on a Timeline [31]. 

3. Indexer 

The indexer is to build hybrid index structures to integrate text keywords and 
temporal information of Web pages. The inverted file is a standard technique 
for text indexing, so we adopt it as the basic index structure for text keywords 
in Web pages. The temporal information contains update time and primary 
time, in which the update time is regarded as a time instant and the primary 
time is modeled as a time period. The time granularity is set to day. As the 
update time is a time instant, we can use B+-tree to organize them or directly 
put them into inverted files. For the primary time, we adopt the MAP21-tree [3] 
as the basic index structure. MAP21-tree is designed towards time period and 
has better performance than other temporal indexes such as R-tree [22].  

Table 1. The description of symbols  

Symbol Description 

U The number of update time in the time datasets 

P The number of primary time in the time datasets 

K The number of keywords in the lexicon 

 UP u  
The length of the page list of a update time u 

 PP p  The length of the page list of a primary time p 

 KP k  The length of the page list of a keyword k 

ListB  Storage of page lists 

 TreeB x  Storage of a tree of x elements 

/I OT  The time cost of disk accesses 

diskT  The time cost of one disk access 

 TreeT x  The time cost to retrieve a tree of x elements 

 mgT x  The time cost to merge x elements 

 
We study five hybrid methods: (a) inverted file, B+-tree and MAP-21 triple 

index, (b) first inverted file then MAP21-tree and B+-tree, (c) first inverted file 
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then MAP21-tree, (d) expanded inverted file, (e) first MAP21-tree then 
inverted file. In additional, we emphasize the forth hybrid method expanded 
inverted file. Because the index structure of most related work about temporal 
text indexing is usually based on inverted file index, expanded inverted file 
can be considered as the similar method the previous work on building 
temporal index proposed. We will describe the hybrid index structures and 
present cost models for each structure. The symbols used in the cost models 
are listed in Table 1. 

3.1. Inverted File, B+-tree and MAP21-tree Triple Index 

In the first mechanism, we build indexes separately for keywords, update time 
and primary time, as shown in Fig.3. The keywords are indexed by an 
inverted file, which consists of a vocabulary, commonly organized as a B+-
tree, and a posting list representing the information about each Web page. 
The update time is indexed by a B+-tree, while the primary time is organized 
as a MAP21-tree. Each leaf node of the three trees all points to their 
corresponding page lists.  

A temporal-textual Web search comprises non-temporal keywords and 
temporal query types. Non-temporal query keywords are retrieved similar to 
conventional inverted files, temporal query types are passed to the B+-tree for 
update time and the MAP21-tree for primary time. The final results are 
produced by merging the page lists from three indexes. 

 

Fig. 3. Illustration of inverted file, B+-tree and MAP21-tree triple Index 

The storage in disk comprises the three kinds of page lists and three trees, 

i.e.  
1 1

1 Tree ListStorage B B 
. 

The storage of a tree that has x leaf nodes is 
   TreeB x O x

 . 
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The storage of page lists depends on the length of each list, whose unit is 
the identifier of a page. Assuming the length of the list whose entry is keyword 

k is  KP k
, the length of the list whose entry is update time u is  UP u

  and the 

length of the list whose entry is primary time p is  PP p
, the total length of all 

lists is 
     

1 1 1

U P K

U P K

u p k

P u P p P k
  

   
. 

Then we have       1

1 1 1

U P K

List U P K

u p k

B O P u P p P k
  

 
   

 
   . 

So, 
1 1

1 Tree ListStorage B B   

       
1 1 1

U P K

U P K

u p k

O U P K O P u P p P k
  

 
      

 
  

  

 

     
1 1 1

U P K

U P K

u p k

O P u P p P k
  

 
   

 
  

             

We can see the main cost of storage in disk is determined by page lists 
above and the levels of trees. The storage is mainly depended on the total 
length of all page lists. 

Assuming there is a query including m keywords and temporal query types. 
The online computation includes: (a) the retrieval of the m page lists based on 
the m keywords, (b) the retrieval of the n page lists based on the given update 
time, (c) the retrieval of the l page lists based on the given primary time, and 
(d) the merge of the (m + n + l) page lists to return final results.  

The time of loading page lists is determined by the number and total length 
of page lists. The merge processing is mainly the total length of these page 
lists. 

For the tree that in this structure has U leaf nodes, assuming that the query 

time is   TT U
.            

The merge time for x elements in memory is 
 mgT O x

 . 

The time to read a page list containing x bytes is 
 / sec/I O disk tionT T O x B 

. 

     In the above equation, sectionB
 is the page size, which depends on the 

file system. In our system it is 4K bytes. 

