
DOI: 10.2298/CSIS110720007K

Experimental investigation of the quality and

productivity of Software Factories based

development

Andrej Krajnc
1
, Marjan Heričko

1
, Črt Gerlec

1
, Uroš Goljat

1
 and

Gregor Polančič
1

1 University of Maribor,
Faculty of Electrical Engineering and Computer Science,

Smetanova ulica 17, SI-2000 Maribor, Slovenia
{andrej.krajnc1, marjan.hericko, crt.gerlec, uros.goljat, gregor.polancic}@ uni-

mb.si

Abstract. Software organizations are always looking for approaches
that help improve the quality and productivity of developed software
products. Quality software is easy to maintain and reduces the cost of
software development. The Software Factories (SF) approach is one of
the approaches to provide such benefits. In this paper, the quality and
productivity benefits of the SF approach were examined and evaluated
with an experiment involving two treatments - the traditional and the SF
approach. For the purposes of this experiment, the Goal – Question –
Metric (GQM) approach was used. Participants were grouped into
thirty-two teams. There were sixteen projects available. The results
were evaluated and presented through quality and productivity criteria,
which were used for the experimental study. The results showed that
the Software Factories approach was significantly better than the
traditional approach.

Keywords: software factories approach, benefits, quality, productivity,
experiment.

1. Introduction

A continuous objective in software engineering is to develop high quality
solutions within a short time [3, 6, 15]. This can be achieved with the use of
known software development methods, or approaches, where the quality of
solutions is provided [38]. In most cases the project stakeholders would like to
evaluate the software development outcomes as well as the effectiveness
and efficiency of the underlying software development approach.

Several approaches that help to decrease time and effort in software
development activities exist [4, 5, 8, 9], whereas the most efficient way of
creating software is not to develop it, but rather reuse it. The biggest
motivation for reusing software assets is to decrease software development

Andrej Krajnc, Marjan Heričko, Črt Gerlec, Uroš Goljat and Gregor Polančič

ComSIS Vol. 9, No. 2, June 2012 668

costs and reduce the time and effort needed for their development. Software
quality can also be improved with software reuse [36]. When reusing software
parts, it also improves maintainability, because of the use of already well
tested software parts. When we discuss software reuse, we need to look at
two different aspects of software reuse: developing for reuse and developing
with reuse [36]. The first is important when something is developed for reuse,
like a component or some software part, while the latter is important when
such a component or part of the software code is reused. Over time, a large
amount of different approaches and techniques for software reuse have been
developed, including: software frameworks, software libraries, software
generators, design patterns and software product lines.

Within these approaches, software frameworks and software product lines
(abbreviated as SPL) have been established as one of the most successful
approaches for software reuse, because their reuse is based on product
families rather than on individual reuses [2, 18]. In relation to them, a new
approach for successful software reuse has evolved over the past few years:
Software factories (abbreviated as SF).

A SF is a pattern for an approach to software system development, in
which instances of those systems share features, functionality and
architecture [2, 3]. The underlying four concepts of SF are: SPL, architecture
framework, automated guidance and Model-Driven Development
(abbreviated as MDD). Leveraging these concepts, SFs provide knowledge in
the following forms: asset-like architectural frameworks with common
features, models to create parts of software patterns, and recipes and tools
for helping the developer. These assets help to automate the delivery of
members of an SPL. In other words, an SF can produce software solutions in
a way analogous to the way an airplane factory produces airplanes. A certain
SF can produce software products in a specific domain. If we have an SF for
mobile applications and we want to develop a web portal, we have to use
another SF.

The SF approach provides the following benefits [2, 3, 4, 6]: an increase
in productivity, a decrease in the time to market, an increase in the level of
reuse, the providing of automatic guidance, a higher level of abstraction and
an increase in product quality. Some of these benefits can also be adopted
from the SPL approach [6, 7].

1.1. Motivation for the study

As Lord Kelvin (1824-1907) noted [40] “To measure is to know” and “If you
cannot measure it, you cannot improve it.” By applying this idea to the SF
domain, we believe that the measurement of development approaches helps
to control, estimate and improve development processes and consequently
the organization.

One of the main objectives of software engineering is to continuously
improve the quality of outcomes as well as the efficiency of engineering
activities [38]. As stated in the previous section, several approaches that

Experimental investigation of the quality and productivity of Software Factories based
development

ComSIS Vol. 9, No. 2, June 2012 669

leverage these objectives do exist; however, if the effectiveness of these
approaches is not objectively analyzed, we cannot generalize assumptions
out of them.

The above statements are also valid in the SF domain, with many stated
benefits (see the previous section) and researchers have reported that there
is a lack of empirical investigations [41]. There have been some studies
related to measuring SF benefits [4, 5, 18], but their results have been
primarily focused on quality characteristic, like number of defects, and
reusability. Another motivation for our study was to test the theoretically [2, 3]
stated quality and productivity benefits of the SF approach in an empirical
way. Doing such a study was also a test to see if the SF approach as such
was mature enough to be used later on in real projects in the industry.
Another motivation for this study was to motivate participants to use more
advanced development approaches to develop solutions with higher quality.

The goal of this study was to empirically evaluate the SF approach and to
investigate if it is more effective and efficient when compared to traditional
development.

In our research, we have addressed and evaluated SF in terms of their
quality and productivity, compared to a “traditional” software development
approach. The traditional approach has been defined as “a software
development approach where the whole software product is built by
developers from scratch.” This means that no additional tools that help
generate source code and no explicit design patterns are used. There is also
no reuse of any already available code.

For our study we set up a following research question: “Does the SF
approach deliver better quality code and does it increase the productivity of
the development team compared to a traditional approach?”

According to the research question, we organized the paper as follows.
This section further investigates software quality and productivity. Section 2
describes research foundation for this work; section 3 describes work related
to the object of the investigation; section 4 describes the goals of our study,
the hypotheses associated with the study and the design of the experiment.
The results are presented and interpreted in section 5. In section 6, we have
listed our conclusions together with the limitations, as well as the theoretical
and practical implications.

