
DOI: 10.2298/CSIS100907026S

Parallel Processing on Block-based Gauss-

Jordan Algorithm for Desktop Grid

Yizi SHANG
1
, Guiming LU

2
, Ling SHANG

2,3
, and Guangqian WANG

1

1
 State Key Laboratory of Hydro-science and Engineering, Tsinghua University,

Beijing, China
syz05@mails.tsinghua.edu.cn

2
 North China University of Water Conservancy and Electric Power, School of

Information Engineering, Zhengzhou, China
njshangl@gmail.com

3
 Lifl, University of Science and Technology of Lille, Lille, France

ling.shang@lifl.fr

Abstract. Two kinds of parallel possibilities exist in the block-based
Gauss-Jordan (BbGJ) algorithm, which are intra-step and inter-steps
based parallelism. But the existing parallel paradigm of BbGJ algorithm
just aiming at the intra-step based parallelism, can‟t meet the
requirement of dispatching simultaneously as many tasks as possible to
computing nodes of desktop grid platform exploiting thousands of
volunteer computing resources. To overcome the problem described
above, this paper presents a hybrid parallel paradigm for desktop grid
platform, exploiting all the possible parallelizable parts of the BbGJ
algorithm. As well known to us all, volatility is the key issue of desktop
grid platform and faults are unavoidable during the process of program
execution. So the adapted version of block BbGJ algorithm for desktop
grid platform should take the volatility into consideration. To solve the
problem presented above, the paper adopts multi-copy distribution
strategy and multi-queue based task preemption method to ensure the
key tasks can be executed on time, thus ensure the whole tasks can be
finished in shorter period of time.

Keywords: Gauss-Jordan algorithm, desktop grid, data dependence,
parallelism, hybrid parallel paradigm.

1. Introduction

A good parallel programming paradigm should help to maximize parallel
execution of the algorithm, thus achieving better performance. And the choice
of paradigm is determined by the available parallel computing resources and
by the type of parallelism inherent in the problem [14].

Most of the scientific communities have the desire to minimize economic
risk and rely on consumer based off-the-shelf technology. Exploiting the
significant computational capability available in the internet-based desktop

mailto:syz05@mails.tsinghua.edu.cn
mailto:njshangl@gmail.com

Yizi SHANG, Guiming LU, Ling SHANG, and Guangqian WANG

ComSIS Vol. 8, No. 3, June 2011 740

Grid environment has gained an enthusiastic acceptance within the high
performance computing community [10,18] and Desktop Grid computing has
been recognized as the wave of the future to solve large scientific problems,
especially in the days of multi-core architectures [12] are widely used in
personal computer. Paper [19] evaluates the potential capability of desktop
grid systems. With more and more personal computers with multi-core
architectures join the desktop grid platform, the platform can provide huge
process However, realizing better performance of the parallel algorithm in
desktop grid platform requires exploiting as more thread-level parallelism as
possible and avoiding the influence from computing nodes joining in (leaving
from) the platform without any advance notice. It is important to find a solution
to get maximal parallelism available to an algorithm and find appropriate
schedule mechanism for the paltform, thus achieving its better performance in
the desktop Grid platform.

BbGJ algorithm [1][2][4], as a classical method of large scale matrix
inversion, can be used in hydro-science, weather prediction, aircraft design,
graphic transformation and so on. Though there are many approaches on
large scale matrix inversion such as SCALAPACK library, GOTO library. But
these kinds of methods aren‟t available to desktop grid paradigm. The reason
is that it is impossible to install a special library on each computing nodes. It is
meaningful to make further research on BbGJ algorithm. Serge shows its
parallel version adapting to MIMD [1]. Melab et al not only give us its parallel
version tailoring to MARS but also analyze all the possible parallelism in the
algorithm [2][4]. Aouad et al present its adapted version for grid platform [3, 7].
But these programming paradigm given by Melab and Aouad doesn‟t take
inter-steps parallelism into consideration. More important, they can‟t be
adapted to desktop grid environment for the special characters of desktop grid
systems.

To improve the efficiency of the algorithm, it is important and necessary to
find an approach which can exploit all the inter-steps and intra-step based
parallelism in the algorithm. Thus more tasks can be generated and executed
simultaneously on different computing nodes. Some characters of sequential
BbGJ can be summarized as follows:

1) The number of iterative step of sequential BbGJ algorithm is equal to
that of square root of matrix blocks partitioned.

2) In the BbGJ algorithm, the parts of available parallel granularity are
based on blocks (which are sub-matrices partitioned). data dependence
between blocks plays an important role in deciding which parts of program
can be executed concurrently.

3) All the data input and output are based on blocks and the number of
data input is same in each iterative step of BbGJ algorithm.