Then, 
1 1 1

1 /Tree I O mgTime T T T    

            

            

            

 

    sec

1

/
i

m

Tree disk U tion

i

T U P K T O P u B


 
     

 


     sec sec

1 1

/ /
i i

n l

disk P tion disk K tion

i i

T O P p B T O P k B
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m n l
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For different queries, the query time is determined by three factors. The first 
factor is the searching time on the three index trees. The second is the merge 
operations of m page lists returned by the keywords query, n page lists 
returned by the update time query, and l page lists returned by the primary 
time query. The third factor is the time to read the (m + n + l) page lists from 
disk. 

3.2. First Inverted File Then MAP21-tree and B+-tree 

In this mechanism, two structures are maintained (as shown in Fig.4). The 
first one is an inverted file, each of whose leaf nodes points to a MAP21-tree 
which contains the primary time in the posting lists corresponding to the leaf 
node. The second one is a B+-tree used for indexing update time.  

 

Fig. 4. Illustration of first inverted file then MAP21-tree and B+-tree index structure 

Assuming  TP t
 is the length of a page list whose entry is a ptime-keyword 

p. 
The storage in disk includes these page lists, MAP21-trees pointed by K 

keywords and one B+-tree besides the page list whose entry is update time 
and one B+-tree. So, 
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2 2

2 Tree ListStorage B B 
 

                   

In fact, a MAP21-tree in this structure may not index all P leaves as in the 
first structure, so the scale of MAP21-trees is smaller. Thus we can see the 
cost of storage in disk is mainly caused by the total length of page lists whose 
entry is ptime-keyword and the length of page list whose entry is update time. 

If we input m keywords, one primary time period and one update time 
instant, the online computation has three parts: (a) finding the m leaf nodes in 
the invert file according to the m query keywords, and then searching the 
corresponding MAP21-subtrees pointed by the m leaf nodes, and then loading 
the corresponding page lists from disk; (b) searching the B+-tree for the 
update time, and loading the corresponding page lists from disk; (c) merging 
the page lists returned by MAP21-tree and those returned by the update time 
B+-tree to generate final results. So, 
 

             

             

 

 

In the above equation, M   is the average number of leaf nodes in all the m 
MAP21-trees. 

There are three factors that affect the query time. The first is the retrieval of 
m MAP21-subtrees. The second is the merge operations of m page lists 
returned by m keywords. The third factor is the time to read the (m + n) page 
lists from disk, supposing the searching on the update time B+-tree returns n 
page lists. 

3.3. First Inverted File Then MAP21-tree 

Inverted file is built by B+-tree, the leaf node of B+-tree points to the inverted 
list of the keyword. In the structure, the leaf node points to a MAP21-tree 
which is build on time information of the inverted list of the corresponding 
keyword, then the leaf node of the MAP21-tree points to a set of page lists 
whose entry is depended on a pair of a keyword and a primary time. So n leaf 
nodes of B+-tree points totally to not n page lists but n MAP21-subtree. A pair 
of a keyword and a primary time period is named primary-keyword. We can 
know every MAP21-subtree in the structure may not index all primary times, 
because each word doesn‟t exist in every Web page, then it doesn‟t include 
all primary times, the MAP21-subtree is smaller than one unique MAP21-tree 
and the size of page lists pointed by leaf node of MAP21-subtree is almost 
smaller than MAP21-tree‟s. To update time, we don‟t index the type of time 
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information using B+-tree like the structure above, it is directly inserted the 
detail of a page list of MAP21-tree, which is the difference from the above 
index structure. We show the structure in Fig.5. 

 

 

Fig. 5. The illustration of first inverted file then MAP21-tree(UT = Update Time) 

The storage in disk includes these page lists, MAP21-trees pointed by K 
keywords and one B+-tree. So, 
      

               

The main cost of storage in disk is caused by the total length of page list 
whose entry is a putime-keyword. 

If we input m keywords, one primary time period and a update time instant, 
the online computation has three parts: (a) to retrieve the m query keywords 
and then search the corresponding MAP21-subtrees by these leaf nodes of m 
keywords, and the loading of corresponding page lists m from the disk; (b) to 
retrieve the map value of the update time instant from corresponding page 
lists n which is in memory from disk; (c) to merge the n page lists. So, 
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There are three factors that effect the query time. One factor is the retrieval 
of m MAP21-subtrees, the second factor is the merge operations of n page 
lists whose entry is the keyword and its corresponding MAP21-tree. The third 
factor is the time to read the m pages lists from disk. The pages in a page list 
whose entry is a primary-keyword is a subset of pages in the page list whose 
entry is the corresponding keyword of primary time period, so the length of a 
page list whose entry is a primary-keyword is reduced smaller than the above 
structure. 

