
DOI: 10.2298/CSIS100407025J

Indexing Temporal Information for Web Pages

Peiquan Jin, Hong Chen, Xujian Zhao, Xiaowen Li, and Lihua Yue

School of Computer Science and Technology,
University of Science and Technology of China, 230027, Hefei, China

jpq@ustc.edu.cn

Abstract. Temporal information plays important roles in Web search, as
Web pages intrinsically involve crawled time and most Web pages
contain time keywords in their content. How to integrate temporal
information in Web search engines has been a research focus in recent
years, among which some key issues such as temporal-textual indexing
and temporal information extraction have to be first studied. In this paper,
we first present a framework of temporal-textual Web search engine.
And then, we concentrate on designing a new hybrid index structure for
temporal and textual information of Web pages. In particular, we
propose to integrate B+-tree, inverted file and a typical temporal index
called MAP21-Tree, to handle temporal-textual queries. We study five
mechanisms to implement a hybrid index structure for temporal-textual
queries, which use different ways to organize the inverted file, B+-tree
and MAP-21 tree. After a theoretic analysis on the performance of those
five index structures, we conduct experiments on both simulated and
real data sets to make performance comparison. The experimental
results show that among all the index schemes the first-inverted-file-
then-MAP21-tree index structure has the best query performance and
thus is an acceptable choice to be the temporal-textual index for future
time-aware search engines.

Keywords: Web search, temporal-textual query, temporal information,
index structure.

1. Introduction

Web search engines such as Google and Bing have been an important part in
people‟s life. Most people rely on Google to find useful information. The major
goal of search engine is to deliver right information to right users quickly,
which is generally implemented by a query processing system. In order to
achieve this goal, search engines provide many effective ways for users to
express their queries precisely, and also develop some efficient algorithms in
ranking and indexing. However, previous research on Web search does not
pay enough attention to the temporal information in Web pages. For example,
it is difficult to express queries like “to find the discount information about Nike
in the next week” in Google. On the other side, time is one of essential
characteristics of information [1], and most Web pages are related with

Peiquan Jin, Hong Chen, Xujian Zhao, Xiaowen Li, and Lihua Yue

ComSIS Vol. 8, No. 3, June 2011 712

temporal information, e.g., business news, discount information and so on.
Recently, time has been a focus in the area of Web information extraction [2].
Therefore, it is useful and meaningful to utilize temporal information in Web
search to enhance traditional search engines, that is, to develop a temporal-
textual Web search engine.

In this paper, we focus on the index structures for temporal-textual Web
search. Our basic idea is to develop an efficient hybrid index structure to cope
with temporal-textual queries, which makes an integration of traditional
temporal index and textual index. The most famous textual index is the
inverted file structure, so in this paper we use this structure as the basic
textual index structure. For temporal index, we adopt the MAP21-Tree [3],
which is an efficient temporal index structure in temporal database area.
However, there are many choices when integrating inverted file with MAP21-
Tree, and in some case we need to introduce B+-Tree as the index structure
for update time. Hence, we aims at making a comparison study on those
different integration mechanisms, and finally get the best hybrid index
structure which has the best performance for temporal-textual queries.

A previous short version of this paper has been published in APWeb 2011
[32]. The major differences between this paper and the previous one are that
in this paper we extend the design consideration of temporal-textual Web
search engine as well as a time ontology for Web pages. Moreover, we
conduct theoretical analysis and further experiments based on a synthetic and
a real data set and use more metrics to make performance comparison on the
index structures concerned. The main contributions of the paper can be
summarized as follows:

(a) We classified the temporal information of Web pages into update time

and content time, and introduced the new concept, primary time, into the
index process;

(b) We studied and compared five hybrid index structures based on B+-

tree, inverted file and MAP21-tree;

(c) We carried out large-scale experiments based on both simulation

dataset and real dataset to evaluate the performance of our index structures.

The remainder of this paper is organized as follows. Section 2 introduces

the framework of our temporal-textual Web search engine and its main
components. Section 3 discusses the five hybrid index structures. Section 4
provides the experimental results. Section 5 describes related work. Finally,
we conclude the paper and discuss our future work in Section 6.

Indexing Temporal Information for Web Pages

ComSIS Vol. 8, No. 3, June 2011 713

2. A Temporal-Textual Web Search Engine

2.1. Time Ontology for Web Pages

Our temporal-textual Web search engine is based on a temporal ontology for
Web, which supports different types of Web temporal information (as shown in
Fig.1).

Fig. 1. The Time ontology for Web pages

(a) Update time: the update time of a Web page is defined as the crawled
date of the Web page.

(b) Content time: the content time of a Web page is defined as the
temporal information embedded in the main text of the Web page. We use a
set of intervals to represent the content time.

(c) Explicit time: explicit time can directly be laid in the timeline. Basically,
explicit time is a direct entry in the timeline and need not to be transformed.

(d) Implicit time: implicit time is a type of fuzzy time which can be mapped
as an entry in the timeline with help of some predefined knowledge. Typical
implicit time is holiday name or specific event. For example, the “911” event
implies an implicit date, which is 2001/09/11.

(e) Relative time: relative time is one type of content time of a Web page. It
must rely on another time of the Web page to resolve itself as an entry in the
timeline. For example, the words “in three days” implies a relative time, since
it must rely another date in the text to get the exact date.

(f) Primary time: primary time is one type of content time of a Web page. In
detail, since there are several content times in one Web page, we will find the

Peiquan Jin, Hong Chen, Xujian Zhao, Xiaowen Li, and Lihua Yue

ComSIS Vol. 8, No. 3, June 2011 714

most appropriate time that describes the events of the Web page from the set
of content times. The most appropriate time is defined as primary time.
Generally, when users search in Web through some temporal predicates, they
want to get those pages whose primary time of contents is most close to the
given temporal information.

(g) Secondary time: all the content time of a Web page can be regarded as
secondary time, except the primary time.

These different types of time form a relatively complete framework for the
representation of temporal information in Web pages. Among those types of
time, the update time is always explicit time, since the crawled date of a Web
page is definite. The content time can be explicit, implicit or relative. The
content time usually contains a set of time period, one of which is chosen as
the primary time and the others are secondary time. In our temporal-textual
search engine, we only consider the update time and primary time. The
reason is that when users search in Web through some temporal predicates,
they usually want to get those pages whose primary time is most close to the
given temporal information. Otherwise, the temporal predicates in queries will
have little influence on the filtering of results, because the contents of most
Web pages may contain a lot of and a large range of temporal information.

2.2. The Framework for Temporal-Textual Web Search Engine

Fig.2 shows the system architecture of the temporal-textual search engine.
The search engine contains five modules.

