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Abstract. Local features have been proved to be effective in 
image/video semantic analysis. The BOVW (bag of visual words) 
scheme can cluster local features to form the visual vocabulary which 
includes an amount of words, where each word is the center of one 
clustering feature. The vocabulary is used to recognize the image 
semantic. In this paper, a new scheme to construct semantic-binding 
hierarchical visual vocabulary is proposed. Some attributes and 
relationship of the semantic nodes in the model are discussed. The 
hierarchical semantic model is used to organize the multi-scale 
semantic into a level-by-level structure. Experiments are performed 
based on the LabelMe dataset, the performance of our scheme is 
evaluated and compared with the traditional BOVW scheme, 
experimental results demonstrate the efficiency and flexibility of our 
scheme.  

Keywords: local feature, bag of visual words, image semantic 
analysis, visual vocabulary. 

1. Introduction 

With the rapid development of Internet and multimedia technology, 
explosively growing amount of images and videos can be acquired from the 
web or relevant database. The content-based image/video classification will 
play more and more important role in the field of images/videos processing. 
Human can easily figure out different genres of images/videos just by 
watching them. However, for the computer, it is a quite complicated work to 
automatically recognize the semantic of a image/video. How to use computer 
to analyze image semantic has been discussed and researched as a hot topic 
in this field. The research on image/video semantic analysis is closely 
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connected with many applications, such as: content-based image or video 
retrieval system, the utility in intelligent traffic and safety surveillance, and so 
on.  

A lot of work has been concentrated on some global features extracted 
from images such as color and texture [1, 2, 3]. An image can be represented 
by a global feature vector. Then the problem of analyzing image semantic is 
turned into the problem of supervised classifying. Support Vector Machine 
(SVM) can be used to judge whether an image belong to one semantic or the 
other based on amount of training features. Though the use of global feature 
need only cheap computing cost, its effectiveness is poor and reveals 
unsatisfied performance. 

Local feature has been studied as an improvement on global feature. DoG 
(Difference-of-Gaussian) [4] is used to detect interest points from image and 
then SIFT (Scale Invariant Feature Transform) [4] is used to extract a vector 
of feature from each of those points. Feature is described by the pixel values 
around the interest point. In this way, an image can be represented as a 
collection of feature vectors. An easy way to analyze whether image includes 
some object is to match the feature collection of object image with the feature 
collection of testing image [5, 6]. Some matching structure can be used in 
this process to decrease the cost. But it is still not very efficient in recognizing 
multi-object or complicated semantic. 

Recently a new model called BOVW (bag of visual words) which reflected 
on the BOW (bag of words) model in document retrieval has been discussed 
widely [7, 8, 9]. BOVW also takes advantage of local feature of image. Like 
the way BOW works, BOVW can be used to construct a visual vocabulary of 
an image. The building of visual vocabulary is done by clustering all the 
feature vectors extracted from the training images. Clustering generated a 
certain number of cluster centers in feature space. In this way, each cluster 
center is regarded as a word in visual vocabulary. Each feature vector 
extracted from image can find its nearest word in vocabulary. Then an image 
can be represented as a word vector in which each dimension number means 
that whether the image contains the word. The training image is used to train 
the SVM for the classifying task. Some details about the BOVW model such 
as weighting strategy, vocabulary size has been discussed in several papers 
[10, 11] as well. Though BOVW model has been proved to be more effective 
on problem of image objects or semantic analysis, it still has at least two 
drawbacks: 1) the features which are used to construct visual vocabulary 
have no semantic connection. This leads to the loss of semantic information 
of visual vocabulary, which the noise feature may have negative influence on 
the result of image analysis; 2) there is not an efficient structure which can fit 
large vocabulary. Small semantic analysis may be solved smoothly by the 
traditional BOVW model, but when there is need for complicated semantic 
recognition or multi-level semantic analysis, the traditional BOVW model is 
not enough.  

Our new work aims at the drawbacks about the traditional BOVW model 
mentioned above. The work in [12] proposed the way of semantic-preserving 
BOVW model. Several codebooks which belong to certain semantic can be 
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constructed firstly, then image can be analyzed by judging whether any 
feature extracted from it belonged to any codebook. In our method, a new 
hierarchical semantic model is proposed, which can be applied in 
complicated semantic analysis. Based on the hierarchical semantic model, 
the semantic-binding visual vocabulary tree can be constructed. We define 
some attributes and relationship of the semantic nodes in the model. The 
hierarchical semantic model is used to organize the multi-scale semantic into 
a level-by-level structure. Experiments demonstrate the performance of our 
scheme is efficiency and flexibility. 