3.4. Expanded Inverted File 

Inverted file is built by B+-tree, the leaf node of B+-tree points to the inverted 
list of the keyword. Because the index structure of most related work about 
temporal text indexing is usually based on inverted file index. The basic 
lookup operation in text-indexing is to retrieve the document identifiers of all 
document s that contains a particular word w. we consider designing the 
similar structure. The difference is the details of the page list pointed by the 
leaf node of B+-tree for inverted file. In the page list, there is not only 
corresponding set of URLs of Web pages but also the corresponding update 
time and the primary time period of one Web page. As shown in Fig.6. 

The storage in disk includes the page lists and one B+-tree. 

So, 
4 4

4 Tree ListStorage B B         

 

Fig. 6. Illustration of expanded inverted file structure(UT = Update Time, PT = Primary 
Time) 
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The main cost of storage in disk is caused by the total length of page lists 
whose entry is a keyword. 

Assume there is the input of m keywords, one update time instant and a 
primary time period. The online computation includes: (1) the retrieval of the 
m keywords and the loading of corresponding page lists from disk; (2) the 
merge of the m page lists filtrated the time period not included in and error 
time instant in memory. So, 
 

             

 
There are also main factors for the query time. One factor is the merge of 

m page lists, at the same time, to filtrate the Web pages included wrong time 
information that users do not want. The other factor is the time to read the 
page lists from disk. 

3.5. First MAP21-tree Then Inverted File 

As shown in Fig.7, a MAP21-tree is built on all the primary time periods of 
Web pages. The leaf node of the tree points to a B+-tree containing the 
keywords that are included in the corresponding time periods. The leaf node 
of every B+-tree points to a page list. Each page list contains the update time 
of Web pages and the corresponding set of URLs.  

The main storage in disk includes the page lists, B+-trees pointed by P 
primary times and one MAP21-tree. So, 
        

                 

The main cost of storage in disk is caused by the total length of page lists 
whose entry is a putime-keyword. 

If we input m keywords, one primary time period and a update time instant, 
the online computation has three parts: (a) searching the MAP21-tree and 
getting n primary time periods; (b) for each time period, retrieving the m 
keywords through the invert file, and the loading the corresponding page lists; 
(c) merging the m page lists. So, 
 

              

 

In the above equation, K   is the average number of leaf nodes in the B+-
trees. 

There are three factors that affect the query time. One factor is the retrieval 
of m B+-subtree, the second factor is the merge operations of page lists. The 
third factor is the time to read the n pages lists from disk.  
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Fig. 7. Illustration of first MAP21-tree then inverted file (UT = Update Time) 

There are some major differences between this structure and the index 
structure in Section 3.3, which refers to first inverted file then MAP21-tree. In 
the case that the index structure is first inverted file then MAP21-tree, if we 
input one keyword, one update time and one primary time period, we will first 
find the leaf node of keyword from one B+-tree, then retrieve one 
corresponding MAP21-tree to get right page lists from disk. If the index 
structure is first MAP21-tree then inverted file, the first step is finding m leaf 
nodes of primary time from one MAP21-tree according to the given primary 
time period, then retrieve each corresponding B+-tee to get right page lists 
from disk. Hence, the main difference between these two structures is the 
number of B+-subtree that is read from disk. The number of B+-subtrees will 
increase with the increasing of the range of primary time query. 

4. Experiments 

In this section, we will implemented the five hybrid index structures and make 
comparison experiment to show the different performance of those index 
structures under different workloads. For simplicity, we use the following 
notation to represent the five hybrid index structures discussed in the previous 
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section: 
Structure 1: inverted file, B+-tree and MAP-21 triple index. 
Structure 2: first inverted file then MAP21-tree and B+-tree. 
Structure 3: first inverted file then MAP21-tree. 
Structure 4: expanded inverted file. 
Structure 5: first MAP21-tree then inverted file. 
We mainly evaluate the query performance of the five index structures. In 

order to get a comprehensive result, we use five types of queries in the 
experiment. Those queries are: 

TYPE 1: keyword query 
TYPE 2: keywords + update time instant 
TYPE 3: keywords + primary time instant 
TYPE 4: keywords + update time instant + primary time instant 
TYPE 5: keywords + update time period + primary time period 
In our experiments, we focus on the index size, I/O number, and run time of 

each index structure under given workload and temporal-textual queries. Run 
time contains I/O number and memory time, and I/O time costs much longer 
than memory time. So we not only compare the run time but also compare 
the I/O number. 

