
DOI: 10.2298/CSIS110304048Z

A Reusable Agent Design Pattern with Flexibility

and Extensibility

Hao Lan Zhang1, Wenhua Zeng
2
, and Christian Van der Velden 3

1 School of Management, NIT, Zhejiang University,
No. 1 Qianhu South Road, Ningbo 315100, China

haolan.zhang@nit.zju.edu.cn
2 School of Software, Xiamen University,

361005 Xiamen, China.
whzeng@xmu.edu.cn

3 BAE Systems Australia, 40 River Boulevard
Richmond, VIC, 3121, Australia

christian.vandervelden@baesystems.com

Abstract. Intelligent agent-based systems are regarded as the
promising technology in bridging the gap between the physical world
and cyber-applications. In spite of the rising demands for reusable
information systems; current designs are still insufficient in providing
efficient reusable mechanisms for system design. One of the major
problems hinders the development of information reuse in most
traditional systems is the lack of the autonomous character among
system modules or subsystems. The emergence of agent technology is
able to solve the problem plaguing many traditional systems. Existing
agent design models create an agent as a sole system with built-in
domain-specific capabilities. However, this design pattern causes
several problems while matching and updating agents‟ capabilities due
to the built-in design pattern in these models decreases agents‟
extensibility, flexibility and reusability. In this paper we introduce a
novel design for agent-based systems, which is able to provide an
efficient design pattern for improving the reusability, extensibility and
flexibility of agent design. The novel agent capability design offers an
open and flexible structure; and implements several practical
algorithms that can improve the system performance. An experimental
program based on several practical cases has been developed to
evaluate the performance of the proposed design. The empirical results
reveal the efficiency of the new agent design pattern.

Keywords: Agent Capability Design, Agent Reusability, Domain
Specific Components, Agent Design.

Hao Lan Zhang, Wenhua Zeng, and Christian Van der Velden

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1230

1. Introduction

Information reuse has become a key issue for information system designers
in order to reduce information redundancy and system development
expenses. Various systems have implemented reusable mechanisms; agent-
based systems are among these systems with fast-growing demands for
information reuse. In this paper we introduce a component- based design for
agent capability reuse, i.e. the Domain Specific Component (DSC) design.
The mechanisms used in this design can be generally applied to various
agent-based systems for capability reuse.

Many existing agent-based systems have been focusing on developing
service-oriented agents or component-based agents for complex problem-
solving processes [1, 2, 3, 4]. These systems adopt various mechanisms to
enhance the system reusability and flexibility. However, agent capabilities
developed in these systems are generally integrated to agents and together
form a complete component. This design pattern decreases the flexibility and
reusability of agents. Under the circumstances, this paper proposes a new
mechanism that could efficiently improve the reusability of task-oriented
agents.

Unlike traditional agent design models, the DSC structure design deploys
the novel slot-item structure, which is supported by several practical
algorithms in order to improve the reusability and flexibility. Figure 1 shows
the design pattern for a DSC-based agent. The DSC items are the elements
of agent functionalities. In other words, an agent‟s capabilities are based on
the DSC items that it carries.

Fig. 1. General agent design pattern of DSC-based agents

A centre is deployed in this design to coordinate various agents. This
centre maintains a large DSC warehouse, which enables agents to upgrade
their capabilities through receiving the latest DSC items from the DSC
warehouse. This design incorporates agent-agent communication (through

A Reusable Agent Design Pattern with Flexibility and Extensibility

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1231

the agent-agent connection interface in Figure 1) and centre-agent
communication (through the centre-agent connection interface in Figure 1) to
form a hybrid structure, which combines decentralised and centralised
framework. The performance of the hybrid structure for agent cooperation
has been proven as a superior solution [5].

The DSC-based agent design adopts Beliefs-Desire- Intentions (BDI)
model for agent reasoning as agent capabilities can be formalised in a
framework [6].

A DSC-based agent can efficiently update its capabilities through updating
its DSC items. The DSC-based agents are also efficient for agent matching
since DSC items provide explicit descriptions about agent capabilities. The
retired or dated DSC items are returned to the DSC warehouse; however they
can be reused anytime through plugging back to the agent‟s DSC slots. In
general, the DSC-based agent design is able to improve the efficiency of
agent capability reuse and provide a flexible and upgradeable structure for
integration. This design overcomes the adaptation and integration problems
that plague existing software reuse systems [7, 8]; it provides a predefined
input and output structure to minimise the costs of components
standardisation that plagues many systems [9]. In addition, this design cost-
effectively recycles dated DSC items rather than eliminating them from
systems.

2. Related Work

Several mechanisms have been suggested to improve the reuse of
capabilities and tasks in agent-based systems. For instance, the major
mechanisms of describing agent capabilities for information reuse include the
Language for Advertisement and Request for Knowledge Sharing (LARKS),
Agent Capability Description Language (ACDL) [10], and Interface
Communication Language (ICL) [11].

ACDL is introduced to maximise the reuse of agent capabilities over new
application domains. It is based on the Knowledge Modelling Framework
(KMF). The LARKS allows agents to advertise their capabilities for both
syntactic and semantic matching processes. LARKS-based agents are able to
use application domain knowledge in any advertisement and request [12].