2. Research foundation

In the following subsections, research foundation regarding software quality
and productivity is presented.

Andrej Krajnc, Marjan Heričko, Črt Gerlec, Uroš Goljat and Gregor Polančič

ComSIS Vol. 9, No. 2, June 2012 670

2.1. Software quality

The primary objective of software development projects is to fulfill either the
stated or implied user requirements, which are commonly conceptualized in
terms of software quality [38, 39]. To achieve high quality, it is important to
use proper measurements for software solutions [38]. International standards,
like ISO 9126, emphasize the need for measurements for assuring product
quality [30]. It is important to measure software from the beginning of
development until the end of the product’s lifecycle. Software quality is
divided into internal and external quality [30]. Internal quality is the totality of
characteristics of the software product from an internal view [30]. Internal
quality is measured and evaluated against the internal quality requirements.
The details of software product quality can be improved during code
implementation, reviewing and testing [30]. External quality is the totality of
characteristics of the software product from an external view [30]. It is the
quality when the software is executed, which is typically measured and
evaluated while testing in a simulated environment with simulated data using
external metrics [30]. Despite the fact that new software development
methods and approaches have been applied in software development, there
are still problems with the quality of software products [38]. Quality is judged
according to different characteristics [38], which is given different significance
for different stakeholders. Therefore, as previously mentioned, different views
of software quality can be observed and analyzed. There are differences in
analyzing quality from the point of view of customers or users on one hand,
or from the point of view of the development team on the other [30]. As
mentioned, we are firstly interested in external quality and subsequently in
internal quality (Fig. 1).

When measuring internal quality, we use different software metrics [38]
that cover large aspects of object-oriented development, like complexity,
inheritance, coupling, and cohesion [10, 16]. It is important to have goal-
oriented measurement; there you can define clear objectives that you want to
achieve with a measurement [12, 38].

Quality in use
Quality in useinternal quality external quality quality in use

influences influences

depends on depends on

internal measures external measures
quality in use

measures

software product effect of software product

contexts
of use

Fig. 1 Relationships between types of software quality [30]

In research about the SPL and SF approach, there are many cases
regarding improved quality [3, 4, 6, 29, 37]. These cases are primarily related
to external quality measurement (like the number of defects) or they
theoretically state the quality benefits of such an approach. However,

Experimental investigation of the quality and productivity of Software Factories based
development

ComSIS Vol. 9, No. 2, June 2012 671

researchers should also focus on the internal quality of the SF approach and
its derived software code, as well as its quality.

2.2. Software productivity

Productivity is one of the most important benefits, when considering the
evaluation of a new software approach. Due to the ever-increasing demand
for new software, it is important to use an approach that increases the
productivity of the development team and shortens the time that is necessary
for solutions to get to the market [35]. Productivity also depends heavily on
different aspects, such as the experience of the developers, the approach
used, the development environment, and what domain the solutions will be
developed in (as well as the knowledge the developers have of such a
domain), etc [1, 5, 29]. Productivity has been widely researched and analyzed
in different contexts and approaches.

Measuring software productivity has been discussed in different ways [1,
15, 32, 39]. Different metrics have been proposed and used [39], like using
size related metrics - Lines of Code (LOC) and Number of Classes (NOC),
when using object-oriented development. The most important measure of
software productivity is to measure the effort needed for the development of
a certain project, product or functionality [38, 39]. Effort is mostly presented
as the time, in hours or minutes, required for development [15].

Another view on the SPL or SF productivity benefit deals with the
economics of such an approach and the economics of reusability. There are
several models that discuss software product line economics. Most decisions
about which products to include in the SPL and how to organize and structure
the development of the products are economic decisions. One of the most
known models is the model SIMPLE [31]. The model provides a set of
functions that account for the expenses and benefits of building the product
line and operating the product line organization [31]. It helps an organization
decide if it should adopt the software product line strategy to build products
through the costs and benefits related with the use of the SPL approach.
Poulin [35] presented a model for estimating the financial benefits of software
development with SPL. The model was used to calculate the “Product Line
Return on Investment (ROI)” metric. In this analysis, Poulin also used an
LOC metric and the percentage of the reuse code in each project. The
authors in [32, 33] present the economic impact on adoption of an SPL
approach. Their findings were related to the increase of quality, and improved
productivity. With their model, they present a top-down approach to evaluate
the SPL process of development. An important part of their study was to
study the reuse effort. When talking about reuse effort, there are different
approaches to measuring reusability, such as the level of the reuse in
organizations, reuse Return on Investment (ROI) metrics and the effort
needed for the development for reuse [34]. These approaches are focused
mostly on improving productivity and better quality when reusing software
code or components.

Andrej Krajnc, Marjan Heričko, Črt Gerlec, Uroš Goljat and Gregor Polančič

ComSIS Vol. 9, No. 2, June 2012 672

3. Related work

In this section, related work will be presented. Related work is considered
from different areas of software development, from software factories,
software product lines and software frameworks.

3.1. Software factories

Software factories were largely presented by Greenfield, Short [2] and Lenz,
Wienands [3]. The authors addressed and stated the benefits that this
approach delivers with its adoption.

Menendez [17] performed a study of SF-based projects in the aerospace
industry. He demonstrated a 35% productivity improvement in his research.
In our research, we want to show that improvements can also be made for
smaller projects. A limitation of this research is that the study was performed
for demonstration purposes only and was only applicable for the relatively
small domain of navigation in the aerospace industry.

Aoyama [19] presented an evolution of the SF approach at Fujitsu. A
model for using the SF approach was adopted. Their productivity
improvement was about 30% higher than the development process that was
used before the SF approach. Some other benefits, including higher
productivity, have also been gained, such as the incremental delivery of
products, lower total costs and a shorter development cycle.

Matsumoto [28, 29] presented SF which was established at Toshiba. In
Japan, several companies have used the SF approach, which helped to
reduce the cost of software development and increased the quality of
software. Each of them, especially Toshiba, achieved high levels of
productivity and improved quality of software. For example, Toshiba
achieved 0.2 detected errors per 1000 LOC.