4) The object of data input on blocks is regular. Operation ‟1‟,‟3‟,‟5‟ (marked
in sequential BbGJ algorithm in section 2) work on the matrix A while
Operation ‟4‟,‟6‟,‟7‟ work on the matrix B which is the inversion of matrix A
(see Fig.6).

From above, we know data dependence between different blocks is the key
factor to solve the problem presented above. To the convenient of making

Parallel processing on Block-based Gauss-Jordan Algorithm for Desktop Grid

ComSIS Vol. 8, No. 3, June 2011 741

research on data dependence between blocks, we regard the two matrix
(original matrix and its inverted matrix) as an augmented matrix. Through the
analysis on executive process of BbGJ algorithm, we find that a set of three-
tuples (k,i,j) can be used to control all the data dependence in the process of
algorithm execution. In which, k represents the number of iterative step of
BbGJ algorithm, i represents the row of augmented matrix while j is the
column of the matrix. So those three-tuples are used as condition to control
when and which parts can be executed. At the same time, we can find and
mark the key path of depended tasks and the key path can be described
using a series of three tuples. Based on that, this paper presents a hybrid
programming paradigm, considering all the possible parallelism in the
algorithm and appropriate allocation strategy.

The remainder of the paper is organized as follows: The data dependence
in BbGJ will be described in the section two. Section three will show us the
formal description of BbGJ The fourth section will present us a hybrid parallel
programming paradigm for desktop grid system and key path of BbGJ using a
series of three-tuples. The evaluation on hybrid paradigm will be made in
section five. Section six is the conclusion and future works.

2. Data Dependence in the Algorithm

Let A and B be two dense matrices of dimension N, and let B be the inverted

matrix of A, i.e. AB=BA=I. Let A and B be partitioned into a matrix of q×q
blocks of dimension n which n=N/q. The sequential block-based Gauss-
Jordan algorithm is the following:

Algorithm 1

 Input: A,B ←I (n,n), q
 Output: B=A

-1

For k=1 to q do // we call this as “iterative”

 A
k
k,k ← (A

k-1
k,k)

-1
 (1)

 B
k
k,k ← A

k
k,k (2)

 For j=k+1 to q do // we call this as “loop”

 A
k
k,j ← A

k
k,k A

k-1
k,j (3)

 End For
 For j=1 to k-1 do // we call this as “loop”

 B
k
k,j ← A

k
k,k B

k-1
k,j (4)

 End For
 For j=k+1 to q do // we call this as “loop”

 For i=1 to q and i≠k do

 A
k
i,j ← A

k-1
i,j - A

k-1
i,k A

k
k,j (5)

 End For
 End For

Yizi SHANG, Guiming LU, Ling SHANG, and Guangqian WANG

ComSIS Vol. 8, No. 3, June 2011 742

 For j=1 to k-1 do // we call this as “loop”

 For i=1 to q and i≠k do

 B
k
i,j ← B

k-1
i,j - A

k-1
i,k B

k
k,j (6)

 End For
 End For

 For i=1 to q and i≠k do // we call this as “loop”

 B
k
i,k← - A

k-1
i,k A

k
k,k (7)

 End For
End For

2.1. Parallelism in the Algorithm

From algorithm 1, we can find that each step of algorithm is made up of five
loops (the third, fourth, fifth, sixth and seventh operation in algorithm 1) and
two other operations (the first and second). At each step k (k = 1,…, q), the
first operation is used to get the inverted matrices of sub-block matrices; the
second operation executes the operation of assignment from the sub-block of
matrix A to corresponding that of matrix B; the third operation computes the
blocks belonging to the row of the pivot with index j is larger than k and the
fourth operation computes the corresponding parts of matrix B; the fifth
operation calculates the blocks of all columns of the matrix A with index i
above and below that of the pivot row and the forth operation calculates the
corresponding parts of matrix B; At last the seventh operation is used to
compute the blocks of the column number k of matrix B except Bk,k.

The parallelization of the sequential BbGJ algorithm consists of exploiting
two kinds of parallelism: the inter-steps parallelism and the intra-step
parallelism. The intra-step parallelism consists mainly of exploiting the
parallelism involved in each of the five loops (operation „3‟ to operation „7‟ in
algorithm 1). It falls into two categories: the inter-loops parallelism and the
intra-loop parallelism. Inter-steps parallelism is more complex because almost
all the operations in algorithm 1 are restricted by the inter-steps data
dependence. Then we will analyze those data dependence one by one.

