
DOI: 10.2298/CSIS100327029R

Study of Privacy-preserving Framework for Cloud

Storage

Huang RuWei1,2, Gui XiaoLin1, Yu Si1, Zhuang Wei1

1Department of Electronics and Information Engineering,
Xi’an Jiaotong University, 710049, Xi’an, China

ruweih@126.com
xlgui@mail.xjtu.edu.cn

yusiing@126.com
 zhuang2978002@126.com

2School of Computer, Electronics and Information,
GuangXi University, 530004, NanNing, China

Abstract. In order to implement a privacy-preserving, efficient and
secure data storage and access environment of cloud storage, the
following problems must be considered: data index structure, generation
and management of keys, data retrieval, treatments of change of users’
access right and dynamic operations on data, and interactions among
participants. To solve those problems, the interactive protocol among
participants is introduced, an extirpation-based key derivation algorithm
(EKDA) is designed to manage the keys, a double hashed and weighted
Bloom Filter (DWBF) is proposed to retrieve the encrypted keywords,
which are combined with lazy revocation, multi-tree structure,
asymmetric and symmetric encryptions, to form a privacy-preserving,
efficient and secure framework for cloud storage. The experiment and
security analysis show that EKDA can reduce the communication and
storage overheads efficiently, DWBF supports ciphertext retrieval and
can reduce communication, storage and computation overhead as well,
and the proposed framework is privacy-preserving while supporting data
access efficiently.

Keywords: cloud storage, key derivation, Bloom Filter, privacy security,
encrypted keyword retrieval.

1. Introduction

Cloud storage provides on-demand, scalable and QoS guaranteed storage
resource, and users can operate their data anytime and anywhere. Facing the
powerful and appealing advantages of cloud storage, however, a lot of people
and companies are hesitant to put their data in cloud. The main reason is that
people and companies are afraid of loss of control on their data. Many vocal
consultants, including Gartner, have issued warning on the privacy threats in
cloud storage [1]. And there are some incidents of data leakage and loss

Huang RuWei, Gui XiaoLin, Yu Si, Zhuang Wei

ComSIS Vol. 8, No. 3, June 2011 802

which verify people’s fears: Google’s Docs was visited by unauthorized users
because of a software bug in 2009, which caused data leakage [2]; a cloud
storage-provider named MediaMax went out of business in 2008 after losing
45% of client data due to an error of a system administrator [3]; criminals
targeted the main cloud service provider Salesforce.com, and succeeded in
stealing customer emails and addresses using a phishing attack in 2007 [4].
Therefore, to be sustainable, in-depth development, cloud storage must
address the privacy concern, efficient and secure data storage and access.

1.1. Related Work

There have been many works on outsourced storage. Josh [5] developed a
privacy-preserving electronic health record system. Based on symmetric and
asymmetric encryption, it designed two key derivation schemes and
compared the advantages and disadvantages of both. But it didn’t consider
the effects of change of user access right and the dynamic operations of data
which would influence the effectiveness of key derivation greatly according to
the analysis of the following sections. Brian [6] formalized a model called
PDAS for preserving privacy and integrity of aggregate query results. PDAS
supported privacy protection by dividing the owner’s database into n sections

and sending a section to a service provider. Any k (k≦n) of them can

cooperate to recover the entire database, but any smaller group cannot.
PDAS didn’t encrypt the data, so the service provider can get some
information from partial data though it can’t get the whole database. And it
demanded several service providers to cooperate, which is unrealistic. Wang
[7] proposed a scheme to access outsourced data securely and efficiently. It
built data index by binary tree, generated and managed keys by key
derivation, dealt with the dynamics of access right and data by over-
encryption and/or lazy revocation. Its shortcomings include that binary tree
structure couldn’t reflect the logical relation fully by which owner organizes his
data; the scheme of changing user’s access right would make other user
whose access right doesn’t change to update certificate, which will bring
additional communication overhead; the scheme of updating data needs to
store a control block on service provider, which will occupy additional storage
resource and it is uneconomical; it didn’t consider how the dynamics of
access right and data influences the effectiveness of key derivation; it didn’t
think about the collusive attacks in which revoked users cooperate with a
service provider.

All of the above researches didn’t support ciphertext-based retrieval,
namely service provider can be an agent of data owner to retrieve the owner’s
encrypted data according to the user’s encrypted query, which protects the
privacy of owner and user well. As service provider undertakes the jobs of
retrieving data, owner can be relieved from data management, which reflects
the advantage of cloud storage. There have been some works on this subject.
Liu [8] proposed symmetric encryption-based ciphertext retrieval method.
Song [9] proposed an asymmetric encryption-based ciphertext retrieval

Study of Privacy-preserving Framework for Cloud Storage

ComSIS Vol. 8, No. 3, June 2011 803

scheme. Yasuhiro [10] proposed a scheme based on Bloom Filter to disclose
data which match a Boolean query. D.Bonech [11] developed a public key
encryption method which enables Alice to provide a key to the gateway that
enables the gateway to test whether a keyword is in the email without learning
anything else about the email. S.Bellovin [12] proposed a search scheme
based on Bloom Filters and group cipher to support ciphertext search. Wong
[13] designed an asymmetric scalar-product-preserving encryption to conduct
the k-nearest neighbor (KNN) computation on an encrypted database. The
above works have some disadvantages: (1) don’t support data sharing; (2)
have heavy running overheads; (3) sometimes need a semi-trusted third party
to transform query or data. Obviously, those researches can't satisfy the
demands of cloud storage.