Fig. 2. The system architecture of the temporal-textual search engine

Temporal-

textual Index

Time and
Keywords Extractor

Indexer

Web Pages

Query
Processing

User Interface

Temporal-
textual queries

Crawler

Indexing Temporal Information for Web Pages

ComSIS Vol. 8, No. 3, June 2011 715

2.2.1 Web Crawler

The Web Crawler periodically crawl the Web to gather Web pages for further
information extraction and retrieval. This module is similar with other spiders,
except that it stores the crawled pages according to their crawled dates. For
example, all the pages obtained in 2008/06/26 will be stored in the directory
named “2008-06-26”. In the next extraction step, we will resolve the directory
name to get the update time of a Web page.

2.2.2 Time and Keywords Extractor

In this module, the update time, content time, and the keywords of crawled
Web pages will be extracted. For update time extraction, this module resolves
the directory name and transforms it into standard date format. Since we use
the crawled date as directory name, it is easy to get the update time of each
Web page. For content time, we use temporal constraints to recognize content
time and finally detect the primary time. We first analyze the Web page into a
DOM tree. For each leaf node of the DOM tree, we use the TIMEX2 [13] to
get the temporal information. After this procedure, we use some temporal
constraints to detect the primary time among the whole set of content time.
Temporal constraints are rules for primary time. For example, a temporal
constraint may be “if a date appears in title, then this date is treated as
primary time”. In this module, a set of keywords are also be extracted, which
is based on traditional national language processing tools.

2.2.3 Index Constructor

When primary time and keywords are extracted from Web pages, the Index
Constructor will create a hybrid temporal-textual index for those crawled Web
pages. The hybrid index is based on three basic structures, namely B+-tree,
inverted file, and MAP21-tree. We will discuss indexing techniques in detail in
Section 4.

2.2.4 Query Processing

The Query Processing module processes user queries and returns ranked
results. The main difference between this module and other search engines is
that it supports temporal topological queries and uses new rank algorithm. It
supports absolute temporal relation and relative temporal relation [30]. For
example, it can process such as a user query as “find NBA news after 2008-
06-30”, where an absolute temporal relation BEGIN(2008-06-30) is detected
and processed. We also design a new ranking algorithm to sort the returned
pages. The new ranking algorithm takes into account three factors: temporal
information, text similarity, and page importance.

Peiquan Jin, Hong Chen, Xujian Zhao, Xiaowen Li, and Lihua Yue

ComSIS Vol. 8, No. 3, June 2011 716

2.2.5 User Interface

The User Interface provides input ways for both temporal queries and textual
queries. The textual queries are inputted by a single text box, which is similar
with Google. The temporal queries are inputted by a time period box
consisting of a start date and an end date. The returned results are shown
based on a Timeline [31].

3. Indexer

The indexer is to build hybrid index structures to integrate text keywords and
temporal information of Web pages. The inverted file is a standard technique
for text indexing, so we adopt it as the basic index structure for text keywords
in Web pages. The temporal information contains update time and primary
time, in which the update time is regarded as a time instant and the primary
time is modeled as a time period. The time granularity is set to day. As the
update time is a time instant, we can use B+-tree to organize them or directly
put them into inverted files. For the primary time, we adopt the MAP21-tree [3]
as the basic index structure. MAP21-tree is designed towards time period and
has better performance than other temporal indexes such as R-tree [22].

Table 1. The description of symbols

Symbol Description

U The number of update time in the time datasets

P The number of primary time in the time datasets

K The number of keywords in the lexicon

 UP u
The length of the page list of a update time u

 PP p The length of the page list of a primary time p

 KP k The length of the page list of a keyword k

ListB Storage of page lists

 TreeB x Storage of a tree of x elements

/I OT The time cost of disk accesses

diskT The time cost of one disk access

 TreeT x The time cost to retrieve a tree of x elements

 mgT x The time cost to merge x elements

We study five hybrid methods: (a) inverted file, B+-tree and MAP-21 triple

index, (b) first inverted file then MAP21-tree and B+-tree, (c) first inverted file

Indexing Temporal Information for Web Pages

ComSIS Vol. 8, No. 3, June 2011 717

then MAP21-tree, (d) expanded inverted file, (e) first MAP21-tree then
inverted file. In additional, we emphasize the forth hybrid method expanded
inverted file. Because the index structure of most related work about temporal
text indexing is usually based on inverted file index, expanded inverted file
can be considered as the similar method the previous work on building
temporal index proposed. We will describe the hybrid index structures and
present cost models for each structure. The symbols used in the cost models
are listed in Table 1.

3.1. Inverted File, B+-tree and MAP21-tree Triple Index

In the first mechanism, we build indexes separately for keywords, update time
and primary time, as shown in Fig.3. The keywords are indexed by an
inverted file, which consists of a vocabulary, commonly organized as a B+-
tree, and a posting list representing the information about each Web page.
The update time is indexed by a B+-tree, while the primary time is organized
as a MAP21-tree. Each leaf node of the three trees all points to their
corresponding page lists.

A temporal-textual Web search comprises non-temporal keywords and
temporal query types. Non-temporal query keywords are retrieved similar to
conventional inverted files, temporal query types are passed to the B+-tree for
update time and the MAP21-tree for primary time. The final results are
produced by merging the page lists from three indexes.

Fig. 3. Illustration of inverted file, B+-tree and MAP21-tree triple Index

The storage in disk comprises the three kinds of page lists and three trees,

i.e.
1 1

1 Tree ListStorage B B 
.

The storage of a tree that has x leaf nodes is
   TreeB x O x

 .

Peiquan Jin, Hong Chen, Xujian Zhao, Xiaowen Li, and Lihua Yue

ComSIS Vol. 8, No. 3, June 2011 718

The storage of page lists depends on the length of each list, whose unit is
the identifier of a page. Assuming the length of the list whose entry is keyword

k is  KP k
, the length of the list whose entry is update time u is  UP u

 and the

length of the list whose entry is primary time p is  PP p
, the total length of all

lists is
     

1 1 1

U P K

U P K

u p k

P u P p P k
  

   
.

Then we have      1

1 1 1

U P K

List U P K

u p k

B O P u P p P k
  

 
   

 
   .

So,
1 1

1 Tree ListStorage B B 

       
1 1 1

U P K

U P K

u p k

O U P K O P u P p P k
  

 
      

 
  

     
1 1 1

U P K

U P K

u p k

O P u P p P k
  

 
   

 
  

We can see the main cost of storage in disk is determined by page lists
above and the levels of trees. The storage is mainly depended on the total
length of all page lists.

Assuming there is a query including m keywords and temporal query types.
The online computation includes: (a) the retrieval of the m page lists based on
the m keywords, (b) the retrieval of the n page lists based on the given update
time, (c) the retrieval of the l page lists based on the given primary time, and
(d) the merge of the (m + n + l) page lists to return final results.

The time of loading page lists is determined by the number and total length
of page lists. The merge processing is mainly the total length of these page
lists.

For the tree that in this structure has U leaf nodes, assuming that the query

time is  TT U
.

The merge time for x elements in memory is
 mgT O x

 .

