
DOI: 10.2298/CSIS110615005S

Automatic Generation of E-Courses Based on

Explicit Representation of Instructional Design

Goran Savić, Milan Segedinac, and Zora Konjović

Faculty of Technical Sciences, Trg D. Obradovića 6,
21000 Novi Sad, Serbia

{savicg, milansegedinac, ftn_zora}@uns.ac.rs

Abstract. This paper presents the system for automatic generation of
IMS LD compliant E-Course from three components: machine readable
explicit representation of instructional design, ontology of learning
goals, and IMS Content Packaging compliant learning resources. For
the explicit representation of instructional design, we have created a
new domain-specific language named ELIDL which is aimed primarily
at assistance to implementation of various pedagogical approaches in
the course. Using ELIDL a teacher defines instructional design
template which is one of the input parameters for the course
generation. The system is verified by generating examples of the six
different instructional designs for the Web Programming e-course via
templates written in ELIDL.

Keywords: e-learning, instructional design, DSL, automatic course
generation, IMS Learning Design.

1. Introduction

When a learning environment is switched from classical face-to-face to e-
learning, an unavoidable task is development of electronic courses which are
compliant with e-learning standards and shaped according to appropriate
instructional design model(s). There are two globally adopted specifications
that provide such course description – SCORM [1] and IMS Learning Design
[2]. Creation of a new course or modification of an existing course compliant
with any of these two standards is, at least, a time-consuming process. In
addition, the realistic scenarios very often are those when existing courses
should be modified. Most available tools for e-course creation make this task
unduly hard because the sequences of learning activities and learning
resources are interwoven and represented as a monolithic unit. While
changing the course in some segment, it is necessary to deal with this
monolithic representation, although only one of these segments which very
often is instructional design, is usually the subject of the change.

Course development efforts can be significantly reduced by using systems
for automatic course generation. The focus of this paper is an electronic

Goran Savić, Milan Segedinac, and Zora Konjović

ComSIS Vol. 9, No. 2, June 2012 840

course description which gathers learning resources and learning activities. It
presents a system for automatic course generation with a focus on
implementation of different instructional design strategies.

The rest of the paper is organized as follows. Concrete motivation for
developing the system is described in the Motivation Section. The Section
Related Work analyzes other systems for automatic course generation and it
is particularly concerned about the role and implementation of instructional
design in these systems. Our system is in detail presented in Sections
System Components and System Architecture and Functioning. We have
used the system to automatically generate six electronic courses in Web
Programming differing in instructional strategies. The results are described in
Case Study Section. At the end, conclusions and future research directions
are given.

2. Motivation

The first-hand motivation for the research presented in this paper is demand
to switch relatively large number of courses on the Faculty of Technical
Sciences in Novi Sad (Serbia) to blended learning environment in a short
time. Additionally, every semester brings some changes in the existing
courses. Very often these changes are related to the course instructional
design. There are two main reasons for applying changes to course’s
instructional design: gradual improvement of an ongoing teaching process,
and studying/creating different instructional techniques. For these reasons it
is useful to have a system that enables creating/changing the course
instructional design easily. Therefore, we have decided to create a system
that automates the course creation process by using a formal, machine
readable description of instructional design as a base. By using this system,
accompanied with ontology of learning goals and IMS Content Packaging
compliant learning resources, we can automatically generate an electronic
course in IMS LD format.

3. Related Work

In this section we analyze other systems for automatic generation of e-
learning courses. These systems using different inputs generate an e-learning
course as an output. For a course creation, two aspects have to be
considered: (1) technical aspect which is about system functionalities,
input/output formats, standard compliance and other characteristics relevant
from the technical point of view, and (2) pedagogical aspect which includes
ability to apply different instructional principles in a generated course.

Paper [3] describes a system for automatic course generation. The system
generates the sequence of learning objects in IMS Content Packaging format

Automatic Generation of E-Courses Based on Explicit Representation of Instructional
Design

ComSIS Vol. 9, No. 2, June 2012 841

on the basis of learning goals and student’s knowledge state. Planning
mechanism and PDDL (Planning Domain Definition Language) language are
used for the creation of the sequence. Hernandez et al. in [4] also use PDDL
plan for a course generation in IMS Learning Design format. A concrete
learning activity that will be presented to a learner is chosen in real-time
depending on the student’s profile and learning goals. An approach to course
generation based on learning goals ontology where learning resources are
mapped to ontology nodes is presented in [5]. Nodes are hierarchically
ordered and mastering one learning goal may be a precondition for other
learning goals. A student’s model contains her/his learning preferences and
cognitive state. Ontology data and the student’s model are inputs for
generating a learning path. A similar approach is used in [6], but there is no
defined learning goals ontology. Relations among learning objects are
defined directly in the set of objects. The result is an e-learning course
compliant with IMS Learning Design specification. All mentioned systems
generate a course in one of globally accepted formats, which is done in our
system, too. Additionally, our system has borrowed the idea of presenting
learning goals by ontology and mapping learning objects to this ontology.
Still, in contrast to our system, there is no explicit representation of the
instructional design in these papers. The role of PDDL is to define a
sequence of learning activities which is similar to the role of the instructional
design in an e-learning course. But, PDDL is intended for the general
planning and it is not sufficiently expressive to describe a variety of
instructional designs in the e-learning course.

The pedagogical aspect is considered in paper [7], which presents a course
generation system based on learning resources, learning goals, learner’s
profile and instructional design. Instructional design is defined separately
from learning resources which is similar to our approach. But, it is defined by
concrete learning activities in the course, not as a general template like in our
paper. In our paper instructional design is defined abstractly and can be
applied to any course. Paper [8] describes a web portal for defining
pedagogical scenario and graphical interface of an e-learning course. A
teacher defines these two components by answering an online questionnaire.
The pedagogical scenario is represented by an XML file in IMS Learning
Design format and this file is used for automatic course generation. Although,
a pedagogical scenario is formally described in a machine-readable format,
there is only a predefined set of pedagogical scenarios available.

Since we have decided to create a new domain-specific language for
representing instructional design, it is important to analyze other similar
researches focused on the formal representation of instructional design and
the development of a domain-specific language for this purpose. Instructional
design may be implicitly defined in the formal definition of the e-learning
course. IMS LD specification introduces an XML-based language that enables
an implicit definition of instructional design in a course by specifying learning
activities and its organization. Similarly, LAMS [9] uses a specific language
for specifying learning activities used in the system. These two languages
show how instructional design may be implicitly defined altogether with all