2.2. Intra-step based data dependence in the Algorithm

We can describe the data dependence in the Algorithm1 using Fig.1 and
Fig.2. In those figures the blue font represents the read operation. For
example, the blue font „5‟ in the first row, second column of matrix A in Fig.1
represents that: to this block, the first operation is ‟5‟ (see the number marked
in algorithm 1) which is a read operation, i.e. operation „5‟ will read this block
as its input. The same way we can know that the black font „1‟ in the second
row, second column of matrix A in Fig 1 represents that: the operation „1‟ (see
the number marked in algorithm 1) will assign the value obtained by
operation ‟1‟ to this block. Next we will take the block in the second row, first

Parallel processing on Block-based Gauss-Jordan Algorithm for Desktop Grid

ComSIS Vol. 8, No. 3, June 2011 743

column of matrix B in Fig.1 as example to show all the related operations
executed in this block.

Fig.1. Blocks Operated at the Step 2 with q is 5 in Algorithm 1

Fig.2. Blocks Operated at the Step 3 with q is 5 in Algorithm 1

From the Fig.1, we can know three operations executed in this block, of
which blue fonts „4‟ and „6‟ are read operation and black font „4‟ is write
operation. How those operations are executed and what‟s the sequence of
those operations will be explained. To that block said above, operation will be
executed from up to down, i.e. the read operation „4‟ will be executed first,
after that write operation „4‟ begin to execute and the last operation is read
operation „6‟. After the finish of the three operations said above, no more
operation on this block will be executed in this step. Fig.1 shows us all the

Yizi SHANG, Guiming LU, Ling SHANG, and Guangqian WANG

ComSIS Vol. 8, No. 3, June 2011 744

operations happened at the step 2 with q is 5 in the intra-step BbGJ algorithm.
We can also get all the operations information at the step 3 with q is 5 from
the Fig.2.

From Fig.1 and Fig.2 we can know that each of the q steps of the algorithm
has the same number of write operation and the number is q

2
. To the matrix

A ,the write operation on it are operations ‟1‟, ‟3‟ and ‟5‟ while only
operations ‟1‟, ‟6‟ and ‟7‟ act on matrix B. Through the analysis of Fig.1 and
Fig.2, we also can get the data dependence in an iterative step of program
execution. See Fig.3.

Fig. 3. The Data Dependence in a fixed iterative step

2.3. Inter-steps based data dependence in the Algorithm

We will take the data-dependence between step k and step k+1 as example
to show the inter-steps parallelism. Getting the value Ak,j (k=1…q; j=k+1…q)
(respectively Bk,j in which k=1…q; j=1…k-1) of k+1 step in the third operation
(respectively the fourth) needs get the value of block Ak,j (k =1…q; j=k+1…q)
(respectively Bk,j in which k=1…q; j=1…k-1) of k step. As to the fifth
operation, we must know that block Ai,j (i=1…q and i≠k; j=k+1…q) and Ai,k
(i=1…q and i≠k; k=1…q) of k step before we compute the value Ai,j (i =1…q
and i≠k; j= k+1…q) of k+1 step. The situation in the sixth operation is just
like that in the fifth, we can compute the value Bi,j (i=1,…,q and i≠k; j=1…k-1)
of step k+1 after we getting the value Bi,j (i =1…q and i≠k; j=1…k -1) and Ai,k (i
=1…q and i≠k; k=1…q) of step k. In the operation ‟7‟, to get the value Bi,k
(i=1…q and i≠q; k=1…q) of k+1 we must know the value Ai,k (i=1…q and i≠q;
k=1…q) of step k.

To express the inter-steps data dependence, a data dependent graph will
be drawn. First, we define “directed arc” as follows: a directed arc from block
“X” to block “Y” (X, Y is the block of matrix) signifies the operation on block “Y”

Parallel processing on Block-based Gauss-Jordan Algorithm for Desktop Grid

ComSIS Vol. 8, No. 3, June 2011 745

should not be executed before the operations on block “X” are finished. Then
we can describe the data dependence using directed arc (See Fig.5). „Loop 1‟
in the Fig.5 represents the inter-step data dependence of operation „1‟ and
operation „5‟. Operation ‟5‟ at the step 2 must finish before we execute the
operation ‟1‟ at the step 3. Fig 4 shows us all the inter-steps data dependence
existing between step 2 and step 3 with q is 5.

Fig.4. Inter-steps Data Dependence

We have analyzed all the inter-steps data dependence using Fig.4 and the
intra-step based data dependence using Fig.3. Then we can summarize all
the data dependence using Fig .5.

3. Formal Description of Data Dependence

The data dependence is up to write operation on blocks. It is the data
operation that determine when and which blocks can be executed.

Yizi SHANG, Guiming LU, Ling SHANG, and Guangqian WANG

ComSIS Vol. 8, No. 3, June 2011 746

Fig.5. All the Data Dependence in the algorithm. The letter k and k+1 stand for the
step k and step k+1 during algorithm execution. The number of behind letter is used to
show the operations marked in algorithm 1.

Fig.6. The data operation at step 2 with q is 5 in Algorithm 1

Fig.6 shows us that write operation on each block after executing one
iterative step. These operations can be divided into two parts according to its
goal written into (matrix A or matrix B). Operations „1‟, „3‟ and „5‟ are on matrix
A, while operation „2‟, „4‟, „6‟ and „7‟ are on matrix B.