3.2. Software product lines

Knauber et al. [11] defined several hypotheses related to SPL, where for the
scope of our research, the following hypotheses are interesting:

 “SPL decrease the development effort per product.” We will adopt this
hypothesis and change it a little bit to use with our productivity criteria.

 “SPL decrease the time to market per product”, which will also be adopted
into our productivity hypotheses.

A limitation of their work is that their findings are based on theoretical
conclusions, rather than on empirical data.

Ajila and Dumitrescu [13] conducted research about SPL evolution in the
form of changes. The original goal of this research was to study the economic
impact of market repositions on the product line and the identification of
metrics that can be used to record changes in the product line. One of the

Experimental investigation of the quality and productivity of Software Factories based
development

ComSIS Vol. 9, No. 2, June 2012 673

goals was to measure the lines of code (LOC) metric in each period of
development. They also measured the efficiency of the product line in the
case of developing products. The results showed that the use of the product
line approach eases the integration of a new product. In addition to this, the
efficiency also increased. The limitation of this research was that the authors
only used the Lines of Code (LOC) metric. No metrics for code complexity
were used.

In [20], Chen presented an SPL process simulator. He simulated the
process of the development life cycle in terms of time-to-market. The
simulation results showed that time-to-market can be reduced. The data
gathered in the simulation was compared to theoretical data in [11].
According to our research, where the real projects' data was used, their data
was gathered from a simulator and the data input in a simulator was selected
from randomly distributed numbers within a certain range.

3.3. Software frameworks

Object-oriented frameworks have been largely researched. Because of their
important relation with SPL and SF, research work made on the productivity
and quality of object-oriented frameworks is relevant.

Polančič et al. [21] presented an empirical examination of application
frameworks success. They did a survey regarding several important factors.
One of the factors also covered productivity and quality. In a survey with 389
participants, the average answer with regard to productivity improvement
using frameworks was “agree” while the same amount were in agreement
with quality improvement. Both marks are on Likert scales of 1-7 with end
points of “strongly agree” and “strongly disagree”. The limitation of this paper
was its research method compared to our research. The use of a survey can
sometimes get objective answers from participants.

Basili et al. [15] did an experiment to better understand the benefits of
reuse in an object-oriented framework. They conducted a four-month long
experiment, in which a new project was developed. The results showed an
approximately 34% reuse rate. Their findings were that productivity improved
with the increase of the reuse rate. Productivity was presented as an equation
between size and effort time. In the paper, no data about quality was
presented.

Morisio et al. [22] presented an empirical study in an industrial context on
the production of software using a framework. They tested hypotheses
regarding productivity and quality. They made a direct comparison with the
traditional approach. The limitation of this research is the development
process, where all projects were developed by the same programmer. Also,
quality was measured in the relationship between development effort and the
rework effort required to correct the code. Productivity was markedly better at
about 50%. It should be emphasized that really small projects were used; the
largest had 2,673 lines of code. The limitation of this work is also that all
projects were developed by a single developer.

Andrej Krajnc, Marjan Heričko, Črt Gerlec, Uroš Goljat and Gregor Polančič

ComSIS Vol. 9, No. 2, June 2012 674

Mamrak and Sinha [23] did a case study of productivity and quality gains
using an object-oriented framework. They implemented several input forms
using the framework. The effort they needed to generate and implement a
new application using a framework was reduced by 23% in terms of the
average lines of code written. By comparison, only the LOC metric was used
and the quality factor was presented through reused code.

In [25] authors presented a study to assess the impact of experience and
maturity on productivity in software development. Two projects were
measured, one using initial and one using subsequent development. First
project was developed using new platform. For the quality measurement
software metrics have been used. The project developed with new platform
had about four times higher development effort. On the other hand, quality
measures were both, more or less equal and there was no significant
difference. A limitation of the study was that the participants were not familiar
with developing with a new platform.

Table 1. Summary of related work.

Author Research
area

Methods Factors Results

Menendez[17] SF Case study Productivity 35%
productivity
improvement

Aoyama [19] SF Case study productivity,
shortened
development
time

productivity
improved by
about 30%

Matsumoto
[28, 29]

SF Case study productivity,
quality

higher level
of
productivity
achieved,
quality
presented as
less number
of defects

Knauber et
al.[11]

SPL Theoretical
study

productivity,
shorten time
to market

hypothetical
graphs of
improved
productivity

Ajila and
Dumitrescu
[13]

SPL Case study size of
product code
(productivity),
changes on
the product
line

lower time-
to-market for
products,
integration of
new product
is easier and
more
efficient

Experimental investigation of the quality and productivity of Software Factories based
development

ComSIS Vol. 9, No. 2, June 2012 675

Chen [20]

SPL Simulation effort
reduction,
time-to-
market
reduction

improved
development
effort after a
number of
products
developed

Polančič et al.
[21]

Software
Frameworks

Survey different
factors for
the
acceptance
of object-
oriented
frameworks,
including
productivity
and quality

participants
agreed with
productivity
and quality
improvement
when using
software
frameworks

Basili [15] Software
Frameworks

Experiment productivity,
level of reuse

as reuse rate
in projects
increases,
productivity
increases

Morisio et
al.[22]

Software
Frameworks

Experiment productivity,
quality

productivity
improved by
about 50%

Mamrak and
Sinha [23]

Software
Frameworks

Case study productivity,
quality

23% less
LOC written

Tomaszewski
and Lundberg
[25]

Software
Frameworks

Experiment productivity,
quality

productivity
was
improved
about four
times higher
using new
approach,
quality
measures
show no
significant
difference

Our study SF Experiment productivity,
quality

Improves
productivity
and effort for
about 14%,
better quality
of code

Andrej Krajnc, Marjan Heričko, Črt Gerlec, Uroš Goljat and Gregor Polančič

ComSIS Vol. 9, No. 2, June 2012 676

4. The empirical study

The objective of our study was to investigate the impact of the SF approach
on software quality and software development productivity, as compared to
the traditional approach. To achieve the objective, we used between-subjects
based on an experimental method. The experimental research as described
in this article was a part of a larger study in which we investigated different
effects of the SF approach on the software development process. For the
purpose of this part of the research, we have narrowed it down and focused
on the quality and productivity of the code.