Goran Savić, Milan Segedinac, and Zora Konjović

ComSIS Vol. 9, No. 2, June 2012 842

other course components. For creating an explicit representation of
instructional design (independently from the concrete learning activities) we
have to consider a teaching process more abstractly. It means that it is
necessary to identify and model specific patterns in instructional design that
are widely used in courses. One of the important researches in this area is
Pedagogical Patterns project [10]. The project collects standard pedagogical
patterns used in the teaching process. By this, teachers may find the most
appropriate pedagogical pattern for a concrete teaching situation. Although
these patterns are very useful for teachers and pedagogues, they are not
intended for computer interpretation. The patterns are represented by textual
descriptions, so they are not machine-readable. The Pedagogical Patterns
project is mostly focused on the classical face-to-face learning. An idea for
creating templates that can be used in an e-learning environment is
presented in [11]. A template presents a course structure and it is presented
graphically. Such a representation is not machine-readable too. Paper [12]
also introduces the concept of templates in an e-learning course. Template is
defined as a set of learning resources that contains specific pedagogical
principles and these templates are copied in their original sequence into the
course web site. Such an approach doesn’t make an explicit distinction
between learning resources and instructional design. The instructional design
is not defined as a distinct component, but rather interwoven with learning
resources. In [13], an adaptive e-learning environment SAP LSO is improved
by involving templates in the system. Templates define a micro-strategy – a
rule for organizing atomic knowledge items into the larger learning objects.
Our paper is focused on a macro-strategy – how a sequence of learning
objects is organized. There are only two predefined macro strategies in [13].
It is not possible to create a new macro-strategy as in our system. The paper
[14] presents an approach that formalizes the representation of instructional
design using SMID – the semantic model of instructional design. The model
contains data about learner’s knowledge state, learning goals, learning
resources and an instructional strategy. The instructional strategy is defined
using if-then rules. The sequence of learning actions is generated on the
basis of learner’s knowledge state and metadata about learning goal and
learning object. Actions are composed of Gagne’s Nine Events of Instruction.
Here again, there is only a predefined set of instructional strategies available.
The paper [15] presents an approach for converting pedagogical patterns
described in [10] from textual format to the machine-readable IMS LD
language. The result of this conversion is not a concrete IMS LD course, but
a template that represents a set of abstract learning activities. Still, IMS LD is
not sufficient to describe a machine-readable instructional design template
since the purpose of the IMS LD is to describe concrete learning process, not
an abstract template. Another approach that formalizes the representation of
pedagogical patterns is described in [16]. Authors present a structured
description of a pedagogical pattern. Although the pattern description is
structured, it still consists of textual field, so it is not machine-readable. A
term “pedagogical pattern” is in their paper used for describing a set of
learning activities that are performed by a student or teacher. This definition

Automatic Generation of E-Courses Based on Explicit Representation of Instructional
Design

ComSIS Vol. 9, No. 2, June 2012 843

is quite similar to the definition of the “instructional design template” used in
our paper.

By analyzing instructional design description in all these papers, we have
derived two conclusions about instructional design treatment: (1) instructional
design is not represented as a machine readable format and/or (2)
expressiveness and flexibility are not sufficient for describing a variety of
instructional techniques that may be used in an e-learning course (in most
papers these techniques are predefined or the underlying planning
mechanisms are of general type which cumbers defining a new instructional
techniques).

The system described in our paper is aimed at an automatic course
generation which allows combination of pedagogical and technical aspects.
The pedagogical aspect is in our system implemented using a distinct
component written in our domain-specific language for describing
instructional design. The proposed language enables formal representation of
instructional design in a machine-readable format, independently of concrete
learning goals and used learning resources and poses expressiveness and
flexibility sufficient for the specific domain – instructional design. The
language principles and other details are described in Section 4.3.

4. System Components

Our approach is based on a curriculum model presented in [17]. The model is
based on Tyler’s taxonomy and defines four components in a course:

 learning goals,

 learning resources,

 instructional design, and

 assessment strategy.

Within the context of learning process automation, first three components
are of interest. Learning goals are defined by course curriculum and they are
not subject of a frequent change. For learning resources, a need for change
is slightly bigger; commonly, a teacher changes some learning resources,
adds new tests, etc. Finally, instructional design is the most dynamic course
component in practice. In a teaching process, there is a continuous need to
apply different instructional strategies for the same learning goals and the
learning resources as an attempt of improving the learning process.

For the sake of flexibility in a course modification, where a teacher
commonly changes only some of course’s components, we chose to define
learning goals, learning resources and instructional design as three distinct
components. The system organized in this way enables application of
different instructional strategies for achieving defined learning goals where
each strategy is consist of a particular set of learning activities. Likewise,
since learning resources are defined as a separate component, the system
enables simple alteration of learning resources. The result is an automatically

Goran Savić, Milan Segedinac, and Zora Konjović

ComSIS Vol. 9, No. 2, June 2012 844

generated IMS Learning Design compliant course which applies defined
pedagogical approach. Hereby, a course creation process is easier and faster
and a teacher gets a flexible environment for a course preparation. Next to it,
detachment of a learning goals/content from an instructional design provides
for easier testing of various instructional strategies to find the best one, as
well as for creation/analysis of instructional design strategies.

4.1. Learning Goals

Learning goals can be defined as learning outcomes that a learner has to
achieve. While considering a formal description of learning goals we set two
basic requirements:

 the structure must be sufficiently expressive to describe learning goals and
appropriate relations among them, and

 description must be machine-readable to allow automatic processing of
learning goals

Following these requirements we decided to use ontology for representing

learning goals. Similar approach is used in [3], [5] and [18]. Each ontology
node represents one learning goal. We have defined two types of relations
among our ontology nodes:

 is-part-of. Since learning goals are hierarchically organized, a learning

goal may contain subgoals, which are defined by this relation type.

 is-precondition. This relation type defines a condition between

learning goals: a goal c1 is a precondition for a goal c2 if, from knowing
that a student has achieved c2, we can infer that he/she has achieved c1.

An ontology node can be annotated with the hierarchical level

annotation. Predefined hierarchical levels are: course, chapter, lesson

and topic. This is an optional annotation. A goal may be defined only for the

purpose of grouping other learning goals. The goal doesn’t necessarily
represent a lesson, topic or any other course item. Furthermore, nodes can
be annotated with the orderNumber attribute. This attribute is also not

mandatory and specifies the suggested order of learning goals when the
goals share the same hierarchical level and there is no relation is-

precondition among them. Figure 2 shows the part of the learning goals

ontology for the Web programming course.

4.2. Learning Resources

In this paper we use the term learning resource to refer any textual, graphical
or multimedia digital content that a learner consumes during a learning
process. For learning resources, it is necessary to specify formats of digital
content, metadata and packaging. Regarding the format of digital content,

Automatic Generation of E-Courses Based on Explicit Representation of Instructional
Design

ComSIS Vol. 9, No. 2, June 2012 845

although there are numerous globally used electronic formats (PDF and
Office documents, images, video files), recent trends are to create learning
resources in a browser readable format. The reason is that most e-learning
systems are web applications, so a learner uses the internet browser to
interact with the system. There are different formal specifications for defining
learning resources. One widely used is IMS Content Packaging (IMS CP) [19]
specification. IMS CP organizes learning resources into packages. A package
consists of learning resources and a manifest file. The manifest file in XML
format specifies resources, their description, organization and other elements
defined by IMS CP standard. Learning resources are described by metadata
and IMS consortium suggests IEEE LOM [20] specification for this purpose.
Considering global acceptance of IMS CP specification, we have decided to
use it to define learning resources in our system.

Learning resource is always related to one or more learning goals. A
student uses a learning resource to achieve a specific learning goal. If
learning resource is a test, then it is used to evaluate student’s knowledge.
Since learning resources and learning goals are separated in our system, it is
necessary to define a component that links learning resources with learning
goals. Our system contains an intermediate component that maps learning
resources to the ontology of learning goals. Mapping is defined as an XML
document. The XML schema of this XML document is shown in Figure 1.

Fig. 1. The XML schema of the mapping document

Listing 1 shows a part of the mapping XML document for the Web
programming course. One can notice that the learning resource “HTML
tables” is related to the learning goal “Tables”.

Listing 1. XML document for mapping learning goals to learning resources in the
Web programming course

An example of the learning goals ontology for the Web programming
course and links among learning resources and learning goals are shown in
Figure 2. Within the text some names are translated to English for the sake
of clarity. This applies to all figures and listings in the paper.

<ont_res_mapping ...>

...

 <mapping>

 <concept_id>Tables</concept_id>

 <resource_id>HTML_tables</resource_id>

 </mapping>

...