We used two types of dataset in our experiment: a simulated dataset and a 
real dataset. A simulated dataset is more regular than a real dataset, so the 
experiment on simulated dataset may achieve the desired result. A real 
dataset is more complex, so we experiment on it beside the simulated 
dataset. In the following part, we will describe the experimental results on 
simulation and real dataset respectively. 

4.1. Simulation Experiment 

4.1.1  Settings and Dataset 

In our simulation experiment, we manually generate a simulated dataset. In 
this dataset, each Web page has one update time instant, one primary time 
period, five different keywords. All the time included in the dataset is limited in 
one year, i.e., the update time is set as a day in 2009, and the primary time is 
set as a time period in 2009. For simplicity, we use a number ranging from 1 
to 100000 to represent a keyword. As a result, a generated record 
representing a Web page is as follows: 

<URL, UT, PTs, PTe, key1, key2, key3, key4, key5> 

Here, UT represents the update time, PTs and PTe represent the start and 
end date of primary time. 

In our experiment, we generate three simulated datasets. They contain 
1095 thousand records, 1825 thousand records, and 2555 thousand records, 
respectively. In the following text, we use T1095, T1825, and T2555 to 
indicate the three types of simulated datasets. We want to know whether the 
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result may change with the incremental datasets. 
We run our experiment in a computer with an Intel Core 2.00 GHz CPU, 2 

GB RAM, using Microsoft Window 7. 

4.1.2  Comparison of Five Hybrid Index Structures 

First, we compare the index size (Mbytes) of five hybrid index structures. We 
generate three trace, we show them respectively in Table 2, Table 3 and Table 
4. 

Table 2, Table 3 and Table 4 show that Structure 1 has the biggest total 
index size. The size of Structure 2 is bigger than that of Structure 4 but 
smaller than that of Structure 1, and Structure 3 and Structure 5 has smaller 
size than Structure 4. So the index size of Structure 3 and Structure 5 is the 
smallest in the five index structures.  

Table 2. Index size for five hybrid index structures under the T1095 dataset (MBytes) 

 
Keyword 

index 
Update 

time index 
Primary 

time index 
Total index size 

Structure 1 684.62 136.86 136.86 958.34 

Structure 2 0 136.86 700.96 837.82 

Structure 3 0 0 759.78 759.78 

Structure 4 802.25 0 0 802.25 

Structure 5 759.81 0 0 759.81 

Table 3. Index size for five hybrid index structures under the T1825 dataset (MBytes) 

 
Keyword 

index 
Update 

time index 
Primary 

time index 
Total index size 

Structure 1 1164.86 228.13 228.13 1612.12 

Structure 2 0 228.13 1191.67 1419.80 

Structure 3 0 0 1289.69 1289.69 

Structure 4 1360.90 0 0 1360.90 

Structure 5 1289.74 0 0 1289.74 

Table 4. Index size for five hybrid index structures under the T2555 dataset (MBytes) 

 
Keyword 

index 
Update 

time index 
Primary 

time index 
Total index 

size 

Structure 1 1621.13 319.38 319.37 2259.88 

Structure 2 0 319.37 1657.89 1977.26 

Structure 3 0 0 1795.14 1795.14 

Structure 4 1895.58 0 0 1895.58 

Structure 5 1795.21 0 0 1795.21 
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Second, we compare page I/O numbers of the five index structures on the 
basis of the five types of queries mentioned before. The page size is set as 4 
Kbytes. The total I/O number of every query includes the retrieval of tree 
nodes and page lists from disk. We generate 300 queries randomly, each of 
which contains three keywords and one update time and one primary time, 
and calculate the average I/O number of the 300 queries. The results are 
shown in Table 5, Table 6 and Table 7. Additionally, the reason why we choose 
three words is that a users' query usually contains one to three keywords in 
the Web search environment. 