Through the above analysis, we can see that a privacy-preserving, efficient
and secure cloud storage framework is needed urgently, which should resolve
the following problems: data index structure, generation and management of
keys, encrypted keywords retrieval, change of users’ access right and
dynamic operations on data, and interactions among participants.

1.2. Related Definitions

Definition1 (Key Derivation[14-15]): Data owner organizes his data in tree
structure, and chooses a random key as root key, then produces sub key by
the following formula: keychild=hash(keyparent||child_number), where hash() is a
public hash function, and the owner only needs to store the root key. When a
user asks for the access authorization, the owner will return a minimum key
group from which all authorized files’ keys can be derived and other
unauthorized files’ keys can’t.

Definition2 (Bloom Filter[16]): Bloom Filter is a probabilistic data structure
to test whether an element is a member of a set. A Bloom Filter is represented
by an m-bit array. There are also k independent hash functions h1,h2,…, hk,
which produce outputs that are distributed uniformly over the range [1…m].

A set S={e1, e2,…,en} is expressed by an m-bit array, which can be realized
by the following two steps:

(1) Insertion: Initially, all bits in the bit array are set to 0. To add an element
ei to a Filter, independent hash functions of the element are calculated and
array bits at position h1(ei), h2(ei), …, hk(ei) are set to 1. If there are n elements
e1, e2,…, en in S, this insertion is repeated for each of the elements.

(2) Query: To determine if an element e belongs to the set S, the bits at
positions h1(e), h2(e), …, hk(e) are checked. If any selected bit is 0, e is
definitely not a member of S. On the other hand, if all the checked bits are 1,
then e is considered as a member of the set.

Since Bloom Filter is a probabilistic data structure, it always has a
possibility of false positive, in which e appears to be in S but actually is no.
There are three key parameters which can affect the false positive rate: the
number of hash functions k, the size of the bit array m and the number of
keywords n. We will compute the false positive rate p by formula (1):

Huang RuWei, Gui XiaoLin, Yu Si, Zhuang Wei

ComSIS Vol. 8, No. 3, June 2011 804

(1)

Formula (1) is minimized when k=(m/n)*ln2, in which case it becomes:

(2)

Suppose the false positive rate is less than 0.01% , then k is set to more
than 14 and m should be more than 20*n. The false positive rates are shown
to be tunable by careful selection of parameters.

The remainder of the paper is organized as follows. Section 2 builds the
cloud storage framework and designs the interaction protocol among
participants. In section 3, several key issues in the framework are discussed.
In section 4, we analyze the performance of the key techniques in the
framework. Finally, section 5 concludes the paper and discusses future
extensions.

2. The Privacy-preserving Cloud Storage Framework

Figure 1 reflects the functional modules of data owner, user and storage
service provider and the interactions among them. The dashed lines show the
functional or structural correspondence of the connected parts. The
interaction protocol includes five steps as following:

Service Provider

Owner

User

Authorization

Encryption Mechanism

Data Storage Structure

Authorization

Query Mechanism

Keys Management

Bloom Filter

Index Management

Access Application

Key Derivation

Index Management

Storage Servers

Data Retrieval

(1)

(2)
(3)

(4)

(5)

Fig. 1. The privacy-preserving cloud storage framework

(1) Owner(O) chooses a root key keyroot for file encryption by symmetric
encryption algorithm E(), a pair of keys (kpub, kpri) for keywords encryption of

Study of Privacy-preserving Framework for Cloud Storage

ComSIS Vol. 8, No. 3, June 2011 805

file by asymmetric encryption algorithm AE(). Before filei is sent to Service
Provider(S), owner generates the key ki of filei by key derivation algorithm and
encrypts filei. Then he encrypts keywords {kw1,kw2,…,kwn} by kpub and
generates a Bloom Filter BFi. At last, he sends encrypted files to service
provider as following:

MSGOS={O,S, Ekos(O, S, Ek1(file1)||BF1||…||Eki(filei)||BFi, tmodified, MAC)}
And kos is the symmetric key between owner and service provider, tmodified
reflects the time of last update of the file, MAC(Message Authentication Code)
is used to verify the integrity of message.

(2) User(U) requests access authorization from owner. And kuo indicates
the symmetric key between user and owner, requestId is the serial number of
request:

MSGUO={U, O, Ekuo(U, O, requestId, MAC)}
(3) Owner verifies user’s identity firstly, and searches on access control list

to determine the files which can be accessed by user, then sends the
minimum key group keymin of those files and the certificate(cert) to user. And
kos is the symmetric key between owner and service provider, tcert indicates
when the certificate is generated, and AR records the update times of the
user’s access right:

cert={Ekos(U, numbermin, tcert, AR, MAC)}
MSGOU={O, U, Ekuo(O, U, requestId, numbermin, keymin, cert, MAC)}

(4) User sends the certificate to service provider and asks for some files
which contain the keyword kw. AE() indicates the asymmetric encryption
algorithm which is used to encrypt keywords by owner, and kpub is the public
key of owner:

MSGUS= {U, S, O, requestId, AEkpub (kw), cert}
(5) Service provider tests the certificate. If it is legitimate, service provider

returns those requested files. Eki(filei) is the file which is encrypted by owner,
and service provider never decrypts it.