</ont_res_mapping>

Goran Savić, Milan Segedinac, and Zora Konjović

ComSIS Vol. 9, No. 2, June 2012 846

HTML_tags

Forms

Lists Tables

HTML CSS

CSS_syntax CSS_attributes

HTML Exercise 1

HTML Exercise 2

Forms

introduction Lists example HTML tables

CSS attributes

ov erv iew

LessonLesson

TopicTopic

Topic
Topic Topic

2 3

8

6 5

Learning goal

Learning resource

Hierarchical level

Order number

Resource related to goal

Is part of

Is precondition

Fig. 2. Mapping of learning resources to the learning goals ontology

Using this structure, the ontology becomes an instrument that defines
relations among learning resources. Thus, the relation is not defined as a part
of the resource, but it is implicitly defined through the ontology. Using this
approach it is easier to change the relation between two resources. In order to
do that, a teacher should only map learning resource to another learning goal.
Likewise, when adding a new resource, its relationships with other resources
will be defined by simply mapping it to a specific learning goal(s).

4.3. E-Learning Instructional Design Language (ELIDL)

In our system, the idea is to represent instructional design detached from
concrete learning goals and learning resources used for achieving these
goals since the instructional design, in general, is not learning

Automatic Generation of E-Courses Based on Explicit Representation of Instructional
Design

ComSIS Vol. 9, No. 2, June 2012 847

goals/resources specific [21]. Therefore, an instructional design applied to a
course is represented by a detached component. The formal description of
instructional design is implemented using templates that may be applied to
any learning goals and learning resources. The templates are written in
ELIDL (E-Learning Instructional Design Language) - our domain-specific
language for describing instructional design.

ELIDL is developed following to the main principle that it should enable
teacher to completely specify all components of instructional design in the e-
learning environment. Thus, it is of interest to analyze how a teacher
specifies instructional design in an e-learning course. Learning experience in
an e-learning environment is always connected with consuming a specific
digital learning resource using the computer. Learning resources can be
different (a web page which explains a lesson, an internet forum for
discussion with other students, an online test for knowledge evaluation, etc.),
but from the technical point of view learning experience has always to do with
a student’s usage of some electronic resources. Therefore, instructional
design in an e-learning environment is defined by the selection of appropriate
learning resources and by ordering these resources. In other words,
instructional design is specified by learning activities and paths through them.
Given that learning activity in e-learning corresponds to the usage of some
learning resource, in this paper we use the terms “learning resource” and
“learning activity” interchangeably.

Willey in [22] examines instructional design for learning objects and he
proposes a new instructional design theory – LODAS (Learning Object Design
and Sequencing Theory). The author states that instructional design for
learning objects is defined by two components:

 the scope and design of learning objects,

 the sequencing or combination of learning objects

Our research is not concerned with the scope and design of learning

objects. In our work created resources are assumed as input parameters.
Therefore, our language is aimed at defining the second component: the
sequencing or combination of learning objects. Using ELIDL a teacher is able
to formally specify instructional design that defines the order of learning
activities and a criterion for selecting learning resources (number of
resources, their type and priority). By this, instructional design in an e-
learning course is explicitly and formally represented. Instructional design
defined in ELIDL syntax is machine-readable, which is utilized here for the
automatic generation of an e-learning course based on instructional design
template written in ELIDL. After analyzing other languages [2, 7, 9, 15] from
this domain we have decided that our language should also be XML-based.

The XML schema for ELIDL is shown in Fig. 3 and 4.

Goran Savić, Milan Segedinac, and Zora Konjović

ComSIS Vol. 9, No. 2, June 2012 848

instructional-design

uol-structure

1 ¥..

learning-object

0 ¥..

selection-rule

include

0 ¥..

exclude

0 ¥..

grading

type

min-value

max-value

threshold

sequence

0 ¥..

selection-rule

grading

0 ¥..

sequence

learning-object

element-group

0 ¥.. 1 ¥..

sequence

learning-object

element-group

element-relationships element-relationship

1 ¥..

Fig. 3. The XML schema for an instructional design template – part 1

element-relationship

join expression

and

2 ¥..

expression

or

2 ¥..

expression

not

equals

2

index

name

parent-name

greater-than index

2

less-than index

2

completed

passed

element

2 ¥..

conditions

if expression

then

show

0 ¥..

hide

0 ¥..

else

show

0 ¥..

hide

0 ¥..

Fig. 4. The XML schema for an instructional design template – part 2

Automatic Generation of E-Courses Based on Explicit Representation of Instructional
Design

ComSIS Vol. 9, No. 2, June 2012 849

The most important schema elements are described in the following. Root
element instructional-design contains two subelements:

 uol-structure - for defining learning activities in the course

 element-relationships – for defining relations among learning

activities

Learning activities are defined by sequence or learning-object

elements. The element sequence represents a sequence of other elements.

The role of this element is similar to the role of “loop” statements in
programming languages. The element sequence directs the system to pass

through all learning goals annotated with hierarchical level defined in attribute
element. On this way one can, for example, define the sequence of lessons,

topics or learning objects. The element learning-object represents a

concrete learning object in the course. Both learning-object and

sequence elements contains the selection-rule element. This element

specifies which learning resources and in which order will be selected from
the set of learning resources mapped to a specific learning goal. The
selection and priority of learning resources is defined by elements include

and exclude, respectively. These elements are subelements of the

selection-rule element. For the selection of a learning resource, it is

necessary to define its metadata name and value. In this way our system
provides the usage of any set of metadata for describing learning resources.
The element grading specifies grading strategy for the learning object (the

element is used for tests, projects, etc.). In order to facilitate managing
learning elements, we can group them using ELIDL element element-

group. The purpose of this element is to be a container for other elements.

The element element-relationships is a container for elements that

define relations among learning activities in a course, e.g. there may be a
strong relationship between a theory test and a project task. The project task
is not available for students who didn’t pass the theory test. ELIDL defines
such relation using element-relationship element. Its subelements

named element specifies course elements that are parts of the relation.

From all specified elements, relations will be formed only for the elements
that satisfy a condition defined by the join element. The element

conditions has a set of if-then-else elements which specify concrete

actions that will be applied to the learning elements. Currently ELIDL
supports actions for displaying and hiding learning resources (ELIDL
elements show and hide).

The element expression groups elements that represent a logical

expression. The elements and, not and or represent logical operators:

conjunction, negation and disjunction, respectively. Logical operators for
comparison are defined in the elements equals, greater-than and less-

than. We can define the comparison of order numbers of the learning goals

(ELIDL element index). Also, the equals element can compare string

values. A string value that can be used as a comparison operand is the name

Goran Savić, Milan Segedinac, and Zora Konjović

ComSIS Vol. 9, No. 2, June 2012 850

of the learning goal to which a learning object is connected (ELIDL element
name). Similarly, the element parent-name can be used to specify the

name of the parent learning goal. Completing a learning activity or passing a
test is evaluated using the ELIDL elements completed and passed,

respectively.
The description of all schema elements is publicly available at

www.informatika.ftn.uns.ac.rs/GoranSavic/IDTemplates.
The usage of our domain-specific language is illustrated by an example

presented in Listing 2.
Listing 2 shows the part of an instructional design template for describing

instructional strategy called “competency assessment”. This strategy is
described in [23] as follows: “The learner is first presented with the
introduction (lesson overview). He is then presented with an assessment that
internally evaluates the learner’s mastery of each of the module objectives.
The learner is presented with the instructional material (modules) related to
unsatisfied objectives. After the learner has completed all the required
instructional materials, an exam is presented that re-tests the objectives the
learner has not satisfied.”