The experiments are performed based on the LabelMe image dataset from 
MIT [13] which contains 11,282 objects from 495 categories. The LabelMe 
dataset is an online interactive image database, from which users can obtain 
the annotation of objects in each image. The annotation is very useful for 
helping us to build the semantic-binding visual vocabulary tree. 

The rest of this paper is organized as follows: In Sect. 2, some related 
work which would be involved in our method is introduced. Sect. 3 presents 
the definitions of semantic attributes and semantic relationship, and the 
scheme of building hierarchical semantic model. Sect. 4 discusses the 
construction of semantic-binding visual vocabulary tree. Sect. 5 gives the 
method to analyze image semantic using our model and vocabulary tree. 
Sect. 6 shows the experimental results and analysis. In Sect. 7, the 
conclusion and some future direction are presented. 

2. Related Work 

2.1. Sparse Image Interest Point Detecting 

Sparse image interest point is compared to the dense image interest point 
which regards each point of image as the target. Ideal sparse image interest 
point is scale-invariant, affine-invariant and position-invariant. There are 
corner-like point detector such as Harris Laplas [14] and blob-like point 
detector such as LoG (Laplacian of Gaussian). Our work uses the DoG [4] in 
which the detection process involved not only the image itself but also the 
neighboring images in the scale space. DoG finds the interest point by 
determining whether it is a local maximum compared with 26 surrounding 
points (9 points in pre-scale image, 9 points in post-scale image and 8points 
in current image) and at the same time the point should be the maximum in it 
scale curve. 
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2.2. Local Feature Extraction 

Local feature extraction computes on the surrounding pixel values of the 
interest point and puts out a vector representing local feature. SIFT (scale 
invariant feature transform) [4] has been regarded as an excellent local 
feature in image analysis compared to other versions of local feature. In our 
work, we adopt SIFT to extract local features from images. For each interest 
point in image, SIFT choose 16 areas around it. The direction of every point 
in area is calculated out by its surrounding pixels. For all points in each area, 
all the directions are clustered into 8 bins. In this way, each area has eight 
numbers meaning the histogram of its direction. For this interest point, the 8-
bin histogram of direction from 16 areas forms its final 128-dimensional local 
feature vector. 

2.3. Distance metric learning with contextual constraints 

Clustering features in traditional BOVW model use the Euclidean distance to 
calculate the distance between two feature vectors. Though computing 
Euclidean distance needs less cost, it lost the contextual information of 
feature. It is because the Euclidean distance does not take the semantic class 
of a feature into consideration. Distance metric learning can help to solve this 
problem. Distance metric learning takes advantage of the contextual 
constraints of feature. The so-called contextual constraint is the class 
information of feature [15, 16]. With the contextual constraints, a matrix A 
can be acquired through training. Then the distance of any two feature 
vectors can be calculated by the Mahalanobis distance as follows: 
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where x  and y  are two feature vectors, A is learnt distance metric. 

In our work we used the DCA (Discriminative Component Analysis) 
distance metric learning [17]. The basic idea of DCA is to learn an optimal 
data transformation that leads to the optimal distance metric by both 
maximizing the total variance between the discriminative data class and 
minimizing the total variance of data instances in the same class. DCA firstly 

calculates two covariance matrices bC  and wC  which describe the total 

variance between data of the discriminative class and the total variance of 
data among the same class respectively. The two matrices are computed as 
follows: 

T

ij

n

j Di

ij

b

b mmmm
n

C )()(
1

1

 
 

 (2) 

 



Multi-Scale Image Semantic Recognition with Hierarchical Visual Vocabulary 

ComSIS Vol. 8, No. 3, June 2011 935 

T

jji

n

i
jji

n

j
j

w
mxmx

nn
C

j

)()(
11

11

 


 (3) 

In formulas (2) and (3), ||
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 is the mean vector of the j-th 

class, x ji  is the i-th data instance in j-th class, and D j is the discriminative 

set in which each element is one of n class that has at least one negative 
constraint to the j-th class. DCA resolves the learning task by the optimization 
as follows: 

ACA

ACA
AJ

w

T

b

T

A
maxarg)(   (4) 

In formula (4), A  is the optimal transformation matrix to be learned. When 

A  is obtained, the optimal Mahalanobis matrix can be calculated by 
TAAM  . 

3. Hierarchical Semantic Model 

A lot of work has been done on understanding image semantic by different 
kinds of image features, either global or local feature. Less attention is paid 
to the semantic itself. Our work will give out a new semantic model first which 
contains some attributes and the relationship between semantics. 