4.1. Experimental variables and hypotheses

As previously mentioned, for the purposes of this research, we defined the
criteria that are included in the literature as the advantages/benefits of SF [2,
3] and SPL [6, 7]. The GQM approach [12] (Table 2) for defining factors and
corresponding metrics from the stated objective of the research was used.

Table 2. GQM approach [12] for our research.

Goal Purpose

Experimental
investigation

Issue

Quality and
productivity benefit

Object

Software Factories
based approach

Viewpoint From the developers’
viewpoint

Question Does the SF approach increases
productivity and decreases the time of
development?

Does the SF approach
deliver a better quality
of code?

Metric Effort Time, LOC, NOC Quality index (QI)

4.2. Productivity hypothesis

One of the core benefits of SF is in alignment with the following statement:
“The Software Factories approach increases the productivity of the
development team and decreases the time needed for development [3]”. As
mentioned in Section 2.2, for productivity, it is also important that the
development be done with software reuse, because it shortens the
development time. As stated in the motivation for the study, the goal was to

Experimental investigation of the quality and productivity of Software Factories based
development

ComSIS Vol. 9, No. 2, June 2012 677

measure if the development effort would be improved with the use of the SF
approach. In our study, productivity was defined as the amount of work
indicated with the sum of hours needed for the implementation of a project,
Lines of Code (LOC) and the Number of Classes (NOC) metrics. According to
this, we declared the following hypothesis:

H1: The time needed for the development of software projects using a

traditional approach is greater than the time and effort needed for the
development of software projects when using the Software Factories
approach.

The corresponding null hypothesis states that there is no difference

between the two groups of approaches (SF versus traditional approach) in
light of the productivity.

4.3. Quality hypothesis

As introduced in Section 2.1, quality can be measured internally and
externally. In our study, we have chosen to measure internal quality. With
internal quality we can cover different aspects of software code and its
quality.

Several software development quality metrics exist [24]. In our study we
have decided to measure the quality of code with software metrics sets
presented in [14].

We tested the code quality with both approaches (SF and traditional). The
metrics used in this criterion provided numerical values. These values
represent objective metrics, because the input in the metric function is data
and the output from the function is a single numerical value. In this case,
there is no impact on the results. On the other hand, if one looks at the
subjective metrics, there can be some influence on the results. This is the
reason why we decided to take software product metrics [10, 24], which were
already tested and are statistically proven. Size-related metrics were used in
the productivity phase of the measurement. Quality measurement was
realized with object-oriented class-related metrics [1, 14]. The chosen metrics
cover the coupling, complexity and maintainability of classes [16].

The Quality Index (QI) was proposed in [1, 14]. The authors defined the
method (equation) that expresses the quality of code with different metric
sets. In [14], interchangeable metric sets were evaluated to calculate QI. We
used those interchangeable metric sets to evaluate the quality of code in both
approaches.

The Quality Index is defined as

)(mvf=PMQR

n

PMQR

=QI

iii

n

=i

i
1

Andrej Krajnc, Marjan Heričko, Črt Gerlec, Uroš Goljat and Gregor Polančič

ComSIS Vol. 9, No. 2, June 2012 678

where PMQR is the product metric quality rating, which is between 0 and 5
value, n is the number of code metrics used in the calculation, mv is a code
metric value and f is the function that transforms the metric value for the
metric i to the product metric quality rating [1]. The quality rating
transformation function is defined for each metric individually. The QI is
composed of n product metrics. The number of metrics and its type should be
defined according to the project and environment characteristics. Each
product metric has its threshold values [1, 14]. For the original quality index
QI(0), the following metrics have been chosen: the Depth of Inheritance Tree
(DIT), Coupling between Objects (CBO), Lack of Cohesion in Methods
(LCOM), and the Maintainability Index (MI). According to these statements
regarding quality, the following hypothesis was declared:

H2: The Software Factories approach delivers code that has higher quality

than code delivered with a traditional approach.

The corresponding null hypothesis states that there is no difference

between the traditional and SF approach.

4.4. Experimental participants

We were aware that our ideal candidates for experimental subjects would be
a group of people, who already had prior knowledge in the field of SF and
approximately equal experience and familiarity with the SF approach. For
practical reasons we searched for candidates among undergraduate students
of the same course, which we previously trained to have the same amount of
training with each approach available (SF and traditional). In this way, we
minimized the effect that different prior knowledge or experience could have
on the experimental results.

Because advanced development technologies were presented, the
students needed to have experience with object-oriented technology,
including an object-oriented programming language.

Participants were in their final year of their study, so they had a sufficient
development and programming experience.

The reason for selecting final year students was, because research was
based on a complex technology, such as SF approach is. We provide
participants with extra help during courses, as mentioned before; training of
each approach was available for them and a short questionnaire about their
programming experiences was made. All that was provided for this, that
relation between university students and subjects in other context (like more
experienced developers) can be drawn.

Experimental investigation of the quality and productivity of Software Factories based
development

ComSIS Vol. 9, No. 2, June 2012 679

4.5. Experimental objects

In this part, we will present the objects that the subjects are going to examine
or work with. The objects are applications or projects, developed as web
applications in different domains using the SF and traditional approach. In
Table 3, the projects and their domains are presented. In the third cell, a
percentage of the Core Asset Base (CAB) is presented when using the SF
approach. With the creation of a project based on the SF approach, a
common part for each project developed in such a way is created. Measured
in the LOC metric, this CAB part contains 1,072 lines of code. Everything
else represents the variabilities of each project. For the SF approach, a
Microsoft Web Client Software Factory was used, which is a package for
developing web applications using the SF approach in Microsoft Visual Studio
Environment. As previously mentioned, this package creates a core project
for developing web applications (ASP.NET) and uses known patterns for
development, such as the Model-View-Presenter and Model-View-Controller.
On the other hand, subjects who developed objects with a traditional
approach, use the object-oriented development paradigm and the ASP.NET
technology for developing web-based applications on the Microsoft platform.
Both groups used the object–oriented programming language C#. Projects
were developed in the Microsoft Visual Studio environment.