Table 5.  Page I/O# for five hybrid index structures under the T1095 dataset 

 Type 1 Type 2 Type 3 Type 4 Type 5 

Structure 1 1687 1779 1719 1811 2052 

Structure 2 1690 1782 40 131 366 

Structure 3 1695 1695 40 40 95 

Structure 4 1701 1701 1701 1701 1701 

Structure 5 8252 8252 37 37 107 

Table 6.  Page I/O# for five hybrid index structures under the T1825 dataset 

 Type 1 Type 2 Type 3 Type 4 Type 5 

Structure 1 2550 2707 2604 2762 3185 

Structure 2 2554 2712 59 218 629 

Structure 3 2561 2561 59 59 159 

Structure 4 2571 2571 2571 2571 2571 

Structure 5 9105 9105 56 56 171 

Table 7.  Page I/O# for five hybrid index structures under the T2555 dataset 

 Type 1 Type 2 Type 3 Type 4 Type 5 

Structure 1 3467 3687 3542 3762 4351 

Structure 2 3473 3694 79 300 873 

Structure 3 3482 3482 79 79 217 

Structure 4 3495 3495 3495 3495 3495 

Structure 5 10126 10126 74 74 227 

 
In Table 5, Table 6 and Table 7, we can see the number of blocks read from 

disk based on Structure 1, 2, 3 and 4 is similar for Type 1. The number of 
blocks based on Structure 3 and Structure 4 is smaller than the other three 
structures for Type 2, and the two structures have almost no difference or little 
difference. For Type 3, Structure 2, Structure 3 and Structure 5 have obvious 
advantages over the other two structures. Structure 3 and Structure 5 have 
good performance for Type 4 when reading blocks from disk. Structure 3 and 
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Structure 5 are better than the other structures for Type 5. In addition, 
Structure 3 is little better than Structure 5 as the increased number of Web 
pages. 

Table 5 to Table 7 show that Structure 3 has the smallest I/O cost for five 
types of queries, Structure 5 is better for three types of queries except Type 1 
and Type 2. Structure 3 and Structure 5 both have some subtrees. The 
advantage of subtree is that it filters some unmatched Web pages according 
to the given keywords or primary time.  

Third, we compare the run time of five structures for five types of queries. 
Run time is calculated from the input of query to the output of the right URL 
set. The queries are the same above. The results are shown in Table 8, Table 
9 and Table 10. The unit of time is second. 

Table 8.  Run time for five hybrid index structures under the T1095 dataset (seconds) 

 Type 1 Type 2 Type 3 Type 4 Type 5 

Structure 1 2.15 2.35 2.34 2.37 2.36 

Structure 2 2.21 2.48 0.06 0.17 0.45 

Structure 3 2.33 1.29 0.07 0.07 0.16 

Structure 4 2.24 1.26 1.38 1.37 1.66 

Structure 5 9.31 8.28 0.06 0.06 0.18 

Table 9.  Run time for five hybrid index structures under the T1825 dataset (seconds) 

 Type 1 Type 2 Type 3 Type 4 Type 5 

Structure 1 3.10 3.18 3.17 3.21 3.26 

Structure 2 3.15 3.27 0.08 0.25 0.71 

Structure 3 3.33 2.05 0.10 0.09 0.25 

Structure 4 3.16 1.95 2.08 2.09 2.17 

Structure 5 10.30 9.19 0.09 0.09 0.24 

Table 10.  Run time for five hybrid index structures under the T2555 dataset (seconds) 

 Type 1 Type 2 Type 3 Type 4 Type 5 

Structure 1 4.05 4.23 4.21 4.22 4.30 

Structure 2 4.48 4.62 0.13 0.44 1.30 

Structure 3 4.22 3.17 0.14 0.14 0.39 

Structure 4 3.52 2.63 2.80 2.80 2.93 

Structure 5 11.21 9.90 0.11 0.11 0.34 

 
Run time includes three main parts. They are the time for retrieving 

corresponding trees, the time for reading page lists from disk and the time for 
merging page lists. The run time in the first and the second part is mainly 
determined by the page I/O numbers listed in Table 5 to Table 7. The time for 
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merging page lists is much smaller than the time for reading page lists from 
disk. So we can get the similar comparison result as shown in Table 5 to Table 
7. We can see the run time based on Structure 1, 2, 3 and 4 is similar for Type 
1. Structure 3 and Structure 4 is faster than the other three structures for Type 
2. In addition, these two structures have almost no difference or little 
difference in run time for Type 2. Structure 2, Structure 3 and Structure 5 have 
obvious advantages over the other two structures for Type 3. Structure 3 and 
Structure 5 have good performance for Type 4. Structure 3 and Structure 5 are 
better than the other structures for Type 5. Additionally, Structure 3 is little 
better than Structure 5 as the increased number of Web pages. Generally, 
Structure 3 wins the best in the measurement of run time. 

4.1.3  Rebuilt Time of Five Hybrid Index Structures 

We consider the update cost now. When Web pages update are small, update 
pages can be inserted into the specified location directly. Once the Web 
pages update are large, rebuild index is a good choice. We compare rebuild 
cost of five hybrid index structures here. The result of three different simulated 
datasets is shown in Table 11. 