MSGSU={S, U, requestId, Eki(filei)||…||Ekt(filet), MAC}
User gets the encrypted files, computes the keys of the files from keymin by

key derivation algorithm, and then decrypts the files. Of course, the files will
not be encrypted if they needn’t be kept secret.

3. Several Key Issues in Framework

3.1. Index Structure based on Multi-tree

Owner organizes his files in accordance with some logical relations. For
reflecting the logical relations, the framework constructs the file index by multi-
tree. When those files are going to be stored in the servers of service
provider, the client software of owner will generate multi-tree index
automatically according to their logical relation, as shown in Fig 2.

Huang RuWei, Gui XiaoLin, Yu Si, Zhuang Wei

ComSIS Vol. 8, No. 3, June 2011 806

In such an index, only leaf nodes correspond to files, and non-leaf nodes
represent folders or categories of files. Owner encrypts the content and name
of a file and changes its’ name as file_number$Ekfile_number(file_name), for
example 1_2_1$Ek1_2_1(Diary), before he sends the file to service provider.
The pretreatment prevents service provider from knowing the content and
name of the file, which protects the owner’s privacy. The service provider will
construct an index for every owner according the files’ numbers, which can
accelerate search on data.

Owneri's Files

(1)

Corporation's Files

(1_1)

Personal Files

(1_2)

File1

(1_1_1)

File2

(1_1_2)

Diary

(1_2_1)
Account Book

(1_2_3)

Operator System

(1_2_2_1)

C Language

(1_2_2_n)
……

Study Materials

(1_2_2)

Fig. 2. The index structure of owner’s files

3.2. The Extirpation-based Key Derivation Algorithm—EKDA

To have a flexible and fine-grained access control, every file has a unique
key. The framework uses symmetric encryption algorithm AES to reduce the
burden of encryption and decryption. But how to manage the numerous keys?
Key derivation can be used to solve the problem. Owner chooses a random
128-bit key as root key, then produces subkey by the following formula:
kchild=hash(kparent||child_number), and hash() is a public hash function, for
example, SHA-1. Owner only needs to store the root key, which is not only
convenient to key management, but also saves the owner’s storage space.
When a user asks for the access authorization, the owner will return the
minimum key group from which all authorized files’ keys can be derived and
other unauthorized files’ keys can’t. Key derivation can reduce the
communication overhead of participants effectively.

But the effectiveness of key derivation will be harmed in some case: when
the access right of a user is changed, owner must use a new key to encrypt
the files if owner don’t want the user to access the files again. The new key
can’t be computed by kchild=hash(kparent||child_number), and the framework
generates the new key by choosing a random 128-bit number. When there
are a lot of files using new key or every penultimate level directory has a file

Study of Privacy-preserving Framework for Cloud Storage

ComSIS Vol. 8, No. 3, June 2011 807

using new key, the effect of key derivation is the same as the situation where
key derivation is not used, namely owner must return N keys if there are N
authorized files.

To solve this problem, we design an extirpation-based key derivation
algorithm(EKDA): owner labels the node with “updated” which will use a new
key because of the change of user access right in the index tree, and creates
a new node in the update tree. The new node has the same number with the
original node and has a new key. The course is shown in Fig 3. When the
node needs to update again, it can change the key of the node in the update
tree. When user requests access authorization, owner will compute the
minimum key group by EKDA. The algorithm is as following:
public String EKDA(Node[] nodes,int types)

 { if(types==0){ // node[0] is updated in first time

 nodes[0].setUpdated();

 Node updatedNode=new

 Node(nodes[0].number,keyRandom());

 updateTree.addNode(updatedNode);

 String key=updateNode.getKey();

 encrypt(file,key);

 }else if(types==1){

 // node[0] is updated in non-first time

 String key=Nodes[0].getUpdatedNode().createNewKey();

 encrypt(file, key);

 }else{ // compute the minimum key group

 String key_min="";

 Node parentNode=null;

 for(int i=0;i<nodes.length;i++){

 if(nodes[i].updated==1)

key_min=key_min+nodes[i].getUpdateNode().getKey();

 else{

 parentNode=findParentNode(i,nodes);

 if(parentNode!=null){

 key_min=key_min+parentNode.getKey();

 Node[] newNodes=nextNodes(nodes,parentNode);

 String s=extirpated_keyderivation(newNodes, 3);

 key_min=key_min+s;

 }else key_min=key_min+nodes[i].getKey();

 }}}

 return key_min;

}

Here is an example. When owner updates the key of file 1_2_2, he will get
the file from service provider and decrypt it by the old key firstly. He asks
service provider to delete the file and mark the node 1_2_2 with “updated”.
Then he encrypts the file’s content and name with new key of the node in the
update tree, and sends the encrypted file to the service provider. When an
authorized user can access the files under the folder 1_2, the owner searches
the index tree and returns the minimum key group which includes key1_2 and

Huang RuWei, Gui XiaoLin, Yu Si, Zhuang Wei

ComSIS Vol. 8, No. 3, June 2011 808

key1_2_2. From the effect of the algorithm, node 1_2_2 seems to be
extirpated from the index tree. The algorithm can reduce the number of
returned key effectively.

K(1)

K(1_1) K(1_2) … K(1_n)

K(1_1_1) K(1_2_1) K(1_2_2)

K(1_2_1_1)

Index tree Update tree

K(1_2_m)

K(1)

K(1_1) K(1_2) … K(1_n)

K(1_1_1)
K(1_2_2)...