Table 3. Objects examined by subjects in study

Project Domain CAB (%)

Project1 Accounting (web application) 13.05
Project2 Warehousing (web application) 8.45
Project3 Banking (web application) 9.95
Project4 Warehousing (web application) 12.95
Project5 Accounting (web application) 13.46
Project6 Warehousing (web application) 10.68
Project7 Warehousing (web application) 26.08
Project8 Other services (cinema services – web

application)
15.61

Project9 Other services (restaurant services – web
application)

9.40

Project10 Other services (taxi services – web
application)

15.54

Project11 Banking (web application) 18.35
Project12 Accounting (web application) 19.93
Project13 Accounting (web application) 10.74
Project14 Banking (web application) 10.17
Project15 Warehousing (web application) 11.91
Project16 Warehousing (web application) 10.16

Andrej Krajnc, Marjan Heričko, Črt Gerlec, Uroš Goljat and Gregor Polančič

ComSIS Vol. 9, No. 2, June 2012 680

4.6. Experimental environment and instruments

The experiment was conducted at a university setting, within the laboratory
work of a subject related to SF. In this laboratory work we taught students
how to develop multi-tier applications over a four-month long course. We
used the process of this laboratory work for our experiment in such a way that
the students had to build web applications using SF approach and traditional
approach.

The experimental process started with a short questionnaire about the
students' programming knowledge and experiences.

There were sixteen projects available and two different approaches used:
the SF approach and the traditional approach. The first thing the students did
was randomly choose their project and the approach they were going to use.
Every project was developed in two different ways: one student developed it
with a traditional approach and one with an SF approach.

Table 4. Experimental study.

The development process was divided into iterations.
In the first two iterations, the students had to be grouped together by

project and had to complete the requirements. They also conducted a design
phase for projects. For every project, quality design specifications were
prepared and provided by the supervisor. It was necessary to check and
analyze the specifications together with students per project, because both
needed to have the same requirements and design. That was for the purpose
of the SF benefits evaluation. Students filled out a document about their
working status and productivity. After the design phase, the document was
examined by a supervisor, who provided comments on the requirements.

After that, the education of developing web applications was turned over to
the students. Also, tutorial implementations were added on the course site for
them. Complete documentation was also provided. The supervisor was also
available during courses to answer questions about the use of developing
web applications and developing web applications using the SF approach.

Then the implementation phase began. The first step for students was to
set up a project solution. Their task was to write down the time they spent
learning the technology or use of the SF approach. The next step was the
implementation of the project. For the implementation phase, a Microsoft

R
GSF O1 XSF OQ OP

GTR O1 XTR OQ OP

Notes: R… randomization process, XSF … treatment SF approach, XTR …

treatment Traditional approach, GSF … Group SF approach, GSF …

Group Traditional approach, O … observation, OQ … observation quality,

OP … observation productivity

Experimental investigation of the quality and productivity of Software Factories based
development

ComSIS Vol. 9, No. 2, June 2012 681

Web Client Software Factory was used for the SF approach while students
who developed traditional approach used the ASP.NET technology for
developing web-based applications on the Microsoft platform.

5. Experimental results

5.1. Descriptive statistics

All participants had some experience with object-oriented programming
languages and relational databases, and therefore had the basic skills
necessary for such a study (Table 5).

Table 5. Descriptive statistics.

Variable Values Freq. Valid percent (%)

Gender Female 3 9.4%

 Male 29 90.6%

Programming experience Basic 26 81.3%

 Advanced 5 15.6%

 Expert 1 3.1%

Years of programming

experiences (besides

study) 0 years 16 50.0%

 < 1 year 11 34.4%

 1 – 2 years 3 9.4%

 >2 years 2 6.2%

Programming knowledge

of .NET environment Basic 26 81.3%

 Advanced 2 6.2%

 Expert 3 9.4%

 I don’t use .NET 1 3.1%

Knowledge of

developing web

applications in a .NET

environment Basic 20 62.5%

 Advanced 4 12.5%

 Expert 2 6.2%

 Don’t know 6 18.8%

Table 5 shows the descriptive statistics of the experiment's participants

and their previous experience with programming in a .NET environment. This
experience was self-reported. As noted in Table 5, we analyzed 32 out of a

Andrej Krajnc, Marjan Heričko, Črt Gerlec, Uroš Goljat and Gregor Polančič

ComSIS Vol. 9, No. 2, June 2012 682

total 32 responses. As anticipated, the typical participant was a male who was
introduced to the object-oriented development during the course of their
college studies and had some programming experience.

5.2. Productivity hypothesis testing

In the GQM model (Table 2) [12], we set out to measure productivity with
actual hours and the size-related metrics Lines of Code (LOC) and Number of
Classes (NOC). The projects developed with the SF approach were
measured together with part of the code, which represented the percentage of
CAB code, as presented in Section 4.5.

Table 6. Actual hours spent on each project.

Actual spent hours LOC NOC

 TR SF % TR SF TR SF

Project1 115 91 20.87 3289 8214 28 221
Project2 108 112 -3.70 2381 12691 33 276
Project3 124 104 16.13 5971 10771 46 140
Project4 106 89 16.04 5585 8281 53 190
Project5 112 107 4.46 3004 7965 37 239
Project6 124 99 20.16 6420 10038 36 219
Project7 108 91 15.74 2163 4111 28 129
Project8 116 94 18.97 1577 6867 13 158
Project9 122 96 21.31 7970 11409 84 297
Project10 121 104 14.05 2647 6899 34 151
Project11 107 96 10.28 1758 5842 26 154
Project12 116 97 16.38 3672 5378 48 118
Project13 116 98 15.52 2027 9983 25 217
Project14 108 92 14.81 4486 10542 36 249
Project15 104 88 15.38 2652 9002 18 227
Project16 123 103 16.26 5396 10552 48 291

Sum 1830 1561
Mean 114.38 97.56 14.70 3812.38 8659.06 37.06 204.75
STDEV 6.97 6.89 1926.57 2390.23 16.69 58.08
p (H0) 0.00 0.00 0.00
df 30 30 30
t 6.86 -6.31 -11.10

Experimental investigation of the quality and productivity of Software Factories based
development

ComSIS Vol. 9, No. 2, June 2012 683

The actual hours spent were compared in a pair. The null hypothesis H01
was tested, which stated that mean values in actual spent hours in both
approaches are equal. The alternative hypothesis HA1 states that mean
values in actual spent hours are not equal. Both tests were also made with
LOC and NOC results.