Table 11.  Rebuild time for five hybrid index structures under the T1095, T1825 and 
T2555 dataset (seconds) 

 T1095 T1825 T2555 

Structure 1 1995.18 7249.17 11465.50 

Structure 2 4230.64 8682.05 12781.80 

Structure 3 4877.58 8641.93 14312.10 

Structure 4 3891.86 8180.55 12537.10 

Structure 5 4097.65 7713.05 10610.20 

 

Table 11 shows that the rebuild time of Structure 1 costs least under the 
three simulated datasets. Structure 4 and Structure 5 cost longer than 
Structure 1, and the rebuild time of Structure 4 and Structure 5 has little 
difference. Structure 2 and Structure 3 cost longest. Although the rebuild time 
of Structure 3 cost longest, its query performance is very dominant, so we can 
ignore the rebuild cost.  

4.2. Experiment on real dataset 

4.2.1. Settings and Dataset 

We choose the real dataset from the corpus of SouGou lab 
(http://www.sogou.com/labs/) which records games, sports, IT, domestic and 
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international news in May 2008 from some news sites.  
The experiment on real dataset is more complicated than the simulation 

experiment. In this experiment, we simply describe how to exact the update 
time and the primary time in one real Web page. We use the real dataset from 
news Web pages, and the news pages have their own characteristics. In the 
news, publish time is usually as the update time and primary time is often 
appears in the first paragraph. The exaction of primary time is more 
complicated than update time. If there is one time instant in the first paragraph, 
we consider it as the primary time; If there is two or more time instants in the 
paragraph, we consider choosing the nearest instant to update time instant as 
primary time; If there are time instants and time periods, we first choose the 
time period as the primary time of the Web page. 

Keywords of every Web page are exacted by a tool called ICTCLAS 
(http://ictclas.org/), which is the most efficient tool for the Chinese words 
segmentation. Each word is mapped a value in memory by ELFHASH 
function.  

We use 250 thousand news Web pages as our real dataset and extract 
approximately 210 thousand different keywords. The experimental computer 
environment is the same as that in the simulation experiment. 

4.2.2.  Comparison of Five Hybrid Index Structures  

We still use the five query types to measure the index size. Page I/O#, and 
run time of each hybrid index structure. 

First, we compare the index size (MBytes) of five hybrid index structures. 
The results are shown in Table 12. 

Table 12. Index size for five hybrid index structures under the real dataset (MBytes) 

 
Keyword 

index 
Update 

time index 
Primary 

time index 

Total 
index 
size 

Structure 1 1307.69 31.25 31.25 1370.19 

Structure 2 0 31.25 1315.04 1346.29 

Structure 3 0 0 1425.14 1425.14 

Structure 4 1528.07 0 0 1528.07 

Structure 5 1425.22 0 0 1425.22 

 
Table 12 shows that Structure 1 has the largest size, and Structure 2 is 

worse than Structure 4 but better than Structure 1. Besides, the index size of 
Structure 3 and Structure 5 is the smallest in the five index structures. 
Therefore, we have the same conclusion as what we got in the simulation 
experiment. 

Second, we compare page I/O# of five index structures for five query types. 
The page size is set as 4 KBytes. We choose 300 queries of three keywords 
from the search log, one update time and one primary time randomly and 
calculate the average of the 300 queries. We show them in Table 13. 
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Table 13.  Page I/O# for five hybrid index structures under the real dataset 

 Type 1 Type 2 Type 3 Type 4 Type 5 

Structure 1 481 745 738 1001 2950 

Structure 2 485 749 27 291 1780 

Structure 3 486 486 27 27 67 

Structure 4 485 485 485 485 485 

Structure 5 3788 3788 26 26 79 

 
Table 13 shows that the number of blocks read from disk based on 

Structure 1, 2, 3 and 4 is similar for Type 1. The number of blocks based on 
Structure 3 and Structure 4 is smaller than those of the other three structures 
for Type 2 and the two structures have almost no difference or little difference. 
For Type 3, Structure 2, Structure 3 and Structure 5 have obvious advantages 
over the other two structures. Structure 3 and Structure 5 have good 
performance for Type 4 when reading blocks from disk. Structure 3 and 
Structure 5 are better than the other structures for Type 5, in addition, 
Structure 3 is little better than Structure 5 as the increased number of Web 
pages.  

As a result, Structure 3 is the best index structure for five types of query, 
Structure 5 is better for three types of queries except Type 1 and Type 2. This 
is the same as what we get in the simulation experiment. 

Third, we compare the run time of five structures for five types of search. 
Run time is the process which is from the input of query user need to the 
output of the right URL set. The queries are the same above. We show them 
in Table 14. The unit of time is second. 