It is the many similarities existing in write and read operation on matrix A
and matrix B both in the intra-step parallelism and in the inter-steps
parallelism that we will take matrix A and matrix B together into account as an
augmented matrix.

Parallel processing on Block-based Gauss-Jordan Algorithm for Desktop Grid

ComSIS Vol. 8, No. 3, June 2011 747

Definition 1: Let
AB(i,j) = A(i,j) i=1…q; j=1…q
AB(i,j+q) = B(i,j) i=1…q; j=1…q
AB

k
i,j represents the block ABi,j at step k for k=1…q. Let us represent

domain AB
k
i,j using a triplet (k,i,j), then we can use the triplet KIJ = {(k,i,j) |

k,i=1…q and j=k+1…k+q} to mark the status of block operation, i.e. KIJ
represents the operation made at the step k in the row i and column j of
augmented matrix ABi,j . For the algorithm, one AB

k
i,j is modified once and

only once per iterative step. So these triplets can be used to describe the
sequence of operation on augmented matrix. Consequently we can use the
triplet as a global signal to control the data write operation, thus the data
dependence in the algorithm can be describe using these triplets.

Definition 2: Let the binary relation ≯ be defined as follows: X≯Y (X,Y is
the block of matrix) if and only if there exists an edge from X to Y in the Fig.5 .
The data dependence can thus be represented by the triplets defined above.
For all the data dependence existing in Fig.5, we have:

Intra-step data dependence can be written as follows:

(k, k, k)≯(k, k, j) k=1… q; j=k+1… q

(k, k, k)≯(k, k, j+q) k=1… q; j=1…k-1

(k, k, j)≯(k, i, j) k=1…q ; j=k+1…q; i=1…q and i≠k

(k, k, j+q)≯(k, i, j+q) k=1…q; j=1…k-1; i=1…q and i≠k

(k, k, k)≯(k, i, k+q) k=1…q; i=1…q and i≠k

Inter-step data dependence can be summarized as follows：

(k-1, k, k)≯(k, k, k) k=2…q

(k-1, k, j)≯(k, k, j) k=2…q; j= k+1…q

(k-1, k, j+q)≯(k, k, j+q) k=2… q; j=1…k-1

(k-1, i, k)≯(k, i, j) k=2…q; j=k+1…q; i=1…q and i≠k

(k-1, i, j)≯(k,i, j) k=2…q; j= k+1… q; i=1…q and i≠k

(k-1, i, j+q)≯(k, i, j+q) k=2…q; j=1…k-1; i=1… q and i≠k

(k-1, i, k)≯(k, i, j+q) k=2…q; j=1…k-1; i=1… q and i≠k

(k-1, i, k)≯(k, i, k+q) k=2…q; i=1…q and i≠k

Now we will summarize binary relation obtained above according to

operation marked in algorithm 1.

(k, k, k)≯(k, k, j) k=1… p; j=k+1…p (1)

(k, k, k)≯(k, k, j) and (k-1, k, j)≯(k, k, j) k=2…p; j=k+1… p (3)

(k, k, k)≯(k, k, j+q) and (k-1,k, j+q)≯(k, k, j+q) k=2… p; j=1… k-1 (4)

(k,k,j)≯(k,i,j) and (k-1,i,k)≯(k,i,j) and (k-1,i,j)≯(k,i,j) k=2…q;j=k+1…q; i=1…

q and i≠k (5)

(k,k,j+q)≯(k,i,j+q) and (k-1,i,j+q)≯(k,i,j+q) and (k-1, i, k)≯(k, i, j+q) k=2…q;

j=1…k-1; i=1…q and i≠k (6)

(k,k,k)≯(k,i,k+q) and (k-1,i,k)≯(k,i,k+q) k=2…p; i=1…p and i≠k (7)

Yizi SHANG, Guiming LU, Ling SHANG, and Guangqian WANG

ComSIS Vol. 8, No. 3, June 2011 748

4. Design of Hybrid Parallel Programming Paradigm

As suggested by Ian Foster [13], parallel processing on an algorithm needs
four distinct stages which are: partitioning, communication, agglomeration and
mapping. Next we will design the parallel paradigm of Gauss-Jordan algorithm
according to those four steps.

Because large scale matrix inversion is hard to be executed directly, so
partitioning is the first thing to do. In this paper, large scale Matrix A has been
partitioned into n×n blocks, referring to Fig.1 and Fig.2. After partitioning, the
objects of all the operations in the algorithm focus on blocks (sub-matrices),
which makes a more complex problem decomposed into some easy-to-solve
sub-problems. No communication between different small sub-problems
exists during the process of program execution. The communication is just
between matrix A and its sub-matrix. The operation on sub-matrix can read
from (or write back to) the corresponding blocks of Matrix A. We can design
this stage of paradigm according to parallel divide and conquer model in
which the sub-problems can be solved at the same time, giving sufficient
parallelism.