Modelling of component-based systems is still regarded as a largely
unresolved problem in many object-oriented systems according to [13]. The
emergence of intelligent agents is helpful to solve the problems in object-
oriented systems since agents can be specified on a conceptual level instead
of an implementation level. Moreover, agents have strong adaptability and
self-learning capability, which make the component integration process in
agent-based systems much efficient than in object-oriented systems. The
design principles for building component-based agents have been described
in [3], which provide several preliminary mechanisms to enhance the
reusability of agent design. The „agent specific task‟ component described in

Hao Lan Zhang, Wenhua Zeng, and Christian Van der Velden

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1232

their study is similar to the DSC concept. However, it does not provide more
concrete mechanisms about the design procedures and the performance of
the design.

Previous research on developing an open and comprehensive agent
structure has addressed some fundamental issues including the reusability
issue for agent design [11, 14, 15]. The reusability issue for agent design is
also related to the other issues, such as agent matchmaking, service
advertisement, learning and adaptivity, etc. These issues help to draw the
basic guidelines for designing DSC-based agents.

3. DSC Usage Centre Overview

3.1. DSC Usage Centre – A Slot Container

Each agent has a DSC usage centre, which provides information resources
for agents. This component distinguishes the DSC-based agents from
existing middle agents or agent facilitators that mainly play as the role of an
agent coordinator. The DSC usage centre upgrades the agents‟ functionalities
through acquiring information from the external environment and sending the
acquired information in DSC formats back to the centre. The DSC usage
centre manages the unused and active DSC items for agents to update their
capabilities. Each DSC item is executable and has standardised and
predefined inputs and outputs.

Fig. 2. Slot design of a DSC usage centre

Each DSC usage centre in an agent is a slot container, which offers
numerous slots for containing the specialising domain components as shown
in Fig 2. Each specialising domain component possesses some special
capabilities. Each domain component can plug into a DSC slot to perform
specific tasks as an item, for example a domain-component can connect the

……

…….

……..

DSC item 1

DSC item 2

DSC item 3

DSC item i

DSC item 1

DSC item 2

DSC item 3

DSC item i

DSC item i+1

DSC item i+2

DSC item i+3

DSC item j

S1: Front-end Section

S2: Backup-end Section

DSC

Assembler

A Reusable Agent Design Pattern with Flexibility and Extensibility

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1233

agent knowledge base to a stock market database to acquire useful
knowledge for the agent.

3.2. Inputs/Outputs of DSC Items

The inputs and outputs of a DSC item contain information as shown in Fig 3.

Fig. 3. Inputs and outputs in a DSC item

In the input section, the information includes the input content, data type,
and constraints. The input content indicates the value of the inputs such as a
string or a number. The data type indicates the input content‟s data type,
which include string, integer, float, double, etc. The constraint indicates
whether the input content can be null. If the constraint value is „compulsory‟
then the input content must not be null. Otherwise the input content can be
null. The output section consists of the output content and data type; they
basically have the same meaning as the input section.

A DSC assembler is employed in the DSC usage centre to evaluate the
suitability of a DSC item for an agent through comparing the inputs and
outputs from both sides. It also plays the role of extracting top-value of DSC
items from the backend section of the DSC usage centre. The comparison
between a DSC item and an agent‟s request is mainly based on the data
types and the number of inputs and outputs. For instance, an agent requests
a DSC item that can provide two main outputs including the total sales
amount and the average salary. Then a selected DSC item must provide
these two outputs. The following procedures show the comparison process:

Step 1: If the agent‟s request does not specify inputs then skip to the next
step, otherwise we compare the length of the inputs of the agent‟s request
and the DSC item. We eliminate all the non-compulsory inputs in both DSC
items and agent‟s requests. If the length of compulsory inputs (LC) of both
sides is equal then we continue the comparison process, otherwise the DSC
item is not appropriate for fulfilling the agent‟s request. The following
example illustrates the verification process.

Input Section: [Input 1: String (Compulsory); Input 2:
Integer; Input 3: Float; Input 4: Float (Compulsory).]
Output Section: [Output 1: String; Output 2: Float.]

Agent‟s request inputs: 1 0 0 0 1
DSC item inputs: 1 1 0 0 1

Agent‟s compulsory inputs: 1 1
DSC compulsory inputs: 1 1 1

„0‟ denotes that the input is non-compulsory;
„1‟ denotes that the input is compulsory.

Hao Lan Zhang, Wenhua Zeng, and Christian Van der Velden

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1234

According to the above example, we have: 2aLC and 3dLC , where LCa

denotes the length of the compulsory inputs of the agent‟s request; LCd
denotes length of the compulsory inputs of the DSC items. Here, LCd > LCa.
Hence, the selected DSC item is not appropriate for the agent‟s request.

If LCd = LCa, then we compare the data types of the compulsory inputs
from both sides. If DIAi = DIDi then go to the next step, otherwise the selected
DSC item is not appropriate for the agent‟s request. DIAi denotes the input
data types of the agent‟s request; DIDi denotes the input data types of the

DSC items; i is from 1 to LCd, with the incremental change = 1.

Step 2: If the agent‟s request does not specify outputs then the verification
process is accomplished. Whether the DSC item is appropriate for the
agent‟s request is based on the semantic matching of the capabilities
descriptions between the two sides, and the comparison process performed in
the previous step. If the agent‟s request specified the output, then we
compare the length of the outputs of both sides. The outputs do not
distinguish the compulsory and non-compulsory values; therefore, it is not
necessary to perform the elimination procedure of non-compulsory values.