Table 14.  Run time for five hybrid index structures under the real dataset (seconds) 

 Type 1 Type 2 Type 3 Type 4 Type 5 

Structure 1 0.96 1.30 1.31 1.62 3.85 

Structure 2 1.03 1.34 0.08 0.41 2.14 

Structure 3 1.12 0.53 0.08 0.08 0.14 

Structure 4 1.11 0.54 0.60 0.58 0.59 

Structure 5 6.00 5.30 0.08 0.08 0.15 

4.2.3.  Rebuilt Cost of Five Hybrid Index Structures 

We consider the update cost now. When Web pages update are small, update 
pages can be inserted into the specified location directly. Once the Web 
pages update are large, rebuild index is a good choice. We compare rebuild 
cost of five hybrid index structures under the real dataset. The result is shown 
in Table 15. 
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Table 15.  Rebuild time for five hybrid index structures under the real dataset 
(seconds) 

 Structure 1 Structure 2 Structure 3 Structure 4 Structure 5 

Rebuilt 
time 

9146.88 29235.10 31310.14 14170.90 3829.13 

 

Table 15 shows that the rebuild time of Structure 5 costs least, and 
Structure 3 has the longest rebuild time. Although the rebuild cost of Structure 
3 is larger, compare with the query performance, the rebuild cost is affordable.  

5. Related Work 

5.1. Temporal Information Extraction and Retrieval 

Traditional commercial search engines, such as Google, Bing, and Baidu, 
have noticed the value of temporal information in Web search. They all 
provide some ways for users to perform a Web search based on time. E.g. 
Google uses the daterange option to express a temporal predicate. However, 
those commercial search engines only support the crawled dates of Web 
pages, i.e., users can only query Web pages towards their creation dates in 
database. There are also some other temporal information retrieval systems 
which use similar methods as Google to process temporal information of Web 
pages, such as Goo [4], Infoseek [5], Namazo [6], Chronica [7], and so on. 
Generally, there is a gap between the crawled time and content time of a Web 
page. For instance, if a news page reports that in Aug 8th, 2008 the Olympic 
Games will be held in Beijing, China, but it is posted and crawled in Jun. 21st, 
2006. In such case, “Jun. 21st, 2006” will be regarded as the temporal 
information of this news page, but unfortunately it does not report the right 
temporal information of the page. To our knowledge, there are few search 
systems considering the temporal information embedded in Web pages [1, 7]. 
The system presented in [8] aims at extracting and indexing the content time 
of Web pages, but it only considered the business hour extraction, and can 
not deal with implicit time such as “today”, “Tuesday”, “Last Christmas”, and 
so on. Other work in Natural Language Processing (NLP) focused on 
temporal information extraction and annotation from text. There are a lot of 
tools which can extract temporal elements from text. Many of them are 
towards English text, such as Lingua::EN::Tagger [9] and TempEX [10]. In 
recent years, some temporal extraction tools for non-English languages were 
also presented. For example, KTX was a temporal information extracting tool 
for Korean text [11], and CTEMP was for Chinese text [12]. Most of temporal 
information extraction tool in NLP are based on the temporal information 
annotation standard TIMEX2 [13] or TimeML [14]. Though temporal 
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information extraction in NLP is relative mature, little effort has been done to 
combine them into Web search engines. 

5.2. Temporal-Textual Indexes 

The current temporal text indexing is mainly to the versioned document 
collections such as Web archives [15, 16]. There have been some indexing 
approaches on directly addressing the issue of temporal-textual indexing. 
Anick and Flynn [17] have pioneered this research to support versioning in a 
full-text index on bitmaps for terms in current versions, and delta change 
records to track incremental changes to the index backward over time. The 
disadvantage is the costly recreation of previous states. Recent work in [19, 
23-26] and their earlier proposals concentrate on the problem of supporting 
text-containment queries and neglect the relevance scoring of results. Stack 
[20] reports practical experiences made when adapting the open source 
search engine Nutch to search Web archives. Weikum et al. address the 
temporal dimensions completely by extending the inverted files index to make 
it ready for temporal search and implement the time-travel text search in the 
FluxCapacitor prototype [27, 28]. In contrast, research in temporal databases 
has produced several index structures tailored for time-evolving databases. A 
comprehensive overview of the state-of-art is available in [29]. Unlike the 
inverted file index, their applicability to text search is not well understood.  

Temporal indexes have been deeply studied in temporal database area. In 
temporal database, two dimensions of time, which are valid time and 
transaction time, may be considered in the index [21]. Therefore, R-tree [22] 
and its variation as the access structures for spatial data may also be used as 
a temporal index. Among all the temporal indexes proposed before, the 
MAP21-tree [3], which utilizes standard B+-trees, provides efficient indexing of 
valid time period, and has good performance in time instant query and range 
query. The idea of MAP21-tree is to map a two-dimensional time period to a 
one-dimensional number and then to use a B+-tree to build the index 
structure. So in this paper we choose the MAP21-tree as the basic temporal 
index structure. 