The XML document shown in Listing 2 has a root element
instructional-design-template whose attribute root specifies the

initial node in the ontology of learning goals. Thus, learning resources that
will be presented to a learner are chosen from the learning objects mapped to
the subgoals of the root goal. Concretely in this example, the initial goal is the
one at the highest hierarchical level annotated with “course”. The first
sequence element defines the sequence of learning goals on the

hierarchical level “lesson”. For each goal (lesson), we choose a learning
object annotated with the label “pre-test”. Each test is graded with a
passed/failed mark (boolean type of grading). The second sequence

element specifies doing the lessons once again. This time, the sequence of
lesson topics is represented by the learning goals annotated with the
hierarchical level “topic”. For each topic, the sequence of learning objects is
created. The element selection-rule first chooses theoretical content,

then examples and all other learning resources at the end. Finally, resources
annotated with the “post-test” label are added to the course. This is defined
by the last sequence element.

As noted, this instructional strategy specifies that a learner should learn
only lessons related to the learning goals unsatisfied on the pre-test or the
post-test. So, we have to define the relation between the lesson, pre-test and
post-test using the element-relationship element. The element join

specifies that relations are created only among lessons, pre-tests and post-
tests which belongs to the same learning goal. Element if defines the

condition that a learner has to satisfy to pass the pre-test or the post-test. If
they have passed one of the tests, the then element specifies that the

corresponding lesson shouldn’t be available to the learner. Otherwise, the
lesson will be available which is defined in the else element.

http://www.informatika.ftn.uns.ac.rs/GoranSavic/IDTemplates

Automatic Generation of E-Courses Based on Explicit Representation of Instructional
Design

ComSIS Vol. 9, No. 2, June 2012 851

<instructional-design root = "course">

 <uol-structure>

 <sequence element="lesson" element-id="PRETEST_LESSON_SEQUENCE">

 <learning-object element-id="PRE_TEST">

 <selection-rule>

 <include att-name="label" att-value="pre-test"/>

 </selection-rule>

 <grading>

 <type>boolean</type>

 </grading>

 </learning-object>

 </sequence>

 <sequence element="lesson" element-id="L_SEQ"

 sequence-element-id="LESSON">

 <sequence element = "topic" element-id="T_SEQ">

 <sequence element = "learning-object">

 <selection-rule>

 <include att-name="type" att-value="explanation-content"

priority="1"/>

 <include att-name="type" att-value="example" priority="2"/>

 <include att-name="type" att-value="*" priority="3"/>

 </selection-rule>

 </sequence>

 </sequence>

 </sequence>

 <sequence element = "lesson" element-id="PT_L_SEQ">

 <learning-object element-id="POST_TEST">

 <selection-rule>

 <include att-name="label" att-value="post-test"/>

 </selection-rule>

 <grading>

 <type>boolean</type>

 </grading>

 </learning-object>

 </sequence>

 </uol-structure>

<element-relationships>

 <element-relationship>

 <element element-ref="LESSON" alias="lesson"/>

 <element element-ref="PRE_TEST" alias="pretest"/>

 <element element-ref="POST_TEST" alias="posttest"/>

 <join>

 <and>

 <equals>

 <name element="lesson"/>

 <parent-name element="pretest"/>

 </equals>

 <equals>

 <name element="lesson"/>

 <parent-name element="posttest"/>

 </equals>

 </and>

 </join>

Goran Savić, Milan Segedinac, and Zora Konjović

ComSIS Vol. 9, No. 2, June 2012 852

Listing. 2. Instructional design template for “competency assessment” instructional

strategy

5. System Architecture and Functioning

This section presents system architecture and its functioning. System
components and their relations are shown in the Fig. 5.

Course Generator

Parse resources Init mapping

Parse templateCreate activities

Generate IMS LD manifest

Create relationships

Parse ontology

Goals Resources

IMS LD Manifest

ELIDL Template
Goals-Material Mapping

Fig. 5. System architecture

 <conditions>

 <if>

 <or>

 <passed element="pretest"/>

 <passed element="posttest"/>

 </or>

 </if>

 <then>

 <hide element="lesson"/>

 </then>

 <else>

 <show element="lesson"/>

 </else>

 </conditions>

 </element-relationship>

 </element-relationships>

</instructional-design>

Automatic Generation of E-Courses Based on Explicit Representation of Instructional
Design

ComSIS Vol. 9, No. 2, June 2012 853

The files on the top of the figure are the input parameters to our system.
The system is neutral with respect to how these files are created. In the
Section 6 we have specified the software we used to create the input files.
Ontology of learning goals can be created using some ontology editor, such
as Protege. The goals-resources mapping is an XML file and can be created
using any text or XML editor. Learning resources should be defined in the
IMS CP format. There are some specialized applications, named IMS CP
editors, which can facilitate this task. ELIDL template still has to be created
manually using some text or XML editor, but our plan is to develop a
graphical editor for creating ELIDL templates.

The system functioning is presented through the process of the course
generation. Firstly, the system parses the OWL file that represents the
ontology of learning goals. Then, the IMS CP manifest file which specifies
learning resources is parsed. The system links resources with learning goals
by parsing the XML file which defines the mapping of learning resources to
the learning goals ontology. Then, the system parses ELIDL instructional
design template. On the basis of the template, the system traverses the
learning goals. For each learning goal, specified learning resources are
taken. Then, the hierarchy of learning activities with relations among them is
created. Each relation contains if, then and else section created

according to the content of the element-relationship element in the

template. Finally, the IMS LD compliant unit of learning is generated.
IMS LD unit of learning is generated by converting learning activities and

their relations to the corresponding tags of the IMS LD manifest file. IMS LD
specifies users and their roles in the manifest element roles. Our system

creates two types of roles - learner for learners and staff for teachers

within the roles element in the manifest file. The tag play is in IMS LD the

root element when interpreting the learning design and it represents the flow
of activities during the learning process. So, during the course generation,
learning activity on the highest hierarchy level is mapped to the tag play in

the manifest file. In IMS LD, play consists of act elements. In our system,

tags act are generated on the basis of the activities on the second hierarchy

level. On the third hierarchy level in IMS LD are role-part elements. Our

system generates activity-structure tags for learning activities on the

third hierarchy level. For each of these activities the system generates the
role-part tag which references an appropriate activity-structure

tag. Finally, learning-activity tags are created from the activities on the

lowest hierarchical level, because in IMS LD learning-activity elements

are on the lowest hierarchical level.
The flow of a learning process depends on relations among learning

activities. So, relations among activities are converted to the conditions

section of the IMS LD manifest file. Logical operators and, or and not are
mapped to the tags with the same name in the IMS LD manifest file. ELIDL
operator completed defines a certain action that will be performed after the

completion of a learning activity. In IMS LD an activity contains the tag on-

completion for this purpose. In this tag we can change the value of some

Goran Savić, Milan Segedinac, and Zora Konjović

ComSIS Vol. 9, No. 2, June 2012 854

property using the tag change-property-value. Properties in IMS LD are

defined using tags locpers-property. Depending on the property value,

IMS LD allows performing specific action in the conditions section of the

manifest. So, ELIDL operator completed causes adding a new locpers-

property tag within the properties element of the manifest. Likewise,

sub tags on-completion and change-property-value are added to the

learning-activity tags. The purpose of these elements is to define that

the value of the locpers-property attribute will be changed if the learning

activity is completed. At the end, for the defined property, the tag greater-

than is added to the conditions section. Listing 3 shows a segment of the

IMS LD manifest file that is generated on the basis of the template operator
completed.