3.1.  Definitions of Semantic Attributes and Semantic Relationship 

We have given some brief introduction about the model in our early work 
[18]. Hierarchical Semantic Model is used to construct all the image 
semantics in a semantic space. The constructing process is to place an 
image semantic into the semantic space and to make correct relationship 
with other image semantics. When the construction process is done, the 
semantic model is a multi-layer structure. The upper layer is for bigger image 
semantic and the lower layer is for smaller image semantic. The ‘big’ and 
‘small’ are just comparative terms. Fox example, semantic of ‘wheel’ is a 
small semantic when it is compared to semantic of ‘car’. But semantic ‘car’ is 
not big enough if you take semantic of ‘street’ into consideration. Actually 
what is more important is not whether a semantic is big or small, but is the 
relationship between different semantics. Just like the example mentioned 
above, ‘car’ should have ‘wheels’, and probably there are many cars on the 
‘street’. 
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First we give out some definition of semantic attributes here. We classify 
all the semantic into two classes. One class is called the ‘combination 
semantic’ and the other is called ‘singleton semantic’. Some notations are be 
used here: 1)  stands for the scale or granularity of the semantic; 2) 

 stands for the combination of several semantic; 3)  stands for the 

union of several semantic or semantic set. 
Definition 1. Singleton semantic: singleton semantic describes some 

simple semantic which has no necessity to be destructed again. An example 
of singleton semantic is semantic of ‘car’. You still can destruct the semantic 
of ‘car’ into semantic of ‘wheel’ or semantic of ‘windscreen’. But ‘wheel’ and 
‘windscreen’ is too simple to form a visual vocabulary individually. This is 
also what ‘no necessity’ stands for.   

Definition 2. Combination semantic: combination semantic describes 
some comparatively complicated semantic which are formed by the 
combination or union of several smaller semantics. An example of 
combination semantic is semantic of ‘street’. Semantic of ‘street’ can be 
composed of the semantic of ‘road’ and semantic of ‘car’ or semantic of 

‘house’ and so on. If S stands for combination semantic, s  stands for the 

semantic which )()( Ss   , then 
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Then we will discuss the definition of relationship between semantics. 
There are mainly two kinds of relationship between image semantics: 
relationship of combination and relation of belonging-to. 

Definition 3. Relationship of combination: relationship of combination 
describes relationship between some smaller semantic and some bigger 
semantic. All smaller semantic make up the bigger semantic. An example of 
this kind of relationship is semantic of ‘street’ (bigger semantic) and semantic 
of ‘car’, semantic of ‘road’, semantic of ‘house’ (three smaller semantics). 

Those three smaller semantic form the bigger semantic of ‘street’. If S stands 

for up-level semantic and s  stands for the down-level semantic, then the 

relation ship of combination can be described by 



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. 

Definition 4. Relationship of belonging to: relationship of belonging to also 
describes relationship between some smaller semantic and some bigger 
semantic. The difference from the relationship of combination is that bigger 
semantic does not need all the smaller semantic. An example is semantic of 
‘vehicle’ (bigger semantic) and smaller semantic of ‘car’ and smaller semantic 
of ‘truck’. Semantic of ‘car’ belongs to semantic of ‘vehicle’ no matter whether 

there exists semantic of ‘truck’. If S stands for up-level semantic and s  

stands for the down-level semantic, then the relation ship of combination can 

be described by 
n

i

isS
1

 . 
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The following three more definitions are for the relational attributes of the 
semantic. 

Definition 5. Relationship of mutual exclusion: relationship of mutual 
exclusion describes the relation of two semantics which can’t be co-existed. 
An example is semantic of ‘street’ and semantic of ‘classroom’. 

Definition 6. Required semantic: When several small semantics combine 
into a bigger semantic, some small semantic must be in this combination and 
such kind of semantic is called ‘required’. For example, semantic of ‘street’ 
can be combined by semantics of ‘road’, ’car’, ’house’, ’walking person’ and 
so on. ‘road’, ‘house’ should be two required semantic. Actually whether a 
semantic is required is closely connected to the application demand. Details 
will be explained latter. 

Definition 7. Optional semantic: this is compared to the definition of 
required semantic. That is the semantic which may or may not exist in the 
combination of a bigger semantic. 

Those definitions of semantic attributes and semantic relationship are used 
in the construction of hierarchical semantic model which would be discussed 
in the following part. Semantic has its own structure and order and our work 
does take advantage of such kind of order and structure to recognize image 
semantic. 

3.2.  Construction of Hierarchical Semantic Model 

One different point from the traditional BOVW is that our visual vocabulary 
tree is bound to certain semantics. In other words, the vocabulary tree must 
be constructed to match with a semantic model. This also means that before 
construction of a useful semantic-binding visual vocabulary tree, a 
hierarchical semantic model should be constructed first. The model we 
discussed above is an abstract model. If we want to apply this model into 
practice, we should connect it with some concrete semantics.  