Analysis in the Section 2 tells us that inter-steps and intra-step parallelism
exist in this algorithm and data-dependences on different blocks determine
the sequence of different operations on a block (sub-matrix). Fig.1 shows us
the inter-step data dependence in Matrix A and 12 blocks has the same write-
operation (operation „5‟). They have the same operation and there is no
communication between them. I.e. the sub-tasks of the algorithm are
independent and each processor can execute one part of them. So this kind
of operations can use single program multi data paradigm model to deal with.
As to Fig.4, the operation represented by loop „1‟ shows us that before the
operation „1‟ in step 3 begins, the operation „5‟ in step 2 must finish. This kind
of parallelism we can use data pipelining paradigm to deal with them.

As to the stages of agglomeration, mapping. Because all the write-
operations of the algorithm are based on sub-matrix and the results will be
return to the Matrix A after any a step of operation, so agglomeration is
finished when all the operations on sub-matrix are end. After the hybrid
programming paradigm, as much as sub-tasks will be generated and you can
use appropriate schedule stratagem to map the sub-tasks to computing
resources.

Next, a Flow-chart of hybrid programming paradigm can be seen in Fig.7.
Based on the analysis above, a formal description of parallel programming
paradigm of BbGJ for desktop grid platform can be presented using Algorithm
2 in this paper.

Parallel processing on Block-based Gauss-Jordan Algorithm for Desktop Grid

ComSIS Vol. 8, No. 3, June 2011 749

Fig.7. Left part is the flowcharts of the paradigm execution and the right part is the
corresponding data operation. q steps needed to execute in the paradigm and the
execution between step „k‟ and step „k+1‟ is described. In the right parts, „many arrows‟
represents these data can be executed simultaneously.

The series of three tuples in new hybrid program paradigm for desktop grid
system can be described using Fig.8. The Fig.9 shows us the workflow of
different operations in the algorithm. The execution can be described using a
series of three tuples. The key path of those three tuples is the base of setting
the propriety of different operation. Three-level based propriety is set in the
hybrid algorithm for desktop grid system.

Yizi SHANG, Guiming LU, Ling SHANG, and Guangqian WANG

750 ComSIS Vol. 8, No. 3, June 2011

Fig.8. The series of three tuples of BbGJ in desktop grid system

Parallel processing on Block-based Gauss-Jordan Algorithm for Desktop Grid

ComSIS Vol. 8, No. 3, June 2011 751

Fig.9. Workflow of three tupes in the BbGJ

Yizi SHANG, Guiming LU, Ling SHANG, and Guangqian WANG

752 ComSIS Vol. 8, No. 3, June 2011

Hybrid parallel algorithm for desktop grid system
--

Input: A,B ←I (n,n), q

 the logical value of (0,1,1) is set to be true;

for(i=1;i<=q;i++) the logical value of (0,1,i) is set to be true;
for(i=1;i<=q;i++) the logical value of (0,i,1) is set to be true;
for(i=1;i<=q;i++)
for(j=1;j<=q;j++)
the logical value of (0,i,j) is set to be true;
Output: B=A

-1

--

if the logical value of (k, k, k) is true

then A
k
k,k ← (A

k-1
k,k)

-1
;

the priority of this operation is set 1(highest level)
the logical value of (k, k, j) is set to be true;
end if
//
if the logical value of both (k, k, k) and (k-1,k,j) are true

then A
k
k,j ← A

k
k,k A

k-1
k,j (k=2,...,q; j=k+1,...,q)

the priority of this operation is set 1(highest level)
the logical value of (k, k, j) is set to be true;
end if
//
if the logical value of both (k, k, k) and (k-1,k,j+q) are true

then B
k
k,j ← A

k
k,k B

k-1
k,j (k=2,...,q; j=1,...,k-1);

the priority of this operation is set 2 (important level)
the logical value of (k, k, j+q) is set to be true;
end if
//
if the logical value of (k, k, j) and (k-1,i,k) and (k-1,i,j) all are true

then A
k
i,j ← A

k-1
i,j - A

k-1
i,k A

k
k,j (k=2,...,q; j=k+1,...,q; i=1,...,q and i≠k)

the priority of this operation is set 1 (highest level)
the logical value of (k, i, j) is set to be true;
end if
//
if the logical values of (k, k, j+q) and (k-1,i,j+q) and (k-1,i,k) all are true

then B
k
i,j ← B

k-1
i,j - A

k-1
i,k B

k
k,j (k=2,...,q; j=1,...,k-1; i=1,...,q and i≠k)

the priority of this operation is set 2 (important level)
the logical value of (k, i, j+q) is set to be true.
end if
//
if the logical value of both (k, k, k) and (k-1,i,k) are true

then B
k
i,k← - A

k-1
i,k A

k
k,k (k=2,...,q; i=1,...,q and i≠k)

the priority of this operation is set 3 (normal level)
the logical value of (k, i, k+q) is set to be true.
end if
--