Fig. 3. The correspondence between index tree and update tree

3.3. The Double Hashed and Weighted Bloom Filter——DWBF

Bloom Filter is usually used to store a great deal of elements’ information, for
example, ten thousand elements. But in our framework, a file has a Bloom
Filter which is used to record the keywords of the file and help ciphertext
retrieving. And the number of a file’s keywords is always less than 50. So the
Bloom Filter in our framework is a small Bloom Filter.

Although Bloom Filter has good performance to reduce communication and
storage overhead, it brings a lot of computation overhead. For example, when
there are z keywords in a file, and there are k independent hash functions
used in the Bloom Filter, the computation overhead to produce a file’s Bloom
Filter is z*k hash calculations; when the service provider queries a files, he
need to do k hash calculations. So if there are large numbers of files, the
computation overhead of owners and service providers is tremendous. So
how to reduce the computation overhead of Bloom Filter is a key problem of
ciphertext retrieval scheme in cloud.

In addition to reduce computation overhead of Bloom Filter, how to reduce
the cost of false positive of Bloom Filter is another key problem. For example,
when the situation of false positive occurs, 10M file and 256k file will have
different effects on the communication overhead and the user’s satisfaction.
So, we should try to reduce the cost of false positive, and at the same time,
reduce the computation overhead.

(1) Reduction in computation overhead
The computation overhead of Bloom Filter is mainly used to compute hash

functions. So if we can reduce the number of hash functions in a Bloom Filter
and can get the same false positive rate with the standard Bloom Filter, the

Study of Privacy-preserving Framework for Cloud Storage

ComSIS Vol. 8, No. 3, June 2011 809

computation overhead can be reduced. There are some researches on the
problem. P.C.Dillinger and D.Knuth [17-19] introduced the double hashing
technologies, which used two hash functions h1(x) and h2(x) to simulate more
than two hash functions of the form gi(x)= h1(x)+i*h2(x)+f(i). A.Kirsch [21]
evaluated the above methods and got the following results by theoretical
analysis, as shown in formula (3):

kck

n
ep)1(lim /


 (3)

which p is the false positive rate of Bloom Filter, c=m/n, and m is the size of
the bit array and n is the number of keywords. That is to say, when the
number of keywords tends to infinity, the false positive rate of Bloom Filter
with two hashing technique is equal to that of standard Bloom Filter. But in our
framework, the number of a file’s keywords is less than 50, so we want to
know whether two hashing techniques are useful when the number of
elements is small? We designed the following experiments: we choose the
following specific Bloom Filters: the standard Bloom Filter(SBF), the double
hashed Bloom Filter(DBF) which gi(x)=h1(x)+i*h2(x), DBF2 which gi(x)=
h1(x)+i*h2(x)+i

2
, DBF3 which gi(x)= h1(x)+i*h2(x)+i

3
, and DBF4 which gi(x)=

h1(x)+i*h2(x)+i
4
. Then we compute value of k∈ {  2cLn ,  2cLn

} that minimizes
p=(1-exp(-k/c))

k
. Next, for each of the Bloom Filters under consideration,

repeat the following procedure 1000 times: instantiate the Filter with the
specified values of n, c and k, populate the Filter with n ciphertext of

keywords, and then query  p/10 elements not in S, recording the false
positive rate of those Bloom Filters. The result is showed in Fig 4.

Huang RuWei, Gui XiaoLin, Yu Si, Zhuang Wei

ComSIS Vol. 8, No. 3, June 2011 810

Fig. 4. The false positive rate of several Bloom Filters

From Fig 4, we can find when k≥8, the false positive rate of DBF4 is closest

to that of standard Bloom Filter. So we can replace the standard Bloom Filter
with DBF4 (k≥8). If there are k hash functions used in SBF, the computation
overhead of DBF4 is k/2 times as small as that of SBF.

(2) Reduction in cost of false positive
There are some works on the subject. Bruck [21] incorporated the

information on the query frequencies and the membership likelihood of the
elements into its optimal design; Xie [22] dealt with different elements in a
data set depending on their query invalidation cost by clustering elements into
different baskets. Those works are suitable for the owner to manage his own
files. But in our framework, the situation is different. The Owner outsources
his files and the service provider couldn’t know how many files will be stored
in his servers, and how big the files are, and how often the files are visited
before the files are stored. So their methods couldn’t be fit for our framework.

So we design a simple scheme based on file’s size. Of course, query
frequency can be used if the owner knows. But because of data sharing, the
owner may have no idea about it. Suppose service provider divides all files
into three groups according to their sizes, for example, the files whose size
are smaller than 1M belong to the first group, the files whose size is bigger
than 1M and smaller than 64M belong to second group, and the file whose
size is bigger than 64M belong to the third group. And the relation of the false
positive rate of the three groups is: pgroup1= 2*pgroup2= 4*pgroup3. Suppose ki
means how many hash functions the Bloom Filter of groupi uses, we can get
the result: k2=k1+1, k3=k2+1=k1+2.