If LPa  LPd, then the DSC item is not appropriate for the agent‟s request.
If LPa = LPd, then we compare the data types of the outputs from both sides.
If DOAi = DODi then the DSC item can be selected as an item for the agent‟s
request, otherwise the selected DSC item is not appropriate for the agent‟s
request. LPa denotes the length of the outputs of the agent‟s request; LPd
denote the length of the outputs of the DSC item; DOAi denotes the output
data types of the agent‟s request; DODi denotes the output data types of the
DSC items; i starts from 1 to LCd, with the incremental change = 1.

3.3. Functionality Redundancy Calculation

The DSC normally communicates with the environment through the agent-to-
agent (or central component-to-agent) interfaces; it also can establish
communication with the environment directly. A problem arises when some
plugged components are rarely used or never used. To solve this problem, a
component usage evaluation mechanism is used to examine the usage
efficiency of a plugged component. There are two major factors affecting a
DSC‟s usage efficiency, which include the usage frequency factor and
functionality similarity factor. The usage frequency indicates the total number
of visits to/from DSC items. The functionality similarity indicates the possible
redundancy of a plugged item‟s functionality with the other plugged items‟
functionalities. In this section, we introduce the mechanism for calculating
functionality redundancy for DSC items. The usage frequency calculation
process will be introduced in the next section.

A Reusable Agent Design Pattern with Flexibility and Extensibility

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1235

We deploy a three-type semantic relationship model, which is used in
WordNet [16], to describe the similarity relationships between two words. The
three types of relationships [17] are:

(i) Synonym: two words are synonymous.
(ii) IS-a: two words are in a superset and subset relationship.
(iii) Has-a: One word has ownership of another word. Also known as part-

whole relationship between words.
If two words are synonym relationship then their similarity value is

1A ; if

two words are Is-a relationship then their similarity value is
2A ; if two words

are Has-a relationship then their similarity value is
3A (

321 AAA ).

Therefore, we have the following equation for similarity calculation:





n

i

iAF
1 (1)

where F denotes the DSC functionality redundancy value of a slot; Ai the
similarity value; n denotes the total slot number of a DSC; F can be further
expanded through decomposing the task description of a plugged item into
several key terms and comparing these key terms with other plugged items‟
key terms, see Fig 4.

Fig. 4. Functionality similarity calculation based on Cartesian-Product method

In Fig 4, the functionality-similarity value of S1 and S2, namely Ai, is based
on the Cartesian-Product [18] method. In this method, Ai is calculated by
exhausting all combinations of choosing one key term from S1 and one key
term from S2. Aj represents the functionality-similarity value of S1 and S3.
Therefore, the overall functionality-similarity value of S1 is the composition of
Ai and Aj.

 

 



nm
Cnm Cji

jnim KLKLSF
1, 2,

))(),((, (2)

where m and n denote the DSC slot number (e.g. S1, S2, S3 in Fig 4), m must
not equal to n because the key terms are only calculated with similarity to
other slots but not the same slot; i and j denote the key term number (e.g. K1,
K2, K3 in Fig 4); S(x, y) is a function to calculate functionality similarity
between x and y; Lx(Ky) denotes key term Ky in slot Lx; C1 denotes the total
slot number of the DSC; C2 denotes the set of decomposed key terms.

K1 K2 K3 K1 K2 K3 K1 K3

S1 S2 S3

Hao Lan Zhang, Wenhua Zeng, and Christian Van der Velden

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1236

If a plugged DSC item has high F value compared with other items, and
there is no slot for a new item then the high F item will be unplugged from the
DSC and sent to the central component (the DSC learning centre) for reuse
because this item is highly redundant in the DSC compare with other items. A
new DSC item will be selected and plugged to the vacant DSC slot. The new
DSC item will also be evaluated its similarity to other slots. If the new
average similarity value is smaller than the previous average similarity value
(before the previous DSC item is removed), then the new item will be
plugged in. Otherwise, another DSC item will be selected until it can
decrease the average similarity value. This design can enhance the
reusability and efficiency of an agent-based system, and it also reduces the
redundancy in the DSC.

4. Usage Frequency Calculation for Agent Capability

Reuse in DSC Usage Centre

4.1. Front/Back End Structure

The DSC usage centre consists two sections, which include the front-end
section and the back-end section. The front-end section extracts the DSC
items from the backend section, which are the most frequently used DSC
items. This two-section-based structure adopts the methodology of the CPU
cache design in operating systems, which stores copies of the data from the
most frequently used main memory locations. The reason for dividing the
DSC usage centre into two sections is that: the number of the DSC items in
the DSC usage centre could be large; however, there are only a number of
DSC items are used frequently within a certain period. Therefore, it can
improve the system efficiency through deploying a section with a relatively
smaller size, which contains the most frequent used items within a certain
period.

Fig 5 illustrates the structure the DSC usage centre. S1 denotes the front-
end section; S2 denotes the item backend section; all the DSC items in S1

can be found in S2, which can be expressed as: S1  S2. The DSC items

stored in S1 are obtained from S2, which are the most frequently used items
in S2. The DSC assembler is responsible for searching a DSC item and
importing it to the requesting agent. The following calculation processes
illustrate how to extract the DSC items in S2 and store to S1.