Parallel processing on Block-based Gauss-Jordan Algorithm for Desktop Grid

ComSIS Vol. 8, No. 3, June 2011 753

5. Performance Evaluation

In this section, we first evaluate the performance of traditional BbGJ algorithm
in real desktop grid environment. The second experiment is to show the
performance of our adapted algorithm in real desktop grid environment. Then,
we compare the performance of our algorithm and traditional one in ideal
desktop environment. All this experiments are based on YML/XtremWeb
[5][6][9] (middleware) on desktop grid platform through the comparison the
hybrid paradigm with intra-step parallel programming paradigm[3][7][15]. To
state conveniently, we call the hybrid parallel algorithm proposed in this paper
for desktop grid environments as “BbGJ_DG”. Here what we want to
emphasize is that all the experiments are just to show the performance of
hybrid programming paradigm, no special middleware is necessary, you can
choose any middleware what you like. In our experiment, the topology of
computing resources can be described using Fig.10 and the computational
resources can be described as follows:

.........

.........

Lab 101

Lab 303

Bandwidth:
1G

Bandwidth:
100M

administrative
domian

Fig.10. The topology of desktop grid platform

Table 1. Resources in Desktop Grid platform

Site Node CPU/Memory

Lab 303 16 Inter 2.66GHz/512M

Lab 101 64 AMD 1.8 GHz/512M

Yizi SHANG, Guiming LU, Ling SHANG, and Guangqian WANG

ComSIS Vol. 8, No. 3, June 2011 754

5.1. The character of desktop grid environment

Experiment motivation: test the performance of traditional algorithm in the
desktop grid environment.

Experiment Environment: the first case is 30 nodes based desktop grid
platform in Lab 101. The experiment time is set in the morning when the
computing resources are high volatile. The second case is based on 30 nodes
from Lab 101 (20 nodes) and Lab 303 (10 nodes)

Fig.11. The performance of traditional version in desktop grid environment

As we mentioned above, the key character of desktop grid environment is
its volatility [11,17] which causes frequent task migration between computing
nodes. Paper [16] also emulate BbGJ algorithm in the desktop grid
environment and the conclusion is that perhaps 163 days can finish the whole
program. This experiment is also to evaluate the performance of data
dependence based algorithm in desktop grid environment. In this experiment,
we suppose when the execution time is more than 5000 (s), we think the
program can‟t be executed successfully, i.e. the program can be finished in
this environment.

Fig.11 shows us the when the number of tasks is not large, the program
can be finish and when the number becomes larger, the program can‟t be
executed successfully. From this experiment, we can conclude that when
there is data dependence between operations in the parallel algorithm, we
can‟t get better performance using directly adapted version of parallel
algorithm. It is better for us to take volatility into consideration and multi-
copies of the task have to be sent to more computing nodes. Also, the more
important tasks which is in the key path have the priority to be executed. Only

Parallel processing on Block-based Gauss-Jordan Algorithm for Desktop Grid

ComSIS Vol. 8, No. 3, June 2011 755

those factors are considered during allocating tasks to computing nodes, the
better performance can be achieved. The next experiments just to show the
new hybrid parallel algorithm proposed in the paper which takes those factors
presented above can get better performance.

5.2. The performance of “BbGJ_DG” in desktop grid environment.

Experiment motivation: test the performance of “BbGJ_DG” in desktop grid
environment.

Experiment Environment: the first case is 30 nodes based desktop grid
platform in Lab 101. The experiment time is set in the morning when the
computing resources are high volatile. The second case is based on 30 nodes
from Lab 101 (20 nodes) and Lab 303 (10 nodes)

Fig.12. The performance of “BbGJ_DG” in desktop grid environment

The experiment in section 5.1 show that traditional version of BbGJ can‟t
adapt to desktop grid environment and in more case, the program can‟t be
executed successfully. In this paper, a new parallel adapted version which is
called as “BbGJ_DG” takes the character of desktop grid environment into
consideration. The experiments testify that, BbGJ_DG can be executed
successfully on time. The program can be finished in two cases. So the
conclusion can be achieved that BbGJ_DG can adapt to desktop grid
environment. The difference between two cases in this experiment is from the

Yizi SHANG, Guiming LU, Ling SHANG, and Guangqian WANG

ComSIS Vol. 8, No. 3, June 2011 756

experiment environments, which is cluster based desktop grid environment
and while the other is grid based desktop grid environment.