(3) The formal description of DWBF
Now, we give the formal description of DWBF(Double Hashed and

Weighted Bloom Filter) as following:
DWBF={{{kw11,…,kw1n},{kw21,.., kw 2m},…,{ kw q1,…, kwqz}},

 {w1,w2,..,wq},{k1,k2,…,kq}, {sw1,sw2,…swj}

 gi(x)= h1(x)+t*h2(x)+t
 4
, t∈Z and t∈[0,ki)}

 (n,m,z,q,j∈N, ki∈{k1,k2,…,kq} and kj+1=kj+1(j≥1)).
The definition means there are q files, and every file has some keywords,

wi is the size of filei, and ki is the number of hash functions used in the Bloom
filter of filei ; swi is the weight standard to divide files into j+1 groups according
to file’s size, for example, {1M,64M} means there are three groups, whose
range is size≤1M, 1M<size≤64M, and size>64M respectively.

3.4. Change of Access Right

Service provider builds an access right updating list updateAR[Owner_id] for
every owner firstly. And the node in list has two properties: node.id is the
number of user, and node.times indicates how many times the access right of
the user was updated. After Owneri updates the access right of Userj, he
sends the update massage to service provider with the number of Userj.

Study of Privacy-preserving Framework for Cloud Storage

ComSIS Vol. 8, No. 3, June 2011 811

Service provider receives the massage and searches the list updateAR[i]. If
there is a node with node.id=j, then node.times++; otherwise service provider
inserts a new node into updateAR[i] and set node.id=j and node.times=1.
When Userj requests files, service provider checks whether there is a node
with node.id=j in updateAR[i]. If there is not such a node, service provider
returns the files; if there is such a node, service provider will check whether
node.times is equal to cert.AR. If node.times is equal to cert.AR, he will return
the files; otherwise he will refuse to return the files and remind the Userj that
his certification has expired. The above operations prevent revoked user from
getting files from service provider.

Of course, a revoked user can steal files when the files are transmitted.
There are two methods to solve the problem: one is over-encryption [23] and
the other is lazy revocation [24]. Over-encryption asks the service provider to
encrypt the files before they are transmitted, which can prevent revoked user
getting the files, but not all service providers are willing to provide such a
service and encrypting a batch of files increases the economic burden of
owner. Lazy revocation doesn’t need owner and service provider to do
anything before the file is updated because the stolen file is the same as the
file which the revoked user had authorization to access. The framework
adopts lazy revocation.

3.5. Dynamic Data Operations

Owner has three dynamic operations on data: storage, deletion and update.
When owner wants to store a new file, he will find a new number from the
index tree according to the logical relation and compute the key by
kchild=hash(kparent||child_number), and then encrypt the file and send it to
service provider. When owner wants to delete a file, he will send a delete
message to service provider to delete the file, then mark the node of the file in
the index tree with “deleted”. When there is a new file which wants to use the
number of the deleted file, it will be treated as an updated file.

When the file is updated, the key is valid if there is not a revoked user who
could access the file before. Otherwise we need to do the following
operations: owner marks the node of the file in index tree with “updated”, and
inserts a new node with same number and new key into update tree. Then he
encrypts the content and name of the file with new key, and sends the
encrypted file to service provider. Suppose tmodified indicates when the file was
modified latest and tcert indicates when the user’s certificate was created.
When a user requests the file, service provider compares tmodified and tcert,
cert.AR and node.times of node whose node.id is equal to the user’s number
in updateAR[owner_id]. If tmodified>tcert and cert.AR==node.time, the user is an
authorized user whose key is old, so service provider will return the file and

remind him to get a new key; if tmodified≦tcert and cert.AR==node.time, the user

is an authorized user who’s key is new, so service provider will return the file;
if cert.AR<node.time, the user is an revoked user, so service provider will
refuse to return the file to him.

Huang RuWei, Gui XiaoLin, Yu Si, Zhuang Wei

ComSIS Vol. 8, No. 3, June 2011 812

4. Performance Evaluation

Our research group is designing and developing a campus-level cloud
computing platform named “Qing Cloud”. Based on the above framework, we
developed a system of cloud storage by Java. Now we will evaluate the
feasibility of the framework by analyzing the effectiveness of EKDA and
DWBF, the run-time overhead of the system and privacy security.

4.1. Effectiveness of EKDA

To reflect the real cloud storage environment, the experiment simulates the
interactions among multiple users, multiple owners and multiple service
providers in Qing Cloud. User requests files, and owner changes users’
access right and updates files randomly. Owner stores one hundred files in
different organization structures in servers of service provider. Suppose the
size of minimum key group of EKDA is size1, and the size of minimum key
group of common key derivation is size2. By computing size1/size2, the
effectiveness of extirpation-based key derivation can be verified, which is
showed as Fig 5.

Fig. 5. The effectiveness of EKDA

Figure 5(A) shows the effectiveness when updating the same file in three
different file organization structures; figure 5(B) shows the effectiveness when
updating another file in the above three structures. From figure 5(A) and 5(B),
we can draw the following conclusions: (1) EKDA is very effective because
size1/size2≦1; (2) the organization structure of files has a direct influence on
the effectiveness of the algorithm; (3) the position of the updated file has a
direct influence on the effectiveness of the algorithm; (4) when a file
organization structure is fixed, except those points whose value is 1, the
points always surround a value. The reason is that the effectiveness of the

Study of Privacy-preserving Framework for Cloud Storage

ComSIS Vol. 8, No. 3, June 2011 813

algorithm is (1+m)/n if there are n files in a folder which has m updated files.
So the effectiveness will fluctuate around (1+m)/n.

4.2. Effectiveness of DWBF

We will analyze the performance of Bloom filter from computation,
communication, storage overheads and the false positive rate.