Listing. 3. Generated segment of the manifest file for the template operator
completed

HTML_and_Java-is-Done represents the property whose value will be

changed on the completion of a learning activity. The initial value is 0
(defined in the initial-value tag). After the completion of the activity, the

value is changed to 6 (in the change-property-value tag). A specific

action will be performed if the value is greater than 5, which is defined in the
greater-than tag. Hence, the action will be executed after the completion

of the activity.
We are now going to consider the ELIDL operator passed. A student

passes the test if he/she gets a passing grade. Therefore, it is necessary to
define the grade for each operator passed. A new tag locpers-property

that represents the grade is created in the properties section of the

manifest file. In order to grade a learning activity, it is necessary to add a new
web page into the unit of learning. The page has an input field for entering

<imsld:locpers-property identifier="HTML_and_Java-Is-Done">

 <imsld:datatype datatype="integer"/>

 <imsld:initial-value>0</imsld:initial-value>

</imsld:locpers-property>

…
<imsld:complete-activity>

 <imsld:user-choice/>

</imsld:complete-activity>

<imsld:on-completion>

 <imsld:change-property-value>

 <imsld:property-ref ref="HTML_and_Java-Is-Done"/>

 <imsld:property-value>6</imsld:property-value>

 </imsld:change-property-value>

</imsld:on-completion>

…
<imsld:if>

 <imsld:greater-than>

 <imsld:property-ref ref="HTML_and_Java-Is-Done"/>

 <imsld:property-value>5</imsld:property-value>

 </imsld:greater-than>

</imsld:if>

Automatic Generation of E-Courses Based on Explicit Representation of Instructional
Design

ComSIS Vol. 9, No. 2, June 2012 855

the grade. This page is automatically created and added to the list of learning
resources. The page is created on the basis of the template grading page,
part of which is shown in the Listing 4.

Listing. 4. Template input field for entering the grade in a grading web page

Before the grading page is added, the template field ${PROPERTY_NAME}

is substituted with the name of a concrete attribute that represents the grade.
A new greater-than tag is added to the conditions sections indicating

whether a student has passed the learning activitiy. Listing 5 shows the
segment of the manifest file generated for the template operator passed.

Listing. 5. Generated segment of the manifest file for the template operator passed

The locpers-property named Html_1_grading-Grade represents

the grade. The shown activity is graded using a boolean value – passed/not
passed. In the if tag we evaluate this value in order to perform an action.

Hence grading is done by the teacher, grading activity is defined by the tag
support-activity in the manifest.

Regarding if and then tags in an instructional design template, the

system converts them to if and then manifest tags, respectively. ELIDL

actions show and hide are mapped to the manifest tags with the same name

and they are added to the conditions section. These two tags represent

actions for displaying and hiding a learning activity, respectively.
Finally, generated manifest file with all learning resources is packed into a

ZIP file and this file represents the unit of learning compliant with IMS LD
standard.

The system is implemented in Java programming language. Given that all
input parameters are XML files, we have used Java DOM parser for parsing
these files. Other technical details about the system can be found in [24].

<imsld:locpers-property identifier="Html_1_grading-Grade">

 <imsld:datatype datatype="boolean"/>

 <imsld:initial-value>false</imsld:initial-value>

 </imsld:locpers-property>

…
<imsld:if>

...

 <imsld:is>

 <imsld:property-ref ref="Html_1_grading-Grade"/>

 <imsld:property-value>true</imsld:property-value>

 </imsld:is>

...

</imsld:if>

<ld:set-property ref="${PROPERTY_NAME}" property-of="self"

 view="value"/>

Goran Savić, Milan Segedinac, and Zora Konjović

ComSIS Vol. 9, No. 2, June 2012 856

6. Case Study

Case study shows automatic creation of the Web Programming course using
our system. According to defined course curriculum, we created the ontology
of learning goals in OWL [25] language using ontology editor Protege 3.4.1.
Learning resources for the course are converted to HTML web pages, packed
into the IMS CP package and each resource is mapped to the corresponding
learning goal. In order to improve the quality of the selection of learning
resources, the resources are annotated with metadata. Firstly, we describe
the type of a learning resource with metadata learningResourceType

defined by IEEE LOM specification. Values for this element are chosen from
extended vocabulary defined in CLEO [26] specification which is created as
an extension to the IEEE LOM. Furthermore, resources are annotated with
the IEEE LOM metadata description that closely describes the resource.

We have created 6 instructional design templates that formally describe
different instructional strategies. The templates are created for the following
instructional strategies: No sequencing, Linear, Knowledge Paced,
Remediation, Competency Assessment (strategies description adopted from
[23]) and Project-based learning (description adopted from [27]). All
templates written in ELIDL and accompanied with brief descriptions are
publicly available at www.informatika.ftn.uns.ac.rs/ GoranSavic/IDTemplates/
Examples. Using these templates as inputs to our system, 6 courses of Web
Programming in IMS LD format are automatically generated. These units of
learning are also publicly available at www.informatika.ftn.uns.ac.rs /
GoranSavic/IDTemplates/ Examples.

As an illustration, we are going to present two generated courses: for linear
and knowledge paced instructional strategy. Linear strategy is described in
[23] as follows "... the learner must progress through the contents in a pre-
determined order. The learner will start with the introduction first, then do all
the modules and lessons in a linear order, directed by the LMS. The learner
cannot proceed forward with the lessons until he has completed the current
lesson. Each module is complete when he has finished all lessons in the
module. The student will be presented with a comprehensive exam or quiz
after he has completed all the modules." Linear strategy for the Web
programming course is presented graphically in Fig. 6.

One can notice that a student has to learn the lesson HTML firstly. After
completing this lesson, he/she can learn CSS. After it, the lesson JavaScript
becomes available and so on.

Using ELIDL we have written an instructional design template that formally
describes this instructional strategy. Listing 6 presents a fragment of the
template.

Automatic Generation of E-Courses Based on Explicit Representation of Instructional
Design

ComSIS Vol. 9, No. 2, June 2012 857

...

...

Web programming

HTML CSS JavaScript

Introduction to HTML

Basic tags

Tables

Introduction to CSS

CSS styles

CSS attributes

Introduction to JavaScript

JavaScript syntax

Functions and events

Fig. 6. Linear instructional strategy for the Web programming course

Listing. 6. ELIDL template for “Linear” instructional strategy

<uol-structure>

 <sequence element = "lesson" element-id="L_SEQ"

 sequence-element-id="LESSON">

 <sequence element = "topic" element-id = "T_SEQ"

 sequence-element-id="TOPIC">

 <sequence element = "learning-object">

 <selection-rule>

...

 <include att-name="type" att-value="*" priority="3"/>

 </selection-rule>

 </sequence>

...

<element-relationships>

 <element-relationship>

 <element element-ref="LESSON" alias="l1"/>

 <element element-ref="LESSON" alias="l2"/>

 <join>

 <less-than>

 <index element="l1"/>

 <index element="l2"/>

 </less-than>

 </join>

 <conditions>

 <if>

 <not> <completed element="l1"/> </not>

 </if>

 <then>

 <hide element="l2"/>

 </then>

 <else>

 <show element="l2"/>

 </else>

...

Goran Savić, Milan Segedinac, and Zora Konjović

ComSIS Vol. 9, No. 2, June 2012 858

A student gets all learning resources in linear order. The tag include

defines the selection of all types of learning resources. This is defined using
the attributes att-name and att-value. The character * in the att-value

attribute indicates the selection of all learning resources.
The tag conditions in the template document defines when the learning

resource should be shown to the student. The lesson is available only when
the previous lesson has been completed. Using this ELIDL template, our
system has generated an IMS LD manifest file that is shown in Listing 7.

Listing. 7. IMS LD manifest file generated for “Linear” instructional strategy

Listing shows a generated learning activity for learning HTML tables
(learning activity with the identifier Tables_1). Tag if defines that the topic

“CSS attributes” (activity structure as_CSS_attributes) is not available if

a student hasn’t completed learning of HTML tables. The property
Tables_1-Is-Done indicates whether the learning of the HTML tables is

completed.
Figures 7 and 8 present screenshots of the Web programming course

generated using ELIDL template for “linear” instructional strategy. The
screenshots are taken from the Reload LD Player [28].