The time to read a page list containing x bytes is
 / sec/I O disk tionT T O x B 

.

 In the above equation, sectionB
 is the page size, which depends on the

file system. In our system it is 4K bytes.

Then,
1 1 1

1 /Tree I O mgTime T T T  

    sec

1

/
i

m

Tree disk U tion

i

T U P K T O P u B


 
     

 


     sec sec

1 1

/ /
i i

n l

disk P tion disk K tion

i i

T O P p B T O P k B
 

   
      
   
 

     
1 1 1

m n l

U i P i K i

i i i

O P u P p P k
  

 
   

 
  

Indexing Temporal Information for Web Pages

ComSIS Vol. 8, No. 3, June 2011 719

For different queries, the query time is determined by three factors. The first
factor is the searching time on the three index trees. The second is the merge
operations of m page lists returned by the keywords query, n page lists
returned by the update time query, and l page lists returned by the primary
time query. The third factor is the time to read the (m + n + l) page lists from
disk.

3.2. First Inverted File Then MAP21-tree and B+-tree

In this mechanism, two structures are maintained (as shown in Fig.4). The
first one is an inverted file, each of whose leaf nodes points to a MAP21-tree
which contains the primary time in the posting lists corresponding to the leaf
node. The second one is a B+-tree used for indexing update time.

Fig. 4. Illustration of first inverted file then MAP21-tree and B+-tree index structure

Assuming  TP t
 is the length of a page list whose entry is a ptime-keyword

p.
The storage in disk includes these page lists, MAP21-trees pointed by K

keywords and one B+-tree besides the page list whose entry is update time
and one B+-tree. So,

Peiquan Jin, Hong Chen, Xujian Zhao, Xiaowen Li, and Lihua Yue

ComSIS Vol. 8, No. 3, June 2011 720

2 2

2 Tree ListStorage B B 

In fact, a MAP21-tree in this structure may not index all P leaves as in the
first structure, so the scale of MAP21-trees is smaller. Thus we can see the
cost of storage in disk is mainly caused by the total length of page lists whose
entry is ptime-keyword and the length of page list whose entry is update time.

If we input m keywords, one primary time period and one update time
instant, the online computation has three parts: (a) finding the m leaf nodes in
the invert file according to the m query keywords, and then searching the
corresponding MAP21-subtrees pointed by the m leaf nodes, and then loading
the corresponding page lists from disk; (b) searching the B+-tree for the
update time, and loading the corresponding page lists from disk; (c) merging
the page lists returned by MAP21-tree and those returned by the update time
B+-tree to generate final results. So,

In the above equation, M is the average number of leaf nodes in all the m
MAP21-trees.

There are three factors that affect the query time. The first is the retrieval of
m MAP21-subtrees. The second is the merge operations of m page lists
returned by m keywords. The third factor is the time to read the (m + n) page
lists from disk, supposing the searching on the update time B+-tree returns n
page lists.

3.3. First Inverted File Then MAP21-tree

Inverted file is built by B+-tree, the leaf node of B+-tree points to the inverted
list of the keyword. In the structure, the leaf node points to a MAP21-tree
which is build on time information of the inverted list of the corresponding
keyword, then the leaf node of the MAP21-tree points to a set of page lists
whose entry is depended on a pair of a keyword and a primary time. So n leaf
nodes of B+-tree points totally to not n page lists but n MAP21-subtree. A pair
of a keyword and a primary time period is named primary-keyword. We can
know every MAP21-subtree in the structure may not index all primary times,
because each word doesn‟t exist in every Web page, then it doesn‟t include
all primary times, the MAP21-subtree is smaller than one unique MAP21-tree
and the size of page lists pointed by leaf node of MAP21-subtree is almost
smaller than MAP21-tree‟s. To update time, we don‟t index the type of time

2 2 2

2 /Tree I O mgTime T T T  

      sec

1

/
i

m

Tree Tree disk T tion

i

m T M T u T O P u B


 
     

 


      sec

1 1 1

/
i

n m n

disk U tion T i U i

i i i

T O P u B O P t P u
  

   
      
   
  

         
1 1

T U

T U

t u

K O P O U O K O P t P u
 

 
      

 
 

Indexing Temporal Information for Web Pages

ComSIS Vol. 8, No. 3, June 2011 721

information using B+-tree like the structure above, it is directly inserted the
detail of a page list of MAP21-tree, which is the difference from the above
index structure. We show the structure in Fig.5.

Fig. 5. The illustration of first inverted file then MAP21-tree(UT = Update Time)

The storage in disk includes these page lists, MAP21-trees pointed by K
keywords and one B+-tree. So,

The main cost of storage in disk is caused by the total length of page list
whose entry is a putime-keyword.

If we input m keywords, one primary time period and a update time instant,
the online computation has three parts: (a) to retrieve the m query keywords
and then search the corresponding MAP21-subtrees by these leaf nodes of m
keywords, and the loading of corresponding page lists m from the disk; (b) to
retrieve the map value of the update time instant from corresponding page
lists n which is in memory from disk; (c) to merge the n page lists. So,

3 3

3 Tree ListStorage B B 
     

1

T

T

t

K O P O U O P t


 
     

 


3 3 3

3 /Tree I O mgTime T T T  

      sec

1 1

/
i

m m

Tree disk U tion T i

i i

m T M T O P u B O P t
 

   
       

   
 

Peiquan Jin, Hong Chen, Xujian Zhao, Xiaowen Li, and Lihua Yue

ComSIS Vol. 8, No. 3, June 2011 722

There are three factors that effect the query time. One factor is the retrieval
of m MAP21-subtrees, the second factor is the merge operations of n page
lists whose entry is the keyword and its corresponding MAP21-tree. The third
factor is the time to read the m pages lists from disk. The pages in a page list
whose entry is a primary-keyword is a subset of pages in the page list whose
entry is the corresponding keyword of primary time period, so the length of a
page list whose entry is a primary-keyword is reduced smaller than the above
structure.

3.4. Expanded Inverted File

Inverted file is built by B+-tree, the leaf node of B+-tree points to the inverted
list of the keyword. Because the index structure of most related work about
temporal text indexing is usually based on inverted file index. The basic
lookup operation in text-indexing is to retrieve the document identifiers of all
document s that contains a particular word w. we consider designing the
similar structure. The difference is the details of the page list pointed by the
leaf node of B+-tree for inverted file. In the page list, there is not only
corresponding set of URLs of Web pages but also the corresponding update
time and the primary time period of one Web page. As shown in Fig.6.

The storage in disk includes the page lists and one B+-tree.

So,
4 4

4 Tree ListStorage B B 

Fig. 6. Illustration of expanded inverted file structure(UT = Update Time, PT = Primary
Time)

   
1

T

T

t

O K O P t


 
   

 


Indexing Temporal Information for Web Pages

ComSIS Vol. 8, No. 3, June 2011 723

The main cost of storage in disk is caused by the total length of page lists
whose entry is a keyword.