According to the summarized data, there is a difference in the hours
needed for the development phase in both approaches. Participants using the
SF approach needed, on average, 14.70% less time to develop projects.

Table 6 shows the actual hours spent on each project. In the data, we can
see that projects using the SF approach needed less time. This difference
with other projects is also seen in the result of the size-related metrics, Lines
of Code (LOC) and Number of Classes (NOC). This difference is especially
visible in the traditional approach. The LOC value in projects using the
traditional approach is high. The effort results are in favor of SF approach.
Table 6 also shows statistics for the tested pairs. For all three factors - spent
hours, LOC and NOC value - the difference is significant at p<0.05. The
evaluation of results for the productivity criteria shows that the time and effort
needed for the development of a SF project is less than the time and effort
needed for the development of projects with a traditional approach.
Therefore, the null hypothesis (H01) is rejected in favor of the alternative
hypothesis (HA1).

5.3. Quality hypothesis testing

Our research was based on the quality of the code, which was measured with
selected software product metrics. Also, the projects here developed with the
SF approach were measured together with part of the code which
represented the percentage of CAB code, as presented in Section 4.5.
Based on [1, 14], the quality index was tested on data. The QI measure was
compared in a pair. The null hypothesis H02 was tested, which stated that
mean values in QI measure are equal. The alternative hypothesis HA2 states
that mean values in QI measure are not equal.

An analysis of the results (Table 7) shows that the SF approach does
deliver more quality code, as can be seen with the QI measurement.
Normally, good code is expected to be QI > 3 [1, 14]. For the measurements,
different metric sets were used. In all sets, the QI of the SF approach was
better. The code developed with a traditional approach delivered less quality
code, because it used more complex code and had a smaller set of classes.
The SF approach brought a more controlled environment, which helped with
the maintainability and complexity of projects. Table 7 also shows statistics
for the tested pairs. For all QI measurement sets the difference is significant
at p<0.05. Therefore, the null hypothesis (H02) is rejected in favor of the
alternative hypothesis (HA2). All results point to better software quality code
when using the SF approach.

Andrej Krajnc, Marjan Heričko, Črt Gerlec, Uroš Goljat and Gregor Polančič

ComSIS Vol. 9, No. 2, June 2012 684

Table 7. Quality index measurement

6. Discussion

6.1. Threats to validity and research limitations

By threats, we are referring to threats to internal and external validity [27].
The first threat to validity of this study is the participants’ background. It was
the first time that many participants developed web applications, especially in
the chosen technology. The concept of the SF approach was also new to
them. Second, the experimental setting alone is a threat to validity, because
it was the participants' random choice to select what approach and which
project they would work on. Third, when dealing with university students, it
was also difficult to validate the accuracy of the provided effort data and
have confidence in them to actually fill out the data for the actual spent hours
correctly.

 QI(0) QI(1) QI(2) QI(4) QI(10)

 TR SF TR SF TR SF TR SF TR SF

Project1 2.75 4.00 2.25 3.00 2.50 3.75 2.25 2.75 3.00 3.75
Project2 3.00 3.75 2.25 2.75 2.75 3.50 2.25 2.75 3.25 3.50
Project3 3.50 4.00 2.50 3.00 2.75 3.50 1.75 2.75 2.75 3.50
Project4 2.50 3.75 2.00 3.00 2.50 3.50 2.00 2.75 3.00 3.50
Project5 3.00 4.00 2.25 3.00 3.00 3.75 2.25 3.00 3.25 3.75
Project6 3.50 4.00 2.50 3.00 2.75 3.75 1.75 2.75 2.75 3.50
Project7 3.00 4.00 2.25 3.00 3.00 3.75 2.25 2.75 3.00 3.50
Project8 3.00 3.75 2.75 3.00 2.00 3.25 1.75 2.75 2.75 3.00
Project9 3.00 4.00 2.25 3.00 3.00 3.75 2.25 2.75 3.00 3.75
Project10 3.00 3.75 2.50 3.00 2.75 3.50 2.25 2.75 3.00 3.50
Project11 3.00 4.00 2.50 3.00 3.00 3.50 2.25 3.00 3.00 3.50
Project12 3.00 3.75 2.50 3.00 3.00 3.75 2.25 2.75 3.00 3.50
Project13 3.25 3.75 2.50 3.00 3.00 3.50 2.25 2.75 3.00 3.50
Project14 2.75 4.00 2.25 3.00 2.75 3.50 2.25 3.00 3.00 3.50
Project15 2.75 4.00 2.50 3.00 2.75 3.75 2.25 2.75 3.00 3.75
Project16 3.00 4.00 2.25 3.00 2.75 3.75 2.25 3.00 3.00 3.75

Mean 3.00 3.91 2.38 2.98 2.77 3.61 2.14 2.81 2.98 3.55

STDEV 0.25 0.12 0.18 0.06 0.27 0.16 0.20 0.11 0.14 0.18

p (H0) 0.00 0.00 0.00 0.00 0.00

df 30 30 30 30 30

t -12.64 -12.63 -10.93 -11.57 -9.53

Experimental investigation of the quality and productivity of Software Factories based
development

ComSIS Vol. 9, No. 2, June 2012 685

External validity refers to the approximate truth of conclusions involving
generalizations within different contexts [26]. External validity threats are
always present when experiments are performed with students. However, last
year students have a sufficient development and programming experience,
thus we can consider them as a less experienced software engineers.
Consequently, we regard them as representatives of the context where we
would like to generalize the achieved results. Another possible threat to
external validity is that our projects were small, suggesting that their
complexity and functionality may be limited when compared to large software
projects. Nevertheless, replications should be performed with different
subjects in different contexts to confirm or contradict the results.