For construction of our model, the main task is to decompose a bigger   
semantic into several smaller semantic iteratively until it comes to some level 
of singleton semantic. As discussed before, it is not necessary to decompose 
singleton semantic any more. When all the decomposition has been finished, 
we shall define the attributes of every semantic node in the hierarchical 
model and the relationship between any two semantic which are connected 
with each other. The definitions of attributes and relationship have been 
introduced in Sect. 3.1. When all the work has been done, a hierarchical 
semantic model has been successfully constructed. Fig. 1 describes this 
model. 

Fig.1 shows an abstract model of hierarchical semantic. In Fig. 1, top level 
semantic is the biggest semantic in this model. And there are three 
combination semantics which maintain the ‘relationship of belonging to’ with 
its upper level semantic. For each combination semantic, there are two 
singleton semantics below them, and the singleton semantics combine into 
the upper level semantic with the relationship of ‘combination’. The number 
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list like 1, 1 or 1,1,1 in figure just labels the position of relevant semantic 
node. 

Top level 

semantic

combination 

semantic 

1，3

belonging to

combination 

semantic 

1，2

belonging to

combination 

semantic 

1，1

belonging to

Singleton 

semantic

 1，1，1

（required）

Singleton 

semantic 
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Singleton 

semantic 

1，2，1
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Singleton 

semantic 

1，2，2

(required)

Singleton 

semantic 
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Singleton 

semantic 

1，3，2
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Mutual exclusion Mutual exclusion

combination combination combination combination combination combination

 

 Fig.1. The hierarchical semantic model 
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Person
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Blackboard 

(required)

combination

Person

(optional)

combination

Mutual exclusion... ...

 

Fig.2. An example of hierarchical semantic model with concrete classification 
demand 

When we put the hierarchical semantic model into practice, concrete 
classification demand should be taken into account. Fig. 2 shows an example 
of hierarchical semantic model with application demand, we should think 
about what semantics need to be recognized and analyzed, what singleton 
semantics are required and what else are optional. In Fig.2, each semantic 
node is connected to a concrete semantic. The top semantic is ‘outdoor’ or 
‘indoor’ scene. And there are two combination semantics which are ‘street’ 
and ‘classroom’ belonging to this top semantic. Each of the combination 
semantic is made up of several singleton semantics. Semantic of ‘street’ 
combined by singleton semantic of ‘road’, ‘house’, ‘car’ and ‘walking person’  
and semantic of ‘classroom combined by singleton semantic of ‘chairs and 
desks’, ’students’ and ‘blackboard’. 
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We can see that the singleton semantic of ‘person’ is included both in 
semantic of ‘street’ and of ‘classroom’ in Fig.2. This sometimes happens 
especially in some large semantic space situation. Singleton semantic is just 
like part which always used to make up the large up-level semantic. So the 
same singleton semantic is very likely to be used in several different large 
semantic. 

For the situation of large semantic space, single hierarchical semantic 
model maybe is not enough to cover the whole semantic space. We can 
make extension for the model proposed above. Several models can be built 
with the certain semantic spaces, so a ‘forest’ can be formed. Each ‘tree’ of 
this ‘forest’ stands for a united sub semantic space and all ‘trees’ stand for the 
whole semantic space. One virtual root node can be made to take the charge 
of all the ‘trees’.   

4. Construction of Semantic-binding Visual Vocabulary   

The objective for building such a hierarchical semantic model is to make a 
template on which a visual vocabulary tree can be constructed. As we 
discussed in Sect. 3, the decomposition of semantic is a top-to-bottom 
process. On the contrary, the process of constructing a visual vocabulary tree 
is from bottom to top. 

‘car’ singleton 

semantic-binding 

sub vocabulary

Car head 

feature

Car wheel 

feature

Car 

windscreen 

feature

Car rear 

feature

Clustering with 

learnt distance 

metric

 

Fig.3. Construction singleton semantic-binding sub vocabulary of ‘car’ 

Fig.1 and Fig.2 elaborate what the hierarchical semantic model looks like. 
Actually when we construct a vocabulary tree, each node in the tree is a sub 
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vocabulary of which semantic is responding to that in the model. Followings 
are the main steps for constructing a semantic-binding visual vocabulary tree. 

Step 1. First, we build those singleton semantic-binding sub vocabularies 
which are located in the bottom level in hierarchical semantic model. For 
each singleton semantic node, we collect the images that represent this 
semantic. SIFT feature is extracted from those images and distance metric is 
learnt by the contextual information of feature. The contextual information 
here means different feature comes from different class into one semantic. 
Take semantic of ‘car’ as an example. A ‘car’ can product features from its 
‘wheel’ or its ‘windscreen’ or its ‘body’. When we obtained the distance metric, 
we cluster features into vocabulary using the learnt metric to compute feature 
distance. Here k-means algorithm is adopted for clustering. Fig. 3 describes 
this process briefly, i.e. the features to train the vocabulary bound with 
semantic of ‘car’ are taken from different parts of the car, such as ‘wheel’, 
‘windscreen’, ‘car head’ and ‘car rear’. In this way, a singleton semantic 
binding vocabulary is successfully built.  