Assume there is the input of m keywords, one update time instant and a
primary time period. The online computation includes: (1) the retrieval of the
m keywords and the loading of corresponding page lists from disk; (2) the
merge of the m page lists filtrated the time period not included in and error
time instant in memory. So,

There are also main factors for the query time. One factor is the merge of

m page lists, at the same time, to filtrate the Web pages included wrong time
information that users do not want. The other factor is the time to read the
page lists from disk.

3.5. First MAP21-tree Then Inverted File

As shown in Fig.7, a MAP21-tree is built on all the primary time periods of
Web pages. The leaf node of the tree points to a B+-tree containing the
keywords that are included in the corresponding time periods. The leaf node
of every B+-tree points to a page list. Each page list contains the update time
of Web pages and the corresponding set of URLs.

The main storage in disk includes the page lists, B+-trees pointed by P
primary times and one MAP21-tree. So,

The main cost of storage in disk is caused by the total length of page lists
whose entry is a putime-keyword.

If we input m keywords, one primary time period and a update time instant,
the online computation has three parts: (a) searching the MAP21-tree and
getting n primary time periods; (b) for each time period, retrieving the m
keywords through the invert file, and the loading the corresponding page lists;
(c) merging the m page lists. So,

In the above equation, K is the average number of leaf nodes in the B+-
trees.

There are three factors that affect the query time. One factor is the retrieval
of m B+-subtree, the second factor is the merge operations of page lists. The
third factor is the time to read the n pages lists from disk.

4 4 4

4 /Tree I O mgTime T T T  

      sec

1 1

/
i

m m

Tree disk T tion T i

i i

T K T O P t B O P t
 

   
      

   
 

5 5

5 Tree ListStorage B B 

     
1

T

T

t

P O K O P O P t


 
     

 


5 5 5

5 /Tree I O mgTime T T T  

        sec

1 1

/
i

m m

Tree Tree disk T tion T i

i i

m T K T P T O P t B O P t
 

   
        

   
 

Peiquan Jin, Hong Chen, Xujian Zhao, Xiaowen Li, and Lihua Yue

ComSIS Vol. 8, No. 3, June 2011 724

Fig. 7. Illustration of first MAP21-tree then inverted file (UT = Update Time)

There are some major differences between this structure and the index
structure in Section 3.3, which refers to first inverted file then MAP21-tree. In
the case that the index structure is first inverted file then MAP21-tree, if we
input one keyword, one update time and one primary time period, we will first
find the leaf node of keyword from one B+-tree, then retrieve one
corresponding MAP21-tree to get right page lists from disk. If the index
structure is first MAP21-tree then inverted file, the first step is finding m leaf
nodes of primary time from one MAP21-tree according to the given primary
time period, then retrieve each corresponding B+-tee to get right page lists
from disk. Hence, the main difference between these two structures is the
number of B+-subtree that is read from disk. The number of B+-subtrees will
increase with the increasing of the range of primary time query.

4. Experiments

In this section, we will implemented the five hybrid index structures and make
comparison experiment to show the different performance of those index
structures under different workloads. For simplicity, we use the following
notation to represent the five hybrid index structures discussed in the previous

Indexing Temporal Information for Web Pages

ComSIS Vol. 8, No. 3, June 2011 725

section:
Structure 1: inverted file, B+-tree and MAP-21 triple index.
Structure 2: first inverted file then MAP21-tree and B+-tree.
Structure 3: first inverted file then MAP21-tree.
Structure 4: expanded inverted file.
Structure 5: first MAP21-tree then inverted file.
We mainly evaluate the query performance of the five index structures. In

order to get a comprehensive result, we use five types of queries in the
experiment. Those queries are:

TYPE 1: keyword query
TYPE 2: keywords + update time instant
TYPE 3: keywords + primary time instant
TYPE 4: keywords + update time instant + primary time instant
TYPE 5: keywords + update time period + primary time period
In our experiments, we focus on the index size, I/O number, and run time of

each index structure under given workload and temporal-textual queries. Run
time contains I/O number and memory time, and I/O time costs much longer
than memory time. So we not only compare the run time but also compare
the I/O number.

We used two types of dataset in our experiment: a simulated dataset and a
real dataset. A simulated dataset is more regular than a real dataset, so the
experiment on simulated dataset may achieve the desired result. A real
dataset is more complex, so we experiment on it beside the simulated
dataset. In the following part, we will describe the experimental results on
simulation and real dataset respectively.

4.1. Simulation Experiment

4.1.1 Settings and Dataset

In our simulation experiment, we manually generate a simulated dataset. In
this dataset, each Web page has one update time instant, one primary time
period, five different keywords. All the time included in the dataset is limited in
one year, i.e., the update time is set as a day in 2009, and the primary time is
set as a time period in 2009. For simplicity, we use a number ranging from 1
to 100000 to represent a keyword. As a result, a generated record
representing a Web page is as follows:

<URL, UT, PTs, PTe, key1, key2, key3, key4, key5>

Here, UT represents the update time, PTs and PTe represent the start and
end date of primary time.

In our experiment, we generate three simulated datasets. They contain
1095 thousand records, 1825 thousand records, and 2555 thousand records,
respectively. In the following text, we use T1095, T1825, and T2555 to
indicate the three types of simulated datasets. We want to know whether the

Peiquan Jin, Hong Chen, Xujian Zhao, Xiaowen Li, and Lihua Yue

ComSIS Vol. 8, No. 3, June 2011 726

result may change with the incremental datasets.
We run our experiment in a computer with an Intel Core 2.00 GHz CPU, 2

GB RAM, using Microsoft Window 7.

4.1.2 Comparison of Five Hybrid Index Structures

First, we compare the index size (Mbytes) of five hybrid index structures. We
generate three trace, we show them respectively in Table 2, Table 3 and Table
4.

Table 2, Table 3 and Table 4 show that Structure 1 has the biggest total
index size. The size of Structure 2 is bigger than that of Structure 4 but
smaller than that of Structure 1, and Structure 3 and Structure 5 has smaller
size than Structure 4. So the index size of Structure 3 and Structure 5 is the
smallest in the five index structures.