Step 1: Calculating the recent visit factors in S2 within time period [ta, tb].











.,0

,,1

)(

visitednotisitemDSCthe

visitedisitemDSCthe

tV i

A Reusable Agent Design Pattern with Flexibility and Extensibility

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1237

where ti is the time and V(ti) denotes whether a DSC item is visited at time ti; i
is a variable, which denotes different visiting time within a time period.

Fig. 5. Two-section-based structure of the DSC usage centre

The total number of visits to a DSC item is calculated as:

 ,)(



b

ai

itVn and V(ti) = 1. (3)

where a, b denote the starting point and the ending point of the time period
respectively; n is the total number of visits to a DSC item within the time
period [ta, tb]; ta is the starting point; ti is the time point that the DSC item is
visited within the time period. If a DSC item is visited at time ti within [ta, tb],

then this DSC item is the i
th
 visit to the DSC item and ni 1 . For instance:

there are a total of 100 visits within [ta, tb], i.e. n = 100. The DSC item is

visited at time t20 (ba ttt  20) and is the 20
th
 visit to the DSC item, then ti =

t20. All ti and tb are the converted values, which are subtracted by ta and
convert into seconds or a user-defined time scale.

Therefore, a DSC item‟s recent visit factor can be calculated as the
following:





















n

i

n
t

t

i

i

ib
ii

i

b
n

tV
t

tt
tVE

1

)(log

)()(

 
















n

i

n
t

t

i

i

b
i

b
n

tV
t

t

1

)(log

)(

 
















n

i

tt

i

i

b

inbn

tV
t

t

1

)1log(log

)((4)

……

…….

……..

DSC item 1

DSC item 2

DSC item 3

DSC item i

DSC item 1

DSC item 2

DSC item 3

DSC item i

DSC item i+1

DSC item i+2

DSC item i+3

DSC item j

S1: Front-end Section

S2: Back-end Section

DSC

Assembler

Hao Lan Zhang, Wenhua Zeng, and Christian Van der Velden

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1238

where Ei denotes the recent-visit-factor value of a DSC item at time ti, which
indicates a DSC item‟s usage within the period [ta, tb]; n is the total number of
visits to the DSC and n1 , (Eq. 3, 4 only calculate the recent-visit- factor

value when there is visit to the DSC item, if n = 0 then Ei = 0.); the exponent

in Eq. 4, i.e.)1log(log  inbn tt , is to enlarge the recent-visit- factor

value. If ti is more recent then its Ei value is greater, meanwhile log function
is used to limit the exponent value. Eq 4 indicates that: when ti increases

(more recent) then Ei increases. In other words, if a visit to the DSC item is

more recent then its Ei is greater. The DSC-based system developers or
users can define the time period (i.e. [ta, tb]), which is configurable, to
initialise and update the DSC items in S1.

The DSC items in S2 are ranked according to Ei. The DSC items with
higher Ei scores are listed on the top of S2; S1 extracts a number of the DSC
items that are listed on the top of S2. The next step calculates the number of
the DSC items that S1 extracts from S2 (i.e. the size of S1).

Step 2: Calculating the size of S1.
The size of S1 is based on the usage frequency of the target system‟s DSC

item; it should also take the miss-rate into consideration. We use a dynamic
alteration method to determine S1‟s size. An empty S1 extracts the maximum
number of the DSC items with top Ei values from S2 within S1‟s predefined
size limit. After a period ([t0, ts]) of running (initial running period), some DSC
items in S1 will be replaced by the items in S2 and some will be removed from
S1 because of low-usage-efficiency (refer to B section). We first calculate the
total number of DSC items in S2 as its size, i.e. A2. The initial step of this
process is set a target miss-rate value and according to the miss-rate value
and A2 to calculate the preliminary size of A1.

Fig. 6. Dynamic alteration process

Once Ei, A1, and A2 are calculated, the DSC usage centre starts to
dynamically alter S1‟s size according to the miss-rate of searching DSC items
in S1 within a user defined period, i.e. the alteration period. This is because
the Ei value of each DSC item is normally changing during the alteration

……

…….

……..

DSC item 1

DSC item 2

DSC item 3

DSC item i

DSC item 1

DSC item 2

DSC item 3

DSC item i

DSC item i+1

DSC item i+2

DSC item i+3

DSC item j

S1

S2

Extracted

top value items

Missed

items in S1

A1

A2 - A1

A1

A Reusable Agent Design Pattern with Flexibility and Extensibility

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1239

period and the change affects the size of S1. Fig 6 illustrates the dynamic
alteration process.

In the dynamic alteration process, A1 is affected by Ei values and the miss-
rate of searching DSC items in S1. The following equitation describes the
calculation process.

msAA

A

E

E

AA

y

y

A

x

x
1

)12(

1
12

1

1

1 













 













12

1

1

1

)12(

1
AA

y

y

A

x

x

E

msAAE

A

 

msEE

AEms

A
A

x

x

AA

y

y

A

x

x



















1

1

12

1

1

1

2

1 . (5)

where ms denotes the miss-rate of searching DSC items in S1 within the
alteration period (this period can be various according to different system

applications), and it is always  1; Ex and Ey denote the Ei values of the DSC
items in A1 and (A2 - A1) sections, respectively.