Conclusion validity concerns the issues that affect the ability of drawing a
correct conclusion. A definition of conclusion validity could be the degree to
which conclusions we reach about relationships in our data are reasonable
[26]. The conclusion validity threats were mitigated by the experiment design
and by the properly selection of the population. Regarding the recruited
subjects, we drew a fair sample from that population and conducted our
experiment with subjects belonging to this sample. Moreover, proper tests
were performed to statistically reject null hypotheses.

Readers should also interpret our results while considering the following
limitations. The metrics thresholds values for quality indexes were used from
[14] and these values are programming-language and design-approach
dependent. For development, the Microsoft development environment and
technology was used.

6.2. Theoretical and practical implications

Several theoretical and practical implications of our work can be foreseen.
First, we defined a model based on the GQM approach for the evaluation of
an SF approach within the context of quality and productivity. For researchers
and practitioners, the evaluation model can also be applied to other research
areas, like software frameworks, software product lines and the adoption of
design patterns. Second, some researchers and practitioners have already
proposed some of the benefits gained when using the SF approach. But only
the productivity factor was evaluated and researched. In this research, we
added the quality of code factor and investigated its impact. Product
development managers can, through our research, gain an idea on the
economic benefits of software development, because less effort is needed
and there is improved quality for the products developed with the SF
approach.

For the SF approach, it was known that its implementation provides
benefits, such as quality and productivity. Papers in related work have shown
benefits being achieved, albeit using different metrics and variables. Our
empirical study on the other hand contributed to the collective knowledge of
the SF approach with regard to the quality of the developed code.

Andrej Krajnc, Marjan Heričko, Črt Gerlec, Uroš Goljat and Gregor Polančič

ComSIS Vol. 9, No. 2, June 2012 686

6.3. Future work and conclusions

In our study we followed an empirical approach in evaluating engineering
techniques to gain transferrable insights about them. As previously
mentioned, this is to rarely done in our field, but is still necessary. We
presented an empirical study to assess the impact of the Software Factories
(SF) approach on a set of product and code quality indicators. The study was
conducted in a university setting on 16 projects developed using “traditional”
and SF approaches during an experiment. We specifically studied the impact
of an SF approach on quality of code and productivity. The results showed
that the use of the SF approach in software development has a statistically
significant impact on the quality of code and productivity. In the experiment,
small projects were used and a difference in quality and productivity could
already be seen. One can conclude that this will also hold true for larger
projects, which are greater and more complex. With the SF approach,
developed projects are more maintainable and have better quality.

The achieved results can be considered relevant as we tried to minimize
the gap between the university setting and industry environment. Indeed, the
selected participants are not far from actual stakeholders since they were
familiar with object-oriented programming and development.

However, despite the significance of the achieved results, we are going to
replicate the experiment in different contexts. In particular, we plan to
perform the replication with industry subjects (more experienced software
developers).

Our future direction aims to investigate the impact of the SF approach on
documentation, reusability, maintainability and modularity in software
development.

References

1. M. Heričko et al., A method for calculating acknowledged project effort using a
quality index. Informatica (Ljublj.), (2007), vol. 31, no. 4, pp. 431-436.

2. J. Greenfield, K. Short, Software Factories: Assembling Applications with
Patterns, Models, Frameworks, and Tools, John Wiley & Sons, Indianapolis,
2004.

3. G. Lenz, C. Wienands, Practical Software Factories in .NET, Apress, 2006
4. J.S.Her et al., A framework for evaluating reusability of core asset in product line

engineering, Information and Software Technology 49 (2007) 740-760.
5. D. Zubrow, G. Chastek, Measures for software product lines, Technical Notes

CMU/SEI-2003-TN-031, 2003
6. P. Clements, L.M. Northrop, Software Product Lines - Practices and Patterns,

Addison-Wesley, Boston, 2001.
7. H. Gomaa, Designing Software Product Lines with UML, George Mason

University, Addison-Wesley, Boston, 2004.
8. Etzkorn et al., Automated reusability quality analysis of OO legacy software,

Information and Software Technology 43 (2001) 295-308.

Experimental investigation of the quality and productivity of Software Factories based
development

ComSIS Vol. 9, No. 2, June 2012 687

9. Chatzigeorgiou et al., An empirical study on students’ ability to comprehend
design patterns, Computers & Education 51 (2008) 1007–1016.

10. N. Fenton, S. L. Pfleeger, "Software Metrics: A Rigorous and Practical
Approach", second edition, International Thomson Computer Press, London, UK,
1997.

11. P. Knauber et al., Quantifying Product Line Benefits, PFE-4 2001, LCNS 2290,
pp. 155-163, 2002.

12. V. Basili, (1994). "The Goal Question Metric Approach" (PDF).
ftp://ftp.cs.umd.edu/pub/sel/papers/gqm.pdf, Retrieved on 22.01.2011.

13. S.Ajila, R.Dumitrescu, Experimental use of code delta, code churn, and rate of
change to understand software product line evolution, The Journal of Systems
and Software 80 (2007) 74-91.

14. A. Živkovič, U. Goljat, M .Heričko, Improving the usability of the source code

quality index with interchangeable metrics sets. Inf. process. lett., Feb. 2010, vol.
110, iss. 6, p. 236-240

15. V. R. Basili , L. C. Briand , W. L. Melo, How reuse influences productivity in
object-oriented systems, Communications of the ACM, v.39 n.10, p.104-116,
Oct. 1996

16. S.R. Chidamber, C.F. Kemerer, A metrics suite for object oriented design, IEEE
Transactions on Software Engineering 20 (6) (Jun. 1994) 476–493.