Now we have a sub vocabulary of K words (if we set K as the number of 
clusters in clustering step), and we also should calculate out radius of each 
word as following formula: 

i
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j
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In formula (5), 
i

r is the word radius for the i-th word in a certain semantic 

binding vocabulary. 
i

n  is the number of the feature vectors belonging to this 

word. 
i

c is the clustering center point vector and 
ij

x  is each feature vector. 

A  is the learnt distance matrix. We calculate the word radius by means of 
the sum of the distance between feature and center point. Since not all the 
features we take to train the semantic binding vocabulary is totally correct, 
there still may be some noise features, so averaging can decrease the 
negative influence from those noise features. 

The radius of the whole vocabulary is calculated out as follows: 

)max(
Ai

vcxR   (6) 

In formula (6), R is the radius of whole vocabulary, xi  is each feature in 

the vocabulary, vc  is the vocabulary center point which equals to the mean 

of all the word center points. And the longest distance between the features 
and vocabulary center points is defined as vocabulary radius. 

Step 2. After all the singleton semantic vocabulary has been built, we can 
build the sub vocabulary responding to the up-level semantic in the model.  
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In this step, we do not need to extract new feature. The features used to 
build up-level semantic-binding sub vocabulary are formed by features of the 
semantics combined into it or the semantics belonging to it. And the 
contextual information here is down-level semantic which the feature comes 
from. With the feature and contextual information, we can acquire the learnt 
distance metric. And in the same way, up-level vocabulary can be obtained 
by clustering the features with the learnt distance metric. Fig. 4 shows us the 
process to construct the up-level semantic-binding vocabulary from down-
level semantic binding vocabularies. 

‘street’ semantic 

binding 

vocabulary

Feature from 

‘car’ semantic 

binding 

vocabulary 

Feature from 

‘road’ semantic 

binding 

vocabulary

Feature from 

‘house’ semantic  

binding 

vocabulary

Cluster with learnt 

distance metric

 

Fig.4. Construct the up-level vocabulary from down-level vocabularies 

Step 3. We can build the other sub vocabulary iteratively from bottom 
semantic to top semantic just in the way Step 2 shows us. 

The above steps show how to build a semantic binding visual vocabulary 
tree. The process makes sure that each sub vocabulary in the tree is bound 
to a certain semantic. It can be easily proved because in the hierarchical 
model, the up-level semantic is formed by its down-level semantics. And in 
the process of building the vocabulary tree, all the features in the down-level 
semantics run into the up-level semantic eventually. According to the extent 
of semantic, those features belong to up-level semantic naturally. 

Just like the traditional BOVW model, the vocabulary size is an important 
factor which influents performance greatly. We give out a solution to decide 
the size of each semantic binding sub vocabulary. The size of a vocabulary is 
proportional to its complexity, i.e. the more complex it is, the bigger size it 
has. We use a randomization method to know the complexity and to decide 
the size. 

The features of each semantic binding vocabulary are taken from some 
different class. As we known, the feature of singleton semantic vocabulary is 
taken from different parts of the singleton semantic object, and the feature of 
combination semantic vocabulary is taken from different down-level semantic 

binding vocabulary. We define   here, and 0< <1. For a vocabulary which 

we want to decide its size, we take  
i

N feature vectors from each of its 

down-level vocabulary randomly. Where r is the number of down-level 
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vocabularies, 
i

N  means the number of feature vectors of the i-th down-level 
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The formula (8) shows that we compute the complexity of the vocabulary 
by those randomly picked feature. A vocabulary is more complex when its 

average distance between feature vectors is bigger. Where R  is the radius 

of vocabulary, D  is the mean distance among those picked feature and C is 

the complexity for the vocabulary (0< C <1). We can use C  to decide the 

size of vocabulary as follows: 

SMAXCsize   (9) 

In formula (9), SMAX  stands for the largest size of all the vocabularies. 

5. Analyzing Image Semantic with Semantic Binding 

Visual Vocabulary 

Just like the traditional BOVW model, a built vocabulary is used to analyze 
the image features and to perform the final words histogram. In our method, 
we take the similar way to analyze image semantic. The big difference in our 
method is that we do not use SVM to classify which semantic image should 
belong to. Instead we analyze the semantic of image by what sub vocabulary 
or its semantic the image possessed. The followings are the steps to analyze 
image semantic based on the semantic binding visual vocabulary: 

Step 1. Detect the interest points in test image by DoG method, and the 
SIFT feature vector is extracted for each interest point. 