5.3. Time difference between BbGJ_DG and traditional one

Experiment motivation: test the performance of BbGJ_DG with different
granularity. Two methods to change the granularity of parallelism in this
experiment are changing block-size with block-count fixed and changing the
block-count with block-size fixed.

Experiment Environment: 45 nodes in Lab 101 and 15 nodes in lab 303.
The experiment time is set at midnight (begin at 0 o‟clock) at which all the
computing resources can be seen as dedicated computing resources. This
environment can be seed as ideal environment.

Fig.13. Time difference becomes very large when the block-size of matrix increase

From the Fig.13, we can find that when the block-size is not large, the
elapsed time of algorithm based on BbGJ is just a little less than that based
on intra-step paradigm (traditional parallel algorithm). And time gap becomes
larger with the increase of block-size. The reason is that when block-size is
small, more time is consumed in communication and schedule while time

Parallel processing on Block-based Gauss-Jordan Algorithm for Desktop Grid

ComSIS Vol. 8, No. 3, June 2011 757

used to compute is small. So the advantage of BbGJ_DG is not obvious.
From the analysis in section 3 and 4, we know the advantage of BbGJ_DG is
to make full use of computing resources in desktop grid platform, i.e. the
BbGJ_DG can make all the tasks available to be executed to be executed in
parallel. With the increase of block-size, the advantage of BbGJ_DG becomes
more and more obvious. the similar conclusion can be achieved when
changing block-count and fixing the block-size

Time difference becomes larger with the condition of block-count change.
With the increase of block-size, the computing time takes a great proportion
and better concurrency in the BbGJ-DG ensures maximizing parallelism of
program execution, which shortens the wait time comparing with intra-step
paradigm. The same reason can explain the gap of time difference becomes
larger with the increase of block-count. In the program based on BbGJ_DG,
less wait time caused by data dependence is consumed in the process of
program execution. Because hybrid paradigm make all the possible
parallelizable parts executed in parallel and intra-step based paradigm just
ensure the parallelism in the loop without considering the inter-step
parallelism.

6. Conclusion

This paper presents a hybrid parallel adapted version of BbGJ for desktop
grid environment based on the analysis of data dependence in the algorithm.
The new paradigm, which exploits all the possible parallelizable parts of the
algorithm, can help us improve the performance of block-based Gauss-Jordan
algorithm on the desktop Grid platform in which more computing resources
can be harnessed. At the same time, BbGJ_DG take the character of desktop
grid system into consideration. So BbGJ_DG can get better performance in
desktop grid environment. The experiment also testify the good performance
when solving a real problem, and its scalability makes sure the paradigm can
be tailored to more computing resources in desktop grid environment very
easily.

Acknowledgements. This paper is supported by the Open Foundation of State Key
Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No.
2011490804).

References

1 S. Petiton: Parallelization on an MIMD computer with realtime Scheduler. Aspects
of Computation on Asynchronous Parallel Processors, North Holland, (1989).

2 N. Melab, E.-G. Talbi, and S. G. Petiton: A parallel adaptive Gauss-Jordan
algorithm. The Journal of Supercomputing, 17(2):167–185, (2000).

Yizi SHANG, Guiming LU, Ling SHANG, and Guangqian WANG

ComSIS Vol. 8, No. 3, June 2011 758

3 M. Hugues. Algorithmique scientifique distribu grande chelle et programmation yml
sur cluster de clusters. mastersthesis, (2007).

4 N. Melab, E.-G. Talbi, and S. G. Petiton: A parallel adaptive version of the block-
based gauss-jordan algorithm. In IPPS/SPDP, pages 350–354, (1999).

5 O. Delannoy and S. Petiton: A Peer to Peer Computing Framework: Design and
Performance Evaluation of YML. In Third International Workshop on Algorithms,
Models and Tools for Parallel Computing on Heterogeneous Networks, pages
362– 369. IEEE Computer Society Press, (2004).

6 O. Delannoy, N. Emad, and S. G. Petiton. Workflow Global Computing with YML.
In The 7th IEEE/ACM International Conference on Grid Computing, pages 25–32,
(2006).

7 L. M. Aouad and S. G. Petiton. Parallel basic matrix algebra on the grid‟5000 large
scale distributed platform. In CLUSTER, (2006).

8 F. Cappello et al: Grid‟5000: a large scale and highly reconfigurable grid
experimental testbed. In The 6th IEEE/ACM International Conference on Grid
Computing, pages 99–106, (2005).

9 F. Cappello, S. Djilali, G. Fedak, T. Herault, F. Magniette,V. N′eri, and O.

Lodygensky. Computing on LargeScale Distributed Systems: Xtremweb
Architecture, Programming Models, Security, Tests and Convergence with Grid.
Future Generation Computer Science, (2004).