(1) Reduction in Communication overhead and false positive rate
We will compare the communication overhead and false positive rate of

DWBF with those of standard Bloom filter(SBF). Suppose there are two
weight standards to divide the files: (i){1M, 64M}; (ii) {256K, 1M, 64M}, and
k1=8 to all owner. There are 100 files whose size ranges from 1k to 1G
according to some percentages. For example, if the number of files whose
size is smaller than 1M is n1, bigger than 1M and smaller than 64M is n2, or
bigger than 64M is n3, 4:4:4 means n1:n2:n3. Every file has ten keywords.
And p1 is the false positive rate of DWBF, p2 is the false positive rate of SBF,
w1 is the communication overhead of DWBF produced by false positive, and
w2 is the communication overhead of SBF. We repeat the experiment 100
times, and query [10/pmin] elements not in the keywords of 100 files every time.
The result is showed in Fig 6. We can draw the following conclusions: (1) all
of ratios are less than 1, so DWBF is good at reducing false positive rate and
communication overhead; (2) the more big files there is, the smaller the false
positive rate is, which is shown in figure 6(A) and 6(C); (3) the more levels a
weight standard has, the smaller the cost of false positive is, which is shown
in figure 6(B) and 6(D).

Fig. 6. The performance of DWBF compared with SBF

Huang RuWei, Gui XiaoLin, Yu Si, Zhuang Wei

ComSIS Vol. 8, No. 3, June 2011 814

(2) Overhead of DWBF
In the framework, elliptic curve encryption algorithm(ECC) is used as the

asymmetric encryption method which adopts 160-bit key. Owner encrypts
keywords of files by ECC, and then transforms the ciphertexts of a file’s
keywords into a Bloom Filter. Suppose there is a file which has 10, 20, 30, 40,
50 keywords respectively, and the size and the keywords of the file is
generated randomly. The result is showed in Table 1.

Table 1. Overhead of DWBF

 Storage and Communication
Overhead

Computation Overhead

num k ECC(bit) DWBF(bit) DWBF/ECC Owner(ms)
Service

Provider(ms)

10

8 2678 115 0.00043% 0.97 0.1
9 2682 129 0.00048% 1.01 0.09
10 2681 144 0.00054% 1.11 0.11

20

8 5367 230 0.00043% 1.97 0.1
9 5355 259 0.00048% 1.96 0.1
10 5370 288 0.00054% 1.98 0.1

30

8 8049 346 0.00043% 2.85 0.1
9 8046 389 0.00048% 2.9 0.1
10 8044 432 0.00054% 2.93 0.1

40

8 10737 461 0.00043% 3.83 0.1
9 10733 519 0.00048% 3.89 0.1
10 10728 577 0.00054% 3.93 0.1

50

8 13411 577 0.00043% 4.71 0.09
9 13420 649 0.00048% 4.83 0.1
10 13442 721 0.00054% 5.03 0.09

From Table 1, we can draw the following conclusions: (1) DWBF can

reduce the communication and storage overheads greatly; (2) the
computation overhead of DWBF is so small and increases so slow that it
wouldn’t be a burden to owner; (3) DWBF has good query performance
because the computation overhead of query keeps around 0.1ms with the
increment of keywords.

4.3. Run-time Overhead of the System

Run-time overhead of the whole system is measured from three aspects:
communication, computation and storage overhead, as showed in Table 2.

Suppose the amount of files which is authorized to access by Userj is nj,
the amount of files which satisfies Userj’s query is sj; Owneri has mi users, the
size of encrypted filek is fk and the length of its DWBF is bfk, the high of index
tree is h and the nodes in index tree occupies q bits, Owneri has p files, and
the average amount of keywords of every file is g; we adopt 128-bit key,
hash() indicates the computation overhead of hash function, E() and D() is the

Study of Privacy-preserving Framework for Cloud Storage

ComSIS Vol. 8, No. 3, June 2011 815

computation overhead of encrypting and decrypting file by symmetric
encryption, AE() is the computation overhead of encrypting keyword by
asymmetric encryption; len is the key amount in minimum key group
generated by key derivation. The analysis is shown in Table 2. And (O)
indicates that owner undertakes the overhead, the rest may be deduced by
analogy.

Our framework reduces run-time overhead immensely by the following
measures: (1) storage overhead of owner, communication overhead of
number group and key group is reduced greatly by EKDA; (2) According to
the framework, file retrieval is done by service provider instead of owner,
which relieves the computation overhead of owner; (3) DWBF can reduce the
storage, communication and computation overhead as well; (4) To use multi-
tree structure, the length of file’s serial number is shorter than or equal to the
height of the tree, which reduces the communication overhead of number
group.

Table 2. Run-time Overhead of the System

Type Overhead

Communication
Overhead

minimum key group len*128

minimum number group len*(h/2)

file and DWBF

Computation
Overhead

ciphertext retrieval(S) (1/2)*nj*2*hash()

key derivation (O) nj*(1/2)*(1+h)*hash()

key derivation (U) sj*(1/2)*(1+h)*hash()

file and keywords
encryption(O)

p*(E()+g*(AE()+2*hash()))

Storage Overhead

key(O) 128
IndexTree(O) p*h/2*q
IndexTree(S) p*h/2*q*mi

file and bloom Filter

4.4. Privacy Security

From Fig 1, we can find there are several potential threats to users’ privacy:
(1) during the course of files transmitting, outside attacker can steal the files
by eaves-dropping; (2) inside attacker is easy to steal the files because the
files are stored in service provider’s servers; (3) a malicious user and a
service provider cooperate to steal the owner’s files, which is called as
collusive attack; (4) when the user queries, service provider may take a peep
at the content of query which is the privacy of user.