Step 2. For each SIFT feature vector extracted from test image, we match 
it with sub vocabularies in visual vocabulary tree from top to bottom. For a 
certain sub vocabulary, the method to judge whether a feature belong to this 
vocabulary is described as follows:  
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In formula (10),  is the function: when its input argument is true, then its 

output is 1; when argument is false, then its output is 0. 
j

f   is SIFT feature 

extracted from image, 
i

c  is i-th word centers of the vocabulary,  
i

r  is the 

word radius for the i-th word, and A  is the learnt distance matrix for the 

vocabulary. If the result of formula (10) is 1, 
j

f drops into the vocabulary.  

Actually we can adopt two different strategies. Strategy 0: a feature can 
drop down into any number of vocabularies on each level. Under such 
condition, the above formula is used to judge which vocabularies the feature 
drops into; Strategy 1: a feature can only drop down into one vocabulary on 
each level. Under such condition, if the above formula shows that a feature 
may be in several vocabularies on each level, then the feature is discarded 
as an unstable feature. The comparison will be revealed in experiments 
(Sect. 6.3) on these two strategies. 

Step 3. Match each SIFT feature with top semantic binding sub vocabulary 
in the way as Step 2. For the feature belonging to this sub vocabulary, we 
match it to each of the down-level sub vocabulary. This process works 
iteratively until the feature reaches the singleton semantic binding sub 
vocabulary or until the feature is discarded for it belongs to no sub 
vocabulary.  

Step 4. Do step 3 on all the SIFT feature vectors extracted from test 
image. For each bottom-level singleton semantic binding sub vocabulary, we 
know if it contains any feature. If one singleton semantic contains feature 
extracted from test image, we say the image possesses this singleton 
semantic. 

Step 5. Now we know what singleton semantic the test image possesses. 
Based on the hierarchical semantic model we have built, when we know what 
the down-level semantic the test image possesses, we can know what up-
level semantic the test image possesses. We do this semantic aggregation 
work from bottom (singleton semantic) to top (the biggest semantic). After 
this process is finished, we can know what semantic the test image has in 
each level of the hierarchical semantic model. For the example in Fig. 2, If a 
test image has singleton semantic of ‘car’, ‘house’ and ‘road’, then we can say 
the image also has semantic of ‘street’. And further we can say the image has 
a scene semantic. 

Step 6. When Step 5 is done, we can have the knowledge of the semantic 
of image from big to small scale. Here big scale means what combination 
semantic the image has, and the small scale means what the singleton 
semantic the image has. One point should be paid attention to here is that if a 
image gets the two semantics which maintain the relationship of mutual 
exclusion, then this image should not have either of the both semantics. 
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6. Experimental Results 

We evaluate our model and algorithm from different scales of semantic on 
the test images. For one test image, we can also evaluate the performance of 
our work by the accuracy of analysis results on each level semantic. And then 
the performance of our scheme is evaluated and compared with the 
traditional BOVW scheme. 

6.1. Dataset for Experiments 

The experiments are carried out on the dataset provided by LabelMe project 
from MIT [13]. LabelMe is an image dataset in which each image has a 
responding annotation file. The annotation file annotates objects of different 
semantic in the image. So we can collect large number of training material of 
certain semantic from LabelMe dataset. LabelMe dataset also includes a wide 
range of image categories which totally covers 11,281 objects from 495 
categories. 

6.2. Experiment Setting 

Two combination semantics are chosen for the experiments. One is outdoor 
semantic: the semantic of ‘street’. The other is indoor semantic: the semantic 
of ‘office’. Actually our model can be applied to any combination semantic as 
long as the semantic can be decomposed in the way we introduced in Sect. 
3. The hierarchical semantic model for the experiments should be 
constructed first, as shown in Fig. 5. 

 

 

Fig.5. The hierarchical semantic model for our experiments 

Fig. 5 shows the semantic model for our experiments. Our experiments 
aim at two combination semantic ‘street’ and ‘office’, both of them belong to 
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the top-level semantic. The ‘street’ semantic and ‘office’ semantic have 
relationship of mutual exclusion between them. For ‘street’ semantic, it is 
formed by ‘car’, ‘street’ and ‘house’ semantic. All of the three singleton 
semantics are ‘required’ to their up-level semantic. For ‘office’ semantic, it is 
formed by ‘office miscellaneous’, ‘computer’ and ‘desk’ semantic. And all of 
those three semantics are also ‘required’ to their up-level semantic. 

The semantic binding visual vocabulary tree is constructed based on the 
hierarchical semantic model in Fig. 5. Some training images of certain 
singleton semantic are collected from labelMe dataset first. Fig. 6 describes 
this process. 