<imsld:learning-activity identifier="Tables_1">

 <imsld:title>Working with tables</imsld:title>

 <imsld:activity-description>

 <imsld:item identifierref="tables_res">

 <imsld:title>Working with tables</imsld:title>

 </imsld:item>

 </imsld:activity-description>

 <imsld:complete-activity>

 <imsld:user-choice/>

 </imsld:complete-activity>

 <imsld:on-completion>

 <imsld:change-property-value>

 <imsld:property-ref ref="Tables_1-Is-Done"/>

 <imsld:property-value>6</imsld:property-value>

 </imsld:change-property-value>

 </imsld:on-completion>

</imsld:learning-activity>

...

<imsld:if>

...

 <imsld:not>

 <imsld:greater-than>

 <imsld:property-ref ref="Tables_1-Is-Done"/>

 <imsld:property-value>5</imsld:property-value>

 </imsld:greater-than>

 </imsld:not>

...

</imsld:if>

<imsld:then>

 <imsld:hide>

 <imsld:activity-structure-ref ref="as_CSS_attributes"/>

 </imsld:hide>

</imsld:then>

Automatic Generation of E-Courses Based on Explicit Representation of Instructional
Design

ComSIS Vol. 9, No. 2, June 2012 859

Fig. 7. HTML lesson in the Web programming course generated for linear
instructional strategy

Fig. 8. CSS lesson in the Web programming course generated for linear instructional
strategy

The screenshots show the course before and after the learning of HTML is
completed. We can notice from the Figure 7 that the item “CSS” cannot be

Goran Savić, Milan Segedinac, and Zora Konjović

ComSIS Vol. 9, No. 2, June 2012 860

expanded and its subitems are not displayed to the user. The reason is that
the lesson “CSS” is not available if the lesson “HTML” hasn’t completed. The
lesson HTML is completed when all its topics are completed (as shown in the
Figure 7, completed topics are checked). The topics can be completed in any
order. When the user completes all topics in the lesson HTML, the lesson
CSS becomes available. As we can see from the Figure 8, CSS’s topics are
now displayed to the user.

...

...

Web programming

HTML CSS JavaScript

Introduction to HTML

Basic tags

Tables

Introduction to CSS

CSS styles

CSS attributes

Introduction to JavaScript

JavaScript syntax

Functions and events

HTML pre-test

HTML post-test

CSS pre-test

CSS post-test

JavaScript pre-test

JavaScript post-test

Fig. 9. “Knowledge Paced” instructional strategy for the Web programming course

The second course that will be presented here is the one generated for
“Knowledge Paced” instructional strategy. This strategy is described in [23] as
follows: “In this mode, the learner must go through and complete the
introduction first. After that he may proceed to the module 1 pre-test, select
another module pre-test, or select a lesson. The learner may "jump" between
modules, selecting pre-tests or lessons in any order. The learner cannot
select the Module post-tests. These are only encountered after the learner
"flows" through the modules lessons. If the learner passes an exam (pre- or
post-), the module’s learning objective has been satisfied and the module’s

Automatic Generation of E-Courses Based on Explicit Representation of Instructional
Design

ComSIS Vol. 9, No. 2, June 2012 861

post-test becomes disabled. The learner may continue to select individual
lessons for the duration of the course, even after a module’s objective has
been satisfied. If the learner does not pass the exam, the learner is directed
to that module’s instructional content, and once completed, must retake the
module exam (post-test).” Figure 9 shows “Knowledge Paced” instructional
strategy for the Web programming course.

In contrast to “linear” instructional strategy, in “knowledge paced” strategy
a student is not limited only to linear path. He/she may arbitrary choose next
learning unit. A learning unit is satisfied if a student passes the unit pre-test or
post-test. Listing 8 shows ELIDL template created for this instructional
strategy.

Listing 8. ELIDL template for “Knowledge Paced” instructional strategy

<uol-structure>

...

 <sequence element = "lesson" element-id="L_SEQ">

 <learning-object element-id="PRE_TEST">

 <selection-rule>

 <include att-name="label" att-value="pre-test"/>

 </selection-rule>

...

 <sequence element = "topic" element-id="T_SEQ">

 <sequence element = "learning-object">

 <include att-name="type" att-value="*" priority="3"/>

...

 <learning-object element-id = "POST_TEST">

 <selection-rule>

 <include att-name="label" att-value="post-test"/>

 </selection-rule>

...

<element-relationships>

 <element-relationship>

 <element element-ref="PRE_TEST" alias="pre"/>

 <element element-ref="POST_TEST" alias="post"/>

 <join>

 <equals>

 <parent-name element="pre"/>

 <parent-name element="post"/>

 </equals>

 </join>

 <conditions>

 <if>

 <or>

 <passed element="pre"/>

 <passed element="post"/>

 </or>

 </if>

 <then>

 <hide element="pre"/>

 <hide element="post"/>

 </then>

 <else>

 <show element="pre"/>

 <show element="post"/>

 </else>

 </conditions>

 </element-relationship>

</element-relationships>

Goran Savić, Milan Segedinac, and Zora Konjović

ComSIS Vol. 9, No. 2, June 2012 862

As we can see, the template iterates through all lessons (ELIDL element
sequence). For each lesson it firstly selects a pre-test using the tag

include and its attribute att-value whose value is “pre-test”. After the

pre-test, in the second sequence element, the template iterates through

lesson topics and their learning resources. It selects all learning resources in
the lesson (the attribute att-value in the tag include has the value “*”).

At the end, a user gets a post-test in a similar way as for the pre-test.
The tag element-relationship defines a relation between pre-test and

post-test. If a student passes pre-test or post-test (defined in passed ELIDL

tags), both tests become unavailable (ELIDL elements hide). Otherwise, the

tests are available which is defined in the ELIDL elements show. Listing 9

shows a part of the generated IMS LD manifest file for “Knowledge Paced”
instructional strategy.

Listing. 9. IMS LD manifest file generated for “Knowledge Paced” strategy

A post-test for lesson HTML is represented with a learning activity “Html_3”
and a corresponding activity-structure element. The post-test should

be hidden if a student has passed the pre-test or post-test. The attributes
“Html_1_grading-Grade” and “Html_3_grading-Grade” represent grades on
the pre-test and post-test, respectively. The test grade is a logical value –

<imsld:learning-activity identifier="Html_3">

 <imsld:title>Post test</imsld:title>

 <imsld:activity-description>

 <imsld:item identifierref="html_posttest_res">

 <imsld:title>Post test</imsld:title>

 </imsld:item>

 </imsld:activity-description>

</imsld:learning-activity>

...

<imsld:activity-structure identifier="as_Html_3"

 structure-type="sequence">

 <imsld:title>Html_3</imsld:title>

 <imsld:learning-activity-ref ref="Html_3"/>

</imsld:activity-structure>

...

<imsld:if>

...

 <imsld:or>

 <imsld:is>

 <imsld:property-ref ref=" Html_1_grading-Grade"/>
 <imsld:property-value>true</imsld:property-value>

 </imsld:is>

 <imsld:is>

 <imsld:property-ref ref=" Html_3_grading-Grade"/>
 <imsld:property-value>true</imsld:property-value>

 </imsld:is>

 </imsld:or>

...