10 S. T. Ian Foster, C. Kesselman. The Grid: Blueprint for a Future Computing
Infrastructure. Morgan Kaufmann, USA, (1999).

11 Ling Shang, Zhijian Wang, Xiaofeng Zhou, Xiaoping Huang, Yongshang Cheng:
TM-DG: a trust model based on computer users' daily behavior for desktop grid
platform . ACM and ACM SIGPLAN Proceedings of the 2007 symposium on
Component and framework technology in high-performance and scientific
computing, Montreal, Quebec, Canada (2007)

12 Miquel Pericàs, Ruben Gonzalez, Francisco J. Cazorla, Adrian Cristal, Daniel A.
Jimenez and Mateo Valero.: A Flexible Heterogeneous Multi-Core Architecture.
Parallel Architecture and Compiler Techniques (PACT-2007)

13 Designing Parallel Algorithms : http://www-unix.mcs.anl.gov/dbpp/text/book.html
14 Parallel Programming Models and paradigms: http://www.buyya.com/cluster/

v2chap1.pdf
15 Maxime Hugues and Serge G. Petiton: A Matrix Inversion Method with

YML/OmniRPC on a Large Scale Platform. VECPAR'2008, Jun 24-27, 2008,
Toulouse, France (2008).

16 S. Petiton and L. Aouad. Large scale peer to peer performance evaluations, with
Gauss-Jordan method as an example. Proceedings of the PPAM2003, fifth
international conference on parallel processing and applied mathematics. Poland,
Sep. 2003. Lecture Notes in Computer Science 3019, 938-945, (2004).

17 Derrick Kondo, Gilles Fedak, Franck Cappello, Andrew A. Chien, and Henri
Casanova. 2006. On Resource Volatility in Enterprise Desktop Grids. In
Proceedings of the Second IEEE International Conference on e-Science and Grid
Computing (E-SCIENCE '06). IEEE Computer Society, Washington, DC, USA, 78-
(2006)

18 Derrick Kondo Eric Wing. 2002. Models and Scheduling Mechanisms for Global
Computing Applications. In Proceedings of the 16th International Symposium on
Parallel and Distributed Processing (IPDPS '02). IEEE Computer Society,
Washington, DC, USA, (2002)

19 D.P. Anderson and G. Fedak. The Computational and Storage Potential of
Volunteer Computing, IEEE/ACM International Symposium on Cluster Computing
and the Grid, Singapore, May 16-19, (2006).

http://portal.acm.org/citation.cfm?id=1297385.1297395&coll=GUIDE&dl=GUIDE&CFID=22860411&CFTOKEN=22352323
http://portal.acm.org/citation.cfm?id=1297385.1297395&coll=GUIDE&dl=GUIDE&CFID=22860411&CFTOKEN=22352323
http://www-unix.mcs.anl.gov/dbpp/text/book.html
http://www.buyya.com/cluster/%20v2chap1.pdf
http://www.buyya.com/cluster/%20v2chap1.pdf
http://boinc.berkeley.edu/boinc_papers/internet/paper.pdf
http://boinc.berkeley.edu/boinc_papers/internet/paper.pdf
http://boinc.berkeley.edu/boinc_papers/internet/paper.pdf

Parallel processing on Block-based Gauss-Jordan Algorithm for Desktop Grid

ComSIS Vol. 8, No. 3, June 2011 759

Yizi Shang is a research assistant of hydro-informatics at Tsinghua
University. He received B.Sc. degree in computers and electrical engineering
from North China University of Water Resources and Electric Power in 2005,
and the M.S and Ph.D degree in hydro-informatics from Tsinghua University
in 2010. He was a research fellow of school of engineering and applied
sciences (SEAS) at Harvard University from 2008 to 2009. His research
interests concentrate on the application of information and communications
technologies in addressing the increasingly serious problems of the equitable
and efficient use of water for many different purposes.

Guiming LU is a professor at school of information engineering in North
China Universtiy of water conservancy and electric power. His research and
interests cover distributed computing, parallel computing, Grid computing.

Ling SHANG is an associate professor at school of information engineering in
North China Universtiy of water conservancy and electric power. His research
and development interests cover distributed computing, parallel computing,
Grid computing and Cloud computing.

Guangqian Wang is a professor of Department of Hydraulic Engineering at
Tsinghua University. His areas of expertise include hydro-informatics and
computation fluid. He has published more than 100 technical papers and
authored or coauthored several books in his areas of expertise. Dr. Wang is
also the director of the State Key Laboratory of Hydro-science and
Engineering, Tsinghua University.

Received: September 07, 2010; Accepted: January 16, 2011.

http://en.wikipedia.org/wiki/Information_technology
http://en.wikipedia.org/wiki/Information_technology
http://en.wikipedia.org/wiki/Information_technology
http://en.wikipedia.org/wiki/Water