Table 2. Index size for five hybrid index structures under the T1095 dataset (MBytes)

Keyword

index
Update

time index
Primary

time index
Total index size

Structure 1 684.62 136.86 136.86 958.34

Structure 2 0 136.86 700.96 837.82

Structure 3 0 0 759.78 759.78

Structure 4 802.25 0 0 802.25

Structure 5 759.81 0 0 759.81

Table 3. Index size for five hybrid index structures under the T1825 dataset (MBytes)

Keyword

index
Update

time index
Primary

time index
Total index size

Structure 1 1164.86 228.13 228.13 1612.12

Structure 2 0 228.13 1191.67 1419.80

Structure 3 0 0 1289.69 1289.69

Structure 4 1360.90 0 0 1360.90

Structure 5 1289.74 0 0 1289.74

Table 4. Index size for five hybrid index structures under the T2555 dataset (MBytes)

Keyword

index
Update

time index
Primary

time index
Total index

size

Structure 1 1621.13 319.38 319.37 2259.88

Structure 2 0 319.37 1657.89 1977.26

Structure 3 0 0 1795.14 1795.14

Structure 4 1895.58 0 0 1895.58

Structure 5 1795.21 0 0 1795.21

Indexing Temporal Information for Web Pages

ComSIS Vol. 8, No. 3, June 2011 727

Second, we compare page I/O numbers of the five index structures on the
basis of the five types of queries mentioned before. The page size is set as 4
Kbytes. The total I/O number of every query includes the retrieval of tree
nodes and page lists from disk. We generate 300 queries randomly, each of
which contains three keywords and one update time and one primary time,
and calculate the average I/O number of the 300 queries. The results are
shown in Table 5, Table 6 and Table 7. Additionally, the reason why we choose
three words is that a users' query usually contains one to three keywords in
the Web search environment.

Table 5. Page I/O# for five hybrid index structures under the T1095 dataset

 Type 1 Type 2 Type 3 Type 4 Type 5

Structure 1 1687 1779 1719 1811 2052

Structure 2 1690 1782 40 131 366

Structure 3 1695 1695 40 40 95

Structure 4 1701 1701 1701 1701 1701

Structure 5 8252 8252 37 37 107

Table 6. Page I/O# for five hybrid index structures under the T1825 dataset

 Type 1 Type 2 Type 3 Type 4 Type 5

Structure 1 2550 2707 2604 2762 3185

Structure 2 2554 2712 59 218 629

Structure 3 2561 2561 59 59 159

Structure 4 2571 2571 2571 2571 2571

Structure 5 9105 9105 56 56 171

Table 7. Page I/O# for five hybrid index structures under the T2555 dataset

 Type 1 Type 2 Type 3 Type 4 Type 5

Structure 1 3467 3687 3542 3762 4351

Structure 2 3473 3694 79 300 873

Structure 3 3482 3482 79 79 217

Structure 4 3495 3495 3495 3495 3495

Structure 5 10126 10126 74 74 227

In Table 5, Table 6 and Table 7, we can see the number of blocks read from

disk based on Structure 1, 2, 3 and 4 is similar for Type 1. The number of
blocks based on Structure 3 and Structure 4 is smaller than the other three
structures for Type 2, and the two structures have almost no difference or little
difference. For Type 3, Structure 2, Structure 3 and Structure 5 have obvious
advantages over the other two structures. Structure 3 and Structure 5 have
good performance for Type 4 when reading blocks from disk. Structure 3 and

Peiquan Jin, Hong Chen, Xujian Zhao, Xiaowen Li, and Lihua Yue

ComSIS Vol. 8, No. 3, June 2011 728

Structure 5 are better than the other structures for Type 5. In addition,
Structure 3 is little better than Structure 5 as the increased number of Web
pages.

Table 5 to Table 7 show that Structure 3 has the smallest I/O cost for five
types of queries, Structure 5 is better for three types of queries except Type 1
and Type 2. Structure 3 and Structure 5 both have some subtrees. The
advantage of subtree is that it filters some unmatched Web pages according
to the given keywords or primary time.

Third, we compare the run time of five structures for five types of queries.
Run time is calculated from the input of query to the output of the right URL
set. The queries are the same above. The results are shown in Table 8, Table
9 and Table 10. The unit of time is second.

Table 8. Run time for five hybrid index structures under the T1095 dataset (seconds)

 Type 1 Type 2 Type 3 Type 4 Type 5

Structure 1 2.15 2.35 2.34 2.37 2.36

Structure 2 2.21 2.48 0.06 0.17 0.45

Structure 3 2.33 1.29 0.07 0.07 0.16

Structure 4 2.24 1.26 1.38 1.37 1.66

Structure 5 9.31 8.28 0.06 0.06 0.18

Table 9. Run time for five hybrid index structures under the T1825 dataset (seconds)

 Type 1 Type 2 Type 3 Type 4 Type 5

Structure 1 3.10 3.18 3.17 3.21 3.26

Structure 2 3.15 3.27 0.08 0.25 0.71

Structure 3 3.33 2.05 0.10 0.09 0.25

Structure 4 3.16 1.95 2.08 2.09 2.17

Structure 5 10.30 9.19 0.09 0.09 0.24

Table 10. Run time for five hybrid index structures under the T2555 dataset (seconds)

 Type 1 Type 2 Type 3 Type 4 Type 5

Structure 1 4.05 4.23 4.21 4.22 4.30

Structure 2 4.48 4.62 0.13 0.44 1.30

Structure 3 4.22 3.17 0.14 0.14 0.39

Structure 4 3.52 2.63 2.80 2.80 2.93

Structure 5 11.21 9.90 0.11 0.11 0.34

Run time includes three main parts. They are the time for retrieving

corresponding trees, the time for reading page lists from disk and the time for
merging page lists. The run time in the first and the second part is mainly
determined by the page I/O numbers listed in Table 5 to Table 7. The time for

Indexing Temporal Information for Web Pages

ComSIS Vol. 8, No. 3, June 2011 729

merging page lists is much smaller than the time for reading page lists from
disk. So we can get the similar comparison result as shown in Table 5 to Table
7. We can see the run time based on Structure 1, 2, 3 and 4 is similar for Type
1. Structure 3 and Structure 4 is faster than the other three structures for Type
2. In addition, these two structures have almost no difference or little
difference in run time for Type 2. Structure 2, Structure 3 and Structure 5 have
obvious advantages over the other two structures for Type 3. Structure 3 and
Structure 5 have good performance for Type 4. Structure 3 and Structure 5 are
better than the other structures for Type 5. Additionally, Structure 3 is little
better than Structure 5 as the increased number of Web pages. Generally,
Structure 3 wins the best in the measurement of run time.

4.1.3 Rebuilt Time of Five Hybrid Index Structures

We consider the update cost now. When Web pages update are small, update
pages can be inserted into the specified location directly. Once the Web
pages update are large, rebuild index is a good choice. We compare rebuild
cost of five hybrid index structures here. The result of three different simulated
datasets is shown in Table 11.

Table 11. Rebuild time for five hybrid index structures under the T1095, T1825 and
T2555 dataset (seconds)

 T1095 T1825 T2555

Structure 1 1995.18 7249.17 11465.50

Structure 2 4230.64 8682.05 12781.80

Structure 3 4877.58 8641.93 14312.10

Structure 4 3891.86 8180.55 12537.10

Structure 5 4097.65 7713.05 10610.20

Table 11 shows that the rebuild time of Structure 1 costs least under the
three simulated datasets. Structure 4 and Structure 5 cost longer than
Structure 1, and the rebuild time of Structure 4 and Structure 5 has little
difference. Structure 2 and Structure 3 cost longest. Although the rebuild time
of Structure 3 cost longest, its query performance is very dominant, so we can
ignore the rebuild cost.