This equitation indicates that: A1 should be approximately equal to (A2 - A1)
multiplied by the miss-rate, and the ratio of the total Ei values of all the DSC
items in A1 section to the total Ei values of all the DSC items in (A2 - A1)
section. In this equitation, A1 is alterable to satisfy the target ms value.

If initial A1 does not satisfy this equitation, then the DSC usage centre
needs to alter A1 size until it approximately equals the right side of Eq.5. The
system users can define the alteration period based on different application
requirements. For instance, the alteration period could be longer in some
applications because their DSC items require more processing time.
Moreover, the process is dynamic, which allows the DSC usage centre to
alter the S1 size regularly according to the computation results based on
Eq.5.

The above two steps explain the operating process of the DSC usage
centre. The system users can configure the DSC usage centre through
adjusting the processing time and the actual database size of the DSC usage
centre.

Hao Lan Zhang, Wenhua Zeng, and Christian Van der Velden

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1240

4.2. Reuse / Dismissal of DSC Items

The DSC items in the DSC usage centre that have low usage efficiency will
be sent to the DSC warehouse for reuse. A DSC item is regarded as low
usage efficiency when this DSC item is constantly on the bottom of S2 within
a period of time [ts, tre], which is called the critical period for removal and it
can be configured by system users.

The usage efficiency is calculated through combining the probability of the
visits to a specific item with the recent-visit-factor value Ei. We have
assumptions as follows:

 There are a total of x DSC items in an agent.
 All the DSC items in the agent have been visited the total of m times

within period [ta, tb].
 There is no concurrent visit to the DSC items. In other words, only one

DSC item can be visited at the same time.
Value m is based on Eq. 3. Therefore, and V(ti) = 1. Based on

Eq. 4, the average value of all the DSC items‟ Ei values, i.e. AVG(E), within
[ta, tb] is:

m

tV
t

t

EAVG

m

i

tt

i

i

b

inbn
































1

)1log(log

)(

)(

 (6)

The standard deviation [19] of all the DSC items‟ Ei value is:



































m

i

tt

i

i

b

i

EAVG

tV
t

t

m
ESDV

inbn

1

2
)1log(log

))(

)(1
)(

2

1

)1log(log

1

)1log(log2

))((

)()(2

)(
1

EAVGm

tV
t

t
EAVG

tV
t

t

m

m

i

tt

i

i

b

m

i

tt

i

i

b

inbn

inbn




















































 











  





































 





2

1

)1log(log2

)()(
1

EAVGmtV
t

t

m

m

i

tt

i

i

b

inbn

,)(



b

ai

itVm

A Reusable Agent Design Pattern with Flexibility and Extensibility

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1241

 














m

i

tt

i

i

b EAVGtV
t

t

m

inbn

1

2

)1log(log2

))(()(
1

 (7)

We consider removing the DSC item with an Ei value far below AVG(E).
Therefore, the lowest Ei value is:

),,....,(21 mk EEEMINE 

where dataset (E1, E2,…Em) denotes all the DSC items‟ Ei values within the
period [ta, tb]; Ek denotes the lowest Ei value in the dataset. If we have:

 3
)(

)(




ESDV

EAVGEk
 (8)

We define this DSC item as low usage efficiency. This definition is based
on Chebyshev’s theorem [20]:

“If and are, respectively, the mean and the standard deviation of the
distribution of the random variable x, then for any positive constant k the

probability that x will take on a value which is at most  k or at least is

less than  k or equal to 1/k
2
.”

This theorem is also expressed as: 21)(kkxP   . According to

Chebyshev’s theorem, at least 89% of the Ei values disperse within 3
standard deviations from the AVG(E) value. Therefore, any value, which is
greater than this range, is considered as an outlier that has low-usage-
efficiency.

If a DSC item in an agent‟s DSC usage centre is identified as a low-usage-
efficiency item, then it will be sent to the DSC warehouse. These low-usage-
efficiency DSC items can be discovered and re-deployed by other agents, or
can be updated by the DSC warehouse through information updating.

The DSC-based agents also use this evaluation methodology to identify
whether a DSC item is low-usage-efficiency. If a DSC item is identified as
low-usage- efficiency in an agent then it will be unplugged from the DSC
container and sent to the DSC usage centre. This reuse and dismissal
method is also used to remove the low-efficient items in the front-end section
of the DSC usage centre; it can reduce the section size and improve the
system efficiency.

5. Experimental Results

Many existing agent-based systems have the difficulties in designing efficient
processes for agent capability matching and reuse. The DSC-based design
aims to provide efficient mechanisms for agent capability matching and
reuse. In order to evaluate the performance of the DSC-based mechanisms,
we conducted a set of experiments based on a real case scenario for solving

 

Hao Lan Zhang, Wenhua Zeng, and Christian Van der Velden

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1242

the automated feature recognition problem in aerospace component design
process, as shown in Fig 7 [21].

Fig. 7 Typical CAD models of stiffener-panel design.

These experiments demonstrate how the agent-based technology, in
particular the DSC mechanism, can be used in the real world engineering
design processes.

Fig. 8. Entity relationship diagram based on common CAD models [21].