</imsld:if>

<imsld:then>

 <imsld:hide>

 <imsld:activity-structure-ref ref=" as_Html_3"/>
 </imsld:hide>

</imsld:then>

Automatic Generation of E-Courses Based on Explicit Representation of Instructional
Design

ComSIS Vol. 9, No. 2, June 2012 863

true/false (passed/failed). When the grades values are true (defined in the

IMS LD tag if), the post-test is hidden (defined using IMSL LD element

hide). Figure 10 shows the screenshot of the Web Programming course

generated from “Knowledge Paced” ELIDL template. The screenshot is taken
before the pre-test for the lesson “HTML” is passed. We observe appearance
of the items Html_1 and Html_3 inside the lesson HTML. These items
represent pre-test and post-test, respectively. Fig. 11 shows the screenshot of
the same course after the pre-test is passed. One can notice that the Html_1
and Html_3 items do not appear in the lesson, because the pre-test and post-
test are hidden now.

Fig. 10. HTML lesson in the Web programming course generated for “Knowledge
Paced” instructional strategy (before the pre-test is passed)

All 6 generated units of learning for Web Programming course are
analyzed and the results are presented in Table 1. For each unit of learning,
the table shows applied instructional strategy and the following characteristics
of the manifest file: number of learning activities, relations, locpers-

property tags and lines of XML code.

Three of the six instructional strategies are described earlier in the text:
Competency Assessment, Linear and Knowledge Paced. Before the analysis
of the generated courses, we are going to describe briefly three other
strategies. No-sequencing is the simplest strategy and it allows unrestricted
access to all learning resources in any order. Remediation strategy is the
combination of the Linear and Knowledge Paced strategy. A learner has to
learn lessons in linear order. For each lesson there is a post-test (there is no
pre-tests as in case of Knowledge Paced strategy). If a student passes the

Goran Savić, Milan Segedinac, and Zora Konjović

ComSIS Vol. 9, No. 2, June 2012 864

post-test, the lesson is completed and he/she doesn’t need to learn the lesson
any more. Project-based learning strategy is directed to create a specific
product as the result of the learning process. A student is free to explore all
learning content in any order without restrictions. During the course there are
milestones for evaluating the progress of the project. Each milestone defines
a project-part which is evaluated.

Fig. 11. HTML lesson in the Web programming course generated for “Knowledge
Paced” instructional strategy (after the pre-test is passed)

Table 1. Comparison of the generated units of learning

The strategy
applied

of
Processing

time Activi
ties

Relations
locpers-
property

Manifest
lines

No-sequencing 85 0 2 1942 2 s

Linear 84 138 83 47109 219 s

Knowledge
Paced

131 210 95 7663 6 s

Remediation 107 186 94 58332 456 s

Competency
Assessment

131 210 104 19673 22 s

Project-based
learning

88 170 7 5305 4 s

The strategies No-sequencing and Linear are characterized by a small

number of learning activities because they contain only learning the lessons

Automatic Generation of E-Courses Based on Explicit Representation of Instructional
Design

ComSIS Vol. 9, No. 2, June 2012 865

and work on a project. Since the students have to take pre-tests and post-
tests, Knowledge-paced and Competency Assessment strategies have the
largest number of activities. Regarding the number of relations, the No-
sequencing strategy has no relation at all, as it means a completely free
learning path. The largest numbers of relations have Knowledge Paced and
Competency Assessment strategies since they have the largest number of
activities and these activities are conditioned by each other (availability of
some activities depends on the result of completed and passed actions of
other activities). Elements locpers-property comply with the number of

relations among learning activities. Competency Assessment and Knowledge
Paced strategies have the same number of relations, but for Competency
Assessment strategy three activities participate in some relations, while for
Knowledge Paced strategy all relations are defined between only two
activities. Therefore, the generated manifest file has more locpers-

property elements for the Competency Assessment instructional strategy.

The No-sequencing strategy doesn’t have any relations, so it has only two
locpers-property elements. These two elements represent the student’s

grades on the projects and they are the consequences of the grading element
in the instructional design template. The least lines of XML code is generated
for No-sequencing strategy, since this strategy has a small number of
activities and there are no relations in it. For this strategy, the instructional
design template doesn’t define any condition element at all. Manifests for the
Linear and Remediation strategies have most lines of code, since these
strategies require linear path through lessons. This means that a lesson is not
available until the previous one is completed which causes many if-then

elements in the manifest. In addition, the Remediation strategy contains tests,
which produces a manifest file containing most lines of code. Regarding the
processing time, it is proportional to the number of the generated lines in the
manifest. No-sequencing strategy requires least time, while the most time the
system spends to generate a course based on the Remediation strategy.

An automatically created course can be imported into some IMS LD
Player. For our purposes, we have used Reload LD Player [28] and
CopperCore IMS Learning Design Engine [29].

7. Conclusion

The paper presents the system for automatic generation of IMS LD compliant
courses based on explicitly expressed machine-readable instructional design
templates. The courses are generated from three inputs: the ontology of
learning goals, learning resources and instructional design template. The
output result is an IMS LD unit of learning that applies defined instructional
design.

Instructional design templates provide the means for explicit and formal
specification of instructional design, which most of existing systems for the
automatic course generation do not support. Detaching instructional design

Goran Savić, Milan Segedinac, and Zora Konjović

ComSIS Vol. 9, No. 2, June 2012 866

eases change of an applied instructional strategy in the course. For the
purpose of formal templates’ specification and representation, we have
developed a new domain-specific language named ELIDL.

It should be mentioned that the generated course is a static one – it
represents the sequence of predefined learning activities. The quality of the
teaching process and utilization of an e-learning environment could be
improved if a learning activity is chosen in real-time. These would enable that
a student gets a learning activity dynamically depending on various
parameters (instructional design, student’s knowledge state, personal
preferences etc.). However, given that most current LMS’s support only static
courses, in this phase of the research we decided to generate only a static
sequence of learning activities.

The system is verified on the example of generating Web Programming
course at the Faculty of Technical Sciences in Novi Sad. For the defined
learning goals and learning resources, we created 6 instructional design
templates that describe following instructional strategies: No sequencing,
Linear, Knowledge Paced, Remediation, Competency Assessment and
Project-based learning. As a result, the system generated 6 Web
Programming courses compliant with IMS LD specification. All templates and
generated courses are publicly available.

Our future work is mainly concerned with using the generated courses in a
teaching process. Currently we are measuring students’ achievements and
motivation in order to evaluate different instructional strategies and to
determine which one is the best for the given course.

Another direction of the further research is oriented towards development
of the software tool aimed at assisting teachers in instructional design
specification. This tool will enable simple and intuitive specification of
instructional design templates. There are ongoing activities aimed at creating
a graphical editor for ELIDL that would enable creating templates without
knowing ELIDL syntax. This editor should be only a part of the integrated GUI
application that we are planning to develop. This application will provide a
graphical interface for our system. Currently, our system is used from the
command line.

Although in our course some activities are done by students and some by
teachers, our system doesn’t have a component for an explicit specification
of users and their roles. Our long-term goal is to create such a component. It
would enable collaborative learning, which is not currently supported.

Acknowledgements. Results presented in this paper are part of the research
conducted within the Grant No. III-47003 financed by the Ministry of Education and
Science of the Republic of Serbia.