4.2. Experiment on real dataset

4.2.1. Settings and Dataset

We choose the real dataset from the corpus of SouGou lab
(http://www.sogou.com/labs/) which records games, sports, IT, domestic and

Peiquan Jin, Hong Chen, Xujian Zhao, Xiaowen Li, and Lihua Yue

ComSIS Vol. 8, No. 3, June 2011 730

international news in May 2008 from some news sites.
The experiment on real dataset is more complicated than the simulation

experiment. In this experiment, we simply describe how to exact the update
time and the primary time in one real Web page. We use the real dataset from
news Web pages, and the news pages have their own characteristics. In the
news, publish time is usually as the update time and primary time is often
appears in the first paragraph. The exaction of primary time is more
complicated than update time. If there is one time instant in the first paragraph,
we consider it as the primary time; If there is two or more time instants in the
paragraph, we consider choosing the nearest instant to update time instant as
primary time; If there are time instants and time periods, we first choose the
time period as the primary time of the Web page.

Keywords of every Web page are exacted by a tool called ICTCLAS
(http://ictclas.org/), which is the most efficient tool for the Chinese words
segmentation. Each word is mapped a value in memory by ELFHASH
function.

We use 250 thousand news Web pages as our real dataset and extract
approximately 210 thousand different keywords. The experimental computer
environment is the same as that in the simulation experiment.

4.2.2. Comparison of Five Hybrid Index Structures

We still use the five query types to measure the index size. Page I/O#, and
run time of each hybrid index structure.

First, we compare the index size (MBytes) of five hybrid index structures.
The results are shown in Table 12.

Table 12. Index size for five hybrid index structures under the real dataset (MBytes)

Keyword

index
Update

time index
Primary

time index

Total
index
size

Structure 1 1307.69 31.25 31.25 1370.19

Structure 2 0 31.25 1315.04 1346.29

Structure 3 0 0 1425.14 1425.14

Structure 4 1528.07 0 0 1528.07

Structure 5 1425.22 0 0 1425.22

Table 12 shows that Structure 1 has the largest size, and Structure 2 is

worse than Structure 4 but better than Structure 1. Besides, the index size of
Structure 3 and Structure 5 is the smallest in the five index structures.
Therefore, we have the same conclusion as what we got in the simulation
experiment.

Second, we compare page I/O# of five index structures for five query types.
The page size is set as 4 KBytes. We choose 300 queries of three keywords
from the search log, one update time and one primary time randomly and
calculate the average of the 300 queries. We show them in Table 13.

Indexing Temporal Information for Web Pages

ComSIS Vol. 8, No. 3, June 2011 731

Table 13. Page I/O# for five hybrid index structures under the real dataset

 Type 1 Type 2 Type 3 Type 4 Type 5

Structure 1 481 745 738 1001 2950

Structure 2 485 749 27 291 1780

Structure 3 486 486 27 27 67

Structure 4 485 485 485 485 485

Structure 5 3788 3788 26 26 79

Table 13 shows that the number of blocks read from disk based on

Structure 1, 2, 3 and 4 is similar for Type 1. The number of blocks based on
Structure 3 and Structure 4 is smaller than those of the other three structures
for Type 2 and the two structures have almost no difference or little difference.
For Type 3, Structure 2, Structure 3 and Structure 5 have obvious advantages
over the other two structures. Structure 3 and Structure 5 have good
performance for Type 4 when reading blocks from disk. Structure 3 and
Structure 5 are better than the other structures for Type 5, in addition,
Structure 3 is little better than Structure 5 as the increased number of Web
pages.

As a result, Structure 3 is the best index structure for five types of query,
Structure 5 is better for three types of queries except Type 1 and Type 2. This
is the same as what we get in the simulation experiment.

Third, we compare the run time of five structures for five types of search.
Run time is the process which is from the input of query user need to the
output of the right URL set. The queries are the same above. We show them
in Table 14. The unit of time is second.

Table 14. Run time for five hybrid index structures under the real dataset (seconds)

 Type 1 Type 2 Type 3 Type 4 Type 5

Structure 1 0.96 1.30 1.31 1.62 3.85

Structure 2 1.03 1.34 0.08 0.41 2.14

Structure 3 1.12 0.53 0.08 0.08 0.14

Structure 4 1.11 0.54 0.60 0.58 0.59

Structure 5 6.00 5.30 0.08 0.08 0.15

4.2.3. Rebuilt Cost of Five Hybrid Index Structures

We consider the update cost now. When Web pages update are small, update
pages can be inserted into the specified location directly. Once the Web
pages update are large, rebuild index is a good choice. We compare rebuild
cost of five hybrid index structures under the real dataset. The result is shown
in Table 15.

Peiquan Jin, Hong Chen, Xujian Zhao, Xiaowen Li, and Lihua Yue

ComSIS Vol. 8, No. 3, June 2011 732

Table 15. Rebuild time for five hybrid index structures under the real dataset
(seconds)

 Structure 1 Structure 2 Structure 3 Structure 4 Structure 5

Rebuilt
time

9146.88 29235.10 31310.14 14170.90 3829.13

Table 15 shows that the rebuild time of Structure 5 costs least, and
Structure 3 has the longest rebuild time. Although the rebuild cost of Structure
3 is larger, compare with the query performance, the rebuild cost is affordable.

5. Related Work

5.1. Temporal Information Extraction and Retrieval

Traditional commercial search engines, such as Google, Bing, and Baidu,
have noticed the value of temporal information in Web search. They all
provide some ways for users to perform a Web search based on time. E.g.
Google uses the daterange option to express a temporal predicate. However,
those commercial search engines only support the crawled dates of Web
pages, i.e., users can only query Web pages towards their creation dates in
database. There are also some other temporal information retrieval systems
which use similar methods as Google to process temporal information of Web
pages, such as Goo [4], Infoseek [5], Namazo [6], Chronica [7], and so on.
Generally, there is a gap between the crawled time and content time of a Web
page. For instance, if a news page reports that in Aug 8th, 2008 the Olympic
Games will be held in Beijing, China, but it is posted and crawled in Jun. 21st,
2006. In such case, “Jun. 21st, 2006” will be regarded as the temporal
information of this news page, but unfortunately it does not report the right
temporal information of the page. To our knowledge, there are few search
systems considering the temporal information embedded in Web pages [1, 7].
The system presented in [8] aims at extracting and indexing the content time
of Web pages, but it only considered the business hour extraction, and can
not deal with implicit time such as “today”, “Tuesday”, “Last Christmas”, and
so on. Other work in Natural Language Processing (NLP) focused on
temporal information extraction and annotation from text. There are a lot of
tools which can extract temporal elements from text. Many of them are
towards English text, such as Lingua::EN::Tagger [9] and TempEX [10]. In
recent years, some temporal extraction tools for non-English languages were
also presented. For example, KTX was a temporal information extracting tool
for Korean text [11], and CTEMP was for Chinese text [12]. Most of temporal
information extraction tool in NLP are based on the temporal information
annotation standard TIMEX2 [13] or TimeML [14]. Though temporal

Indexing Temporal Information for Web Pages

ComSIS Vol. 8, No. 3, June 2011 733

information extraction in NLP is relative mature, little effort has been done to
combine them into Web search engines.