17. J. Menendez, The Software Factory: Integrating CASE technologies to improve
productivity, Report – Lean 96-02, July 1996, MIT

18. K. Pohl, G. Böckle, and F. van der Linden, Software Product Line Engineering:
Foundations, Principles, and Techniques, 1st ed.: Springer-Verlag, 2005

19. M. Aoyama, Beyond Software Factories, concurrent-development process and an
evolution of sofware process technology in Japan, Information and Software
Technology 38 (1996) 133-143

20. Y. Chen, G. Gannod, J. Collofello, A software product line process simulator,
Soft. Process Improve. Pract. 11(4), 385-409 (2006)

21. G. Polančič, M. Heričko, I. Rozman, An empirical examination of application
frameworks success based on technology acceptance model, The Journal of
Systems and Software 83 (2010) 574-584.

22. M. Morisio, D. Romano, I. Stamelos, Quality, Productivity and Learning in
Framework-Based development: An Exploratory Case Study, IEEE Transactions
on Software Engineering, vol.28,no.9, 2002

23. A. Mamrak, S. Sinha, A Case Study: Productivity and Quality Gains Using an
Object-Oriented Framework, Soft. Pract. Exper. 29(6), 501-518 (1999)

24. V.R. Basili, L.C. Briand, W.L. Melo, A validation of object-oriented design metrics
as quality indicators, IEEE Transactions on Software Engineering 22 (10) (Oct.
1996) 751–761.

25. P. Tomaszewski, L. Lundberg, The increase of productivity over time – an
industrial case study, Information and Software Technology 48 (2006) 915-927

26. Shaddish,W., Cook T. & Campbell, D., Experimental and Quasi-Experimental
Design for Generalized Causal Inference, Houghton Mifflin Co., 2002

27. Jedlitschka, A., Pfahl, D., Reporting guidelines for controlled experiments in
software engineering, in Proc. ACM/IEEE International Symposium on Empirical
Software Engineering (ISESE) 2005, IEEE Computer Society Press, pp. 95-195

28. Yoshihiro Matsumoto. “Toshiba Fuchu Software Factory," Modern Software

Engineering, pp. 479-501, Van Nostrand Reinhold, New York (1990).

Andrej Krajnc, Marjan Heričko, Črt Gerlec, Uroš Goljat and Gregor Polančič

ComSIS Vol. 9, No. 2, June 2012 688

29. Yoshihiro Matsumoto. "A Software Factory, An Overall Approach to Software

Production," Software Reusability ed. by P. Freeman, IEEE Computer Society,
March 1987.

30. ISO/IEC 9126. Software Product Evaluation – Quality Characteristics and
Guidelines for the User, International Organization for Standardization, Geneva,
2001.

31. J. McGregor, Qualitative SIMPLE, Journal of Object technology, vol. 7, no. 7,
September-October 2008.

32. K. Schmid , M. Verlage, The Economic Impact of Product Line Adoption and
Evolution, IEEE Software, v.19 n.4, p.50-57, July 2002

33. K. Schmid, An Economic Perspective on Product Line Software Development,
First Workshop on Economics-Driven Software Engineering Research, 1999

34. J. Poulin, Measuring Software Reuse, Addison Wesley, 1996
35. J. Poulin, The Economics of Product Line Development, International Journal of

Applied Software Technology, vol. 3, 20-34, March 1997
36. E.A Karlsson, Software Reuse: A Holistic approach, John Wiley, 1995
37. F. van der Linden, K. Schmid, E. Rommes, Software Product Lines in Action,

The best industrial Practice in Product Line Engineering, Springer, 2007
38. C. Ebert, R. Dumke, Software Measurement, Springer, 2007
39. D. Galorath, M. Evans, Software sizing, estimation and risk management,

Auerbach Publications, 2006
40. Lord Kelvin Quotations, http://zapatopi.net/kelvin/quotes/, Retrieved on

28.5.2012.
41. Frakes, W. B., & Kang, K. (2005). Software reuses research: Status and future.

IEEE Transactions on Software Engineering, 31(7), 529–536.

Andrej Krajnc is a researcher and PhD student at the University of Maribor,
Faculty of EE&CS, Institute of Informatics. He received his B.Sc. in computer
science from the University of Maribor in 2006. His research work covers
different aspect of Software Product Lines, Software Factories, .NET
platform, object technology and software metrics. He worked in several
industry projects.

Marjan Hericko is a Full Professor at the University of Maribor, Faculty of
EE&CS, Institute of Informatics. He received his M.Sc. (1993) and Ph.D.
(1998) in computer science from the University of Maribor. His research
interests include all aspects of IS development with emphasis on metrics,
software patterns, process models and modeling.

Uros Goljat is a teaching assistant at the University of Maribor. His research
work covers agile software development methodologies (Scrum, XP, etc.),
different aspects of object-oriented technology, internal software quality, and
.NET platform. He gained his practical experiences in cooperation with
industry on several projects. Uros received his Computer Science B.Sc. in
2007 from University of Maribor.

Experimental investigation of the quality and productivity of Software Factories based
development

ComSIS Vol. 9, No. 2, June 2012 689

Črt Gerlec is a researcher and PhD student associated with the Faculty of
Electrical Engineering and Computer Science, Institute of Informatics at the
University of Maribor. His research interests are mining software repositories,
software evolution, software quality, software metrics, information systems
and more. He is experienced software developer on Microsoft.NET platform
and expert for software architecture, design patterns and best practices.

Dr. Gregor Polančič is an assistant professor at the Institute of Informatics.
He received his PhD in Computer Science from the University of Maribor in
2008. His main research interests are: (1) analysis and design of software, (2)
web applications, communities, architectures and patterns, (3) FLOSS
software, projects and development models, (4) business process modeling,
informatization and re-engineering and (5) computer mediated
communication and collaboration. Dr. Polančič has been a work co-
ordinator/member of several applied projects and work co-ordinator/member
in several international research projects. Dr. Polančič has appeared as an
author or co-author in more than 10 peer-reviewed scientific journals. In all,
his bibliography contains more than 130 records.

Received: July 20, 2011; Accepted: June 04, 2012.