Automatic Generation of E-Courses Based on Explicit Representation of Instructional
Design

ComSIS Vol. 9, No. 2, June 2012 867

References

1. Advanced Distributed Learning (ADL): SCORM 2004 4th edition - Sequencing
and Navigation Version 1.1 (2009). [Online]. Available: www.adlnet.gov (current
June 2011)

2. IMS Global Learning Consortium: IMS Learning Design Information Model
(2003). [Online]. Available: www.imsglobal.org/learningdesign/ldv1p0
/imsld_infov1p0.html (current June 2011)

3. Kontopoulos, E., Vrakas, D., Kokkoras, F., Bassiliades, N., Vlahavas, I.: An
Ontology-based Planning System for e-Course Generation, Expert Systems with
Applications, Vol. 35, No. 1-2, 398-406. (2008)

4. Hernandez, J., Baldiris, S., Santos, O. C., Fabregat, R., Boticario, J. G.:
Conditional IMS Learning Design Generation using User Modeling and Planning
Techniques. In Proceedings of the 9th IEEE International Conference on
Advanced Learning Technologies, IEEE Computer Society, Riga, Latvia, 228-
232. (2009)

5. Capuano, N., Gaeta, M., Micarelli, A., Sangineto, E.: An Integrated Architecture
for Automatic Course Generation. In Proceedings of the IEEE International
Conference on Advanced Learning Technologies (ICALT 02), Kazan, Russia,
322-326. (2002)

6. Morales, L., Castillo, L., Fernandez-Olivares, J., Gonzalez-Ferrer, A.: Automatic
Generation of User Adapted Learning Designs: An AI-Planning Proposal. In
Proceedings of the 5th International Conference on Adaptive Hypermedia and
Adaptive Web-Based Systems, Springer-Verlag, Hannover, Germany, 324-328.
(2008)

7. Arapi, P., Moumoutzis, N., Mylonakis, M., Theodorakis, G., Christodoulakis, S.:
A Pedagogy-Driven Personalization Framework to Support Adaptive Learning
Experiences. In Proceedings of the 7th IEEE International Conference on
Advanced Learning Technologies (ICALT 2007), Nigata, Japan, 96-97. (2007)

8. Pacurar, E. G., Trigano, P., Alupoaie, S.: Knowledge base for automatic
generation of online IMS LD compliant course structures. Educational technology
& Society, Vol. 9, No. 1, 158-175. (2006)

9. LAMS: Learning Activity Management System. [Online]. Available:
www.lamsinternational.com (current June 2011)

10. The Pedagogical Patterns Project. [Online]. Available: www.pedagogicalpatterns.
org (current June 2011)

11. McAlpine, I., Allen, B.: Designing for active learning online with learning design
templates. In ICT: Providing choices for learners and learning, Proceedings
ascilite Singapore 2007, Centre for Educational Development, 639-651. (2007)

12. Heathcote, E. A.: Learning design templates – a pedagogical just-in-time
support tool. In: Minshull, Geoff & Mole, Judith (Eds.) Designing for Learning,
JISC Development Group, Bristol, UK, 19-26. (2006)

13. Abbing, J., Koidl, K.: Template Approach for Adaptive Learning Strategies. In
Proceedings of Adaptive Hypermedia, Dablin, Ireland. (2006)

14. Guangzuo, C., Xinqi, R., Haitao, Z., Ronghuai, H.: SMID: A Semantic Model of
Instructional Design. In Proceedings of the 2009 First International Workshop on
Education Technology and Computer Science, Vol. 3, IEEE Computer Society,
130-134. (2009)

15. de Moura Filho, C.O., Derycke, A., Pedagogical Patterns and Learning Design:
When Two Worlds Cooperate. In Proceedings of the UNFOLD-PROLEARN Joint
Workshop, Valkenburg, The Netherlands. (2008)

Goran Savić, Milan Segedinac, and Zora Konjović

ComSIS Vol. 9, No. 2, June 2012 868

16. Ljubojevic, D., Laurillard, D., A theoretical approach to distillation of pedagogical
patterns from practice to enable transfer and reuse of good teaching. In
Proceedings of the 2010 European LAMS & Learning Design Conference, Oxford,
UK. [Online]. Available: http://lams2010.lamsfoundation.org/papers.htm (current
June 2011)

17. Segedinac, M., Savić, G., Konjović, Z.: Knowledge representation framework for
curriculum development. In Proceedings of the International Conference on
Knowledge Engineering and Ontology Development, Valencia, Spain. (2010)

18. Segedinac, M. T., Konjović, Z., Segedinac, M. D., Savić, G.: A formal approach to
organization of educational objectives. Psihologija, In press. (2011)

19. IMS Global Learning Consortium: IMS Content Packaging Specification v1.2
(2007). [Online]. Available: www.imsglobal.org/content/packaging (current June
2011)

20. IEEE: IEEE 1484.12.1-2002 Learning Object Metadata Standard (2002). [Online].
Available: http://ltsc.ieee.org/wg12 (current June 2011)

21. Hlebowitsh, P. S.: Designing the School Curriculum. Pearson Education, Inc.,
USA. (2005)

22. Wiley, D. A., Learning object design and sequencing theory, PhD dissertation,
Department of Instructional Psychology and Technology, Brigham Young
University (2000). [Online]. Available: www.opencontent.org/docs/dissertation
.pdf (current June 2011)

23. Chew, L. K., Hua, T. G., Instructional Strategies and Limitations of the SCORM
2004, In Proceedings of the 16th International Conference on Computers in
Education (ICCE 2008), Taipei, Taiwan, 153-160. (2008)

24. Savić, G., Segedinac, M., Konjović, Z.: The Implementation of the IMS LD E-
course Generator. In Proceedings of the 1st International Conference on
Information Society, Technology and Management (ICIST 2011), Kopaonik,
Serbia (2011)

25. W3C: OWL Web Ontology Language Overview (2004). [Online]. Available:
www.w3.org/TR/owl-features (current June 2011)

26. CLEO Lab: CLEO Extensions to the IEEE Learning Object Metadata (2003).
[Online]. Available: www.oasis-open.org/committees/ download.php/20490
/CLEO_ LOM_Ext_v1d1a.pdf (current June 2011)

27. Derntl, M., Motschnig-Pitrik, R., Patterns for Blended, Person-Centered Learning:
Strategy, Concepts, Experiences, and Evaluation. In Proceedings of the 2004
ACM symposium on Applied computing, ACM, Nicosia, Cyprus, 916-923. (2004)

28. Reload: Learning design player v. 2.1.3 (2010). [Online]. Available:
www.reload.ac.uk/ldeditor.html (current June 2011)

29. CopperCore: The IMS learning design engine v 3.3 (2008). [Online]. Available:
http://coppercore.sourceforge.net (current June 2011)

Goran Savić graduated from the University of Novi Sad, Faculty of
Sciences, in 2006. He is currently on PhD studies in Computer Science, from
the University of Novi Sad, Faculty of Technical Sciences where he is a
teaching assistant. He has authored papers in international and national
journals and conferences. His research interest is e-learning.

Milan Segedinac was born in Novi Sad, on May 28, 1984. He received his
M.Sc. degree from the Faculty of Technical Sciences at the University of

Automatic Generation of E-Courses Based on Explicit Representation of Instructional
Design

ComSIS Vol. 9, No. 2, June 2012 869

Novi Sad in 2008, where he entered the Ph.D. studies the same year. He has
been employed at the Faculty of Technical Sciences since 2011 as a
teaching assistant. His research interests are in the area of computer-
enhanced education. He has authored papers in international and national
journals and conferences.

Zora Konjović received her Bachelor degree in Mathematics from the
Faculty of Natural Science Novi Sad (in 1973), the Master degree and PhD
(both in Robotics, in 1985. and 1992 respectively) from the Faculty of
Technical Sciences Novi Sad. She is a full professor at the Faculty of
Technical Sciences, Novi Sad, Serbia since 2003. Prof Konjović participated
in 30 research projects (as the project leader in 18). She published more than
180 scientific and professional papers. Her current research interests include
artificial intelligence, web programming, digital libraries and archives, and
geo-informatics.

Received: June 15, 2011; Accepted: February 21, 2012.