5.2. Temporal-Textual Indexes

The current temporal text indexing is mainly to the versioned document
collections such as Web archives [15, 16]. There have been some indexing
approaches on directly addressing the issue of temporal-textual indexing.
Anick and Flynn [17] have pioneered this research to support versioning in a
full-text index on bitmaps for terms in current versions, and delta change
records to track incremental changes to the index backward over time. The
disadvantage is the costly recreation of previous states. Recent work in [19,
23-26] and their earlier proposals concentrate on the problem of supporting
text-containment queries and neglect the relevance scoring of results. Stack
[20] reports practical experiences made when adapting the open source
search engine Nutch to search Web archives. Weikum et al. address the
temporal dimensions completely by extending the inverted files index to make
it ready for temporal search and implement the time-travel text search in the
FluxCapacitor prototype [27, 28]. In contrast, research in temporal databases
has produced several index structures tailored for time-evolving databases. A
comprehensive overview of the state-of-art is available in [29]. Unlike the
inverted file index, their applicability to text search is not well understood.

Temporal indexes have been deeply studied in temporal database area. In
temporal database, two dimensions of time, which are valid time and
transaction time, may be considered in the index [21]. Therefore, R-tree [22]
and its variation as the access structures for spatial data may also be used as
a temporal index. Among all the temporal indexes proposed before, the
MAP21-tree [3], which utilizes standard B+-trees, provides efficient indexing of
valid time period, and has good performance in time instant query and range
query. The idea of MAP21-tree is to map a two-dimensional time period to a
one-dimensional number and then to use a B+-tree to build the index
structure. So in this paper we choose the MAP21-tree as the basic temporal
index structure.

The index structure of most related work about temporal-textual indexing is
usually based on inverted file index [18]. However, the main difference
between our work and previous researches is that we consider to index both
update time and content time for Web pages, while previous temporal-textual
indexes usually focused on indexing update time, because they are designed
for Web archive system or document versioning.

In addition, in this paper we introduce the concept of primary time. Hence,
the temporal-textual index structures studied in this paper involve keywords,
update time, and content time. Traditional models in information retrieval have
been widely studied since 1970s, among which the Vector Space Model (VSM)
[15, 16] and the Probabilistic Relevance model (PPR) [16, 17, 20] are two
representatives. In VSM, all the keywords are represented into high
dimension feature vectors rather than representing the keywords with binary

Peiquan Jin, Hong Chen, Xujian Zhao, Xiaowen Li, and Lihua Yue

ComSIS Vol. 8, No. 3, June 2011 734

value. The problem of VSM is it considers little about the relationship between
keywords. The BM25 model, as a popular Probabilistic Relevance model [17],
ranks Web pages based on their probability of relevance with the query. This
model needs to know the information about which Web pages are relevant
with the query, which is very difficult to realize in a large dataset.

Pagerank ranking model [21] is an offline ranking algorithm which is based
on the number of Web pages that are linked by other pages in the whole Web,
and the quality of the sources of the links. The problem of Pagerank is it only
considers links but ignores the similarity between the query and Web pages.

Most of time-related Web search now concentrates on Web archive system
[22-24]. A Web archive system is used to store and manage historical Web
pages and then provides evolutional information of the Web. The history of a
Web page is typically captured by the versioning technique, i.e., the new
version of a Web page is stored with an explicit update timestamp. However,
Web archive systems only consider the update timestamps of Web pages.
They do not take into account the content time of Web pages, which is much
different from the research scope of this paper.

In recent years, several researchers have studied ways to find fresh Web
pages. The TimedPageRank algorithm [25] was proposed in a Web-based
literature searching prototype. It uses the posted time of paper to perform the
ranking process. If we map it into a general Web search engine, the posted
time of paper can be regarded as the publication time or update time of Web
page. It can not support queries focusing on the content time. In [26], a
temporal search system for business hours was studied, which tried to answer
such questions „Which shops are open and in which time are they open‟. In
this system, the time granularity was restricted in hour, e.g., „9:00 AM‟.
Besides, it does not support implicit time, such as Christmas, the National Day.
So it is not suitable for general Web search engines.

The language modeling approach for information retrieval was first in 1998
[5]. Its basic idea is to estimates the probability of the query given the
language model of a Web page, and ranks Web pages according to those
probabilities. There are also some variants of this approach [27, 28, 29].
Previous studies have shown that the language model has a better
performance than traditional models such as VSM and BM25, and the
experimental results in this paper also proved this truth.

There are also some recent works focusing on temporal language models
[18, 19, 30], which integrate temporal information into the framework of
language models. In the literature [19], a time-based language model was
proposed, which emphasized that recent documents could be better to satisfy
users‟ needs. However, this model only concentrates on the publication time
of Web pages, and therefore is useful for querying recent events but is not a
general framework. A similar work could be found in [30], which also focused
on the publication time. The recent work in [18] integrated the content time of
Web pages into the language model. In this approach, the researchers
proposed the assumptions of temporal relevance, which first had a filter
process to filter all the Web pages containing no temporal references in their
contents, and then used the triangle distribution model to simulate the

Indexing Temporal Information for Web Pages

ComSIS Vol. 8, No. 3, June 2011 735

probabilities of the querying time appearing in each Web page. However, this
model does not consider the relationship between the keywords and the
temporal references in the page content.

6. Conclusions

In this work we have designed and implemented five hybrid index structures
for temporal-textual Web search and studied the performance of these index
structures. We conduct a comprehensive experiment on both the simulated
and real datasets, and use five temporal-textual query types to evaluate the
index size, page I/O#, and run time of each hybrid index structure. Both the
simulation and real experimental results show that the index structure “first
inverted file then MAP21-tree” has the best performance among the five index
structures. Therefore, it should be an acceptable choice for indexing temporal
and text information in a temporal-textual Web search engine.

In the future research, we will focus on the update performance of the index
structure, and integrate the hash policy to improve the update and search
performance. Another work will be the compression of the index, since the
index size of the hybrid index structure is still too big for Web search.

Acknowledgements. This work is supported by the National Science Foundation of
China (no. 70803001), the Open Projects Program of National Laboratory of Pattern
Recognition (20090029), the Key Laboratory of Advanced Information Science and
Network Technology of Beijing (xdxx1005), and the USTC Youth Innovation
Foundation.