 

 

Fig.6. Construction for semantic binding vocabulary tree for experiments 

Fig. 6 shows that each bottom-level semantic-binding sub vocabulary is 
trained by the image of responding semantics. Actually the image shown in 
Fig. 6 for each singleton semantic vocabulary is from different parts of the 
object. Just as discussed in Sect. 4, different parts can provide us with the 
contextual information which is useful in distance metric learning. In the 
experiment, we learn the distance matrix for each of the six singleton 
semantic binding vocabulary with the contextual information. Three of the 
singleton semantic binding vocabularies (‘car’, ‘road’, ‘house’) aggregate to 
their up-level vocabulary (‘street’), and the other three (‘office misc’, ‘desk’, 
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‘computer’) aggregate to the other up-level vocabulary (‘office’). The 
aggregation process has been discussed in details in Sect. 4. 

In our experiment, the size of each sub vocabulary is determined in the 
vocabulary tree according to the complexity of the vocabulary itself. The 
method has been discussed in Sect. 4, and Table 1 describes the details of 
the size of each sub vocabulary. 

Table 1. The size of each sub vocabulary in the vocabulary tree of our experiment 

Top semantic vocabulary (size): 500 

‘street’ vocabulary (size): 400 ‘office’ vocabulary  (size): 300 

‘car’: 
200 

‘house’ 
: 300 

‘road’ 
: 300 

‘office misc’ 
: 300 

‘computer’ 
: 200 

‘desk’ 
: 200 

 
For each test image, we extract the SIFT features for each interest point 

which is detected by DoG method from the image. For each SIFT feature, we 
analyze it with the vocabulary tree from top to bottom. In Sect. 5, we 
proposed two strategies in judging whether a feature drops in a vocabulary. 
One is that in each level a feature can drop in several sub vocabulary, the 
other is that in each level a feature can only drop in one sub vocabulary and 
otherwise the feature is discard. We will give a performance comparison in 
the experiment results. 

When all the features from test image are analyzed by the whole 
vocabulary tree, we recognize the image semantic from the bottom singleton 
semantic, and gradually to up-level combination semantic. To evaluate our 
model and method in details, we can give the performance for each level 
semantic in our experimental model. For each semantic node in the 
hierarchical model, we evaluate the accuracy of our method as follows: 

test

correct

i
N

N
precision   (11) 

 

truth

correct

i
N

N
recall   (12) 

In formula (11) and (12), i  means the i-th semantic node in the 

experimental model, 
correct

N stands for the number of test images which are 

recognized correctly, 
test

N is the number of total test images, 
truth

N  is the 

number of test images which really have the certain semantic. We give the 
evaluation for accuracy of each semantic node by two strategies in 
experiment results.  
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6.3.  Experiment results 

In the experiments, totally 1000 test images are chosen from LableMe 
dataset, in which 500 images of them match the semantics in the 
experimental model and the other 500 do not match. ’Match’ here means the 
image can match any node semantic in the experimental model. We hope 
such kind of composition can make the testing more standard and 
convincing. 

We evaluated the performance of our method on every semantic node in 
experiment hierarchical semantic model with two feature dropping strategies 
(discussed in Sect. 5). Strategy 0 means that a feature vector can drop into 
any sub vocabulary in one level, Strategy 1 means that a feature vector can 
drop into only one sub vocabulary in the level (the multi-dropping feature be 
discard as unstable feature). Table 2 and Table 3 show the accuracy of 
precision and accuracy of recall about each semantic. There are 6 singleton 
semantics (‘car’, ‘house’, ‘road’, ‘office misc’, ‘computer’, ‘desk’) and 2 
combination semantics (‘street’, ‘office’). 

Table 2.  Accuracy of each semantic node in experiment model with strategy 0 

Feature dropping strategy 0 

semantic ‘car’ ‘house’ ‘road’ ‘street’ 

precision 0.74 0.82 0.73 0.70 

recall 0.79 0.85 0.75 0.72 

semantic ‘misc’ ‘computer’ ‘desk’ ‘office’ 

precision 0.79 0.78 0.82 0.78 

recall 0.82 0.83 0.73 0.69 

Table 3.  Accuracy of each semantic node in experiment model with strategy 1 

Feature dropping strategy 1 

semantic ‘car’ ‘house’ ‘road’ ‘street’ 

precision 0.72 0.72 0.79 0.66 

recall 0.77 0.76 0.75 0.67 

semantic ‘misc’ ‘computer’ ‘desk’ ‘office’ 