A Reusable Agent Design Pattern with Flexibility and Extensibility

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1243

In this case, agents extract key components from CAD models such as the
models listed below. There are a number of domain specific agents with
different capabilities including the Face agent, Panel agent, Stiffener agent,
Hole agent, etc. These agents are responsible for extracting their specified
components.

The experimental program matches the user requests against the
information from the CAD-based database. The functionalities of the
automated feature recognition system are transformed into DSC-based items,
i.e. agent capabilities. The experimental program consists two parts: the first
part evaluates the performance of the functionality redundancy calculation
mechanism; the second part evaluates the performance of the two-section-
based structure.

The real case scenario is based on several CAD models for aerospace
component design. Domain agents using the DSC-based design can improve
the efficiency of finding appropriate agent capabilities for performing the
feature recognition process. An entity-relationship diagram based on common
CAD models is shown in Fig 8.

An example table describes the three-type relationship is deployed in the
functionality redundancy calculation process. The example relationships are
shown in Table 1.

Table 1. Similarity relationships used in the FRC experiment

Comparison words
Similarity

relationships

Plane Face, Face IS-a

Cylindrical Face, Face IS-a

Face, Face Bound Has-a

Advance Face, Face Synonym

Face Bound, Edge Loop Has-a

Edge Loop, Edge Has-a

Line, Edge IS-a

Circle, Edge IS-a

B Spline curve, Edge IS-a

……… ………

Panel, Panel Face Has-a

In the first 16 sets of the Functionality Redundancy Calculation (FRC)

experiments, we evaluated the impact of request number on the success
rate. Among the 16 sets, 8 sets based on the FRC mechanism are called the
FRC sets; another 8 sets without using the FRC mechanism are called the
NFRC sets. In each experiment, a request is generated randomly based on a
knowledge base, which holds around 103 capability descriptions. The DSC
usage centre is also generated based on the knowledge base. The DSC slot
number is alterable; system users can increase and decrease the DSC slot

Hao Lan Zhang, Wenhua Zeng, and Christian Van der Velden

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1244

number according to specific system requirements. In the first part of the
FRC experiment, the default DSC slot number in an agent is 3 and there are
5 agents to deal with a request corporately. As shown in Table 1, the
relationship table contains 39 three-type relationship descriptions.

The FRC-based sets produce the similarity score of each DSC item
compared with other agents‟ DSC items. If the DSC item has the highest
similarity score and is 1.5 times greater than average score of all the
participated agents, then this DSC item will be replaced by a new DSC item
from the DSC warehouse. The boundary value of trigger a DSC replacement
is 1.5 times, which is based on experimental experience and the relevance of
the requests.

The NFRC-based sets only match the requests with the DSC item
descriptions. The DSC items in NFRC sets will not be replaced or changed in
the experimental process. The following figures show the experimental
results.

Fig. 9. Success rate comparison based on FRC and NFRC (15 DSC items).

Fig. 10. Similarity score comparison based on FRC and NFRC (15 DSC items).

Fig 9 shows the impact of the FRC method on the success rate of
matching requests in comparison with the experimental sets without using

A Reusable Agent Design Pattern with Flexibility and Extensibility

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1245

FRC method (i.e. NFRC sets). Fig 10 presents the relationship between the
average similarity score and requests number based on FRC and NFRC. The
requests matching process in FRC is more efficient than NFRC since the all
FRC-based success rates based on different request number are greater than
the NFRC-based success rates. The improvement on success rates for a
single agent is not enormously large based on FRC. However, this
improvement ought to be enormous based on a large number of agents. We
also noticed that the success rate is improved significantly when total
requests number is 50. The reason for the increase at 50 point is still under
investigation. We presume the reason could be: 50 requests for 15 DSC
items is a balanced ratio for matching in a DSC usage centre.

Figure 10 shows the average similarity scores based on the NFRC sets is
clearly greater than the FRC sets. The average score for NFRC is 1.8 times
higher than FRC, which reflects the functionality redundancy in the NFRC
sets is much higher than the FRC sets. The functionality redundancy in the
DSC usage centre could cause the low efficiency in terms of capability
matching and memory consumption for a multi- agent system.

To further evaluate the performance of FRC, we altered the DSC item
number (i.e. the DSC slot number) in a DSC usage centre to observe its
impact on the success rates of request matching based on 200 requests and
remain the other parameters unchanged that are: 39 relationship descriptions
and 103 capability descriptions. The results are shown in Fig 11 and 12.

Fig. 11. Success rate comparison based on NFRC and FRC (200 requests)

Fig 11 indicates that the success rates are increasing in both FRC and
NFRC sets. Overall, the success rates in the FRC sets are still higher than
the NFRC sets. The disadvantage of the FRC method is that: the time
consumption of the FRC sets is higher than the NFRC sets as shown in
Figure 12. The time consumption in the FRC sets is caused by the processes
of calculating the similarity scores, selecting an appropriate DSC item from
the DSC warehouse, and replacing the low- efficiency DSC item.

Hao Lan Zhang, Wenhua Zeng, and Christian Van der Velden

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1246

Fig. 12. Time consumption based on NFRC and FRC (200 requests)

In this experimental design, the requests are generated randomly; and this
makes the miss-match happens more often than real applications. In other
words, the frequency of requesting for a DSC item in a system has a routine
pattern in practical. For instance, a „connecting to the Internet‟ DSC item
might be used most frequently in many organisations, but the random request
generation process in this experimental design does not take this factor into
account. Therefore, the miss- match will be highly decreased in real cases.