References

1. Alonso, O., Gertz, M., Yates, R., On the value of temporal information in
information retrieval, In Proc. Of SIGIR'07, 35-41. (2007)

2. Jensen, C., Temporal Database Management, PhD Thesis,
http://www.cs.auc.dk/~csj/Thesis/. (2000)

3. Nascimento, M., Dunham, M., Indexing Valid Time Databases via B+-Trees.
IEEE Transactions on Knowledge and Engineering. Vol.11(6), 929-947. (1999)

4. Goo, http://www.goo.ne.jp/
5. Infoseek, http://www.infoseek.co.jp/
6. Namazu, http://www.namazu.org/
7. Deniz, E., Chris, F., Terence, J., Chronica: a temporal Web search engine. In

Proc. Of ICWE'06, 119-120. (2006)
8. Taro, T., Katsumi, T., Temporal and Spatial Attribute Extraction from Web

Documents and Time-Specific Regional Web Search System, in Proc. Of
W2GIS'04, 14-25. (2004)

9. Lingua::EN::Tagger, http://search.cpan.org/~acoburn/ Lingua-EN-Tagger
10. Mani, I., Wilson, G., Robust temporal processing of news. In Proc. of ACL‟00, 69-

76. (2000)

http://www.cs.auc.dk/~csj/Thesis/
http://www.goo.ne.jp/
http://www.infoseek.co.jp/
http://www.namazu.org/

Peiquan Jin, Hong Chen, Xujian Zhao, Xiaowen Li, and Lihua Yue

ComSIS Vol. 8, No. 3, June 2011 736

11. Jang, S., Baldwin, J., Mani, I., Automatic TIMEX2 tagging of Korean news, ACM
Trans. Asian Lang. Inf. Process, Vol.3(1), 51-65. (2004)

12. Wu, M., Li, W., Lu, Q., Li, B., CTEMP: A Chinese Temporal Parser for Extracting
and Normalizing Temporal Information. In Proc. Of IJCNLP'05, 694-706. (2005)

13. TIMEX2. In http://timex2.mitre.org/
14. TimeML. In http://www.timeml.org/site/index.html
15. Hersovici, M., Lempel, R., Yogev, S., Efficient Indexing of Versioned Document

Sequences. In Proc. of ECIR. (2007)
16. Grandi, F., Introducing an Annotated Bibliography on Temporal and Evolution

Aspects in the World Wide Web. SIGMOD Record 33(2), 84-86. (2004)
17. Anick, P., Flynn, R., Versioning a Full-Text Information Retrieval System. In Proc.

Of SIGIR. (1992)
18. Zobel, J., Moffat, A., Inverted Files for Text Search Engines. ACM Comput. Surv.,

Vol.38(2), 6. (2006)
19. Nørvag, K., Nybø, A., DyST: Dynamic and Scalable Temporal Text Indexing. In

Proc. Of TIME. (2006)
20. Stack, M., Full Text Search of Web Archive Collections. In Proc. Of IWAW.

(2006)
21. Kumar, V., Tsotras, J., Faloutsos, C., Designing Access Methods for Bitemporal

Databases. IEEE Trans. Knowl. Data Eng, Vol.10(1), 1-20 (1998)
22. Beckmann, N., Kriegel, H., Schneider, R., Seeger, B., The R-tree: An efficient

and robust access method for points and rectangles. In Proc. Of SIGMOD, 322-
331. (1990)

23. Nørvag, K., Space-Efficient Support for Temporal Text Indexing in a Document
Archive Context. In Proc. Of ECDL, 511-522. (2003)

24. Nørvag, K., Supporting temporal text-containment queries in temporal document
databases. Data Knowl. Eng., Vol.49(1), 105-125. (2004)

25. Nørvag, K., Nybø, A., Improving Space-Efficiency in Temporal Text-Indexing. In
Proc. Of DASFAA, 791-802. (2005)

26. Nørvag, K., Nybø, A., DyST: Dynamic and Scalable Temporal Text Indexing. In
Proc. Of TIME, 204-211. (2006)

27. Berberich, K., Bedathur, S., Neumann, T., Weikum, G., FluxCapacitor: Efficient
Time-Travel Text Search. In Proc. Of VLDB, 1414-1417. (2007)

28. Berberich, K., Bedathur, S., Neumann, T., Weikum, G., A Time Machine for Text
Search. In Proc. Of SIGIR, 519-526. (2007)

29. Salzberg, B., Tsotras, V., Comparison of Access Methods for Time-Evolving
Data. ACM Comput. Surv., Vol.31(2), 158–221. (1999)

30. Li, W., Wong, K., Yuan, C., A Model for Processing Temporal References in
Chinese, In Proc. of Workshop on Temporal and Spatial Information Processing
at ACL'01, 33-40 (2001)

31. Alonso, O., Gertz, M., Yates, R., Clustering and exploring search results using
timeline constructions. In Proc. Of CIKM, 97-106. (2009)

32. Jin, P., Chen, H., Zhao, X., Yue, L., Hybrid Index Structures for Temporal-textual
Web Search, In Proc. of APWeb, LNCS 6612, 271-277, (2011)

http://timex2.mitre.org/

Indexing Temporal Information for Web Pages

ComSIS Vol. 8, No. 3, June 2011 737

Peiquan Jin is an Associate Professor at the School of Computer Science
and Technology, University of Science and Technology of China (USTC). He
received his Ph.D. degree in computer science from University of Science and
Technology of China (USTC) in 2003. After that he spent two years for his
post-doc research in the Department of Electronic Engineering & Information
Science, USTC. He was a Visiting Scientist at the University of Kaiserslautern,
Germany, in 2009. His research interests include Web search, knowledge
management, and databases. Dr. Jin is a member of ACM, and is an editor of
International Journal of Information Processing and Management and
International Journal of Knowledge Society Research. He serves as a PC
member of many international conferences, including DEXA'09-11, WAIM‟11,
NCM'08-11, and NDBC'09-11.

Hong Chen is currently a third-year master student at the School of Computer
Science and Technology, University of Science and Technology of China. Her
main research interests include Web information extraction and retrieval.

Xujian Zhao is currently a PhD candidate at the School of Computer Science
and Technology, University of Science and Technology of China. His research
interests are focused on temporal information retrieval in the Web, especially
on Web-based news search. He spent six months in Alibaba in 2010 for e-
business data mining work, and was a visiting scientist in University of
Saarland, Germany, in 2011. He has published about ten papers in peer-
reviewed conferences and journals.

Xiaowen Li is currently a third-year master student at the School of Computer
Science and Technology, University of Science and Technology of China. Her
main research interests include temporal information extraction and time-
aware ranking for Web pages.

Lihua Yue is a full professor at the School of Computer Science and
Technology, University of Science and Technology of China. She received his
master degree in computer science in 1994 from University of Science and
Technology of China. Her research interests are mainly concentrated on
database and information systems. She is a member of ACM and a senior
member of China Computer Federation (CCF). She has published more than
50 papers in peer-reviewed conferences and journals.

Received: April 07, 2010; Accepted: March 14, 2011.