precision 0.64 0.66 0.68 0.64 

recall 0.68 0.71 0.69 0.61 

 
From Table 2 and Table 3, we can observe that the accuracy (precision or 

recall) of the singleton semantic is higher than that of the combination 
semantic. In Table 2 , the precisions of ‘car’, ‘house’, ‘road’ are 0.74,0.82 and 
0.73, and all of them are higher than the precision of ‘street’ (0.70). The 
precisions of ‘office misc’, ‘computer’, ‘desk’ are 0.79, 0.78 and 0.82, and all 
of them are also higher than that of ‘office’ (0.78). So is the recall. The reason 
is the confirmation of a combination semantic needs all the confirmation of its 
down-level required semantic. In our experiment model, if an image 
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possesses semantic ‘street’, it must possess semantic ‘car’, ‘house’ and 
‘road’. This leads to the combination semantic (‘street’ or ‘office’) with lower 
accuracy than the singleton semantic. Compare the results of Table 2 with 
Table 3, the accuracy of semantic node in Table 3 (with Strategy 1) is lower 
than that of the responding semantic node in Table 2 (with Strategy 0). The 
precision of semantic ‘car’ in Table 2 is 0.74 and that in Table 3 decreased to 
0.72. The precision of semantic ‘office’ in Table 2 is 0.78 and that in Table 3 
decreased to 0.64. The reason is that Strategy 1 has more limits than 
Strategy 0, so the unstable feature should be discarded according to Strategy 
1 (discussed in Sect. 5), thus the number of features dropping into bottom-
level sub vocabulary would decrease. Fig. 7 shows the accuracy results with 
comparison in chart. 

 

 

Fig. 7. Accuracy on each semantic node with two strategies 

In Fig. 7, X-axis is semantic and Y-axis is accuracy. We can clearly see 
that the accuracy on singleton semantic is to some extent satisfactory. But 
the accuracy on combination semantic, especially with strategy 1, has still 
space to make improvement. Actually the dataset for training and distance 
metric learning used in vocabulary construction are two important factors in 
the running of the whole model. In our experimental results, semantic ‘house’ 
and ‘desk’ get higher accuracy (0.82 and 0.82 individually) since the training 
dataset for those two sub vocabulary has larger complexity than others. This 
may inspire us that the complexity and discriminative of the training data can 
impact the effect of the vocabulary. And the DCA (Discriminative Component 
Analysis) we used in our model can be replaced by a better distance metric 
learning algorithm which adapts to our method. This will be studied in our 
future work. 

In order to compare the performance of our model with that of traditional 
BOVW model, we perform the comparison experiments with BOVW model 
on the same dataset as well. We constructed the codebooks of BOVW model 
on the training data from images of semantic ‘street’ or semantic ‘office’. 
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SIFT features are extracted from all of those training images. And all the 
features are clustered into 500 clusters. Then a codebook of 500-word size is 
generated. KNN (K-Nearest Neighbor) algorithm is used to find the nearest 
word in the codebook. By using the trained SVM, the test images between the 
semantic ‘street’ and ‘office’ can be classified. Table 4 shows the 
performance comparison between our model and BOVW model. 

Table 4.  Comparison between our model and BOVW model 

Method Semantic ‘street’ Semantic ‘office’ 

BOVW Model (precision) 0.62 0.55 

Our method with Strategy 
0 (precision) 

0.70 0.78 

Our method with Strategy 
1 (precision) 

0.66 0.64 

 
Table 4 shows that even in Strategy 1, the accuracy of our method is still 

higher than that of traditional BOVW model (semantic ‘street’ is 4 percentage 
points higher and semantic ‘office’ is 9 percentage points higher), which 
reveal that our model can work effectively in image semantic recognition.  

Besides the higher accuracy, our scheme can understand and analyze 
image semantic in a much more flexible way. Our scheme can analyze 
images and get the semantic recognition on each semantic node. But for 
BOVW it is necessary to do the classification for each semantic. 

7. Conclusion 

In this paper, a hierarchical semantic model is proposed. The hierarchical 
semantic model is used to organize the multi-scale semantic into a level-by-
level structure. The attributes and relationship of the semantic node in the 
model are defined first. Those definitions are very useful in constructing the 
hierarchical image semantic model. We also discuss how to construct a 
semantic-binding hierarchical visual vocabulary tree based on the built 
hierarchical semantic model. Each sub vocabulary node in the tree is bound 
to a certain semantic. The semantic binding vocabulary helps to filter out the 
noise feature and refine the performance. Then the procedure of analyzing 
image semantic with semantic binding visual vocabulary is described in 
detail. And two feature dropping strategies are discussed. Experiments are 
performed based on the LabelMe dataset, the performance of our scheme is 
evaluated and compared with the traditional BOVW scheme. The 
experimental results demonstrate the efficiency and flexibility of our scheme. 
Our model can help to understand and analyze image semantic in a flexible 
multi-resolution way, and get the semantic recognition on each semantic 
node. But for traditional BOVW model, it is necessary to do the classification 
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for each semantic. Our future work will focus on improving the performance 
of our method, choosing the proper distance learning metric algorithm and 
the applying in image retrieval system.  
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