In the second part of the experiments, we evaluate the performance based
on the two-section (TS) and Non-two- section (NTS) structures. The database
and parameters used in this part are identical to the FRC part.

Fig. 13. Success rate comparison based on TS and NTS sets (15 DSC items)

Figure 13 shows that the success rate of matching requests with DSC
items in the TS sets are much better than it is in the NTS sets. The average
success rate of the TS sets is 2.75 times higher than NTS sets. This result
provides a solid proof that TS based mechanism has superior performance
for improving matching success rates.

A Reusable Agent Design Pattern with Flexibility and Extensibility

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1247

Fig. 14. Time consumption based on TS and NTS sets (100 requests).

To evaluate the time consumption factor of the TS method, the
experimental program randomly generated 100 requests and modified the
DSC item number to observe the results. Figure 14 indicates that the time
consumption of matching requests with DSC items in the TS sets is steady.
However, the time consumption increases gradually in the NTS sets when the
DSC item number increases.

To further evaluate the results in Figure 14, we increased the requests
number to 200. The results shown in Figure 15 are very similar to Figure 14,
except that it takes more DSC items in this experiment to increase the time
consumption in the NTS sets. Nevertheless, the time consumption of the NTS
sets increased from 22 seconds to 34 seconds when DSC items number
increased from 5 to 90. However, the TS sets almost remained unchanged.

Fig. 15. Time consumption based on TS and NTS sets (200 requests).

Hao Lan Zhang, Wenhua Zeng, and Christian Van der Velden

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1248

6. Conclusion

The DSC-based agent design offers an efficient and cost-effective solution to
enhance agent capability reuse and integration. It can be further implemented
to various domain agents, such as Web wrapper agents [22], negotiation
agents [23], decision support agents [24, 25], etc.

The DSC design mechanism adopts several traditional methods including
the cache model, three-type relationship, Cartesian product, and
Chebyshev‟s theorem. These traditional methods are endowed a new
meaning when they are applied to the DSC design for agent-based systems.
In particular, the novel DSC slot design structure can significantly improve
the reusability of agent capabilities.

A DSC-based agent can update its capability through removing the dated
DSC items and inserting new DSC items from the DSC warehouse [26].
Instead of destroying retired or dated components in many traditional
systems, the DSC-based agent returns the retired or dated DSC items to the
DSC warehouse. These returned DSC items can be reused when they can
fulfil the users‟ requests.

The functionality redundancy calculation and two-section- based structure
deployed in the DSC-based design are able to improve the success rate of
matching DSC items with user requests. The experimental results show that
both FRC and TS methods can improve the success rate of request
matching. Particularly, the success rate is improved significantly in the TS-
based experiments. The similarity scores in the FRC sets are much lower
than they are in the NFRC sets. This reflects that the DSC item redundancy is
reduced in the FRC-based experiments. The TS sets require less time
consumption than NTS sets for matching DSC items, on the contrary, the
FRC sets require more time than NFRC sets for matching.

In general, the experimental results based on the CAD models indicate that
the TS and FRC methods used in the DSC-based systems improve the
system performance in terms of matching requests and reusing DSC
components. Hence, the DSC-based agent design offers a reusable and
extensible solution, which demonstrates the superior system performance.

The current agent design pattern is based on the system prototype and
agent simulation processes. To further improve the DSC-based design, we
plan to develop a complete DSC-based multiagent system to solve some
complex problems based on industrial cases, such as the automated feature
recognition problem described in Section V. Thus, the DSC-based agent
design can be further evaluated and improved systematically.

References

1. Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey, A., Horling, B., Neiman,
D., Podorozhny, R., Nagendra Prasad, M., Raja, A., Vincent, R., Xuan, P.,

A Reusable Agent Design Pattern with Flexibility and Extensibility

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1249

Zhang, X.Q.: Evolution of the GPGP/TAEMS Domain-Independent Coordination
Framework. Journal of AAMAS, Vol. 9, 87-143. (2004)

2. Hutzschenreuter, A. K., Bosman, P., Blonk-Altena, I., Aarle, J. V., Poutre, H. L.:
Agent-based Patient Admission Scheduling in Hospital. Proc. of AAMAS. 45 –
52. (2008)

3. Wang, M., Wang, H., Xu, D., Wan, K.K., Vogel, D.: A Web-service Agent-based
Decision Support System for Securities Exception Management. Expert Systems
with Applications. Vol. 27, Elsevier Publication, 439 – 450. (2004)

4. Brazier, F.M.T., Jonker, C.M., Treur, J.: Principles of Component- Based Design
of Intelligent Agents. Data & Knowledge Engineering, Vol. 41, Issue 1, Elsevier
Press, 1-27, (2002)

5. Zhang, H.L., Leung, C. H. C., Raikundalia, G. K.: Topological analysis of AOCD-
based agent networks and experimental results. Journal of Computer and
System Sciences, Vol. 74, Elsevier Press, 255–278 (2008)

6. Braubach, L. and Pokahr, A.: Representing Long-Term and Interest BDI Goals.
Proc. of ProMAS, AAMAS Foundation Press. (2009)