The index structure of most related work about temporal-textual indexing is 
usually based on inverted file index [18]. However, the main difference 
between our work and previous researches is that we consider to index both 
update time and content time for Web pages, while previous temporal-textual 
indexes usually focused on indexing update time, because they are designed 
for Web archive system or document versioning.  

In addition, in this paper we introduce the concept of primary time. Hence, 
the temporal-textual index structures studied in this paper involve keywords, 
update time, and content time. Traditional models in information retrieval have 
been widely studied since 1970s, among which the Vector Space Model (VSM) 
[15, 16] and the Probabilistic Relevance model (PPR) [16, 17, 20] are two 
representatives. In VSM, all the keywords are represented into high 
dimension feature vectors rather than representing the keywords with binary 
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value. The problem of VSM is it considers little about the relationship between 
keywords. The BM25 model, as a popular Probabilistic Relevance model [17], 
ranks Web pages based on their probability of relevance with the query. This 
model needs to know the information about which Web pages are relevant 
with the query, which is very difficult to realize in a large dataset.  

Pagerank ranking model [21] is an offline ranking algorithm which is based 
on the number of Web pages that are linked by other pages in the whole Web, 
and the quality of the sources of the links. The problem of Pagerank is it only 
considers links but ignores the similarity between the query and Web pages. 

Most of time-related Web search now concentrates on Web archive system 
[22-24]. A Web archive system is used to store and manage historical Web 
pages and then provides evolutional information of the Web. The history of a 
Web page is typically captured by the versioning technique, i.e., the new 
version of a Web page is stored with an explicit update timestamp. However, 
Web archive systems only consider the update timestamps of Web pages. 
They do not take into account the content time of Web pages, which is much 
different from the research scope of this paper.  

In recent years, several researchers have studied ways to find fresh Web 
pages. The TimedPageRank algorithm [25] was proposed in a Web-based 
literature searching prototype. It uses the posted time of paper to perform the 
ranking process. If we map it into a general Web search engine, the posted 
time of paper can be regarded as the publication time or update time of Web 
page. It can not support queries focusing on the content time. In [26], a 
temporal search system for business hours was studied, which tried to answer 
such questions „Which shops are open and in which time are they open‟. In 
this system, the time granularity was restricted in hour, e.g., „9:00 AM‟. 
Besides, it does not support implicit time, such as Christmas, the National Day. 
So it is not suitable for general Web search engines.  

The language modeling approach for information retrieval was first in 1998 
[5]. Its basic idea is to estimates the probability of the query given the 
language model of a Web page, and ranks Web pages according to those 
probabilities. There are also some variants of this approach [27, 28, 29]. 
Previous studies have shown that the language model has a better 
performance than traditional models such as VSM and BM25, and the 
experimental results in this paper also proved this truth. 

There are also some recent works focusing on temporal language models 
[18, 19, 30], which integrate temporal information into the framework of 
language models. In the literature [19], a time-based language model was 
proposed, which emphasized that recent documents could be better to satisfy 
users‟ needs. However, this model only concentrates on the publication time 
of Web pages, and therefore is useful for querying recent events but is not a 
general framework. A similar work could be found in [30], which also focused 
on the publication time. The recent work in [18] integrated the content time of 
Web pages into the language model. In this approach, the researchers 
proposed the assumptions of temporal relevance, which first had a filter 
process to filter all the Web pages containing no temporal references in their 
contents, and then used the triangle distribution model to simulate the 
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probabilities of the querying time appearing in each Web page. However, this 
model does not consider the relationship between the keywords and the 
temporal references in the page content.  

6. Conclusions 

In this work we have designed and implemented five hybrid index structures 
for temporal-textual Web search and studied the performance of these index 
structures. We conduct a comprehensive experiment on both the simulated 
and real datasets, and use five temporal-textual query types to evaluate the 
index size, page I/O#, and run time of each hybrid index structure. Both the 
simulation and real experimental results show that the index structure “first 
inverted file then MAP21-tree” has the best performance among the five index 
structures. Therefore, it should be an acceptable choice for indexing temporal 
and text information in a temporal-textual Web search engine. 

In the future research, we will focus on the update performance of the index 
structure, and integrate the hash policy to improve the update and search 
performance. Another work will be the compression of the index, since the 
index size of the hybrid index structure is still too big for Web search. 
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