Aimed at the first attack, attacker can’t decrypt the file if he hasn’t key. To
the second attack, owner encrypts the content and name of the files by
symmetric encryption, encrypts keywords of files by asymmetric encryption,
and transforms encrypted keywords into BF by hash functions. So the
encrypted files and BF are stored in servers of service provider. The

Huang RuWei, Gui XiaoLin, Yu Si, Zhuang Wei

ComSIS Vol. 8, No. 3, June 2011 816

symmetric keys are transmitted from owner to user, the private key of
asymmetric keys is only known by owner, and the ciphertexts of keywords are
not stored in service provider. So the insider attacker couldn’t decrypt the files
and keywords.

Against the third attack, owner’s certificate limits the scope of files which
can be accessed by a user. And certificate is encrypted by the symmetric key
Kos, which just can be decrypted by owner and service provider, so it can
prevent the user from retrieving other files which is out of the scope. Because
of the false positive rate of Bloom Filter, service provider may return the files
which don’t meet the query. But the file is in the scope of authorization, so it
won’t leak owner’ privacy. When service provider is in collusion with malicious
users and retrieves files which is out of the authorized scopes, service
provider can find the files meeting the query, but he can’t decrypt those files
because he haven’t the keys.

If service provider wants to know the content of user’s query, it can only do
that by exhaust algorithm because he hasn’t the private key of owner. Support
there are eighty-five letters of which a filename can be made in alphabet,
when there is a five-letter keyword, it spends 30ms to encrypt a string and
retrieve Bloom Filter one time by a computer with 1.86GH dual-core CPU and
2GB memory. So, 2.11 years will be spent to find out the five-letter keyword,
which is considered as difficult calculation. So the privacy of users can be
protected.

From the above analysis, the proposed framework does well in privacy
security.

5. Conclusion

In this paper, we propose a privacy-preserving cloud storage framework,
which includes an interactive protocol among participants, multi-tree index,
extirpation-based key derivation algorithm(EKDA) for key management and
double hashed and weighted Bloom Filter-based search on encrypted
keyword(DWBF), which are combined with lazy revocation to deal with the
changes of users’ access right and dynamic operations of data. The
framework supports the interactions among multiple users, multiple owners
and multiple service providers, but only supports owner-write-user-read. The
experiment and security analysis show that EKDA can reduce the
communication and storage overheads efficiently, DWBF supports encrypted
keywords retrieval and can reduce communication, storage and computation
overhead as well, and the proposed framework is privacy-preserving while
supporting data access efficiently.

To support privacy protection further, the future works include the following
aspects. First, we plan to improve the EKDA to adapt the change of access
right better. Second, we are going to study the encryption techniques which
support ciphertext computing. Finally, we will integrate the cloud storage
system with the virtual machine system which is developed by our research

Study of Privacy-preserving Framework for Cloud Storage

ComSIS Vol. 8, No. 3, June 2011 817

group, and realize a real cloud environment which supports computation and
storage.

Acknowledgments. This work was supported in part by the National Science
Foundation of China under Grant No.60873071, the National Science Foundation of
China under Grant No.91018011, the National High-Tech Research and Development
Plan of China under Grant No.2008AA01Z410, and IBM’ Shared University Research
Plan.

References

1. Gartner: Assessing the Security Risks of Cloud Computing(ID Number:G0015778
2).(2008)

2. Jessica E. V.: Google Discloses Privacy Glitch(2009). [Online]. Available:
http://blogs.wsj.com/digits/2009/03/08/1214/ (current June 2011)

3. Michael K.: MediaMax/The Linkup: When the cloud fails (2008). [Online].
Available: http://blogs.zdnet.com/projectfailures/?p=999(current June 2011)

4. Greenberg, A.: Cloud Computing’s Stormy Side(2008).[Online]. Available:
http://www.forbes.com/2008/02/17/web-application-cloud-tech-intel-cx_ag_0219
cloud.html(current June 2011)

5. Josh Benaloh, Melissa Chase, Eric Horvitz, Kristin Lauter: Patient controlled
encryption: ensuring privacy of electronic medical records. In Proceedings of the
2009 ACM workshop on Cloud computing security. Chicago, IL, USA, 103-
114.(2009)

6. Brian Thompson, Stuart Haber, William G. Horne, Tomas Sander, Danfeng
Yao: Privacy-Preserving Computation and Verification of Aggregate Queries on
Outsourced Databases. In Proceedings of the 9th International Symposium
Enhancing Privacy Enhancing Technologies, Seattle, WA, 185-201. (2009)

7. Weichao Wang, Zhiwei Li, Rodney Owens, and Bharat Bhargava: Secure and
Efficient Access to Outsourced Data. In Proceedings of the 2009 ACM workshop
on Cloud computing security. Chicago, Illinois, USA, 55-66. (2009)

8. Qin Liu, Guojun Wang, Jie Wu: An Efficient Privacy Preserving Keyword Search
Scheme in Cloud Computing. In Proceedings of the 2009 International Conference
on Computational Science and Engineering. Vancouver, BC, Canada, 715-720.
(2009)

9. Dawn Xiaodong Song, PDavid Wagner, PAdrian Perrig. Practical Techniques
for Searches on Encrypted Data. In Proceedings of the 2000 IEEE Symposium on
Security and Privacy. Berkeley, California, USA, 44-55. (2000)