7. Mili, H., Mili, A., Yacoub, S. and Addy, E.: Reuse-Based Software Engineering:
Techniques, Organization, and Controls. John Wiley & Sons Press. (2002)

8. Ghijsen, M., Jansweijer, W., Wielinga, B.:Towards a framework for agent
coordination and reorganization, AgentCoRe. Proc. of COIN, IEEE Press. (2007)

9. Mohagheghi, P., Conradi, R.: An Empirical Investigation of Software Reuse
Benefits in a Large Telecom Product. ACM Transactions on Software
Engineering and Methodology, Vol. 17, 3. (2008)

10. Gomez, M., Plaza, E.: Extending matchmaking to maximize capability reuse.
Proc. of AAMAS, New York. (2004)

11. Cheyer, A., Martin, D.: The Open Agent Architecture. Journal of AAMAS, Volume
4 Issue 1-2. (2001)

12. Sycara, K., Widoff, S.: LARKS: Dynamic Matchmaking Among Heterogeneous
Software Agents in Cyberspace. Journal of AAMAS, 5, 173-203. (2002)

13. Vitharana, P., Zahedi, F., Jain, H.: Design, retrieval, and assembly.
Communications of the ACM, Vol. 46, No. 11, 97 – 102. (2003)

14. Haigh, K., Phelps, J., Geib, C.: An Open Agent Architecture for Assisting Elder
Independence, Proc. of AAMAS, pp. 578 – 586. (2002)

15. Jennings, N. R.: An agent-based approach for building complex software
systems. Communications of the ACM, Vol. 44, No. 4. (2001)

16. Li, Y., Bandar, Z. A., McLean, D.: An approach for measuring semantic similarity
between words using multiple information sources. IEEE Transaction on
Knowledge and Data Engineering, Vol.15, No.4, 871-882. (2003)

17. Gangemi, A., Navigli, R., Velardi. P.: The OntoWordNet Project: Extension and
Axiomatization of Conceptual Relations in WordNet. Proc. of ODBASE, pp. 820-
838. (2003)

18. Hein, J. L.: Discrete Mathematics, Jones and Bartlett Press, 74-75. (2002)
19. Venables, W. N., Ripley, B. D.: Modern Applied Statistics with S-PLUS, Springer-

Verlag Press. (1999)
20. Hogg, R.V. and Craig, A.T.: Introduction to Mathematical Statistics (5th Edition),

Prentice Hall Press. (2007)
21. Zhang, H. L., Van der Velden, C., Yu, X., Jones, T., Fieldhouse, I., Bil, C.:

Developing A Rule Engine for Automated Feature Recognition from CAD Models.
Proc. of IEEE IECON, 3925 – 3930. (2009)

22. Chang, C., Siek, H., Lu, J., Hsu, C., Chiou, J.: Reconfigurable Web Wrapper
Agents. IEEE Intelligent Systems, 34 – 40. (2003)

Hao Lan Zhang, Wenhua Zeng, and Christian Van der Velden

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1250

23. Fischer, K., Chaib-draa, B., Muller, J. P., Pischel, M., Gerber, C.: A Simulation
Approach Based on Negotiation and Cooperation between Agents - A Case
Study. IEEE Transaction on Systems, Man and Cybernetics - Part C, Vol. 29,
Issue 4, 531-545. (1999)

24. Vahidov, R., Fazlollahi, B.: Pluralistic multi-agent decision support system: a
framework and an empirical set. Information & Management, Vol. 41, Elsevier
Press, 883 – 898. (2004)

25. Turban, E., Aronson, J. E., Liang, T.: Decision Support Systems and Intelligent
Systems (7th edition), Prentice-Hall Press, 223,. (2005)

26. Zhang, H. L., Leung, C.H.C., Yu, X., He, J.: An Optimised Design for Agent
Capability Reuse. Proc. of IEEE/WIC/ACM WI-IAT, Vol.3, 231-234. (2010)

Dr. Hao Lan Zhang is an Associate Professor and Deputy Director of IS
discipline at NIT, Zhejiang University. Dr. Zhang received a PhD from
Victoria University, Australia. He was with RMIT University as a Research
Fellow from 2008–2010. Prior to that, he worked as a research assistant/tutor
at Victoria University. His research interests include: multi-agent systems,
knowledge-based systems, intelligent information systems, e-health systems,
database, etc. He has published over 30 research papers in various journals,
conferences and workshops. Dr. Zhang received an outstanding student
award from the Chinese Scholarship Council and Chinese Ministry of
Education in 2006.

Dr. Wenhua Zeng is a Professor and Vice Dean of Software School at
Xiamen University. He obtained a PhD degree from Zhejiang University in
1989. He has been active in areas of Software Engineering, Grid Computing,
Cloud Computing.

Dr. Christian Van der Velden is a Control System Engineer at BAE Systems
Australia. He received his PhD in 2009 from RMIT University, Australia in the
field of Knowledge Based Engineering. He worked as a Research Fellow at
RMIT University from 2008 to 2010 working with GKN Aerospace and the
Cooperative Research Centre for Advanced Automotive Technology
(AutoCRC) in the area of Automated Feature Recognition.

Received: March 4, 2011; Accepted: May 4, 2011.