10. Yasuhiro Ohtaki: Partial Disclosure of Searchable Encrypted Data with Support for
Boolean Queries. In Proceedings of the 2008 Third International Conference on
Availability, Reliability and Security. BARCELONA, SPAIN, 1083-1090. (2008)

11. D.Bonech, G.D.Crescenzo, R.Ostrovsky, and G.Persiano: Public-key encryption
with keyword search. In Proceedings of Eurocrypt 2004. Interlaken, Switzerland,
506-522. (2004)

12. S. Bellovin and W.Cheswick: Privacy-enhanced searches using encrypted Bloom
Filters[Online]. Cryptology ePrint Archive, Report 2004/022. Available:
http://eprint.iacr.org/2004/022.pdf. (2004)

13. Wai Kit Wong, David Wai-lok Cheung, Ben Kao, Nikos Mamoulis: Secure kNN
computation on encrypted databases. In Proceedings of the 35th SIGMOD

Huang RuWei, Gui XiaoLin, Yu Si, Zhuang Wei

ComSIS Vol. 8, No. 3, June 2011 818

international conference on Management of data. Providence, Rhode Island, USA,
139-152. (2009)

14. M.J.Atallah, M.Blanton, N.Fazio, and K.B.Frikken: Dynamic and Effi cient Key

Management for Access Hierarchies In Proceedings of the 12th ACM conference
on Computer and communications security. Alexandria, VA, USA, 190–202.
(2005)

15. RuWei Huang, Si Yu, Wei Zhuang, XiaoLin Gui: Design of Privacy-Preserving
Cloud Storage Framework. In Proceedings of the 9th International Conference on
Grid and Cloud Computing. Nanjing,China, 128-132. (2010)

16. B.Bloom: Space/time Trade-offs in Hash Coding with Allowable Errors.
Communications of the ACM, 13(7), 422-426. (1970)

17. P.C. Dillinger and P. Manolios: Bloom Filter in Probabilistic Verification. In
Proceedings of the 5th International Conference on Formal Methods in Computer-
Aided Design. Austin, Texas, USA, 367-381. (2004)

18. P.C. Dillinger and P. Manolios: Fast and Accurate Bitstate Verification fro SPIN. In
Proceedings of the 11th International SPIN Workshop on Model Checking of
Software. Barcelona, Spain, 57-75. (2004)

19. D.Knuth: The Art of Computer Programming, Volume 3: Sorting and Searching.
Addison-Wesley. (1973)

20. A.Kirsch and M.Mitzenmacher: Building a Better Bloom Filter. In Proceedings of
the 14th Annual European Symposium on Algorithms. Zürich, Switzerland, 1-33.
(2006)

21. Jehoshua Bruck, Jie Gao, and Anxiao Jiang. Weighted Bloom Filter. The 2006
IEEE International Symposium on Information Theory. Pasadena, CA, 2304-2308.
(2006)

22. Kun Xie, Yinghua Min, Dafang Zhang, Gaogang Xie, and Jigang Wen: Basket
Bloom Filters for Menbership Queries. TENCON 2005. Melbourne, Australia, 1-6.
(2005)

23. S.D.C.di Vimercati, S.Foresti, S.Jajodia, S.Paraboschi, and P.Samarati: Over-
encryption: Management of Access Control Evolution on OutSourced Data. In
Proceedings of the 33th international conference on Very large databases.
Vienna, Austria, 123-134. (2007)

24. M.Kallahalla, E.Riedel, R.Swaminathan, Q.Wang, and K.Fu. Plutus: Scalable
Secure File Sharing on Untrusted Storage. In Proceedings of the FAST '03
Conference on File and Storage Technologies. San Francisco, California, USA,
29-42. (2003)

Huang RuWei received BSc and MSc in Computer Science from GuangXi
University in China in 2001 and 2004, respectively. From 2007, she studied as
a PhD student in Xi’an Jiaotong University in China. She has been active in
Network Computing, Service Computing and Network Security. She has
published 3 articles in international and national journals, 3 articles in the
proceedings of international conferences.

Gui XiaoLin graduated with a BSc in Computer at Xi’an Jiaotong University of
China, and received MSc and PhD in Computer Science from Xi’an Jiaotong
University in China in 1993 and 2001, respectively. Since joining Xi’an
Jiaotong University in 1988, he has been an active researcher in Network

Study of Privacy-preserving Framework for Cloud Storage

ComSIS Vol. 8, No. 3, June 2011 819

Computing, Network Security, and Wireless Networks. His recent research
covers secure computation of open network systems (include Grid, P2P,
Cloud); dynamic trust management theory; development on community
network. He has published more than 80 articles in international and national
journals. He was the recipient of New Century Excellent Talents in University
of China in 2005.

Yu Si received BSc in Computer Science from ShaanXi University of Science
and Technology in 2008. From 2008, he began a continuous academic
project that involves postgraduate and doctoral study in Xi'an Jiaotong
University. He has been active in Cloud Computing and Virtualization security.
He has published 1 article in national journal.

Zhuang Wei received BSc in Computer Science from Xi’an Jiaotong
University in 2010. From 2010, he studied as a Graduate student in Xi’an
Jiaotong University in China. He has been active in Cloud Computing and
Virtualization security.

Received: March 27, 2010; Accepted: January 19, 2011.

